IONA

>3 Artix™

Security Guide

Version 1.2, October 2003

Making Software Work Together™

Orbix, IONA Enterprise Integrator, Enterprise Integrator, Orbix E2A Application Server,
Orbix E2A XMLBus, XMLBus, are trademarks or registered trademarks of IONA Technol-
ogies PLC and/or its subsidiaries.

IONA, IONA Technologies, the IONA logo, Making Software Work Together, IONA e-Busi-
ness Platform, and Total Business Integration are trademarks or registered trademarks of
IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2003 I0ONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 31-0ct-2003

M3114

Contents

List of Tables
List of Figures
Preface

Chapter 1 Introduction to Security
Security for SOAP Bindings
Secure Hello World Example
HTTPS Connection
IIOP/TLS Connection
Security Layer

Chapter 2 Configuring the iS2 Server
Configuring the File Adapter
Configuring the LDAP Adapter
Configuring the SiteMinder Adapter
Additional iS2 Configuration

Configuring the Log4J Logging

Chapter 3 Managing Users, Roles and Domains
Introduction to Domains and Realms
iSF Security Domains
iSF Authorization Realms
Managing a File Security Domain
Managing an LDAP Security Domain
Managing a SiteMinder Security Domain

Chapter 4 Managing Access Control Lists
Overview of Artix ACL Files
Artix Action-Role Mapping ACL

CONTENTS

Chapter 5 Managing Certificates
What are X.509 Certificates?
Certification Authorities
Commercial Certification Authorities
Private Certification Authorities
Certificate Chaining
PKCS#12 Files
Creating Your Own Certificates
Set Up Your Own CA
Use the CA to Create Signed Certificates
Deploying Certificates
Overview of Certificate Deployment
Deploying Trusted Certificate Authority Certificates
Deploying Application Certificates

Chapter 6 Configuring HTTPS and IIOP/TLS Authentication
Requiring Authentication
Target-Only Authentication
Mutual Authentication
Specifying Trusted CA Certificates
Specifying an Application’s Own Certificate
Providing a Certificate Pass Phrase
Certificate Pass Phrase for HTTPS
Certificate Pass Phrase for IIOP/TLS
Advanced IIOP/TLS Configuration Options
Setting a Maximum Certificate Chain Length
Applying Constraints to Certificates

Chapter 7 Configuring IIOP/TLS Secure Associations
Overview of Secure Associations
Setting IIOP/TLS Association Options
Secure Invocation Policies
Association Options
Choosing Client Behavior
Choosing Target Behavior
Specifying IIOP/TLS Cipher Suites
Supported Cipher Suites
Setting the Mechanism Policy

59
60
62
63
64
65
67
69
70
73
76
77
78
82

85
86
87
90
93
94
95
96
98

100
101
102

105
106
108
109
110
112
114
116
117
120

Constraints Imposed on Cipher Suites
Caching IIOP/TLS Sessions

Chapter 8 Principal Propagation
Introduction to Principal Propagation
Configuring
Programming
Interoperating with .NET

Explicitly Declaring the Principal Header
Modifying the SOAP Header

Appendix A Security Configuration
plugins Namespace
policies Namespace
principal_sponsor Namespace
principal_sponsor:csi Namespace

Appendix B iS2 Configuration
Properties File Syntax
iS2 Properties File
Cluster Properties File
log4j Properties File

Appendix C ASN.1 and Distinguished Names
ASN.1
Distinguished Names

Appendix D Action-Role Mapping DTD

Appendix E OpenSSL Utilities
Using OpenSSL Utilities
The x509 Utility
The req Utility
The rsa Utility
The ca Utility
The OpenSSL Configuration File
[req] Variables

CONTENTS

122
125

127
128
129
132
135
136
138

141
142
146
153
155

157
158
159
172
174

177
178
179

183

187
188
189
191
193
195
197
198

CONTENTS

[ca] Variables
[policy] Variables
Example openssl.cnf File

Appendix F License Issues
OpenSSL License

Index

Vi

199
200
201

203
204

207

List of Tables

Table 1: LDAP Properties in the com.iona.isp.adapter.LDAP.param Scope
Table 2: Cipher Suite Definitions

Table 3: Association Options Supported by Cipher Suites

Table 4: Mechanism Policy Cipher Suites

Table 5: Commonly Used Attribute Types

32
118
123
151
180

vii

LIST OF TABLES

viii

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Overview of the Secure HelloWorld Example

A HTTPS Connection in the HelloWorld Example

An IIOP/TLS Connection in the HelloWorld Example

The Security Layer in the HelloWorld Example
Architecture of an iSF Security Domain

Server View of iSF Authorization Realms

Role View of iSF Authorization Realms

Assignment of Realms and Roles to Users Janet and John
A Certificate Chain of Depth 2

Figure 10: A Certificate Chain of Depth 3
Figure 11: Elements in a PKCS#12 File
Figure 12: Target Authentication Only

Figure 13: Mutual Authentication

Figure 14: Configuration of a Secure Association

Figure 15: Constraining the List of Cipher Suites

11
18
41
44
45
46
65
66
67
87
90

107

122

LIST OF FIGURES

Audience

Related documentation

Preface

This guide is aimed at C+ + developers who are developing Artix client and
server applications. The C++ API described in this guide can be used with
any Artix binding or transport (CORBA, SOAP and so on). It is assumed that
the reader has a good knowledge of C++ and an elementary understanding
of WSDL and XML concepts.

The document set for Artix includes the following related documents:

The latest updates to the Artix documentation can be found at http://

Artix Tutorial.

Getting Started with Artix Encompass.
Getting Started with Artix Relay.

Artix User's Guide.

Artix C++ Programmer's Guide.

Artix Thread Library Reference.

i ona. cond docs.

Xi

http://iona.com/docs
http://iona.com/docs

PREFACE

Additional resources

Typographical conventions

Xii

The IONA knowledge base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles, written by IONA experts, about Artix
and other products. You can access the knowledge base at the following

location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs-support@iona.com .

This guide uses the following typographical conventions:

Constant width

Italic

Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdi o. h>

Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

mailto:support@iona.com
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml

PREFACE

Keying conventions This guide may use the following keying conventions:

No prompt

%

{3}

When a command’s format is the same for multiple
platforms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

A vertical bar separates items in a list of choices
enclosed in { } (braces) in format and syntax
descriptions.

xiii

PREFACE

Xiv

In this chapter

CHAPTER 1

Introduction to
Security

This chapter introduces features of Artix security by explaining
the architecture and configuration of the secure HelloWorld
demonstration in some detail.

This chapter discusses the following topics:

Security for SOAP Bindings page 2

CHAPTER 1 | Introduction to Security

Security for SOAP Bindings

Overview This section provides a brief overview of how the IONA Security Framework
(iSF) provides security for SOAP bindings between Artix applications. The
iSF is a comprehensive security framework that supports authentication and
authorization using data stored in a central security service (the iS2 server).
This discussion is illustrated by reference to the secure HelloWorld

demonstration.
In this section This section contains the following subsections:
Secure Hello World Example page 3
HTTPS Connection page 6
IIOP/TLS Connection page 11
Security Layer page 18

Security for SOAP Bindings

Secure Hello World Example

Overview

This section provides an overview of the secure HelloWorld demonstration,
which introduces several features of the IONA Security Framework. In
particular, this demonstration shows you how to configure a typical Artix
client and server that communicate with each other using a SOAP binding
over a HTTPS transport. Figure 1 shows all the parts of the secure
HelloWorld system, including the various configuration files.

Artix Client

Security layer

HTTPS

Client copy

pommes > Artix Server
1
HTTP Basic Authentication | .
» Security layer <---
bo--- -
HTTPS 1
T ; HTTPS IIOP/TLS
: N
H '
! i
WSDL X.509
Server copy Cert for HTTPS hello_w
>) iS2 Server)e---
File
User Data Adapter
IIOP/TLS <

is2_user_password_file.txt

Cert for iS2 server

1
1
1
1
1
1
1
1
1
!
R

rld_action_role_mapping.xml

is2.properties

Figure 1: Overview of the Secure HelloWorld Example

CHAPTER 1 | Introduction to Security

Location

Main elements of the example

HelloWorld client

HelloWorld server

iS2 server

File adapter

The secure HelloWorld demonstration is located in the following directory:

ArtixInstallDirl arti x/ Version/ denos/ secure_hel | o_wor | d/ htt p_soap

The main elements of the secure HelloWorld example shown in Figure 1
are, as follows:

® HelloWorld client.
® HelloWorld server.
® iS2 server.

® File adapter.

The HelloWorld client communicates with the HelloWorld server using
SOAP over HTTPS, thus providing confidentiality for transmitted data. In
addition, the HelloWorld client is configured to use HTTP BASIC
authentication to transmit a username and a password to the server.

The HelloWorld server employs two different kinds of secure transport,

depending on which part of the system it is talking to:

® HTTPS—to receive SOAP invocations securely from the HelloWorld
client.

® |IOP/TLS—to communicate securely with the iS2 server, which
contains the central store of user data.

The iS2 server manages a central repository of security-related user data.
The iS2 server can be accessed remotely by Artix servers and offers the
service of authenticating users and retrieving authorization data.

The iS2 server supports a number of adapters that can be used to integrate
with third-party security products (for example, an LDAP adapter and a
SiteMinder adapter are available for iS2). This example uses the iS2 file
adapter, which is a simple adapter provided for demonstration purposes.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

Security layers

HTTPS layer

IIOP/TLS layer

Security layer

Security for SOAP Bindings

To facilitate the discussion of the HelloWorld security infrastructure, it is
helpful to analyze the security features into the following layers:

® HTTPS layer.
® |IOP/TLS layer.
® Security layer.

The HTTPS layer provides a secure transport layer for SOAP bindings. In
Artix, the HTTPS transport is configured by editing the WSDL contract (both
the client copy and the server copy).

For more details, see “HTTPS Connection” on page 6.

The IIOP/TLS layer consists of the OMG'’s Internet Inter-ORB Protocol (IIOP)
combined with the SSL/TLS protocol. The [IOP/TLS transport can be used
either with CORBA bindings or with the Artix Tunnel plug-in. In Artix, the
IIOP/TLS is configured by editing the arti x. cfg (or arti x-secure. cf g) file.

For more details, see “IIOP/TLS Connection” on page 11.

The security layer provides support for a simple username/password
authentication mechanism, a principal authentication mechanism and
support for authorization. A security administrator can edit an action-role
mapping file to restrict user access to particular WSDL port types and
operations.

For more details, see “Security Layer” on page 18.

CHAPTER 1 | Introduction to Security

HTTPS Connection

Overview Figure 2 shows an overview of the HelloWorld example, focusing on the
elements relevant to the HTTPS connection. HTTPS is used on the SOAP
binding between the Artix client and the Artix server.

---> Artix Client pmmmme > Artix Server

R SO ! .
:r----> Security layer E_ Security layer

1 N . TR
! HTTPS i :
R HTTPS . ; HTTPS IIOP/TLS
i | N
| ! |

| ! |

' ! '

WSDL WSDL X.509

Server copy Cert for HTTPS

o
=
3
2
Q
o
k]
<

Figure 2: A HTTPS Connection in the HelloWorld Example

OpenSSL toolkit HTTPS transport security is provided by the OpenSSL toolkit, which is a
publicly available implementation of the SSL protocol.

The OpenSSL libraries (i beay. dl | and ssl eay. dl | on Windows) are
provided with Artix. The version of the OpenSSL libraries provided with Artix
are, however, subject to certain restrictions as follows:

® |DEA is not supported.

® Certain encryption suites are not supported.

HTTPS cipher suites

Target-only authentication

Client HTTPS configuration

Security for SOAP Bindings

The OpenSSL libraries provided with Artix support the following cipher
suites, which can be used by the HTTPS protocol:
® Null encryption, integrity-only ciphers:

NULL- MD5

NULL- SHA
® Standard ciphers:

RCA- SHA

RC4- M6

DES- CBC3- SHA

DES- CBG SHA

EXP- DES- CBG- SHA

EXP- RC2- CBC- M6

EXP- RCA- M6

EDH RSA- DES- CBG- SHA

EDH- DSS- DES- CBG- SHA

EXP- EDH RSA- DES- CBC

EXP- EDH DSS- DES- CBG- SHA

EDH- RSA- DES- CBC3- SHA

EDH- DSS- DES- CBC3- SHA

The HelloWorld example is configured to use target-only authentication on
the HTTPS connection. That is, during the TLS handshake, the server
authenticates itself to the client (using an X.509 certificate), but the client
does not authenticate itself to the server. Hence, there is no X.509
certificate associated with the client.

Example 1 shows how to configure the client side of a HTTPS connection in
Artix, in the case of target-only authentication.

Example 1: WSDL Contract with Client HTTPS Configuration

<defini tions nane="Hel | oWr| dServi ce"
t ar get Nanespace="htt p: // xm bus. coni Hel | oWr | d"
xm ns: soap="ht t p: / / schemas. xm soap. or g/ wsdl / soap/ "
xm ns: htt p-conf="http://schemas. i ona. conm t ransport s/ http/configu
ration" ... >

<servi ce name="Hel | oWr | dServi ce">
<port bi ndi ng="t ns: Hel | oWbr | dPor t Bi ndi ng"
nane="Hel | oWr | dPort" >
<soap: address | ocation="https://| ocal host: 55012"/ >

-

2 <http-conf:client

CHAPTER 1 | Introduction to Security

Example 1: WSDL Contract with Client HTTPS Configuration

3 UseSecur eSocket s="t r ue"
4 TrustedRoot Certificates="../certificates/openssl/x509/cal cacert.
pent
User Nane="user _test"
Passwor d="user _passwor d"
/>
</ port>
</ servi ce>
</ definitions>

The preceding WSDL contract can be described as follows:

1. The fact that this is a secure connection is signalled here by using
https: instead of http: in the location URL attribute.

2. The <http-conf: client> tag contains all the attributes for configuring
the client side of the HTTPS connection.

3. If the UseSecur eSocket s attribute is t rue, the client will try to open a
secure connection to the server.

Note: |If UseSecureSockets is f al se and the <soap: addr ess>
location URL begins with htt ps: , however, the client will
nevertheless attempt to open a secure connection.

4. The file specified by the Trust edRoot Certi fi cat es contains a
concatenated list of CA certificates in PEM format. The client uses this
CA list during the TLS handshake to verify that the server's certificate
has been signed by a trusted CA.

Server HTTPS configuration Example 2 shows how to configure the server side of a HTTPS connection in
Artix, in the case of target-only authentication.

Example 2: WSDL Contract with Server HTTPS Configuration

<defini ti ons nane="Hel | oWr| dServi ce"
t ar get Nanespace="ht t p: / / xm bus. coni Hel | oWor | d"
xm ns: soap="ht t p: / / schemas. xm soap. or g/ wsdl / soap/ "
xm ns: htt p-conf="htt p://schemas. i ona. con t ransport s/ http/ configu
ration" ... >

<servi ce nanme="Hel | oWbr | dServi ce" >

D WN =

Security for SOAP Bindings

Example 2: WSDL Contract with Server HTTPS Configuration

<port bi ndi ng="t ns: Hel | oWr | dPort Bi ndi ng"
nanme="Hel | oWr | dPort ">
<soap: address | ocation="https://| ocal host: 55012"/ >
<htt p- conf: server
UseSecur eSocket s="t r ue"

ServerCertificate="../certificates/openssl/x509/ certs/key. cer
t. pent

Server PrivateKey="../certificates/openssl/x509/ certs/ privkey.
pent
Server Pri vat eKeyPasswor d="t est aspen”

Trust edRoot Certificates="../certificates/openssl/x509/ cal cace
rt. pem
/>
</ port>
</ servi ce>

</ defini ti ons>

The preceding WSDL contract can be described as follows:

1.

The fact that this is a secure connection is signalled by using ht t ps:
instead of http: in the location URL attribute.

The <ht t p- conf : server tag contains all the attributes for configuring
the server side of the HTTPS connection.

If the UseSecur eSocket s attribute is t r ue, the server will open a port to
listen for secure connections.

Note: |If UseSecureSocket s is f al se and the <soap: addr ess>
location URL begins with htt ps:, however, the server will listen for
secure connections.

The Server Certifi cat e attribute specifies the server's own certificate
in PEM format. For more background details about X.509 certificates,
see “Managing Certificates” on page 59.

The Server Pri vat eKey attribute specifies a PEM file containing the
server certificate’s encrypted private key.

CHAPTER 1 | Introduction to Security

6. The ServerPrivat eKeyPasswor d attribute specifies the password to
decrypt the server certificate’s private key.

Note: The presence of the private key password in the WSDL
contract file implies that this file must be read and write-protected to
prevent unauthorized users from obtaining the password.

For the same reason, it is also advisable to remove the
<ht t p- conf : server > tag from the copy of the WSDL contract that is
distributed to clients.

7. The file specified by the Trust edRoot Certi fi cates contains a
concatenated list of CA certificates in PEM format. This attribute value
is not used in the case of target-only authentication.

10

Security for SOAP Bindings

IIOP/TLS Connection

Overview

Baltimore toolkit

Figure 3 shows an overview of the HelloWorld example, focusing on the
elements relevant to the IIOP/TLS connection between the Artix server and
the iS2 server. In general, the iS2 server is accessible only through the
IIOP/TLS transport.

.............

e e > iS2 Server
: : : File
. User Data : ' Adapter
: [CEETREE
------- ' IIOP/TLS <
is2_user_password_file.xt t---eeeeeeee- x
)
1
i
X.509

Cert for iS2 server

Figure 3: An /IOP/TLS Connection in the HelloWorld Example

IIOP/TLS transport security is provided by the Baltimore toolkit, which is a
commercial implementation of the SSL/TLS protocol.

The Baltimore toolkit supports a wide range of cipher suites—see
“Supported Cipher Suites” on page 117.

11

CHAPTER 1 | Introduction to Security

Target-only authentication

Artix server IIOP/TLS
configuration

12

The HelloWorld example is configured to use target-only authentication on
the IIOP/TLS connection between the Artix server and the iS2 server. That

is, during the TLS handshake, the iS2 server authenticates itself to the Artix
server (using an X.509 certificate), but the Artix server does not authenticate

itself to the iS2 server. Hence, in this example there is no X.509 certificate
associated with the IIOP/TLS transport in the Artix server.

WARNING: For a real deployment, you must modify the configuration of

the iS2 server so that it requires mutual authentication. Otherwise, your
system will be insecure.

The Artix server’'s IIOP/TLS transport is configured by the settings in the
ArtixInstallDirl arti x/ Version/ et ¢/ domai ns/ art i x- secur e. cf g file.
Example 3 shows an extract from the arti x- secur e. cf g file, highlighting
some of the settings that are important for the HelloWorld Artix server.

Example 3: Extract from the Artix Server IIOP/TLS Configuration

artix-secure.cfg File
secure_artix

{

policies:trusted_ca |list_policy =

"C\artix/artix/1.2/denos/ secure_hel | o_worl d/ http_soap/certif
icates/tls/x509/trusted_ca_lists/ca_listl. peni;

initial_references: | T _SecurityService:reference =

"corbal oc: iiops: 1. 2@ocal host: 55020, it _iiops:1. 2@ ocal host : 55
020/ 1 T_SecurityService";

denos

hell o_worl d

{
11 QP/ TLS Settings
orb_plugins = ["xmfile_log_streant, "iiop_profile",
"giop", "iiop_tls", "soap", "http", "tunnel", "my", "ws_orb",
"fixed"];

bi ndi ng: cli ent _binding_list = ["Ors+tPQA Col oc",
"PQA Col oc", "OIS+tE CP+l I CP', "ACPHI I CP', "G CP+I | CP_TLS'];

pri nci pal _sponsor: use_pri nci pal _sponsor = "fal se";

Security for SOAP Bindings

Example 3: Extract from the Artix Server IIOP/TLS Configuration

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sorderi ng", "EstablishTrustlnTarget"];

policies:iiop_tls:client_secure_invocation_policy: supports
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sorderi ng", "EstablishTrustlnTarget"];

Security Layer Settings

The preceding extract from the arti x. cf g file can be explained as follows:

1.

The policies:trusted_ca_list_policy variable specifies a file
containing a concatenated list of CA certificates. These CA certificates
are used to check the acceptability of any certificates received by the
Artix server over the IIOP/TLS transport. If a received certificate has not
been digitally signed by one of the CA certificates in the list, it will be
rejected by the Artix server.

For more details, see “Specifying Trusted CA Certificates” on page 93.

This I T_Securi t yServi ce initial reference gives the location of the iS2
server. When login security is enabled, the Artix server uses this
information to open an IIOP/TLS connection to the iS2 server. In this
example, the iS2 server is presumed to be running on I ocal host and
listening on the 55020 IP port.

Note: If you want to change the location of the iS2 server, you
should replace both instances of | ocal host : 55020 on this line. It
would also be necessary to change the listening details on the iS2
server (see “iS2 server IIOP/TLS configuration” on page 15).

13

CHAPTER 1 | Introduction to Security

14

The ORB pl ugi ns list specifies which of the Artix plug-ins should be
loaded into the Artix server. Of particular relevance is the fact that the
iiop_tls plug-in is included in the list (thus enabling IIOP/TLS
connections), whereas the i i op plug-in is excluded (thus disabling
plain IlOP connections).

The princi pal _sponsor settings can be used to attach a certificate to
the Artix server, which would be used to identify the server to its peers
during an IIOP/TLS handshake. In this example, however, the principal
sponsor is disabled (that is,

princi pal _sponsor : use_pri nci pal _sponsor ="f al se").

Note: In a realistic deployment, you should enable the principal
sponsor and attach a certificate to the Artix server so that the Artix
server can identify itself to the iS2 server.

The client secure invocation policies specify what sort of secure
IIOP/TLS connections the Artix server can open when it acts in a client
role. In particular, these client invocation policies impose conditions on
the IIOP/TLS connection to the iS2 server.

For more details about the client secure invocation policy, see “Setting
IIOP/TLS Association Options” on page 108.

Note: In a realistic deployment, you should add the
Est abl i shTrust | nd i ent association option to the list of supported
client invocation policies. This is needed for mutual authentication.

Independently of the IIOP/TLS settings, you also configure the security
layer using settings in the arti x- secure. cf g file. These settings are
described in “Security Layer” on page 18.

iS2 server IIOP/TLS configuration

Security for SOAP Bindings

Example 4 shows an extract from the arti x- secure. cf g file, highlighting
the IIOP/TLS settings that are important for the iS2 server.

Example 4: Extract from the iS2 Server IIOP/TLS Configuration

artix-secure.cfg File
secure_artix

{

policies:trusted _ca_ list_policy =
"C\artix/artix/1.2/ denos/ secure_hel | o_world/http_soap/certif
icates/tls/x509/trusted_ca_lists/ca listl. peni;

initial _references:|T_SecurityService:reference =
"corbal oc:iiops: 1. 2@ocal host: 55020,it_iiops: 1. 2@ ocal host : 55
020/ 1 T_Securi t yServi ce";

security

{
11 P/ TLS Settings
princi pal _sponsor: use_pri nci pal _sponsor = "true";
princi pal _sponsor: auth_nethod_i d = "pkcs12 file";

princi pal _sponsor: aut h_net hod_data =
["fil ename=C \artix/artix/1.2/dermos/ secure_hell o_world/ http_s
oap/ certificates/tls/x509/certs/services/adm ni strator.pl2",
"password_file=C\artix/artix/1.2/denos/secure_hel | o_worl d/ ht
tp_soap/certificates/tls/x509/ certs/services/adm ni strator. pw
1

pol i ci es:target _secure_i nvocation_policy:requires =
["NoProtection"];

pol i ci es:target _secure_i nvocation_policy: supports =
["NoProtection", "Confidentiality", "EstablishTrustlnTarget",
"Establ i shTrustIndient", "DetectM sordering",
"Det ect Repl ay", "Integrity"];

policies:client_secure_invocation_policy:requires =
["NoProtection"];

pol i cies:client_secure_invocation_policy:supports =
["NoProtection", "Confidentiality", "EstablishTrustlnTarget",
"Establi shTrustInQient", "DetectM sordering",
"Det ect Repl ay", "Integrity"];

pol i cies: all ow unaut henti cated clients_policy = "true";

15

CHAPTER 1 | Introduction to Security

Example 4: Extract from the iS2 Server IIOP/TLS Configuration

IE

orb_plugins = ["local _| og_streant, "iiop_profile", "giop",
"iiop_tls"];

pl ugi ns: security:iiop_tls:port = "55020";

pl ugi ns: security:iiop_tls:host = "l ocal host";

The preceding extract from the arti x. cf g file can be explained as follows:

1.

16

The policies:trusted_ca_list_policy variable specifies a file
containing a concatenated list of CA certificates. These CA certificates
are used to check the acceptability of any certificates received by the
iS2 server over the IIOP/TLS transport. If a received certificate has not
been digitally signed by one of the CA certificates in the list, it will be
rejected by the iS2 server.

The princi pal _sponsor settings are used to attach an X.509
certificate to the iS2 server. The certificate is used to identify the iS2
server to its peers during an IIOP/TLS handshake.

In this example, the iS2 server's certificate is stored in a PKCS#12 file,
admi ni strat or. p12, and the certificate’s private key password is
stored in another file, admi ni strat or. pwf .

For more details about configuring the IIOP/TLS principal sponsor, see
“principal_sponsor Namespace” on page 153 and “Providing a
Certificate Pass Phrase” on page 95.

Note: The certificate format used by the IIOP/TLS transport
(PKCS#12) differs from the format used by the HTTPS transport
(PEM).

Security for SOAP Bindings

The target secure invocation policies specify what sort of secure
IIOP/TLS connections the iS2 server can accept when it acts in a server
role. For more details about the target secure invocation policy, see
“Setting IIOP/TLS Association Options” on page 108.

WARNING: The target secure invocation policies shown here are too weak
for a realistic deployment of the iS2 server. In particular, you should at
least remove support for NoPr ot ect i on and require

Est abl i shTrust I nd i ent. For example, see “Mutual Authentication” on
page 90.

4.

The client secure invocation policies specify what sort of secure
IIOP/TLS connections the iS2 server can open when it acts in a client
role.

The ORB pl ugi ns list specifies which plug-ins should be loaded into
the iS2 server. Of particular relevance is the fact that the iiop_tls
plug-in is included in the list (thus enabling IIOP/TLS connections),
whereas the i i op plug-in is excluded (thus disabling plain [IOP
connections).

If you want to relocate the iS2 server, you must modify the

pl ugi ns: security:iiop_tls:host and

pl ugi ns: security:iiop_tls:port settings to specify, respectively, the
host where the server is running and the IP port on which the server
listens for secure IIOP/TLS connections.

17

CHAPTER 1 | Introduction to Security

Security Layer

Overview Figure 4 shows an overview of the HelloWorld example, focusing on the
elements relevant to the security layer. The security layer, in general, takes
care of those aspects of security that arise after the initial SSL/TLS
handshake has occurred and the secure connection has been set up.

Artix Client | ee--e-2 > Artix Server

HTTP Basic Authentication

Security layer Security layer

HTTPS . HTTPS | IIOP/TLS i
Client copy Server copy
>) iS2 Server C-mmdmmmmm)
File . |
User Data Adapter E
g : 1
IIOP/TLS -t i
is2_user_password_file.txt '
1
1
1

is2.properties

Figure 4: The Security Layer in the HelloWorld Example

18

HTTP BASIC login

Security for SOAP Bindings

The security layer normally uses a simple username/password combination
for authentication, because clients usually do not have a certificate with
which to identify themselves. The username and password are sent along
with every operation, enabling the Artix server to check every invocation and
make fine-grained access decisions.

The mechanism that the Artix client uses to transmit a username and
password over a SOAP binding is HTTP BASIC login. This is a standard login
mechanism commonly used by Web browsers and Web services. On its
own, HTTP BASIC login would be relatively insecure, because the username
and password would be transmitted in plaintext. When combined with the
HTTPS protocol, however, the username and password are transmitted
securely over an encrypted connection, thus preventing eavesdropping.

The following extract from the client copy of the WSDL contract shows how
the User Nane and Passwor d attributes in the <htt p-conf : cl i ent > tag set
the HTTP BASIC login parameters for the Artix SOAP client.

<defi ni ti ons nanme="Hel | oWr | dServi ce"
t ar get Nanespace="ht t p: // xm bus. coni Hel | oWor | d"
xm ns: soap="ht t p: / / schemas. xm soap. or g/ wsdl / soap/ "
xm ns: htt p-conf="http://schenas. i ona. coni t ransport s/ http/ confi gu
ration" ... >

<servi ce name="Hel | oWr | dServi ce">
<port bi ndi ng="t ns: Hel | oWbr | dPor t Bi ndi ng"
nanme="Hel | oWr | dPort " >
<soap: address | ocation="https://| ocal host: 55012"/ >
<http-conf:client

User Nane="user _test"
Passwor d="user _passwor d"
/>
</ port >
</ servi ce>
</ defini ti ons>

19

CHAPTER 1 | Introduction to Security

Authentication through the iS2 file
adapter

20

On the server side, the Artix server delegates authentication to the iS2
server, which acts as a central repository for user data. The iS2 server is
configured by the i s2. properti es file, whose location is specified in the
arti x-secure. cf g file as follows:

artix-secure.cfg File
secure_artix {

security {
pl ugi ns: j ava_server: system properties =

["org. ong. CORBA CRBA ass=com i ona. corba. art.artinpl. CRBl npl ",
"or g. ong. CORBA. CRBSI ngl et ond ass=com i ona. corba. art.arti npl . O
RBSi ngl et on",
"is2.properties=C\artix/artix/1.2/denmos/secure_hello_world/ h
ttp_soap/ bin/is2. properties.FlLE',
"java. endorsed. dirs=C \artix/artix/1.2/lib/endorsed"];

}
IE

In this example, the i s2. properti es file specifies that the iS2 server should
use a file adapter. The file adapter is configured as follows:

is2.properties File

HHHH AR R R R

Hit

File Adapter Properties

Hit

HHHH AR R R R

comiona.isp.adapter.file.class=comiona.security.is2adapter.fil
e. Fi | eAut hAdapt er

comiona.isp.adapter.file.parans=fil ename

comiona.isp.adapter.file. paramfil enane=../config/is2_user_pass
word _file.txt

Applying access control

Security for SOAP Bindings

The comiona. i sp. adapter. fil e. paramfil enane property is used to
specify the location of a file, i s2_user_password_fi | e. t xt, which contains
the user data for the iS2 file adapter. Example 5 shows the contents of the
user data file for the secure HelloWorld demonstration.

Example 5: User Data from the is2_user_password _file.txt File
<?xm version="1.0" encodi ng="utf-8" ?>

<ns: securi tyl nfo xm ns: ns="ur n: ww xm bus- com si npl e-security">
<user s>
<user name="user_test" password="user_password">
<r eal m nane="| ONAQ obal Real n{ >
<rol e name="| CNAUser Rol e"/ >
<rol e nane="Paul Onl yRol "/ >
</real n»
</ user >
</ user s>
</ ns: securi tyl nf o>

In order for the login step to succeed, an Artix client must supply one of the
usernames and passwords that appear in this file. The realm and role data,
which also appear, are used for authorization and access control.

For more details about the iS2 file adapter, see “Managing a File Security
Domain” on page 48.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

On the server side, authentication and authorization must be enabled by the
appropriate settings in the arti x-secure. cf g file. Example 6 explains the
security layer settings that appear in the arti x- secure. cf g file.

Example 6: Security Layer Settings from the artix-secure.cfg File
artix-secure.cfg File

secure_artix

{
denos

{

21

CHAPTER 1 | Introduction to Security

22

N =

Example 6: Security Layer Settings from the artix-secure.cfg File

hell o_worl d

{
11 QP TLS Settings

Security Layer Settings

pol i ci es: asp: enabl e_security = "true";

pol i ci es: asp: enabl e_aut hori zation = "true";

pl ugi ns: i s2_aut hori zati on: acti on_rol e_mappi ng =
“"file://C\artix/artix/1.2/denos/secure_hell o world/ http_soap
/ confi g/ hel | owor| d_acti on_rol e_mappi ng. xm ";

pl ugi ns: asp: aut hori zati on_real m = "| ONAQ obal Real ni;

pl ugi ns: asp: security_type = "USERNAME PASSWRD';

iE

|
H
The security layer settings from the arti x- secur e. cf g file can be explained
as follows:
1. The policies: asp: enabl e_security variable is set to t rue to enable

login security (enables authentication support and is a prerequisite for
authorization support).

The pol i ci es: asp: enabl e_aut hori zat i on variable is set to t r ue to
enable authorization.

This setting specifies the location of an action-role mapping file that
provides fine-grained access control to operations and port types.

The iSF authorization realm determines which of the user's roles will
be considered during an access control decision. iSF authorization
realms provide a way of grouping user roles together. The

| ONAQ obal Real m(the default) includes all user roles.

The pl ugi ns: asp: security_type variable specifies which kind of user
data is used for the purposes of authentication and authorization on
the server side (in this case, USERNAME_PASSWRD indicates that HTTP
Basic Login is supported). This configuration setting is necessary,
because the iSF supports different mechanisms for propagating user
identities and some of these mechanisms can be activated
simultaneously.

Security for SOAP Bindings

Example 7 shows the contents of the action-role mapping file for the
HelloWorld demonstration.

Example 7: Action-Role Mapping file for the HelloWorld Demonstration

<?xm version="1.0" encodi ng="UTF-8" 2>
<! DOCTYPE secur e- syst em SYSTEM "act i onr ol enappi ng. dt d" >
<secur e- syst en»

<acti on- r ol e- mappi ng>

<server - nane>secur e_arti x. denos. hel | o_wor | d</ ser ver - nane>
<interface>

<nane>ht t p: // xm bus. cond Hel | oWr | d: Hel | oWor | dPor t Type</ name>
<action-rol e>
<acti on- name>sayH </ act i on- name>
<r ol e- name>l ONAUser Rol e</ r ol e- name>
</ action-rol e>
<action-rol e>
<act i on- name>gr eet Me</ act i on- nane>
<r ol e- nane>l ONAUser Rol e</ r ol e- name>
</ action-rol e>
</interface>

</ acti on-rol e- nappi ng>
</ secur e- syst en>

For a detailed discussion of how to define access control using action-role
mapping files, see “Managing Users, Roles and Domains” on page 39.

23

CHAPTER 1 | Introduction to Security

24

In this chapter

CHAPTER 2

Configuring the
1IS2 Server

This chapter describes how to configure the properties of the
iS2 security serverand, in particular, how to configure a variety
of adapters that can integrate the iS2 server with third-party
enterprise security back-ends (for example, LDAP and
SiteMinder).

This chapter discusses the following topics:

Configuring the File Adapter page 26
Configuring the LDAP Adapter page 28
Configuring the SiteMinder Adapter page 34
Additional iS2 Configuration page 36

25

CHAPTER 2 | Configuring the iS2 Server

Configuring the File Adapter

Overview

File locations

File adapter properties

26

The iS2 file adapter enables you to store information about users, roles, and
realms in a flat file, a security information file. The file adapter is easy to
set up and configure, but is appropriate for demonstration purposes only.
This section describes how to set up and configure the iS2 file adapter.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

The following files configure the iS2 file adapter:

® is2 properties file—the default location of the iS2 properties file is as
follows:
ASPInstallDirl et c/ dormai ns/ DomainNamel i s2. properti es
See “iS2 Properties File” on page 159 for details of how to customize
the default iS2 properties file location.

® Security information file—this file’s location is specified by the
comiona.isp.adapter.file.paramfilenane property in the
i s2. properties file.

Example 8 shows the properties to set for a file adapter.
Example 8: Sample File Adapter Properties

comiona.isp.adapters=file

#it
Deno File Adapter Properties
#it

comiona.isp.adapter.file.class=comiona.security.is2adapter.fil
e. Fi | eAut hAdapt er

comiona.isp.adapter.file. param fil ename=ASPInstallDirl et c/ domai n
s/ DomainNamel/ i s2_user _password_role file.txt

Configuring the File Adapter

Example 8: Sample File Adapter Properties

R
CGeneral iS2 Server Properties

...

Generic properties not shown here ...

The necessary propetties for a file adapter are described as follows:

1.

Set comiona. i sp. adapt er s=fi | e to instruct the iS2 server to load the
file adapter.

The comiona.isp. adapter.file.class property specifies the class
that implements the iS2 file adapter.

The comiona. i sp. adapter.file.paramfil ename property specifies
the location of the security information file, which contains information
about users and roles.

See “Managing a File Security Domain” on page 98 for details of how
to create or modify the security information file.

(Optionally) You might also want to edit the general iS2 server
properties.
See “Additional iS2 Configuration” on page 36 for details.

27

CHAPTER 2 | Configuring the iS2 Server

Configuring the LDAP Adapter

Overview The IONA security platform integrates with the Lightweight Directory Access
Protocol (LDAP) enterprise security infrastructure by using an LDAP adapter.
The LDAP adapter is configured in an i s2. properti es file. This section
discusses the following topics:

Prerequisites

File location.

Minimal LDAP configuration.
Basic LDAP properties.
LDAP.param properties.
LDAP server replicas.

Logging on to an LDAP server.

Prerequisites Before configuring the LDAP adapter, you must have an LDAP security
system installed and running on your system. LDAP is not a standard part of
Orbix E2A Application Server Platform, but you can use the iS2 server's
LDAP adapter with any LDAP v.3 compatible system.

File location The following file configures the LDAP adapter:

28

i s2. properti es file—the default location of the iS2 properties file is as
follows:

ASPInstallDirl et c/ domai ns/ DomainName/ i s2. properti es

See “iS2 Properties File” on page 159 for details of how to customize
the default iS2 properties file location.

Minimal LDAP configuration

Configuring the LDAP Adapter

Example 9 shows the minimum set of iS2 properties that can be used to
configure an LDAP adapter.

Example 9: A Sample LDAP Adapter Configuration File

com i ona. i sp. adapt er s=LDAP

IR R R

Hit

LDAP Adapter Properties

iz

HHHH R AR R R R R

com i ona. i sp. adapt er. LDAP. cl ass=com i ona. securi ty. i s2adapter. | da
p. LdapAdapt er

com i ona. i sp. adapt er. LDAP. par am host . 1=10. 81. 1. 400
com i ona. i sp. adapt er . LDAP. par am por t . 1=389

com i ona. i sp. adapt er. LDAP. par am User NaneAt t r =ui d

com i ona. i sp. adapt er. LDAP. par am User BaseDN=dc=i ona, dc=com

com i ona. i sp. adapt er. LDAP. par am User (bj ect A ass=or gani zat i onal Pe
rson

com i ona. i sp. adapt er. LDAP. par am User Sear chScope=SUB

com i ona. i sp. adapt er. LDAP. par am User Rol eDNAL t r =nsr ol edn
com i ona. i sp. adapt er. LDAP. par am Rol eNaneAt t r =cn

com i ona. i sp. adapt er. LDAP. param G oupNarmeAt t r =cn

com i ona. i sp. adapt er. LDAP. par am G oupChj ect A ass=gr oupof uni quena
nes

com i ona. i sp. adapt er. LDAP. par am G oupSear chScope=SUB

com i ona. i sp. adapt er. LDAP. par am @G oupBaseDN=dc=i ona, dc=com

com i ona. i sp. adapt er . LDAP. par am Menber DNAL t r =uni queMenber

com i ona. i sp. adapt er. LDAP. par am ver si on=3

The necessary properties for an LDAP adapter are described as follows:

1. Setcomiona.isp. adapt er s=LDAP to instruct the IONA Security
Platform to load the LDAP adapter.

2. Thecomiona.isp.adapter.file.class property specifies the class
that implements the LDAP adapter.

29

CHAPTER 2 | Configuring the iS2 Server

30

3. Foreach LDAP server replica, you must specify the host and port
where the LDAP server can be contacted. In this example, the host and
port parameters for the primary LDAP server, host. 1 and port. 1, are
specified.

4. These properties specify how the LDAP adapter finds a user name
within the LDAP directory schema. The properties are interpreted as

follows:

User NanmeAt t r The attribute type whose corresponding value
uniquely identifies the user.

User BaseDN The base DN of the tree in the LDAP directory
that stores user object class instances.

User (bj ect A ass The attribute type for the object class that
stores users.

User Sear chScope The user search scope specifies the search

depth relative to the user base DN in the
LDAP directory tree. Possible values are:
BASE, ON\E, or SUB.

See “iS2 Properties File” on page 159 for more details.

5. The following properties specify how the adapter extracts a user’s role
from the LDAP directory schema:

User Rol eDNAt t r The attribute type that stores a user’s role DN.

Rol eNarreAt t r The attribute type that the LDAP server uses
to store the role name.

6. These properties specify how the LDAP adapter finds a group name
within the LDAP directory schema. The properties are interpreted as

follows:

Q oupNaneAt t r The attribute type whose corresponding
attribute value gives the name of the user
group.

Q@ oupBaseDN The base DN of the tree in the LDAP directory
that stores user groups.

Q oupoj ect d ass The object class that applies to user group

entries in the LDAP directory structure.

Basic LDAP properties

Configuring the LDAP Adapter

QG oupSear chScope The group search scope specifies the search
depth relative to the group base DN in the
LDAP directory tree. Possible values are:
BASE, ONE, or SUB.

Menber DNAL t r The attribute type that is used to retrieve
LDAP group members.

See “iS2 Properties File” on page 159 for more details.

7. The LDAP version number can be either 2 or 3, corresponding to
LDAP v.2 or LDAP v.3 respectively.

The following properties must always be set as part of the LDAP adapter
configuration:

com i ona. i sp. adapt er s=LDAP
comiona.i sp. adapt er. LDAP. cl ass=com i ona. securi ty. i s2adapt er. | dap
. LdapAdapt er

In addition to these basic properties, you must also set a number of LDAP
parameters, which are prefixed by com i ona. i sp. adapt er . LDAP. par am

31

CHAPTER 2 | Configuring the iS2 Server

LDAP.param properties

Table 1 shows all of the LDAP adapter properties from the
com i ona. i sp. adapt er . LDAP. par amscope. Required properties are shown

in bold:
Table 1: LDAP Properties in the com.iona.isp.adapter.LDAP.param
Scope
LDAP Server Properties LDAP User/Role Configuration
Properties

host . </ndex> User NameAt t r

port. </ndex> User BaseDN

SSLEnabl ed. </ndex> User (oj ect d ass

SSLCACert D r. </ndex> User Sear chScope

SSLdientCertFile. </ndex>
SSLd i ent Cert Passwor d. </ndex>
Pri nci pal User DN </ndex>

Pri nci pal User Passwor d. </ndex>

User Sear chFi | ter
User Rol eDNAt t r
Rol eNaneAt t r
User Cert At t r Nane

LDAP Group/Member
Configuration Properties

Other LDAP Properties

LDAP server replicas

32

G oupNaneAt tr

Q@ oup(hj ect A ass
Q@ oupSear chScope
G oupBaseDN
Menber DNAL t r
Menber Fi | ter

MaxConnect i onPool Si ze
ver si on

Use@ oupAsRol e

Retri eveAut hl nfo
CacheSi ze

CacheTi neTolLi ve

The LDAP adapter is capable of failing over to one or more backup replicas
of the LDAP server. Hence, properties such as host . </ndex> and
port. </ndex> include a replica index as part of the parameter name.

For example, host . 1 and port. 1 refer to the host and port of the primary
LDAP server, while host . 2 and port . 2 would refer to the host and port of an

LDAP backup server.

Logging on to an LDAP server

Secure connection to an LDAP
server

iS2 properties reference

Configuring the LDAP Adapter

The following properties can be used to configure login parameters for the
<Index> LDAP server replica:

Princi pal User DN </ndex>

Pri nci pal User Passwor d. </ndex>

The properties need only be set if the LDAP server is configured to require
username/password authentication.

The following properties can be used to configure SSL/TLS security for the
connection between the iS2 server and the </ndex> LDAP server replica:
SSLEnabl ed. </ndex>

SSLCACertDir. </ndex>

SSLdientCertFile. </ndex>

SSLd i ent Cert Passwor d. </ndex>

The properties need only be set if the LDAP server requires SSL/TLS mutual
authentication.

For more details about the iS2 server properties, see “iS2 Configuration” on
page 157.

33

CHAPTER 2 | Configuring the iS2 Server

Configuring the SiteMinder Adapter

Overview

Prerequisites

File location

SiteMinder adapter properties

34

The SiteMinder adapter enables you to integrate the iS2 server with
SiteMinder, which is an enterprise security product from Netegrity. By
configuring the SiteMinder adapter, you ensure that any authentication
requests within the IONA Security Framework are delegated to SiteMinder.
This section describes how to set up and configure the SiteMinder adapter.

Ensure that the SiteMinder product is installed and configured on your
system. SiteMinder is not a standard part of Orbix E2A Application Server
Platform, but is available from Netegrity at http://www.netegrity.com. See
the OrbixE2A ASP Installation Guide for details.

The following file configures the SiteMinder adapter:

® is2. properties file—the default location of the iS2 properties file is as

follows:

ASPInstallDirl et c/ dormai ns/ DomainNamel i s2. properti es

See “iS2 Properties File” on page 159 for details of how to customize
the default iS2 properties file location.

Example 10 shows the properties to set for the SiteMinder adapter.
Example 10: SiteMinder Adapter Properties

com i ona. i sp. adapt er s=Si t eM nder

#it
SiteM nder Adapter Properties
#it

comiona.isp.adapter. S teM nder. cl ass=com i ona. security.i s2adapt
er.smadapt er. S t eM nder Agent

com i ona. i sp. adapter. S teM nder. par am Ser ver Addr ess=| ocal host

com i ona. i sp. adapt er. SiteM nder. par am Ser ver Aut hnPor t =400

com i ona. i sp. adapter. S teM nder. par am Agent Secr et =secr et

com i ona. i sp. adapt er. St eM nder . par am Agent Name=web

http://www.netegrity.com

Configuring the SiteMinder Adapter

Example 10: SiteMinder Adapter Properties

R
CGeneral iS2 Server Properties

4 # ... Ceneric properties not shown here ...
The necessary properties for a SiteMinder adapter are described as follows:

1. Set comiona.isp. adapt ers=Si teM nder to instruct the iS2 server to
load the SiteMinder adapter.

2. The comiona.isp. adapter. Si teM nder. cl ass property specifies the
class that implements the SiteMinder adapter.

3. A SiteMinder adapter requires the following parameters:

Ser ver Addr ess Host address where SiteMinder is running.
Ser ver Aut hnPor t SiteMinder’s IP port number.

Agent Nane SiteMinder agent's name.

Agent Secr et SiteMinder agent's password.

4. (Optionally) You might also want to edit the general iS2 server
properties.
See “Additional iS2 Configuration” on page 36 for details.

35

CHAPTER 2 | Configuring the iS2 Server

Additional iS2 Configuration

Overview This section describes how to configure optional features of the iS2 server,
such as single sign-on and the authorization manager. These features can
be combined with any iS2 adapter type.

In this section This section contains the following subsections:

Configuring the Log4J Logging page 37

36

Additional iS2 Configuration

Configuring the Log4J Logging

Overview

log4j documentation

Enabling log4j logging

In the CLASSPATH

In the is2.properties file

log4j is a third-party toolkit from the Jakarta project,
http://jakarta.apache.org/log4j, that provides a flexible and efficient system
for capturing logging messages from an application. Because the iS2
server's logging is based on log4j, it is possible to configure the output of iS2
logging using a standard log4j properties file.

For complete log4j documentation, see the following Web page:
http://jakarta.apache.org/log4j/docs/documentation.html

To enable log4j logging, you can specify the location of the log4| properties
file in either of the following ways:

® In the CLASSPATH.
®* |n the is2.properties file.

You can specify the location of the log4j properties file by adding the file to
your CLASSPATH. For example, you could add an
/is2_configl/log4j.properties file to your CLASSPATH as follows:

Windows
set CLASSPATH=C \is2_config\l og4j.properties; %LASSPATHS

UNIX (Bourne shell)
export CLASSPATH=/is2_confi g/l ogdj. properties: SCLASSPATH

You can specify the location of the log4j properties file in the
i s2. properties file as follows:

1S2 Properties File, for Server |D=1

| og4j Loggi ng
HHHH AR AR
| og4j . configuration=C /is2_config/log4j.properties

37

http://jakarta.apache.org/log4j/docs/documentation.html
http://jakarta.apache.org/log4j

CHAPTER 2 | Configuring the iS2 Server

Configuring the log4j properties The following example shows how to configure the log4]j properties to
file perform basic logging. In this example, the lowest level of logging is
switched on (DEBUG) and the output is sent to the console screen.

log4j Properties File
| og4j . r oot Cat egor y=DEBUG Al

Al is set to be a Consol eAppender.
| og4j . appender . Al=or g. apache. | og4j . Consol eAppender

Al uses PatternLayout.

| og4j . appender . Al. | ayout =or g. apache. | og4j . Pat t er nLayout

| 0g4j . appender. Al. | ayout . Conversi onPattern=%4r [%] %5p % %
- Y%vm

38

In this chapter

CHAPTER 3

Managing Users,
Roles and
Jomains

The iS2 server provides a variety of adapters that enable you
to integrate the IONA Security Framework with third-party
enterprise security products. This allows you to manage users
and roles using a third-party enterprise security product.

This chapter discusses the following topics:

Introduction to Domains and Realms page 40
Managing a File Security Domain page 48
Managing an LDAP Security Domain page 50
Managing a SiteMinder Security Domain page 51

39

CHAPTER 3 | Managing Users, Roles and Domains

Introduction to Domains and Realms

Overview This section introduces the concepts of an iSF security domain and an iSF
authorization realm, which are fundamental to the administration of the
IONA security framework. Within an iSF security domain, you can create
user accounts and within an iSF authorization realm you can assign roles to

users.

In this section This section contains the following subsections:
iSF Security Domains page 41
iSF Authorization Realms page 43

40

Introduction to Domains and Realms

ISF Security Domains

Overview This subsection introduces the concept of an iSF security domain.

Domain architecture Figure 5 shows the architecture of an iSF security domain. The iSF security
domain is identified with an enterprise security service that plugs into the
iS2 server through an iS2 adapter. User data needed for authentication,
such as username and password, are stored within the enterprise security
service. The iS2 server provides a central access point to enable
authentication within the iSF security domain.

Artix Artix Artix

Server o Server Server
| I

|

| | |

! ! |
authenticate authenticate authenticate
I I
| | |
| | |
| I v

iS2 Server

iS2 Security Domain

Enterprise Security Service

User Data Store

1 1
1 1
1 1
1 1
1 1
1 1
i i
i \ hd i
i ' i
1 T :
1 \—// 1
i i
i Janet E
1 1
1 1

1
E John i
1 1
1 1
1 1
1 1

Figure 5: Architecture of an iSF Security Domain

41

CHAPTER 3 | Managing Users, Roles and Domains

iSF security domain

Creating an iSF security domain

Creating a user account

42

An iSF security domain is a particular security system, or namespace within

a security system, designated to authenticate a user.

Here are some specific examples of iSF security domains:

® LDAP security domain—authentication provided by an LDAP security
backend, accessed through the iS2 server.

® SiteMinder security domain—authentication provided by a SiteMinder
security backend, accessed through the iS2 server.

Effectively, you create an iSF security domain by configuring the iS2 server
to link to an enterprise security service through an iS2 adapter (such as a
SiteMinder adapter or an LDAP adapter). The enterprise security service is
the implementation of the iSF security domain.

User account data is stored in a third-party enterprise security service.
Hence, you should use the standard tools from the third-party enterprise
security product to create a user account.

For a simple example, see “Managing a File Security Domain” on page 48.

Introduction to Domains and Realms

iSF Authorization Realms

Overview

iSF authorization realm

Role-based access control

This subsection introduces the concept of an iSF authorization realm and
role-based access control, explaining how users, roles, realms, and servers
are interrelated.

An iSF authorization realm is a collection of secured resources that share a
common interpretation of role names. An authenticated user can have
different roles in different realms. When using a resource in realm R, only
the user's roles in realm R are applied to authorization decisions.

The IONA security framework supports a role-based access control (RBAC)
authorization scheme. Under RBAC, authorization is a two step process, as
follows:

1.

User-to-role mapping—every user is associated with a set of roles in
each realm (for example, guest , adni ni strator, and so on, in a realm,
Engi neeri ng). A user can belong to many different realms, having a
different set of roles in each realm.

The user-to-role assignments are managed centrally by the iS2 server,
which returns the set of realms and roles assigned to a user when
required.

Role-to-permission mapping (or action-role mapping)—in the RBAC
model, permissions are granted to roles, rather than directly to users.
The role-to-permission mapping is performed locally by a server, using
data stored in local access control list (ACL) files. For example, Artix
servers in the iSF use an XML action-role mapping file to control access
to WSDL port types and operations.

43

CHAPTER 3 | Managing Users, Roles and Domains

Servers and realms From a server’s perspective, an iSF authorization realm is a way of grouping
servers with similar authorization requirements. Figure 6 shows two iSF
authorization realms, Engi neering and Fi nance, each containing a
collection of server applications.

IONAGIlobalRealm

Figure 6: Server View of iSF Authorization Realms

Adding a server to a realm To add an Artix server to a realm, add or modify the
pl ugi ns: asp: aut hori zat i on_r eal mconfiguration variable within the
server's configuration scope (in the artix. cf g file).

For example, if your server’s configuration is defined in the ny_server _scope
scope, you can set the iSF authorization realm to Engi neeri ng as follows:

Artix configuration file

ny_server _scope {
pl ugi ns: asp: aut hori zati on_real m = "Engi neeri ng";

IE

44

Introduction to Domains and Realms

Roles and realms From the perspective of role-based authorization, an iSF authorization realm
acts as a namespace for roles. For example, Figure 7 shows two iSF
authorization realms, Engi neeri ng and Fi nance, each associated with a set

of roles.

IONAGIlobalRealm

T TTTTTTTTTTTTTTTTTTTTTTooTmooooooooooooooooooooooooooooooooooo- !

E Engineering Finance i

I e e e e e

' ! | i 1 '

I | ! 1 ! !
1 1 1

o o L

1 1 1

' | ! 1 ! !

o L L

1 | ! 1

| ' ! | ! !

B . .

1 1

' ! ! | | '

I | ! 1 ! !
1 1 1

P o o

1 1 1

E 1 1 E

Figure 7: Role View of iSF Authorization Realms

Creating realms and roles Realms and roles are usually administered from within the enterprise
security system that is plugged into the iS2 server through an adapter. Not
every enterprise security system supports realms and roles, however.

For example, in the case of a security file connected to a file adapter (a
demonstration adapter provided by IONA), a realm or role is implicitly
created whenever it is listed amongst a user’s realms or roles.

45

CHAPTER 3 | Managing Users, Roles and Domains

Assigning realms and roles to The assignment of realms and roles to users is administered from within the
users enterprise security system that is plugged into the iS2 server. For example,
Figure 8 shows how two users, Janet and John, are assigned roles within
the Engi neeri ng and Fi nance realms.
® Janet works in the engineering department as a developer, but
occasionally logs on to the Fi nance realm with guest permissions.
® John works as an accountant in finance, but also has guest
permissions with the Engi neeri ng realm.

iSF Security Domain (users)

IONAGIlobalRealm

Engineering Finance

devel oper

Figure 8: Assignment of Realms and Roles to Users Janet and John

46

Introduction to Domains and Realms

Special realms and roles The following special realms and roles are supported by the IONA security
framework:

| ONAG obal Real mrealm—a special realm that encompasses every iSF
authorization realm. Roles defined within the | ONAQ obal Real mare
valid within every iSF authorization realm.

Unhaut hent i cat edUser Rol e—a special role that can be used to specify
actions accessible to an unauthenticated user (in an action-role
mapping file). An unauthenticated user is a remote user without
credentials (that is, where the client is not configured to send GSSUP
credentials).

Actions mapped to the Unaut hent i cat edUser Rol e role are also
accessible to authenticated users.

The Wnaut hent i cat edUser Rol e can be used only in action-role
mapping files.

47

CHAPTER 3 | Managing Users, Roles and Domains

Managing a File Security Domain

Overview

Location of file

Example

48

1
2
3

4

The file security domain is active if the iS2 server has been configured to use
the iS2 file adapter (see “Configuring the File Adapter” on page 26). The
main purpose of the iS2 file adapter is to provide a lightweight security
domain for demonstration purposes. A realistic deployed system, however,
would use one of the other adapters (LDAP, SiteMinder, or custom) instead.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

The location of the security information file is specified by the
comiona.isp.adapter.file. paramfilenane property in the iS2 server's
i s2. properties file.

Example 11 is an extract from a sample security information file that shows
you how to define users, realms, and roles in a file security domain.

Example 11: Sample Security Information File for an iS2 File Domain
<?xm version="1.0" encodi ng="utf-8" ?>

<ns: securityl nfo xm ns: ns="ur n: wan xm bus- com si npl e-security">
<user s>
<user name="|CONAADm n" passwor d="adm n"
description="Default | ONA adm n user">
<real m nane="| ONA" description="A| | ONA applications"/>
</ user >
<user name="adm n" password="adm n" description="Ad adm n
user; will not have the sane default privil eges as
| ONAADMI N, " >
<r eal m nane=" Cor por at " >
<rol e name="Adm ni strator"/>
</real n»
</ user >
<user name="al i ce" passwor d="dost 1234" >
<r eal m name="Fi nanci al s"
descri ption="Fi nanci al Departnent">

Managing a File Security Domain

Example 11: Sample Security Information File for an iS2 File Domain

<rol e nane="Manager" descri pti on="Departnent Mnager" />
<rol e name="d erk"/>
</real n»
</ user >
<user name="bob" password="dost 1234">
<r eal m name="F nanci al s" >
<rol e nane="d erk"/>
</real n»
</ user >
</ user s>
</ ns: securi tyl nf o>

The <ns: securi tyl nf o> tag can contain a nested <user s> tag.

The <user s> tag contains a sequence of <user > tags.

Each <user > tag defines a single user. The <user > tag's name and
password attributes specify the user's username and password. Within
the scope of the <user > tag, you can list the realms and roles with
which the user is associated.

4. When a <real np tag appears within the scope of a <user > tag, it
implicitly defines a realm and specifies that the user belongs to this
realm. A <real m» must have a name and can optionally have a
descri pti on attribute.

5. Arealm can optionally be associated with one or more roles by
including <r ol e> elements within the <real m» scope.

49

CHAPTER 3 | Managing Users, Roles and Domains

Managing an LDAP Security Domain

Overview The Lightweight Directory Access Protocol (LDAP) can serve as the basis of
a database that stores users, groups, and roles. There are many
implementations of LDAP and any of them can be integrated with the iS2
server by configuring the iS2 server's LDAP adapter.

Please consult documentation from your third-party LDAP implementation
for detailed instructions on how to administer users and roles within LDAP.

Configuring the LDAP adapter A prerequisite for using LDAP within the IONA Security Framework is that
the iS2 server be configured to use the LDAP adapter.

See “Configuring the LDAP Adapter” on page 28.

50

Managing a SiteMinder Security Domain

Managing a SiteMinder Security Domain

Overview

Configuring the SiteMinder
adapter

References

SiteMinder is an enterprise security product from Netegrity, which allows
you to manage user data stored in a central database. The iS2 server can
communicate with the SiteMinder agent, using it to perform authentication
and mapping users to roles. Using Netegrity tools you can administer users,
roles, and realms.

Please consult the Netegrity SiteMinder documentation for detailed
instructions on how to administer users and roles within the SiteMinder
product.

A prerequisite for using SiteMinder within the IONA Security Framework is
that the iS2 server be configured to use the SiteMinder adapter.

See “Configuring the SiteMinder Adapter” on page 34.

For more information on Netegrity SiteMinder, see the Netegrity Web site:
http://www.netegrity.com/

51

http://www.netegrity.com/

CHAPTER 3 | Managing Users, Roles and Domains

52

In this chapter

CHAPTER 4

Managing
Access Control
Lists

The IONA Security Framework defines access control lists
(ACLs) for mapping roles to resources.

This chapter discusses the following topics:

Overview of Artix ACL Files page 54

Artix Action-Role Mapping ACL page 55

53

CHAPTER 4 | Managing Access Control Lists

Overview of Artix ACL Files

Action-role mapping file The action-role mapping file is an XML file that specifies which user roles
have permission to perform specific actions on the server (that is, invoking
specific WSDL operations).

54

Artix Action-Role Mapping ACL

Artix Action-Role Mapping ACL

Overview This subsection explains how to configure the action-role mapping ACL file
for Artix applications. Using an action-role mapping file, you can specify that
access to WSDL operations is restricted to specific roles.

File location In your arti x. cf g configuration file (located in the
ArtixInstallDirl ar ti x/ Version/ et c/ domai ns directory), the
pl ugi ns: i s2_authori zation: acti on_rol e_mappi ng configuration variable
specifies the location URL of the action-role mapping file,
acti on_rol e_mappi ng. xn , for an Artix server. For example:

artix.cfg Configuration File
ny_server_scope {
pl ugi ns:i s2_aut hori zati on: acti on_rol e_mappi ng =

"file:///security_adm n/action_rol e_mappi ng. xm";

I

55

CHAPTER 4 | Managing Access Control Lists

Example WSDL

Example action-role mapping

56

For example, consider how to set the operation permissions for the WSDL
port type shown in Example 12.

Example 12: Sample WSDL for the ACL Example

<defini ti ons nane="Hel | oWr| dServi ce"
t ar get Nanespace="htt p: // xn bus. coni Hel | oVr 1 d" ... >

<port Type nane="Hel | oWr| dPort Type" >
<oper ati on nane="gr eet " >
<i nput message="tns: greet M&" nane="greet "/ >
<out put message="t ns: gr eet MeResponse"
name="gr eet MeResponse"/ >
</ oper at i on>
<oper ati on nane="sayH ">
<i nput message="t ns: sayH " nane="sayH "/>
<out put nessage="t ns: sayH Response"
name="sayH Response"/ >
</ oper at i on>
</ por t Type>

</ defi nitions>

Example 13 shows how you might configure an action-role mapping file for
the Hel | over | dPort Type port type given in the preceding Example 12 on
page 56.

Example 13: Artix Action-Role Mapping Example

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE secur e- syst em SYSTEM "act i onr ol enappi ng. dt d" >
<secur e- syst en»
<act i on-rol e- mappi ng>
<server-nanme>secure_arti x. denos. hel | o_wor | d</ ser ver - nane>
<i nterface>

<nane>htt p:// xm bus. con Hel | oWr | d: Hel | oWor | dPor t Type</ name>
<action-rol e>
<act i on- nane>sayH </ acti on- nane>
<r ol e- name>l ONAUser Rol e</ r ol e- nane>
</ action-rol e>
<action-rol e>
<act i on- nane>gr eet Me</ act i on- nane>
<r ol e- nane>l ONAUser Rol e</ r ol e- nane>

Artix Action-Role Mapping ACL

Example 13: Artix Action-Role Mapping Example

</ action-rol e>
</interface>
</ action-r ol e- mappi ng>
</ secur e- syst en>

The preceding action-role mapping example can be explained as follows:

1. The <acti on-rol e- mappi ng> tag contains all of the permissions that
apply to a particular server application.

2. The <server - nane> tag specifies the ORB name that is used by the
server in question. The value of this tag must match the ORB name
exactly. The ORB name is usually passed to an Artix server as the
value of the - CGRBnane command-line parameter.

Note: The ORB name also determines which configuration scopes
are read by the server.

3. The <interface> tag contains all of the access permissions for one
particular WSDL port type.

4. The <nane> tag identifies a WSDL port type in the format
NamespaceURI: PortTypeName. That is, the PortTypeName comes
from a tag, <port Type nane="PortTypeName">, defined in the
NamespaceUR/ namespace.

For example, in Example 12 on page 56 the <defi ni ti ons> tag
specifies the NamespaceUR/ as http: // xn bus. coni Hel | oVer | d and
the PortTypeName is Hel | over | dPor t Type. Hence, the port type name
is identified as:

<nane>htt p: // xm bus. com Hel | oWr | d: Hel | oVWr | dPor t Type</ name>

5. The sayH action name corresponds to the sayH WSDL operation
name in the Hel | oWr | dPor t Type port type (from the <operati on
nane="sayH "> tag).

Action-role mapping DTD The syntax of the action-role mapping file is defined by the action-role
mapping DTD. See “Action-Role Mapping DTD” on page 183 for details.

57

CHAPTER 4 | Managing Access Control Lists

58

In this chapter

CHAPTER 5

Managing
Certificates

TLS authentication uses X.509 certificates—a common,
secure and reliable method of authenticating your application
objects. This chapter explains how you can create X.509
certificates that identify your Artix applications.

This chapter contains the following sections:

What are X.509 Certificates? page 60
Certification Authorities page 62
Certificate Chaining page 65
PKCS#12 Files page 67
Creating Your Own Certificates page 69
Deploying Certificates page 76

59

CHAPTER 5 | Managing Certificates

What are X.509 Certificates?

Role of certificates An X.509 certificate binds a name to a public key value. The role of the
certificate is to associate a public key with the identity contained in the
X.509 certificate.

Integrity of the public key Authentication of a secure application depends on the integrity of the public
key value in the application’s certificate. If an impostor replaced the public
key with its own public key, it could impersonate the true application and
gain access to secure data.

To prevent this form of attack, all certificates must be signed by a
certification authority (CA). A CA is a trusted node that confirms the
integrity of the public key value in a certificate.

Digital signatures A CA signs a certificate by adding its digital signature to the certificate. A
digital signature is a message encoded with the CA's private key. The CA’s
public key is made available to applications by distributing a certificate for
the CA. Applications verify that certificates are validly signed by decoding
the CA’s digital signature with the CA’s public key.

WARNING: Most of the demonstration certificates supplied with Artix are
signed by the CA cacert. pem This CA is completely insecure because
anyone can access its private key. To secure your system, you must create
new certificates signed by a trusted CA. This chapter describes the set of
certificates required by an Artix application and shows you how to replace
the default certificates.

60

The contents of an X.509
certificate

Distinguished names

What are X.509 Certificates?

An X.509 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate). A certificate is
encoded in Abstract Syntax Notation One (ASN.1), a standard syntax for
describing messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In
more detail, a certificate includes:

® X.509 version information.

® Aserial number that uniquely identifies the certificate.

® Asubject DN that identifies the certificate owner.

® The public key associated with the subject.

® Anssuer DN that identifies the CA that issued the certificate.

® The digital signature of the issuer.

® Information about the algorithm used to sign the certificate.

® Some optional X.509 v.3 extensions. For example, an extension exists
that distinguishes between CA certificates and end-entity certificates.

A distinguished name (DN) is a general purpose X.500 identifier that is
often used in the context of security.

See “ASN.1 and Distinguished Names” on page 177 for more details about
DNs.

61

CHAPTER 5 | Managing Certificates

Certification Authorities

Choice of CAs

In this section

62

A CA must be trusted to keep its private key secure. When setting up an
Artix system, it is important to choose a suitable CA, make the CA certificate
available to all applications, and then use the CA to sign certificates for your
applications.

There are two types of CA you can use:

® A commercial CA is a company that signs certificates for many
systems.

® A private CA is a trusted node that you set up and use to sign
certificates for your system only.

This section contains the following subsections:

Commercial Certification Authorities page 63

Private Certification Authorities page 64

Certification Authorities

Commercial Certification Authorities

Signing certificates There are several commercial CAs available. The mechanism for signing a
certificate using a commercial CA depends on which CA you choose.

Advantages of commercial CAs An advantage of commercial CAs is that they are often trusted by a large
number of people. If your applications are designed to be available to
systems external to your organization, use a commercial CA to sign your
certificates. If your applications are for use within an internal network, a
private CA might be appropriate.

Criteria for choosing a CA Before choosing a CA, you should consider the following criteria:
® What are the certificate-signing policies of the commercial CAs?

® Are your applications designed to be available on an internal network
only?
® What are the potential costs of setting up a private CA?

63

CHAPTER 5 | Managing Certificates

Private Certification Authorities

Choosing a CA software package

OpenSSL software package

Setting up a private CA using
OpenSSL

Choosing a host for a private
certification authority

Security precautions

64

If you wish to take responsibility for signing certificates for your system, set
up a private CA. To set up a private CA, you require access to a software
package that provides utilities for creating and signing certificates. Several
packages of this type are available.

One software package that allows you to set up a private CA is OpenSSL,
htt p: // wawv. openssl . or g. OpenSSL is derived from SSLeay, an
implementation of SSL developed by Eric Young (eay@cryptsoft.com).
Complete license information can be found in “License Issues” on page 203.
The OpenSSL package includes basic command line utilities for generating
and signing certificates and these utilities are available with every
installation of Artix. Complete documentation for the OpenSSL command
line utilities is available from htt p: / / www. openssl . or g/ docs.

For instructions on how to set up a private CA, see “Creating Your Own
Certificates” on page 69.

Choosing a host is an important step in setting up a private CA. The level of
security associated with the CA host determines the level of trust associated
with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Artix
applications, use any host that the application developers can access.
However, when you create the CA certificate and private key, do not make
the CA private key available on hosts where security-critical applications
run.

If you are setting up a CA to sign certificates for applications that you are
going to deploy, make the CA host as secure as possible. For example, take
the following precautions to secure your CA:

® Do not connect the CA to a network.
® Restrict all access to the CA to a limited set of trusted users.
® Protect the CA from radio-frequency surveillance using an RF-shield.

Certificate Chaining

Certificate Chaining

Certificate chain A certificate chain is a sequence of certificates, where each certificate in
the chain is signed by the subsequent certificate.

Self-signed certificate The last certificate in the chain is normally a self-signed certificate—a
certificate that signs itself.

Example Figure 9 shows an example of a simple certificate chain.
Peer | _ signs CA | signs
Certificate | Certificate |

I

Figure 9: A Certificate Chain of Depth 2

Chain of trust The purpose of certificate chain is to establish a chain of trust from a peer
certificate to a trusted CA certificate. The CA vouches for the identity in the
peer certificate by signing it. If the CA is one that you trust (indicated by the
presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

65

CHAPTER 5 | Managing Certificates

Certificates signed by multiple
CAs

Trusted CAs

Maximum chain length policy

66

A CA certificate can be signed by another CA. For example, an application
certificate may be signed by the CA for the finance department of IONA
Technologies, which in turn is signed by a self-signed commercial CA.
Figure 10 shows what this certificate chain looks like.

Peer signs Finance Commercial
Certificate | ¢ CA CA |«
Certificate Certificate

I

signs signs

Figure 10: A Certificate Chain of Depth 3

An application can accept a signed certificate if the CA certificate for any CA
in the signing chain is available in the certificate file in the local root
certificate directory.

See “Deploying Trusted Certificate Authority Certificates” on page 78.

You can limit the length of certificate chains accepted by your CORBA
applications, with the maximum chain length policy. You can set a value for
the maximum length of a certificate chain with the
policies:iiop_tls:max_chain_| ength_pol i cy configuration variable for
IIOP/TLS.

PKCS#12 Files

PKCS#12 Files

Overview

Contents of a PKCS#12 file

Figure 11 shows the typical elements in a PKCS#12 file.

PKCS#12 File
X.509 i
— Certificate Chain
X.509
CA
O—m <1 Private Key

Figure 11: Elements in a PKCS#12 File

A PKCS#12 file contains the following:

® An X.509 peer certificate (first in a chain).

® All the CA certificates in the certificate chain.
® A private key.

The file is encrypted with a pass phrase.

PKCS#12 is an industry-standard format and is used by browsers such as
Netscape and Internet Explorer.

Note: The same pass phrase is used both for the encryption of the private
key within the PKCS#12 file and for the encryption of the PKCS#12 file
overall. This condition (same pass phrase) is not officially part of the
PKCS#12 standard, but it is enforced by most Web browsers and by Artix.

67

CHAPTER 5 | Managing Certificates

Creating a PKCS#12 file

Viewing a PKCS#12 file

Importing and exporting
PKCS#12 files

68

To create a PKCS#12 file, see “Use the CA to Create Signed Certificates” on
page 73.

To view a PKCS#12 file, CertName. p12:
openssl pkcsl12 -in CertName. p12

The generated PKCS#12 files can be imported into browsers such as IE or
Netscape. Exported PKCS#12 files from these browsers can be used in
Artix.

Note: Use OpenSSL v0.9.2 or later; Internet Explorer 5.0 or later;
Netscape 4.7 or later.

Creating Your Own Certificates

Creating Your Own Certificates

Overview This section describes the steps involved in setting up a CA and signing
certificates.
OpenSSL utilities The steps described in this section are based on the OpenSSL

command-line utilities from the OpenSSL project,

http: // wwn. openssl . or g—see “OpenSSL Utilities” on page 187. Further
documentation of the OpenSSL command-line utilities can be obtained from
ht t p: / / waw. openssl . or g/ docs.

Sample CA directory structure For the purposes of illustration, the CA database is assumed to have the
following directory structure:
X509CA/ ca
X509CA/ certs
X509CA/I newcerts
X509CA/ crl

Where X509CA is the parent directory of the CA database.

In this section This section contains the following subsections:
Set Up Your Own CA page 70
Use the CA to Create Signed Certificates page 73

69

CHAPTER 5 | Managing Certificates

Set Up Your Own CA

Substeps to perform

Step 1—Add the bin directory to
your PATH

Step 2—Create the CA directory
hierarchy

Step 3—Copy and edit the
openssl.cnf file

70

This section describes how to set up your own private CA. Before setting up
a CA for a real deployment, read the additional notes in “Choosing a host for
a private certification authority” on page 64.

To set up your own CA, perform the following substeps:

® Step 1—Add the bin directory to your PATH

® Step 2—Create the CA directory hierarchy

® Step 3—Copy and edit the openssl.cnf file

® Step 4—lInitialize the CA database

® Step 5—Create a self-signed CA certificate and private key

On the secure CA host, add the OpenSSL bi n directory to your path:
Windows

> set PATH=OpenSSLDir\ bi n; %PATHY

UNIX

% PATH=OpenSSLDir/ bi n: $PATH export PATH

This step makes the openssl utility available from the command line.

Create a new directory, X509CA, to hold the new CA. This directory will be
used to hold all of the files associated with the CA. Under the X509CA
directory, create the following hierarchy of directories:

X509CA/ ca

X509CA/ certs

X509CA/I newcert s

X509CA/ crl

Copy the sample openssl . cnf from your OpenSSL installation to the
X509CA directory.

Edit the openssl . cnf to reflect the directory structure of the X509CA
directory and to identify the files used by the new CA.

Step 4—lnitialize the CA database

Creating Your Own Certificates

Edit the [CA def aul t] section of the openssl! . cnf file to make it look like
the following:

HHHH R R R R R R
[CAdefault]

dir = X509CA # Wiere CA files are kept
certs = $dir/certs # Wiere issued certs are kept

crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file

new certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new ca.pem# The CA certificate

serial = $dir/serial # The current serial nunber
crl = $dir/crl.pem # The current CRL
private_key = $dir/ca/ new ca _pk.pem # The private key

RANDFI LE = $dir/ca/.rand # Private random nunber file

x509_extensions = usr_cert # The extensions to add to the cert

You might like to edit other details of the OpenSSL configuration at this
point—for more details, see “The OpenSSL Configuration File” on page 197.

In the X509CA directory, initialize two files, serial and i ndex. t xt .
Windows
> echo 01 > serial

To create an empty file, i ndex. t xt, in Windows start a Windows Notepad at
the command line in the X509CA directory, as follows:

> not epad i ndex. t xt

In response to the dialog box with the text, Cannot find the text.txt
file. Do you want to create a new file?, click Yes, and close Notepad.
UNIX

% echo "01" > serial
% touch i ndex. txt

These files are used by the CA to maintain its database of certificate files.

Note: The index.txt file must initially be completely empty, not even
containing white space.

71

CHAPTER 5 | Managing Certificates

Step 5—Create a self-signed CA
certificate and private key

72

Create a new self-signed CA certificate and private key:

openssl req -x509 -new -config
X509CA/ openssl . cnf -days 365 -out X509CA/ ca/ new _ca. pem
-keyout X509CA/ ca/ new_ca_pk. pem

The command prompts you for a pass phrase for the CA private key and
details of the CA distinguished name:

Usi ng configuration fromX509CA/ openssl . cnf

Cenerating a 512 bit RSA private key

I = o e

R

witing new private key to 'new ca_pk. pem

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

Wiat you are about to enter is what is called a D stingui shed
Name or a DN There are quite a few fields but you can |eave
sone bl ank. For sone fields there will be a default val ue,

If you enter '.', the field will be left blank.

Country Nanme (2 letter code) []:IE

State or Province Nane (full nane) []:Co. Dublin

Locality Nane (eg, city) []:Dublin

Qrgani zati on Nane (eg, conpany) []:|ONA Technol ogi es PLC
Qrgani zational Unit Name (eg, section) []:Finance

Common Nane (eg, YOUR nane) []:Gordon Brown

Emai | Address []: gbrown@ona. com

Note: The security of the CA depends on the security of the private key
file and private key pass phrase used in this step.

You should ensure that the file names and location of the CA certificate and
private key, new ca. pemand new _ca_pk. pem are the same as the values
specified in openssl . cnf (see the preceding step).

You are now ready to sign certificates with your CA.

Creating Your Own Certificates

Use the CA to Create Signed Certificates

Substeps to perform

Step 1—Add the bin directory to
your PATH

Step 2—Create a certificate
signing request

If you have set up a private CA, as described in “Set Up Your Own CA” on
page 70, you are now ready to create and sign your own certificates.

To create and sign a certificate in PKCS#12 format, CertName. p12,
perform the following substeps:

® Step 1—Add the bin directory to your PATH

® Step 2—Create a certificate signing request

® Step 3—Sign the CSR

® Step 4—Concatenate the files

® Step 5—Create a PKCS#12 file

® Step 6—Repeat steps as required

If you have not already done so, add the OpenSSL bi n directory to your
path:

Windows

> set PATH=OpenSSLDir\ bi n; %PATHY

UNIX

% PATH=OpenSSLDirl bi n: $PATH export PATH

This step makes the openssl! utility available from the command line.

Create a new certificate signing request (CSR) for the CertName. p12
certificate:

openssl req -new -config X509CA/ openssl . cnf
-days 365 -out X509CA/ certs/ CertName_csr. pem - keyout
X509CA/ cert s/ CertName_pk. pem

This command prompts you for a pass phrase for the certificate’s private key
and information about the certificate’s distinguished name.

Some of the entries in the CSR distinguished name must match the values
in the CA certificate (specified in the CA Policy section of the openssl . cnf
file). The default openssl . cnf file requires the following entries to match:

® Country Name
® State or Province Name
® Organization Name

73

CHAPTER 5 | Managing Certificates

Step 3—Sign the CSR

74

The Common Name must be distinct for every certificate generated by
OpenSSL.

Usi ng configuration fromX509CA/ openssl . cnf

Cenerating a 512 bit RSA private key

R

R

witing new private key to ' X509CA/ certs/ CertName_pk. pem
Ent er PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

Wiat you are about to enter is what is called a D stingui shed
Nane or a DN There are quite a few fields but you can | eave
sone bl ank. For sone fields there will be a default val ue,

If you enter '.', the field will be left blank.

Country Nane (2 letter code) []:IE

State or Province Nane (full nane) []:Co. Dublin

Locality Name (eg, city) []:Dublin

Qrgani zati on Nane (eg, conpany) []:|ONA Technol ogi es PLC
Organi zational Unit Name (eg, section) []:Systens

Common Nane (eg, YOUR nane) []:Obix

Emai| Address []:info@ona.com

Pl ease enter the following 'extra attributes
to be sent with your certificate request

A chal | enge password []: password

An optional company name []:1ONA

Sign the CSR using your CA:

openssl ca -config X509CA/ openssl . cnf -days 365 -in
X509CAI/ certs/ CertName_csr . pem - out
X509CAI/ certs/ CertName. pem

This command requires the pass phrase for the private key associated with
the new _ca. pemCA certificate:

Usi ng configuration fromX509CA/ openssl . cnf

Enter PEM pass phrase:

Check that the request matches the signature

Signat ure ok

The Subjects D stingui shed Name is as fol |l ows

countryNane :PRINTABLE: ' | E
stat eQ Provi nceNane : PRINTABLE: ' Co. Dublin’
| ocal i t yNarre : PRINTABLE: ' Dubl i n'

Step 4—Concatenate the files

Step 5—Create a PKCS#12 file

Step 6—Repeat steps as required

Creating Your Own Certificates

or gani zat i onNarre . PRINTABLE: ' | ONA Technol ogi es PLC
or gani zat i onal Uni t Nane: PRI NTABLE: ' Syst ens'

commonNane . PRINTABLE: ' Bank Server Certificate'
emai | Addr ess 1 ASSTRING ' i nfo@ona. com

Certificate is to be certified until May 24 13:06:57 2000 GV (365
days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, coomt? [y/n]y

Wite out database with 1 new entries

Data Base Updat ed

To sign the certificate successfully, you must enter the CA private key pass
phrase—see “Set Up Your Own CA” on page 70.

Concatenate the CA certificate file, CertName certificate file, and
CertName_pk. pemprivate key file as follows:

Windows

copy X509CA\ ca\ new ca. pem +
X509CA\ cert s\ CertName. pem +
X509CA\ cer t s\ CertName_pk. pem
X509CA\ cert s\ CertName_l i st. pem

UNIX

cat X509CA/ cal new ca. pem
X509CA/ cert s/ CertName. pem
X509CA/ cert s/ CertName_pk. pem >
X509CA/ certs/ CertName_l i st. pem

Create a PKCS#12 file from the CertName_l i st. pemfile as follows:

openss| pkcs12 -export -in X509CA/ certs/ CertName_| i st. pem - out
X509CA/ certs/ CertName. p12 -name "New cert"

Repeat steps 2 to 5, creating a complete set of certificates for your system.
A minimum set of Artix certificates must include a set of certificates for the
secure Orbix services.

75

CHAPTER 5 | Managing Certificates

Deploying Certificates

Overview

In this section

76

This section provides an overview of deploying X.509 certificates in a typical
secure Artix system, with detailed instructions on how to deploy certificates
for different parts of the Artix system.

This section contains the following subsections:

Overview of Certificate Deployment page 77
Deploying Trusted Certificate Authority Certificates page 78
Deploying Application Certificates page 82

Deploying Certificates

Overview of Certificate Deployment

Overview

Certificate deployment for HTTPS

Certificate deployment for
IHOP/TLS

Sample deployment directory
structure

Because the HTTPS and [IOP/TLS transports use different security
mechanisms, it is necessary to deploy certificates for each of these
transports independently, as follows:

® Certificate deployment for HTTPS.

® (Certificate deployment for [IOP/TLS.

Certificates used by the HTTPS transport must be in Privacy Enhanced Mail
(PEM) format. To specify certificates for the HTTPS transport, you must edit
your application’s WSDL contract.

Certificates used by the IIOP/TLS transport must be in PKCS#12 format. To
specify certificates for the IIOP/TLS transport, you must edit the Artix
configuration file, ArtixInstallDirl arti x/ Version/ et c/ domai ns/ arti x. cf g.

For the purposes of illustration, the examples in this section deploy
certificates into the following sample directory structure:

X509Deployl trusted_ca_lists
X509Deployl certs

Where X509Deploy is the parent directory for the deployed certificates.

77

CHAPTER 5 | Managing Certificates

Deploying Trusted Certificate Authority Certificates

Overview

Deploying for the HTTPS transport

78

This section how to deploy trusted root CA certificates for Artix applications.
In the current version of Artix, the procedure for deploying trusted CA
certificates depends on the type of transport, as follows:

Deploying for the HTTPS transport.
Deploying for the IIOP/TLS transport.

To deploy one or more trusted root CAs for the HTTPS transport in Artix,
perform the following steps:

1.

Assemble the collection of trusted CA certificates that you want to
deploy. The trusted CA certificates could be obtained from public CAs
or private CAs (for details of how to generate your own CA certificates,
see “Set Up Your Own CA” on page 70). The trusted CA certificates
should be in PEM format. All you need are the certificates
themselves—the private keys and passwords are not required.

Concatenate the CA certificates into a single CA list file. A CA list file
can be created using a simple file concatenation operation. For
example, if you have two CA certificate files, ca_cert01. pemand
ca_cert 02. pem you could combine them into a single CA list file,
ca_l i st 01. pem with the following command:

Windows
copy X509CA\ca\ca_cert 01. pem +
X509CA\ ca\ ca_cert 02. pem
X509Deploy\trusted_ca_lists\ca_listOl. pem
UNIX

cat X509CA/ cal ca_cert 01. pem X509CA/ cal ca_cert 02. pem >>
X509Deploy/ trusted_ca_lists/ca_listOl. pem

Edit the WSDL contract to specify the location of the CA list file. The
details of this step depend on whether you are deploying a trusted CA
list on the client side or on the server side:

Client side
Edit the client's copy of the WSDL contract by adding (or modifying)
the Trust edRoot Certi fi cat es attribute in the <ht t p-conf: client>

Deploying Certificates

tag. For example, to specify X509CA/ cal ca_| i st 01. pemas the client’s
trusted CA certificate, modify the client’'s WSDL contract as follows:

<definitions

xm ns: htt p="htt p://schenas. i ona. con t ransport s/ http"

xm ns: htt p-conf="http://schemas. i ona. coni t ransports/http/co
nfiguration" ... >

<servi ce name="...">
<port binding="...">
<http-conf:client ...
Trust edRoot Certi fi cat es="X509CA/ cal ca_l i st 01. pent
/>

</ port >
</ servi ce>
Server side
Edit the server's copy of the WSDL contract by adding (or modifying)
the Trust edRoot Cer ti fi cat es attribute in the <ht t p-conf: server>
tag. For example, to specify X509CA/ ca/ ca_| i st 01. pemas the

server's trusted CA certificate, modify the server's WSDL contract as
follows:

<definitions

xm ns: http="htt p://schenas. i ona. con t ransport s/ http"

xm ns: htt p-conf="http://schemas. i ona. coni t ransports/http/co
nfiguration" ... >

<servi ce nane="...">
<port binding="...">

<htt p-conf:server ...
Trust edRoot Certi fi cat es="X509CA/ cal ca_l i st 01. pent
/>
</ port>
</ servi ce>

79

CHAPTER 5 | Managing Certificates

Deploying for the IIOP/TLS
transport

80

To deploy one or more trusted root CAs for the IIOP/TLS transport, perform
the following steps (the procedure for client and server applications is the
same):

1.

Assemble the collection of trusted CA certificates that you want to
deploy. The trusted CA certificates could be obtained from public CAs
or private CAs (for details of how to generate your own CA certificates,
see “Set Up Your Own CA” on page 70). The trusted CA certificates
should be in PEM format. All you need are the certificates
themselves—the private keys and passwords are not required.

Organize the CA certificates into a collection of CA list files. For
example, you might create three CA list files as follows:

X509Deployl trusted_ca_lists/ca_list0Ol pem
X509Deploy/ trusted_ca_lists/ca_list02. pem
X509Deploy/ trusted_ca_lists/ca_list03. pem

Each CA list file consists of a concatenated list of CA certificates. A CA
list file can be created using a simple file concatenation operation. For
example, if you have two CA certificate files, ca_cert01. pemand
ca_cert 02. pem you could combine them into a single CA list file,
ca_l i st 01. pem with the following command:

Windows
copy X509CA\ca\ca_cert 01. pem +
X509CA\ ca\ ca_cert 02. pem
X509Deploy\trusted_ca_lists\ca_list0Ol. pem
UNIX

cat X509CA/ cal ca_cert 01. pem X509CA/ cal/ ca_cert 02. pem >>
X509Deployi trusted_ca_lists/ca_list0Ol pem

The CA certificates are organized as lists as a convenient way of
grouping related CA certificates together.

Edit the arti x. cf g file to specify which of the CA list files is used by
your application. The arti x. cf g file is located in the following
directory:

ArtixInstallDirl ar ti x/ Version/ et c/ domai ns

To specify the CA list files, edit the value of the
policies:iiop_tls:trusted_ca_|ist_policy variable in your
application’s configuration scope in the arti x. cf g file.

Deploying Certificates

For example, if your application picks up its configuration from the
SecureAppScope configuration scope and you want to include the CA
certificates from the ca_I i st 01. pemand ca_l i st 02. pemfiles, edit the

artix. cf g file as follows:
Artix configuration file.

-S-e.cureAppScope {

policies:iiop tls:trusted ca list_policy =
["X509Deploy/ trusted ca_lists/ca_list0Ol. pent,
"X509Deploy/ trusted_ca_|ists/ca_list02. pent];

The directory containing the trusted CA certificate lists (for example,
X509Deployl t rusted_ca_l i sts/) should be a secure directory.

Note: If an application supports authentication of a peer, that is a client
supports Est abl i shTrust | nTar get, then a file containing trusted CA
certificates must be provided. If not, a NO RESQURCES exception is raised.

81

CHAPTER 5 | Managing Certificates

Deploying Application Certificates

Overview

Certificate formats

Deploying for the HTTPS transport

82

This section describes how to deploy an Artix application’s own certificate.
In the current version of Artix, the procedure for deploying application
certificates depends on the type of transport, as follows:

® Deploying for the HTTPS transport.

® Deploying for the IIOP/TLS transport

The format used for application certificates depends on the type of

transport, as follows:

® HTTPS transport—uses the PEM format. This format consists of a
certificate file, CertName. pem containing an encrypted X.509
certificate chain, and a private key file, CertPrivKey. pem containing an
encrypted private key. Both PEM files are encrypted by the same
password (the private key password).

® JIOP/TLS transport—uses the PKCS#12 format. This format consists
of a single encrypted file, CertName. p12, that contains an X.509
certificate chain and a private key.

Note: Because Artix uses an [IOP/TLS connection to communicate with
the iS2 security server, Artix applications that use HTTPS generally require
you to configure both HTTPS and IIOP/TLS.

To deploy an Artix application’s own certificate, CertName. pem with private

key, CertPrivKey. pem for the HTTPS transport, perform the following steps:

1. Copy the application certificate, CertName. pem and private key file,
CertPrivKey. pem to the certificates directory—for example,
X509Deploy! cert s/ appl i cati ons—on the deployment host.

The certificates directory should be a secure directory that is accessible
only to administrators and other privileged users.

2. Edit the WSDL contract to specify the location of the application

certificate file and private key file. The details of this step depend on
whether you are deploying an application certificate on the client side
or the server side:

Deploying Certificates

Client side
Edit the client’s copy of the WSDL contract by adding (or modifying)
the following highlighted attributes in the <ht t p- conf: cl i ent > tag:

<definitions
xm ns: http="http://schenas. i ona. conl transports/ htt p"
xm ns: htt p-conf="http://schenas. i ona. com transports/ http/configuration" ... >

<servi ce name="...">
<port binding="...">
<soap: address ...>
<http-conf:client UseSecureSockets="true"
AientCertificate="X509Deploy/ cert s/ appli cati ons/ CertName. pemt
QientCertificatethai n="X509Deploy/ cert s/ appl i cati ons/ CertName. pent
dient Pri vat ekey="X509Deploy/ cert s/ appl i cati ons/ CertPrivKey. pent
d i ent Pri vat eKeyPasswor d="MyKeyPassword"
Trust edRoot Certi fi cat es="RootCertPath"
. >
</ port >
</ servi ce>

Server side
Edit the server's copy of the WSDL contract by adding (or modifying)
the following highlighted attributes in the <ht t p- conf : ser ver > tag:

<definitions
xm ns: http="http://schenas. i ona. con transports/ http"
xm ns: htt p-conf ="http://schemas. i ona. conitransports/http/configuration" ... >

<servi ce nane="...">
<port binding="...">
<soap: address ...>
<htt p-conf: server UseSecureSocket s="tr ue"
Server Certificate="X509Deploy/ cert s/ appl i cat i ons/ CertName. pemt
Server Certifi cat eChai n="X509Deploy/ cert s/ appl i cati ons/ CertName. pent
Ser ver Pri vat ekey="X509Deploy/ cert s/ appl i cati ons/ CertPrivKey. pent
Ser ver Pri vat eKeyPasswor d="MyKeyPassword"
Trust edRoot Cert i fi cat es="RootCertPath"
. >
</ port>
</ servi ce>

83

CHAPTER 5 | Managing Certificates

Deploying for the IIOP/TLS
transport

84

3. Protect the private key passwords.
Because the private key passwords in the WSDL contracts appear in
plaintext form, you must ensure that the WSDL contract files
themselves are not readable/writable by every user. Use the operating
system to restrict read/write access to trusted users only.
Additionally, to avoid revealing the server's security configuration to
clients, you should remove the <ht t p- conf : ser ver > tag from the client
copy of the WSDL contract.

To deploy an Artix application’s own certificate, CertName. p12, for the

IIOP/TLS transport, perform the following steps:

1. Copy the application certificate, CertName. p12, to the certificates
directory—for example, X509Deploy/ cert s/ appl i cati ons—on the
deployment host.

The certificates directory should be a secure directory that is accessible
only to administrators and other privileged users.

2. Edit the arti x. cf g configuration file (usually
ArtixiInstallDirl ar ti x/ Version/ et ¢/ domai ns/ arti x. cf g). Given that
your application picks up its configuration from the SecureAppScope
scope, change the principal sponsor configuration to specify the
CertName. p12 certificate, as follows:

Artix configuration file
SecureAppScope {

princi pal _sponsor: use_princi pal _sponsor = "true";
princi pal _sponsor: auth_nmethod_id = "pkcs12_file";
pri nci pal _sponsor: aut h_met hod_data =
["fil ename=X509Deploy/ certs/ appl i cati ons/ CertName.
p12"];
H

3. By default, the application will prompt the user for the certificate pass
phrase as it starts up. To choose another option for providing the pass
phrase, see “Providing a Certificate Pass Phrase” on page 95.

CHAPTER 6

Configuring
HTTPS and

HOP/TLS
Authentication

This chapter describes how to configure HTTPS and IIOP/TLS
authentication requirements for Artix applications.

In this chapter This chapter discusses the following topics:
Requiring Authentication page 86
Specifying Trusted CA Certificates page 93
Specifying an Application’s Own Certificate page 94
Providing a Certificate Pass Phrase page 95
Advanced IIOP/TLS Configuration Options page 100

85

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

Requiring Authentication

Overview This section discusses how to specify the kind of authentication required,
whether mutual or target-only.

In this section There are two possible arrangements for a TLS secure association:
Target-Only Authentication page 87
Mutual Authentication page 90

86

Requiring Authentication

Target-Only Authentication

Overview When an application is configured for target-only authentication, the target
authenticates itself to the client but the client is not authentic to the target
object—see Figure 12.

Secure Association
Client .

B
» Server

Trusted CA Lists ‘

_— Authenticate
‘ CA Cert List 1 Certificate Cert file

‘ CA Cert List 2 ‘

| [ooo- |
P

Figure 12: Target Authentication Only

Security handshake Prior to running the application, the client and server should be set up as

follows:

® Acertificate chain is associated with the server—the certificate chain is
provided in the form of a PEM file (for HTTPS) or a PKCS#12 file (for
[IOP/TLS). See “Specifying an Application’s Own Certificate” on
page 94.

® One or more lists of trusted certification authorities (CA) are made
available to the client—see “Deploying Trusted Certificate Authority
Certificates” on page 78.

During the security handshake, the server sends its certificate chain to the

client—see Figure 12. The client then searches its trusted CA lists to find a

CA certificate that matches one of the CA certificates in the server's
certificate chain.

87

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

HTTPS example You configure target-only authentication for the HTTPS transport by omitting
a certificate on the client side. That is, the Qi ent Certi fi cat e attribute is
not set in the <htt p-conf: cl i ent > tag. For example, you could configure
the client side and the server side as follows:

Client side

Edit the client’s copy of the WSDL contract by adding (or modifying) the
following highlighted attributes in the <nhtt p- conf: cl i ent > tag:

<definitions
xm ns: htt p="http://schenas. i ona. conltransports/ http"
xm ns: htt p-conf="http://schenas. i ona. coni transports/ http/configuration" ... >

<servi ce name="...">
<port binding="...">
<soap: address ...>
<htt p-conf:client UseSecureSockets="true"
Trust edRoot Cer ti fi cat es="RootCertPath"
. >
</ port>
</ servi ce>

Server side

Edit the server's copy of the WSDL contract by adding (or modifying) the
following highlighted attributes in the <nht t p- conf : ser ver > tag:

<definitions
xm ns: htt p="http://schenas. i ona. con t ransports/http"
xm ns: htt p-conf ="http://schemas. i ona. com transports/http/configuration" ... >

<servi ce name="...">
<port binding="...">
<soap: address ...>
<ht t p- conf: server UseSecur eSocket s="true"
Server Certi fi cate="X509Deploy/ certs/ appl i cati ons/ CertName. pent
Server Pri vat ekey="X509Deploy/ cert s/ appl i cat i ons/ CertPrivKey. pent
Ser ver Pri vat eKeyPasswor d="MyKeyPassword"
Tr ust edRoot Cer t i fi cat es="RootCertPath"
. 1>
</ port>
</ servi ce>

88

IHIOP/TLS example

Requiring Authentication

The following extract from an arti x. cf g configuration file shows the
target-only configuration of an Artix client application, bank_cl i ent, and an
Artix server application, bank_ser ver, where the transport type is IIOP/TLS.

Artix Configuration File

policies:iiop_tls:nmechani smpolicy: protocol _version

policies:iiop_tls:mechani smpolicy:ciphersuites =
["RSA WTH RCA_128 SHA', "RSA WTH RCA_128 MX%"];

bank_server {

"SSL_V3";

policies:iiop_tls:target_secure_invocation_policy:requires =

["Confidentiality"];

policies:iiop_tls:target_secure_invocation_policy: supports =

["Confidentiality", “Integrity", "DetectReplay",
"Det ect M sorderi ng", "EstablishTrustlnTarget"];

};...

bank_client {

policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustlnTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "“Integrity", "DetectReplay",
"Det ect M sorderi ng", "EstablishTrustlnTarget"];
B

89

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

Mutual Authentication

Overview When an application is configured for mutual authentication, the target
authenticates itself to the client and the client authenticates itself to the
target. This scenario is illustrated in Figure 13. In this case, the server and
the client each require an X.509 certificate for the security handshake.

Trusted CA Lists

CA Cert List 1
Client
CA Cert List 2

A Secure Association A
Client N Server (1]

Trusted CA Lists
—L e Authenticate
‘ CA Cert List 1 Target Cert file

‘ CA Cert List 2

Figure 13: Mutual Authentication

90

Security handshake

HTTPS example

IHIOP/TLS example

Requiring Authentication

Prior to running the application, the client and server should be set up as
follows:

® Both client and server have an associated certificate chain (PEM file or
PKCS#12 file)—see “Specifying an Application’s Own Certificate” on
page 94.

Both client and server are configured with lists of trusted certification
authorities (CA)—see “Deploying Trusted Certificate Authority
Certificates” on page 78.

During the security handshake, the server sends its certificate chain to the
client, and the client sends its certificate chain to the server—see Figure 12.

To configure mutual authentication for the HTTPS transport, you should
deploy an application certificate both on the client side and on the server
side. For a detailed example, see the following reference:

® “Deploying for the HTTPS transport” on page 82.

The following sample extract from an arti x. cf g configuration file shows the
configuration for mutual authentication of a client application,
secure_client_with_cert, and a server application,

secur e_server_enforce_cl i ent _aut h, where the transport type is
IIOP/TLS.

Artix Configuration File

policies:iiop_tls:nmechani smpolicy:protocol _version = "SSL V3";
policies:iiop_tls:mechani smpolicy:ciphersuites =
["RSA WTH R4_128_SHA", "RSA WTH RC4_128 MX%"];

secure_server _enforce_client_auth
{
policies:iiop_tls:target_secure_invocation_policy:requires =
["EstablishTrustIndient", "Confidentiality"];
policies:iiop_tls:target_secure_invocation_policy:supports =
["EstablishTrustIndient", "Confidentiality", "Integrity",
"Det ect Repl ay", "DetectM sordering",
"Establ i shTrust|nTarget"];

91

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

secure_client_with_cert
{
policies:iiop_tls:client_secure_invocation_policy:requires
["Confidentiality", "EstablishTrustlnTarget"];
policies:iiop_tls:client_secure_invocation_policy: supports
[“Confidentiality", “Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustinQient",
"Establ i shTrust | nTarget"];

92

Specifying Trusted CA Certificates

Specifying Trusted CA Certificates

Overview

Which applications need to
specify trusted CA certificates?

How to deploy trusted CA
certificates

When an application receives an X.509 certificate during an SSL/TLS
handshake, the application decides whether or not to trust the received
certificate by checking whether the issuer CA is one of a pre-defined set of
trusted CA certificates. If the received X.509 certificate is validly signed by
one of the application’s trusted CA certificates, the certificate is deemed
trustworthy; otherwise, it is rejected.

Any application that is likely to receive an X.509 certificate as part of an
HTTPS or IIOP/TLS handshake must specify a list of trusted CA certificates.
For example, this includes the following types of application:

® Al lIOP/TLS or HTTPS clients.

® Any IIOP/TLS or HTTPS servers that support mutual authentication.

For more details about how to deploy trusted CA certificates, see the
following references:

® “Deploying for the HTTPS transport” on page 78.
* “Deploying for the IIOP/TLS transport” on page 80.

93

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

Specifying an Application’s Own Certificate

Overview To enable an Artix application to identify itself, it must be associated with an
X.509 certificate. The X.509 certificate is needed during an SSL/TLS
handshake, where it is used to authenticate the application to its peers. The
method you use to specify the certificate depends on the type of application:

® Security unaware—configuration only,

This section discusses how to specify a certificate by configuration only.

How to deploy an application For details about how to deploy an application’s own certificate, see the
certificate following reference:

® “Deploying Application Certificates” on page 82.

94

Providing a Certificate Pass Phrase

Providing a Certificate Pass Phrase

Overview If an application is configured to have an X.509 certificate, it is necessary to
provide a pass phrase as the application starts up. There are various ways of
providing the certificate pass phrase, depending on the particular type of
transport used.

In this section This section contains the following subsections:
Certificate Pass Phrase for HTTPS page 96
Certificate Pass Phrase for IIOP/TLS page 98

95

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

Certificate Pass Phrase for HTTPS

Overview For the HTTPS transport, there is just one option for specifying a certificate’s
pass phrase, as follows:

® Directly in the WSDL contract.

Directly in the WSDL contract For the HTTPS protocol, the same pass phrase is used to encrypt both the
certificate and the private key. You can specify the certificate pass phrase by
editing the WSDL contract as follows:

Client side

Edit the client’s copy of the WSDL contract by adding (or modifying) the
dient Privat eKeyPasswor d attribute in the <htt p-conf: cl i ent > tag:

<definitions
xm ns: http="http://schemas. i ona. com t ransports/http"
xm ns: htt p-conf ="http://schemas. i ona. com transports/ http/configuration" ... >

<servi ce name="...">
<port binding="...">
<soap: address ...>
<http-conf:client ...
d i ent Pri vat eKeyPasswor d="MyKeyPassword"
Tr ust edRoot Cer t i fi cat es="RootCertPath"
. >
</ port>
</ servi ce>

96

Providing a Certificate Pass Phrase

Server side
Edit the server's copy of the WSDL contract by adding (or modifying) the
Server Pri vat eKeyPasswor d attribute in the <ht t p- conf : ser ver > tag:

<definitions
xm ns: htt p="http://schenas. i ona. conl transports/ htt p"

xm ns: htt p-conf ="http://schemas. i ona. com transports/http/configuration" ... >
<servi ce name="...">
<port binding="...">
<soap: address ...>

<http-conf:server ...
Ser ver Pri vat eKeyPasswor d="MyKeyPassword"
Trust edRoot Cert i fi cat es=" RootCertPath"
. 1>
</ port>
</ servi ce>

97

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

Certificate Pass Phrase for IIOP/TLS

Overview

From a dialog prompt

In a password file

98

Once you have specified a PKCS#12 certificate, you must also provide its
pass phrase. The pass phrase is needed to decrypt the certificate’s private
key (which is used during the TLS security handshake to prove the
certificate’s authenticity).

For the IIOP/TLS transport, the pass phrase can be provided in one of the
following ways:

®* From a dialog prompt.

® |n a password file.

® Directly in configuration.

If the pass phrase is not specified in any other way, Artix will prompt the
user for the pass phrase as the application starts up. This approach is
suitable for persistent (that is, manually-launched) servers.

C+ + Applications
When a C++ application starts up, the user is prompted for the pass phrase
at the command line as follows:

Initializing the CRB
Enter password :

The pass phrase is stored in a password file whose location is specified in
the pri nci pal _sponsor : aut h_net hod_dat a configuration variable using the
passwor d_fi | e option. In the following example, the SecureApp scope
configures the principal sponsor as follows:

Artix Configuration File
SecureApp {

princi pal _sponsor: use_princi pal _sponsor = "true";
princi pal _sponsor: auth_nmethod_i d = "pkcs12_file";
princi pal _sponsor: aut h_net hod_data =
["fil ename=X509Deploy/ cert s/ adni ni st rat or. p12",
"password_fil e=X509Deploy/ cert s/ adm ni strator. pw "] ;

Providing a Certificate Pass Phrase

In this example, the pass phrase for the bank_ser ver. p12 certificate is
stored in the admi ni strator. pwf file, which contains the following pass
phrase:

admi ni strat or pass

WARNING: Because the password file stores the pass phrase in plain text,
the password file should not be readable by anyone except the
administrator. For greater security, you could supply the pass phrase from
a dialog prompt instead.

Directly in configuration For a PKCS #12 file, the pass phrase can be specified directly in the
princi pal _sponsor : aut h_net hod_dat a configuration variable using the
passwor d option. For example, the bank_ser ver demonstration configures
the principal sponsor as follows:

Artix Configuration File
bank_server {

princi pal _sponsor:use_princi pal _sponsor = "true";
pri nci pal _sponsor: auth_net hod_i d = "pkcs12_file";
princi pal _sponsor: aut h_net hod_data =
["fil ename=ASPInstallDir\ asp\ 6. O\ et c\ t | s\ x509\ cert s\ denos\ bank

_server.pl2", "password=bankserverpass"];

IE

In this example, the pass phrase for the bank_server. p12 certificate is
bankser ver pass.

WARNING: Storing the pass phrase directly in configuration is not
recommended for deployed systems. The pass phrase is in plain text and
could be read by anyone.

929

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

Advanced IIOP/TLS Configuration Options

Overview For added security, the IIOP/TLS transport allows you to apply extra
conditions on certificates. Before reading this section you might find it
helpful to consult “Managing Certificates” on page 207, which provides
some background information on the structure of certificates.

In this section This section discusses the following advanced IIOP/TLS configuration
options:
Setting a Maximum Certificate Chain Length page 101
Applying Constraints to Certificates page 102

100

Advanced IIOP/TLS Configuration Options

Setting a Maximum Certificate Chain Length

Max chain length policy

Example

Configuration variable

Default value

You can use the maximum chain length policy to enforce the maximum
length of certificate chains presented by a peer during handshaking.

A certificate chain is made up of a root CA at the top, an application
certificate at the bottom and any number of CA intermediaries in between.
The length that this policy applies to is the (inclusive) length of the chain
from the application certificate presented to the first signer in the chain that
appears in the list of trusted CA's (as specified in the

Tr ust edCALi st Pol i cy).

For example, a chain length of 2 mandates that the certificate of the
immediate signer of the peer application certificate presented must appear
in the list of trusted CA certificates.

You can specify the maximum length of certificate chains used in maximum
chain length policy with the pol i ci es:iiop_tls: max_chai n_| engt h_pol i cy
configuration variable. For example:

policies:iiop_tls:max_chain_|length_policy = "4";

The default value is 2 (that is, the application certificate and its signer,
where the signer must appear in the list of trusted CA's.

101

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

Applying Constraints to Certificates

Certificate constraints policy

Configuration variable

Constraint language

Example

102

You can use the certificate constraints policy to apply constraints to peer
X.509 certificates. These conditions are applied to the owner's distinguished
name (DN) on the first certificate (peer certificate) of the received certificate
chain. Distinguished names are made up of a number of distinct fields, the
most common being Organization Unit (OU) and Common Name (CN).

You can specify a list of constraints to be used by the certificate constraints
policy through the policies:iiop_tls:certificate_constraints_policy
configuration variable. For example:
policies:iiop_tls:certificate_constraints_policy =
["ON=Johnny*, QU=[uni t 1] | T_SSL], O=I ONA, C=I rel and, ST=Dubl i n, L=Ea
rth", " ON=Paul *, QU=SSLTEAM O=I ONA, C=I r el and, ST=Dubl i n, L=Eart h",
" ON=TheQmi pot ent One"] ;

These are the special characters and their meanings in the constraint list:

* Matches any text. For example:
an* matches ant and anger, but not aunt
[1] Grouping symbols.
| Choice symbol. For example:

OU[uni t1] I T_SSL] signifies that if the QUis unit1
or 1 T_SSL, the certificate is acceptable.

= 1= Signify equality and inequality respectively.

This is an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"OUE[unit1] I T_SSL], CN=St eve*, L=Dubl i n",

"OQUEI T_ART*, QU =l T_ARTt est er s, CN=[Jan| Donal], ST=

Bost on"];

This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:
I f

The QUis unitl or IT_SSL
And

Distinguished names

Advanced IIOP/TLS Configuration Options

The ON begins with the text Steve
And
The location is Dublin
Then the certificate is acceptable
Else (moving on to the second constraint)
| f
The QU begins with the text |T_ART but isn't | T_ARTtesters
And
The common nane is either Donal or Jan
And
The State is Boston
Then the certificate is acceptable
QG herwi se the certificate is unacceptable.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "CN =" might not be recognized, where "ON=" is recognized.

For more information on distinguished names, see “ASN.1 and
Distinguished Names” on page 177.

103

CHAPTER 6 | Configuring HTTPS and IIOP/TLS Authentication

104

In this chapter

CHAPTER 7

Configuring
IIOP/TLS Secure
Assoclations

The Artix IIOP/TLS transport layer offers additional
functionality that enables you to customize client-server
connections by specifying secure invocation policies and
security mechanism policies.

This chapter discusses the following topics:

Overview of Secure Associations page 106
Setting IIOP/TLS Association Options page 108
Specifying [IOP/TLS Cipher Suites page 116
Caching IIOP/TLS Sessions page 125

105

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Overview of Secure Associations

Secure association

TLS session

Colocation

Configuration overview

106

A secure association is a term that has its origins in the CORBA Security
Service and refers to any link between a client and a server that enables
invocations to be transmitted securely. In the present context, a secure
association is an IIOP/TLS connection augmented by a collection of security
policies that govern the behavior of the connection.

A TLS session is the TLS implementation of a secure client-server
association. The TLS session is accompanied by a session state that stores
the security characteristics of the association.

A TLS session underlies each secure association in Artix.

For colocated invocations, that is where the calling code and called code
share the same address space, Artix supports the establishment of colocated
secure associations. A special interceptor, TLS Col oc, is provided by the
security plug-in to optimize the transmission of secure, colocated
invocations.

The security characteristics of an association can be configured through the

following CORBA policy types:

® Client secure invocation policy—enables you to specify the security
requirements on the client side by setting association options. See
“Choosing Client Behavior” on page 112 for details.

® Target secure invocation policy—enables you to specify the security
requirements on the server side by setting association options. See
“Choosing Target Behavior” on page 114 for details.

® Mechanism policy—enables you to specify the security mechanism
used by secure associations. In the case of TLS, you are required to
specify a list of cipher suites for your application. See “Specifying
IIOP/TLS Cipher Suites” on page 116 for details.

Overview of Secure Associations

Figure 14 illustrates all of the elements that configure a secure association.
The security characteristics of the client and the server can be configured
independently of each other.

A Secure Association a
Client Server

I I
TCIient ConfigurationT rServer ConfigurationT
Client Invocation L . Target Invocation L .
. Association Options " Association Options
Policy Policy
Mechanism Policy Specified Cipher Suites ‘ Mechanism Policy Specified Cipher Suites ‘

Figure 14: Configuration of a Secure Association

107

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Setting IIOP/TLS Association Options

Overview This section explains the meaning of the various IIOP/TLS association
options and describes how you can use the [IOP/TLS association options to
set client and server secure invocation policies for [IOP/TLS connections.

In this section The following subsections discuss the meaning of the settings and flags:
Secure Invocation Policies page 109
Association Options page 110
Choosing Client Behavior page 112
Choosing Target Behavior page 114

108

Setting IIOP/TLS Association Options

Secure Invocation Policies

Secure invocation policies You can set the minimum security requirements for the applications in your
system with two types of security policy:
® Client secure invocation policy—specifies the client association
options.
® Target secure invocation policy—specifies the association options on a
target object.

These policies can only be set through configuration; they cannot be
specified programmatically by security-aware applications.

Configuration example For example, to specify that client authentication is required for [IOP/TLS
connections, you can set the following target secure invocation policy for
your server:

Artix Configuration File
secure_server _enforce client_auth

{

policies:iiop_tls:target_secure_invocation_policy:requires
["EstablishTrustInQient", "Confidentiality"];

policies:iiop_tls:target_secure_invocation_policy: supports
["EstablishTrustInQient", "Confidentiality", "Integrity",
"Det ect Repl ay", "DetectM sordering",

"Establ i shTrust|nTarget"];

/1 Cther settings (not shown)...
H

109

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Association Options

Available options

NoProtection

Integrity

Confidentiality

DetectReplay

DetectMisordering

110

You can use association options to configure IIOP/TLS secure associations.
They can be set for clients or servers where appropriate. These are the
available options:

® NoProtection

® Integrity

® (onfidentiality

® DetectRepl ay

® DetectMsordering

® EstablishTrust!nTarget
® EstablishTrustindient

Use the NoPr ot ect i on flag to set minimal protection.This means that
insecure bindings are supported, and (if the application supports something
other than NoPr ot ect i on) the target can accept secure and insecure
invocations.

Use the I ntegrity flag to indicate that your application supports
integrity-protected invocations. Setting this flag implies that your TLS cipher
suites support message digests (such as MD5, SHAL).

Use the Confidenti al ity flag if your application requires or supports at
least confidentiality-protected invocations. The object can support this
feature if the cipher suites specified by the Mechani snPol i cy support
confidentiality-protected invocations.

Use the Det ect Repl ay flag to indicate that your application supports or
requires replay detection on invocation messages. This is determined by
characteristics of the supported TLS cipher suites.

Use the Det ect M sor deri ng flag to indicate that your application supports
or requires error detection on fragments of invocation messages. This is
determined by characteristics of the supported TLS cipher suites.

EstablishTrustIinTarget

EstablishTrustinClient

Setting IIOP/TLS Association Options

The Est abl i shTrust | nTar get flag is set for client policies only. Use the flag
to indicate that your client supports or requires that the target authenticate
its identity to the client. This is determined by characteristics of the
supported TLS cipher suites. This is normally set for both client support s
and requi res unless anonymous cipher suites are supported.

Use the Est abl i shTrust I nd i ent flag to indicate that your target object
requires the client to authenticate its privileges to the target. This option
cannot be required as a client policy.

If this option is supported on a client’s policy, it means that the client is
prepared to authenticate its privileges to the target. On a target policy, the
target supports having the client authenticate its privileges to the target.

111

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Choosing Client Behavior

Client secure invocation policy

IIOP/TLS configuration

Association options

Default value

Example

112

The client secure invocation policy type determines how a client handles
security issues.

You can set this policy for IIOP/TLS connections through the following

configuration variables:

policies:iiop_tls:client_secure_invocation_policy:requires
Specifies the minimum security features that the client requires to
establish an [IOP/TLS connection.

policies:iiop_tls:client_secure_invocation_policy:supports
Specifies the security features that the client is able to support on
[IOP/TLS connections.

In both cases, you provide the details of the security levels in the form of
Associ ati onQpt i on flags—see “Association Options” on page 110.

The default value for the client secure invocation policy is:
supports Integrity, Confidentiality, DetectReplay,
Det ect M sordering, EstablishTrustlnTarget

requires Integrity, Confidentiality, DetectReplay,
Det ect M sordering, EstablishTrustl|nTarget

The following example shows some sample settings for the client secure
invocation policy:

Setting IIOP/TLS Association Options

Artix Configuration File
bank_client {

policies:iiop_tls:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustlnTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports
["Confidentiality", “Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustl|nTarget"];
b

113

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Choosing Target Behavior

Target secure invocation policy

IIOP/TLS configuration

Association options

Default value

114

The target secure invocation policy type operates in a similar way to the
client secure invocation policy type. It determines how a target handles
security issues.

You can set the target secure invocation policy for IIOP/TLS connections

through the following configuration variables:

policies:iiop_tls:target_secure_invocation_policy:requires
Specifies the minimum security features that your targets require,
before they accept an IIOP/TLS connection.

policies:iiop_tls:target_secure_invocation_policy:supports
Specifies the security features that your targets are able to support on
[IOP/TLS connections.

In both cases, you can provide the details of the security levels in the form of
Associ ati onQpt i on flags—see “Association Options” on page 110.

The default value for the target secure invocation policy is:
supports Integrity, Confidentiality, DetectReplay,
Det ect M sordering, EstablishTrust|nTarget

requires Integrity, Confidentiality, DetectReplay,
Det ect M sor deri ng

Setting IIOP/TLS Association Options

Example The following example shows some sample settings for the target secure
invocation policy:

Artix Configuration File

bank_server {

policies:iiop_tls:target_secure_invocation_policy:requires
["Confidentiality"];

policies:iiop_tls:target_secure_invocation_policy: supports
["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustl|nTarget"];

115

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Specifying IIOP/TLS Cipher Suites

Overview

In this section

116

This section explains how to specify the list of cipher suites that are made
available to an application (client or server) for the purpose of establishing
IIOP/TLS secure associations. During a security handshake, the client
chooses a cipher suite that matches one of the cipher suites available to the
server. The cipher suite then determines the security algorithms that are
used for the secure association.

This section contains the following subsections:

Supported Cipher Suites page 117
Setting the Mechanism Policy page 120
Constraints Imposed on Cipher Suites page 122

Specifying IIOP/TLS Cipher Suites

Supported Cipher Suites

Artix cipher suites

Security algorithms

Key exchange algorithms

The following cipher suites are supported by Artix [IOP/TLS:

Null encryption, integrity-only ciphers:
RSA WTH NULL_MX%

RSA W TH NULL_SHA

Standard ciphers

RSA_EXPCRT_ W TH_RCA_40_M%
RSA WTH RCA_128_M®%

RSA WTH RC4_128 SHA
RSA_EXPCRT_ W TH_DES40_CBC_SHA
RSA W TH_DES_CBC SHA

RSA W TH_3DES EDE_CBC SHA

Each cipher suite specifies a set of three security algorithms, which are used
at various stages during the lifetime of a secure association:

Key exchange algorithm—used during the security handshake to
enable authentication and the exchange of a symmetric key for
subsequent communication. Must be a public key algorithm.
Encryption algorithm—used for the encryption of messages after the
secure association has been established. Must be a symmetric (private
key) encryption algorithm.

Secure hash algorithm—used for generating digital signatures. This
algorithm is needed to guarantee message integrity.

The following key exchange algorithms are supported by Artix IOP/TLS:

RSA Rivest Shamir Adleman (RSA) public key encryption
using X.509v3 certificates. No restriction on the key size.
RSA_EXPCRT RSA public key encryption using X.509v3 certificates.

Key size restricted to 512 bits.

117

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Encryption algorithms

Secure hash algorithms

Cipher suite definitions

The following encryption algorithms are supported by Artix [IOP/TLS:

RCA_40

RCA_128
DES40_CBC

DES_CBC
3DES_EDE_CBC

A symmetric encryption algorithm developed by RSA
data security. Key size restricted to 40 bits.

RC4 with a 128-bit key.

Data encryption standard (DES) symmetric encryption.
Key size restricted to 40 bits.

DES with a 56-bit key.

Triple DES (encrypt, decrypt, encrypt) with an effective
key size of 168 bits.

The following secure hash algorithms are supported by Artix IIOP/TLS:

MXb

SHA

Message Digest 5 (MD5) hash algorithm. This algorithm
produces a 128-bit digest.

Secure hash algorithm (SHA). This algorithm produces a
160-bit digest, but is somewhat slower than MD5.

The Artix [IOP/TLS cipher suites are defined as follows:

Table 2: Cipher Suite Definitions
Cipher Suite Key Exchange Encryption Secure Hash Exportable?
Algorithm Algorithm Algorithm
RSA W TH NULL_MDB RSA NULL DB yes
RSA W TH NULL_SHA RSA NULL SHA yes
RSA EXPCRT W TH RC4_40_ M5 RSA_EXPCRT RC4_40 MDB yes
RSA W TH R4 128 M»% RSA RC4_128 MDB no
RSA WTH R4 128 SHA RSA R4 128 SHA no
RSA_EXPORT_W TH_DES40_CBC_SHA RSA_EXPORT DES40_CBC SHA yes
RSA W TH_DES _CBC SHA RSA DES_CBC SHA no
RSA W TH_3DES EDE_CBC SHA RSA 3DES EDE CBC | SHA no

118

Specifying IIOP/TLS Cipher Suites

Reference For further details about cipher suites in the context of TLS, see RFC 2246
from the Internet Engineering Task Force (IETF). This document is available
from the IETF Web site: http://www.ietf.org.

119

http://www.ietf.org

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Setting the Mechanism Policy

Mechanism policy

The protocol_version
configuration variable

The cipher suites configuration
variable

120

To specify IIOP/TLS cipher suites, use the mechanism policy. The
mechanism policy is a client and server side security policy that determines

® Whether SSL or TLS is used, and
® Which specific cipher suites are to be used.

You can specify whether SSL or TLS is used with a transport protocol by
setting the pol i ci es:iiop_tls: mechani smpol i cy: protocol _version
configuration variable for IOP/TLS. For example:

Artix Configuration File
policies:iiop_tls:mechani smpolicy: protocol _version = "SSL V3";

You can set the prot ocol _ver si on configuration variable to one of the
following alternatives:

TLS VL
SSL_V3

And a special setting for interoperating with an application deployed on the
0S/390 platform (to work around a bug in IBM’s System/SSL toolkit):

SSL_\V2v3

You can specify the cipher suites available to a transport protocol by setting
the policies:iiop_tls:mechani smpolicy: ci phersuites configuration
variable for IIOP/TLS. For example:

Artix Configuration File
policies:iiop_tls:nechani smpolicy:ciphersuites =
["RSA WTH NULL_MX%",
"RSA WTH NULL_SHA",
"RSA_EXPORT_W TH RCA_40_MX%",
"RSA WTH RCG4_128_MX%"];

Cipher suite order

Valid cipher suites

Default values

Specifying IIOP/TLS Cipher Suites

The order of the entries in the mechanism policy’s cipher suites list is
important.

During a security handshake, the client sends a list of acceptable cipher
suites to the server. The server then chooses the first of these cipher suites
that it finds acceptable. The secure association is, therefore, more likely to
use those cipher suites that are near the beginning of the ci pher sui tes list.

You can specify any of the following cipher suites:
® Null encryption, integrity only ciphers:

RSA W TH NULL_MDX®,

RSA W TH NULL_SHA
® Standard ciphers

RSA EXPORT_ W TH RCA4_40_MD5,
RSA W TH_RCA_128_MD5,

RSA W TH RCA_128_SHA,

RSA EXPORT W TH DES40_CBC SHA,
RSA W TH_DES_CBC_SHA,

RSA W TH_3DES EDE_CBC SHA

If no cipher suites are specified through configuration or application code,
the following apply:

RSA W TH RCA_128_SHA,

RSA W TH RC4_128_M®,

RSA W TH_3DES_EDE_CBC SHA,

RSA W TH_DES_CBC SHA

121

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

Constraints Imposed on Cipher Suites

Effective cipher suites

Required and supported
association options

122

Figure 15 shows that cipher suites initially specified in the configuration are
not necessarily made available to the application. Artix checks each cipher
suite for compatibility with the specified association options and, if
necessary, reduces the size of the list to produce a list of effective cipher
suites.

Association constrain Specified
Options Cipher Suites
yields ‘ ‘
Effective

Cipher Suites

Figure 15: Constraining the List of Cipher Suites

For example, in the context of the IIOP/TLS protocol the list of cipher suites

is affected by the following configuration options:

® Required association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:requires on
the client side, or
policies:iiop_tls:target_secure_invocation_policy:requires on
the server side.

® Supported association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:supports on
the client side, or
policies:iiop_tls:target_secure_invocation_policy: supports on
the server side.

Cipher suite compatibility table

Specifying IIOP/TLS Cipher Suites

Use Table 3 to determine whether or not a particular cipher suite is
compatible with your association options.

Table 3: Association Options Supported by Cipher Suites

Cipher Suite Supported Association Options

RSA W TH _NULL_MX%b Integrity, DetectReplay,

Det ect M sorderi ng

RSA WTH NULL_SHA Integrity, DetectReplay,

Det ect M sorderi ng

RSA EXPCRT_W TH_RC4_40_MX% Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA WTH RG4_128_MX»b Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA WTH RC4_128_SHA Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA EXPCRT_W TH DEA0_CBC _SHA Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA WTH DES CBC SHA Integrity, DetectReplay,

Det ect M sordering, Confidentiality

RSA W TH_3DES EDE CBC SHA Integrity, DetectReplay,

Det ect M sordering, Confidentiality

Determining compatibility

The following algorithm is applied to the initial list of cipher suites:

1. Forthe purposes of the algorithm, ignore the Est abl i shTrust | nd i ent
and Est abl i shTrust | nTar get association options. These options have
no effect on the list of cipher suites.

2. From the initial list, remove any cipher suite whose supported
association options (see Table 3) do not satisfy the configured required
association options.

3. From the remaining list, remove any cipher suite that supports an
option (see Table 3) not included in the configured supported
association options.

123

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

No suitable cipher suites available

Example

124

If no suitable cipher suites are available as a result of incorrect
configuration, no communications will be possible and an exception will be
raised. Logging also provides more details on what went wrong.

For example, specifying a cipher suite such as RSA WTH RC4_128 M5 that
supports Confidentiality, Integrity, DetectRepl ay, Det ect M sorderi ng,
Est abl i shTrust | nTarget (and optionally Est abl i shTrust InQ i ent) but
specifying a secure_i nvocat i on_pol i cy that supports only a subset of
those features results in that cipher suite being ignored.

Caching IIOP/TLS Sessions

Caching IIOP/TLS Sessions

Session caching policy

Configuration variable

Valid values

Default value

Configuration variable

Valid values

Default value

Configuration variable

Default value

You can use the IIOP/TLS session caching policy to control TLS session
caching and reuse for both the client side and the server side.

You can set the session caching policy with the
policies:iiop_tls:session_caching_policy or

pol i ci es: htt ps: sessi on_cachi ng_pol i cy configuration variables. For
example:

policies:iiop_tls:session_caching_policy = "CACHE CLI ENT";

You can apply the following values to the session caching policy:

CACHE_NONE,
CACHE_CLI ENT,
CACHE_SERVER
CACHE_SERVER AND CLI ENT

The default value is CACHE_NONE.

plugi ns: atli_tls_tcp:session_cache_validity_period
This allows control over the period of time that SSL/TLS session caches
are valid for.

sessi on_cache_val i dity_peri od is specified in seconds.

The default value is 1 day.

plugins:atli_tls_tcp: session_cache_size
sessi on_cache_si ze is the maximum number of SSL/TLS sessions that
are cached before sessions are flushed from the cache.

This defaults to no limit specified for C++.
This defaults to 100 for Java.

125

CHAPTER 7 | Configuring IIOP/TLS Secure Associations

126

In this chapter

CHAPTER 8

Principal
Propagation

Principal propagation is a compatibility feature of Artix that is
designed to facilitate interoperability with legacy Orbix
applications.

This chapter discusses the following topics:

Introduction to Principal Propagation page 128
Configuring page 129
Programming page 132
Interoperating with .NET page 135

127

CHAPTER 8 | Principal Propagation

Introduction to Principal Propagation

Overview

Supported bindings/transports

Interoperability

128

Artix principal propagation is a transport-neutral mechanism that can be
used to transmit a secure identity from a client to a server. It is not
recommended that you use this feature in new applications. Principal

propagation is provided primarily in order to facilitate interoperability with
legacy Orbix applications.

WARNING: By default, the principal is propagated across the wire in
plaintext. Hence, the principal is vulnerable to snooping. To protect
against this possibility, you should enable SSL for your application.

Support for principal propagation is limited to the following bindings and
transports:

CORBA binding—the principal is sent in a GIOP service context.
SOAP over HTTP—the principal is sent in a SOAP header.

L]
Note: If a CORBA call is colocated, the principal is not propagated unless

you remove the POA Col oc interceptor from the binding lists in the

arti x. cfg file. This has the effect of disabling the CORBA colocated
binding optimization.

The primary purpose of Artix principal propagation is to facilitate
interoperability with legacy Orbix applications, in particular for applications
running on the mainframe.

Because Artix uses standard mechanisms to propagate the principal, this
feature ought to be compatible with third-party products as well.

Configuring

Configuring

Overview

CORBA

SOAP over HTTP

This section describes how to configure Artix to use principal propagation.
The following aspects of configuration are described:

* CORBA.
® SOAP over HTTP.
® Routing.

Note: Principal configuration is not supported for any other bindings,
apart from CORBA and SOAP over HTTP.

To use principal propagation with a CORBA binding, you must set the
following configuration variables in your arti x. cf g file (located in the
ArtixInstallDirl arti x/ Version/ et ¢/ donai ns directory):

Example 14: Configuring Principal Propagation for a CORBA Binding

pol i ci es: gi op:interop_policy:send principal = "true";
pol i ci es: gi op: i nterop_pol i cy: enabl e_pri nci pal _service_context =
"true";

You can either add these settings to the global scope or to a specific
sub-scope (in which case you must specify the sub-scope to the - CRBnane
command line switch when running the Artix application).

SOAP over HTTP requires no special configuration to support principal
propagation. The Artix SOAP binding will always add a principal header, if
you switch on message attributes in your code. The following cases arise:

® Message attributes enabled and principal set explicitly—the specified

principal is sent in the principal header.

Message attributes enabled and principal not set—Artix reads the
username from the operating system and sends this username in the
principal header.

Message attributes not enabled—no principal header appears in the
request message.

129

CHAPTER 8 | Principal Propagation

130

If you want a SOAP server to authenticate a propagated principal using the
iS2 security service, however, you do need to add some settings to the
server's configuration scope in your arti x. cf g file, as shown in

Example 15.

Example 15: Configuring Principal Authentication for SOAP

Security Layer Settings

pol i ci es: asp: enabl e_security = "true";

pol i ci es: asp: enabl e_aut hori zation = "true";

pl ugi ns: i s2_aut hori zati on: acti on_rol e_mappi ng =
“"file://C\artix/artix/1.2/denos/secure_hell o worl d/ http_soap
/ confi g/ hel | oworl d_acti on_rol e_mappi ng. xm ";

pl ugi ns: asp: aut hori zati on_real m= "| ONAQ obal Real ni;

pl ugi ns: asp: security_type = “"PR Nd PAL";
pl ugi ns: asp: def aul t _password = "def aul t _password";

Setting pl ugi ns: asp: security_type equal to PR NO PAL specifies that the
received principal serves as the username for the purpose of authentication.
The pl ugi ns: asp: def aul t _passwor d value serves as the password for the
purpose of authentication. This latter setting is necessary because, although

the iS2 service requires a password, there is no password propagated with
the principal.

WARNING: The procedure of supplying a default password for the
principal enables you to integrate principals with the iS2 service. Users
identified in this way, however, do not have the same status as properly
authenticated users. For security purposes, such users should enjoy lesser
privileges and be treated in the same way as unauthenticated users.

The net effect of the configuration shown in Example 15 is that the SOAP
server performs authentication by contacting the central iS2 security service.

See also “Security Layer” on page 18 and “Configuring the iS2 Server” on
page 25 for more details about configuring the iS2 service.

Configuring

Routing If you are using the Artix routing feature, you need to modify the WSDL by
adding a <rout i ng: propagat el nput At t ri but e> tag, as shown in
Example 16.

Example 16: Configuring a Router to Support Principal Propagation
<definitions ... >

<routing: route nane="route_fromcorba to_soap">

<routing: source service="tns:client"
port="Corbadient"/>

<routing: destination service="tns: server"

port =" SoapSer ver"/ >

<rout i ng: propagat el nput At tri bute name="Principal "/>

</routing: rout e>
<definitions>

131

CHAPTER 8 | Principal Propagation

Programming

Overview

Client example

132

This section describes how to program an Artix client and server to set
(client side) and get (server side) a principal value. The code examples are
written using the transport-neutral message attributes API.

Example 17 shows how to set the principal prior to invoking an operation,
echoString(), on a proxy object, of M/Proxy type.

Example 17: Setting a Principal on the Client Side

/] Ct+

M/Pr oxy proxy;

/1 Switch nessage attributes on.
proxy. get _port().use_input_message_attributes(true);

I/ Set the "Principal" attribute.
MessageAt tri but es& i nput _attributes =

proxy.get _port().get_input_message attributes();
input_attributes.set_string("Principal", "theprincipal");

/! Now use the proxy as nornal .
proxy. echoString();

The preceding client example can be explained as follows:

1. You must call use_nessage_attributes() on the proxy’s port object to
enable message attributes (which are responsible for propagating the
principal). Because message attributes add a performance penalty,
they are disabled by default.

2. This line gets a reference to the proxy’s input message attributes

object.

3. This line uses a transport-neutral API to set the Pri nci pal message

attribute.

Server example

Programming

4. This line invokes a remote WSDL operation, echoStri ng(), which
includes the Princi pal attribute in the input message. The precise

mechanism used for propagating the principal value is transport
specific.

Example 18 shows how to read the principal on the server side, when the
servant is invoked by a client that uses principal propagation.

Example 18: Reading the Principal on the Server Side

[l C++
// | npl enentation constructor.
/1l

M/l npl :: M/ npl (I T_Bus: :Bus_ptr bus, |IT Bus::Port* port) :
BaseSer ver (bus, port)
{

}

get_port().use_input_nessage_attributes(true);

[/ in operation..

void M/l npl::echoString(const | T _Bus::String&
inputString, | T_Bus:: String& Response)
| T_THRONDECL((| T_Bus: : Excepti on))

{
Response = i nput Stri ng;
try {
const String & the_ principal =
get _port().get_input_nessage attributes().get_string(
"Princi pal "
DE
}
catch (1 T_Bus:: NoSuchAttri buteException) { }
}

The preceding server example can be explained as follows:

1. You must call use_nessage_attribut es() on the servant base class to
enable message attributes. Because message attributes add a
performance penalty, they are disabled by default.

2. This is the implementation of the echoStri ng() operation that was

called in Example 18.

133

CHAPTER 8 | Principal Propagation

This line uses the transport-neutral message attribute API to read the
Princi pal value received from the client.

4. If the client has not sent a Pri nci pal attribute, the
I T_Bus: : NoSuchAt t ri but eExcept i on exception is thrown.

134

Interoperating with .NET

Interoperating with .NET

Overview If your Artix applications must interoperate with other Web service products,
for example .NET, you need to modify your WSDL contract in order to make
the principal header interoperable. This section describes the changes you
can make to a WSDL contract to facilitate interoperability with other Web
services platforms.

In this section This section contains the following subsections:
Explicitly Declaring the Principal Header page 136
Modifying the SOAP Header page 138

135

CHAPTER 8 | Principal Propagation

Explicitly Declaring the Principal Header

Overview

Declaring the principal header in
WSDL

136

Artix applications do not require any modifications to the WSDL contract in
order to use principal headers. Whenever input message attributes are
enabled (set by programming), an Artix service expects to receive the user's
principal in a SOAP header.

In contrast to this, non-Artix services, for example, .NET services, require
the principal header to be declared explicitly in the WSDL contract.
Otherwise, the non-Artix services would be unable to access the principal.

Example 19 shows the typical modifications you must make to a WSDL
contract in order to make the principal value accessible to non-Artix
applications.

Example 19: WSDL Declaration of the Principal Header

<definitions ... >
<t ypes>
<schema t ar get Namespace="TypeSchema" ... >

<el ement name="princi pal " type="xsd:string"/>

</ schenma>
</ type>

<nessage target Nanespace="http://schenas. i ona. coni security"
name="pri nci pal ">
<part el enent =" TypePrefix: princi pal " nanme="pri nci pal "/ >

</ message>
<binding ... xmns:sec="http://schenas.iona.con security">
<operation ...>
<i nput >
<soap: body ...>
<soap: header message="sec: pri nci pal "
part="principal " use="literal ">
</i nput >
</ operat i on>
</ bi ndi ng>

Interoperating with .NET

Example 19: WSDL Declaration of the Principal Header

</ defini ti ons>

The preceding WSDL extract can be explained as follows:

1.

Declare a <pri nci pal > element in the type schema, which must be
declared to be of type, xsd: string. In this example, the <pri nci pal >
element belongs to the TypeSchema namespace.

Add a new <nessage> element.

The <part > tag's el ement attribute is set equal to the QName of the
preceding pri nci pal element. Hence, in this example the TypePrefix
appearing in el enent =" TypePrefix: pri nci pal " must be a prefix
associated with the TypeSchema namespace.

Edit the binding, or bindings, for which you might need to access the
principal header. You should define a prefix for the

http: // schenas. i ona. cond secur i ty namespace within the <bi ndi ng>
tag, which in this example is sec.

Edit each operation for which you might need to access the principal
header.

Add a <soap: header > tag to the operation’s input part, as shown.

137

CHAPTER 8 | Principal Propagation

Modifying the SOAP Header

Overview It is possible to change the default format of the principal header by making
appropriate modifications to the WSDL contract. It is usually not necessary
to modify the header format in this way, but in some cases it could facilitate
interoperability.

Default SOAP header By default, when a client uses principal propagation with SOAP over HTTP,
the input message sent over the wire includes the following form of header:

<SOAP- ENV: Header >
<sec: princi pal xmns:sec="http://schenas.iona.conisecurity"
xsi : type="xsd: string">ny_princi pal </ sec: pri nci pal >
</ SOAP- ENV: Header >

Custom SOAP header You can change the form of the SOAP header that is sent over the wire to
have the following custom format (replacing <sec: pri nci pal > by a custom
tag, <sec: PrincipalTag>):

<SQOAP- ENV: Header >
<sec: PrincipalTag xm ns: sec="ht t p: // schenas. i ona. conf securi ty"
xsi : type="xsd: string">ny_princi pal </ sec: PrincipalTag>
</ SOAP- ENV: Header >

WSDL modifications To change the tag that is sent in the SOAP header to be PrincipalTag, you
can modify your WSDL contract as shown in Example 20.

Example 20: Customizing the Form of the Principal Header

<definitions ... >
<t ypes>
<schema t ar get Namespace="TypeSchema" ... >
1 <el enent nane="PrincipalTag" type="xsd:string"/>
</ schema>
</ type>

<nessage target Namespace="http: // schenas. i ona. coni security"

138

Interoperating with .NET

Example 20: Customizing the Form of the Principal Header

nanme="pri nci pal ">
<part el ement =" TypePrefix: PrincipalTag" name="pri ncipal "/>
</ message>

<binding ... xmns:sec="http://schenas.iona.conisecurity">
<operation ...>
<i nput >
<soap: body ...>

<soap: header message="sec: pri nci pal "
part="principal " use="literal ">
</i nput >
</ oper at i on>
</ bi ndi ng>

</ defini ti ons>

The preceding WSDL extract can be explained as follows:

1.

Modify the <pri nci pal > element in the type schema to give it an
arbitrary QName. In this example, the <PrincipalTag> element belongs
to the TypeSchema namespace.

The <part > tag's el enent attribute is set equal to the QName of the
preceding pri nci pal element. Hence, in this example the TypePrefix
appearing in el enent =" TypePrefix: PrincipalTag" must be a prefix
associated with the TypeSchema namespace.

The <soap: header > tag must be defined precisely as shown here. That
is, when writing or reading a principal header, Artix looks for the
princi pal part of the message with QName, pri nci pal , in the
namespace, http://schenas. i ona. coni security.

139

CHAPTER 8 | Principal Propagation

140

In this appendix

APPENDIX A

Security
Configuration

This appendix provides details of Artix security configuration
variables.

This appendix contains the following sections:

plugins Namespace page 142
policies Namespace page 146
principal_sponsor Namespace page 153
principal_sponsor:csi Namespace page 155

141

CHAPTER A | Security Configuration

plugins Namespace

List of configuration variables The pl ugi ns namespace contains the following configuration variables.

pl ugi ns: asp: aut henti cati on_cache_si ze
For SOAP bindings, the maximum number of credentials stored in the
authentication cache. If this size is exceeded the oldest credential in
the cache is removed.
A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

pl ugi ns: asp: aut henti cati on_cache_t i meout
For SOAP bindings, the time (in seconds) after which a credential is
considered stale. Stale credentials are removed from the cache and the
server must re-authenticate with iS2 on the next call from that user.
A value of -1 (the default) means an infinite time-out. A value of 0
means disable the cache.

pl ugi ns: asp: aut hori zati on_real m
Specifies the iSF authorization realm to which an Artix server belongs.
The value of this variable determines which of a user’s roles are
considered when making an access control decision.
For example, consider a user that belongs to the ej b- devel oper and
cor ba- devel oper roles within the Engi neeri ng realm, and to the
or di nary role within the Sal es realm. If you set
pl ugi ns: asp: aut hori zati on_r eal mto Sal es for a particular server,
only the ordi nary role is considered when making access control
decisions (using the action-role mapping file).
The default is | ONAG obal Real m

pl ugi ns: asp: def aul t _passwor d
When the pl ugi ns: asp: security_type variable is set to PR NO PAL,
this variable specifies the password to use on the server side. The
pl ugi ns: asp: def aul t _passwor d variable is used to get around the
limitation that a PRI NO PAL identity is propagated without an
accompanying password.

142

plugins Namespace

When the PR NO PAL security type is selected, the asp plug-in uses the
received client principal together with the password specified by

pl ugi ns: asp: def aul t _passwor d to authenticate the user through the
iS2 security service.

The default value is the string, def aul t _passwor d.

pl ugi ns: asp: security_type

Specifies the source of the user identity that is sent to the iS2 server for
authentication. Because the IONA Security Framework supports
several different security mechanisms for propagating user identities, it
is necessary to specify which of the propagated identities is actually
used for the authentication step. The following options are currently
supported by the asp plug-in:

USERNAMVE _PASSWIRD Authenticate the username and password

propagated as WSDL message attributes. For
example, you can configure these values on the
client side using the User Nane and Passwor d
attributes in the <htt p-conf: cli ent > tag in the

WSDL contract.

CERT_SUBJECT Authenticate the Common Name (CN) from the
client certificate’s subject DN.

ENOODED TOKEN Reserved for future use.

PRI NCI PAL Authenticate the CORBA principal. This is needed

to support interoperability with legacy CORBA
applications. This options can be used in
combination with the

pl ugi ns: asp: def aul t _passwor d setting.

pl ugi ns: gsp: aut hent i cati on_cache_si ze

For CORBA bindings, specifies the maximum number of credentials
stored in the authentication cache. If this size is exceeded the oldest
credential in the cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

pl ugi ns: gsp: aut henti cati on_cache_ti meout

For CORBA bindings, specifies the time (in seconds) after which a
credential is considered stale. Stale credentials are removed from the

143

CHAPTER A | Security Configuration

144

cache and the server must re-authenticate with iS2 on the next call
from that user.

A value of -1 (the default) means an infinite time-out. A value of 0
means disable the cache.

pl ugi ns: gsp: aut hori zati on_real m
Specifies the iSF authorization realm to which a server belongs. The
value of this variable determines which of a user’s roles are considered
when making an access control decision.

For example, consider a user that belongs to the ej b- devel oper and
cor ba- devel oper roles within the Engi neeri ng realm, and to the
or di nary role within the Sal es realm. If you set
pl ugi ns: gsp: aut hori zati on_r eal mto Sal es for a particular server,
only the ordi nary role is considered when making access control
decisions (using the action-role mapping file).

pl ugi ns:iiop_tls:buffer_pool s: nax_i ncom ng_buf f ers_i n_pool
(C++ only) When this variable is set, the ii op_t|s plug-in reads this
variable’s value instead of the
pl ugi ns: i i op: buf f er _pool s: max_i ncom ng_buf f ers_i n_pool
variable’s value.

pl ugins:iiop_tls:buffer_pool s: max_out goi ng_buf fers_i n_pool
(C++ only) When this variable is set, the ii op_t1s plug-in reads this
variable’s value instead of the
pl ugi ns: i i op: buf f er _pool s: max_out goi ng_buf f ers_i n_pool
variable’s value.

plugins:iiop_tls:enable_iiop_1 0 client_support
When this variable is set, the i i op_t1s plug-in reads this variable's
value instead of the pl ugi ns:iiop:enable_iiop_1 0 client_support
variable’s value.

pl ugins:iiop_tls:incomng_connections:hard_|linit
Specifies the maximum number of incoming (server-side) connections
permitted to 1IOP. [IOP does not accept new connections above this
limit. Defaults to -1 (disabled).
When this variable is set, the i i op_t1s plug-in reads this variable's
value instead of the
pl ugi ns:iiop:incom ng_connections: hard_|imt variable’s value.

plugins Namespace

Please see the chapter on ACM in the CORBA Programmer’s Guide for
further details.
pl ugi ns:iiop_tls:incomng_connections:soft_limt
Specifies the number of connections at which 11OP should begin
closing incoming (server-side) connections. Defaults to -1 (disabled).
When this variable is set, the i i op_t1s plug-in reads this variable’s
value instead of the
pl ugi ns:iiop:incom ng_connections:soft_|imt variable's value.
Please see the chapter on ACM in the CORBA Programmer’s Guide for
further details.
pl ugi ns:iiop_tls:outgoing_connections: hard_limt
When this variable is set, the iiop_t1s plug-in reads this variable’s
value instead of the
pl ugi ns: i i op: out goi ng_connections: hard_|l i mt variable’s value.
pl ugi ns:iiop_tls:outgoing_connections:soft_limt
When this variable is set, the iiop_tls plug-in reads this variable’s
value instead of the
pl ugi ns: i i op: out goi ng_connections: soft_|imt variable's value.
pl ugi ns: i s2_authori zation: acti on_rol e_nmappi ng
Specifies the action-role mapping file URL. For example:

pl ugi ns: i s2_aut hori zati on: action_rol e_mappi ng =
“file:///ny/action/rol e/ mappi ng";

145

CHAPTER A | Security Configuration

policies Namespace

List of configuration variables

146

The policies namespace defines the default CORBA policies for an ORB.
Many of these policies can also be set programmatically from within an
application.
policies:all ow unaut henticated_clients_policy
A boolean variable that specifies whether a server will allow a client to
establish a secure connection without sending a certificate. Default is
fal se.

This configuration variable is applicable only in the special case where
the target secure invocation policy is set to require NoProt ecti on (a
semi-secure server).

pol i ci es: asp: enabl e_aut hori zati on
A boolean variable that specifies whether Artix should enable
authorization using the IONA Security Framework. Default is f al se.

Note: This feature requires that the pol i ci es: asp: enabl e_security
variable is also set to true.

pol i ci es: asp: enabl e_security
A boolean variable that specifies whether Artix should enable
authentication using the IONA Security Framework. Default is f al se.
policies:certificate_constraints_policy
A list of constraints applied to peer certificates—see “Applying
Constraints to Certificates” on page 102 for the syntax of the pattern
constraint language.
policies:client_secure_invocation_policy:requires
Specifies the minimum level of security required by a client. The value
of this variable is specified as a list of association options. For defaults,
see “Choosing Client Behavior” on page 112.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

policies Namespace

policies:client_secure_invocation_policy:supports
Specifies the initial maximum level of security supported by a client.
The value of this variable is specified as a list of association options.
For defaults, see “Choosing Client Behavior” on page 112.
This policy can be upgraded programmatically using either the Qcp or
the Establ i shTrust policies.
policies:csi:attribute_service:client_supports
A client-side policy that specifies the association options supported by
the CSIv2 attribute service (principal propagation). The only
association option that can be specified is I denti t yAssertion. This
policy is normally specified in an intermediate server so that it
propagates CSIv2 identity tokens to a target server. For example:

policies:csi:attribute service:client_supports =
["lIdentityAssertion"];

policies:csi:attribute _service:target_supports
A server-side policy that specifies the association options supported by
the CSIv2 attribute service (principal propagation). The only
association option that can be specified is I denti t yAsserti on. For
example:

policies:csi:attribute service:target_supports =
["lIdentityAssertion"];

policies:csi:auth_over_transport:client_supports
A client-side policy that specifies the association options supported by
CSlv2 authorization over transport. The only association option that
can be specified is Est abl i shTrust | nQ i ent. For example:

policies:csi:auth_over_transport:client_supports =
["EstablishTrustIndient"];

policies:csi:auth_over_transport:server_donai n_name
The iSF security domain (CSlv2 authentication domain) to which this
server application belongs. The iSF security domains are administered
within an overall security technology domain.
policies:csi:auth_over_transport:target_requires
A server-side policy that specifies the association options required for
CSlv2 authorization over transport. The only association option that
can be specified is Est abl i shTrust 1 nd i ent. For example:

147

CHAPTER A | Security Configuration

148

policies:csi:auth_over_transport:target_requires =
["EstablishTrustindient"];

policies:csi:auth_over_transport:target_supports

A server-side policy that specifies the association options supported by
CSIv2 authorization over transport. The only association option that
can be specified is Establ i shTrust I nd i ent . For example:

policies:csi:auth_over_transport:target_supports =
["EstablishTrustIndient"];

pol i ci es: gsp: enabl e_aut hori zati on

A boolean GSP policy that, when true, enables authorization using
action-role mapping ACLs in server.

Default is true.

pol i ci es: gsp: enabl e_security_service_cert_authentication

A boolean GSP policy that enables X.509 certificate-based
authentication using the iS2 server.

Default is f al se.

policies:iiop_tls:allow unauthenticated_clients_policy

When this policy is set, the iiop_t1s plug-in reads this policy’s value
instead of the pol i ci es: al | ow unaut henti cated clients _policy
policy’s value.

policies:iiop_tls:buffer_sizes_policy:defaul t_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the

policies:iiop:buffer_sizes_policy:defaul t _buffer_size policy’s
value.

policies:iiop_tls:buffer_sizes_policy: max_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the pol i ci es: i i op: buf fer_si zes_pol i cy: max_buf f er _si ze
policy’s value.

policies:iiop_tls:certificate_constraints_policy

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:certificate constraints policy policy’s
value.

policies Namespace

policies:iiop_tls:client_secure_invocation_policy:requires
When this policy is set, the i iop_t|s plug-in reads this policy’s value
instead of the pol i ci es: cl i ent _secure_i nvocati on_policy:requires
policy’s value.

policies:iiop_tls:client_secure_invocation_policy:supports
When this policy is set, the i iop_t|s plug-in reads this policy’s value
instead of the pol i ci es: client _secure invocation policy: supports
policy’s value.

policies:iiop_tls:client_version_policy
When this policy is set, the iiop_t1s plug-in reads this policy’s value
instead of the policies:iiop:client_version_policy policy’s value.
policies:iiop_tls:max_chain_|l ength_policy
When this policy is set, the iiop_t1s plug-in reads this policy’s value
instead of the pol i ci es: max_chai n_| engt h_pol i cy policy’s value.

policies:iiop_tls:mechani smpolicy:ciphersuites
When this policy is set, the i iop_t|s plug-in reads this policy’s value
instead of the pol i ci es: mechani sm pol i cy: ci phersui t es policy’s
value.

policies:iiop_tls:nechani smpolicy: protocol _version
When this policy is set, the i iop_tIs plug-in reads this policy’s value
instead of the pol i ci es: mechani sm pol i cy: prot ocol _ver si on policy’s
value.

policies:iiop_tls:server_address_node_policy: publ i sh_host nane
When this policy is set, the i iop_tIs plug-in reads this policy’s value
instead of the
policies:iiop:server_address_node_policy: publ i sh_host nane
policy’s value.
policies:iiop_tls:server_version_policy
When this policy is set, the i iop_tIs plug-in reads this policy’s value
instead of the pol i ci es:iiop: server_version_policy policy’s value.
policies:iiop_tls:session_caching_policy
When this policy is set, the iiop_t1s plug-in reads this policy’s value
instead of the pol i ci es: sessi on_cachi ng policy’s value (C++) .

149

CHAPTER A | Security Configuration

150

policies:iiop_tls:target_secure_invocation_policy:requires
When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the pol i ci es: t arget _secure_i nvocati on_policy:requires
policy’s value.

policies:iiop_tls:target_secure_invocation_policy:supports
When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the pol i ci es: target _secure i nvocation policy: supports
policy’s value.

policies:iiop_tls:tcp_options_policy:no_del ay
When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the polici es:iiop:tcp_options_policy:no_del ay policy’s
value.

policies:iiop_tls:tcp_options_policy:send_buffer_size
When this policy is set, the iiop_t1s plug-in reads this policy’s value
instead of the pol i ci es:iiop:tcp_options_policy:send buffer_size
policy’s value.

policies:iiop_tls:tcp_options_policy:recv_buffer_size
When this policy is set, the iiop_t1s plug-in reads this policy’s value
instead of the pol i ci es:iiop:tcp_options_policy:recv_buffer_size
policy’s value.

policies:iiop_tls:trusted_ca_list_policy
When this policy is set, the i i op_t1s plug-in reads this policy’s value
instead of the policies:trusted ca list policy policy’s value.

pol i ci es: max_chai n_| engt h_pol i cy
The maximum certificate chain length that an ORB will accept (see
“Certificate Chaining” on page 65).

policies Namespace

pol i ci es: mechani sm pol i cy: ci phersuites
Specifies a list of cipher suites for the default mechanism policy. One
or more of the following cipher suites can be specified in this list:

Table 4: Mechanism Policy Cipher Suites

Null Encryption, Integrity
and Authentication Ciphers

Standard Ciphers

RSA WTH_NULL_MX%

RSA EXPORT W TH_RC4_40_M»%

RSA W TH_NULL_SHA

RSA WTH_RCA_128_MX%

RSA WTH RCA_128_SHA

RSA EXPCRT_W TH_DES40_CBC_SHA

RSA W TH DES_CBC SHA

RSA W TH 3DES EDE CBC SHA

pol i ci es: mechani sm pol i cy: prot ocol _versi on
Specifies the protocol version used by a security capsule (ORB
instance). Can be set to one of the following values:

TLS V1
SsL_ V3
SsL_\V2v3

The SSL_V2V3 value is a special setting that facilitates interoperability
with an Orbix application deployed on the 0S/390 platform. Orbix
security on the 0S/390 platform is based on IBM’s System/SSL toolkit,
which implements SSL version 3, but does so by using SSL version 2
hellos as part of the handshake. This form of handshake causes
interoperability problems, because applications on other platforms
identify the handshake as an SSL version 2 handshake. The
misidentification of the SSL protocol version can be avoided by setting
the protocol version to be SSL_V2Vv3 in the non-0S/390 application.

For example:

pol i ci es: nechani sm pol i cy: protocol _version = "TLS V1";

151

CHAPTER A | Security Configuration

152

pol i ci es: sessi on_cachi ng
(C++ only)
Same effect as the pol i ci es: sessi on_cachi ng_pol i cy variable,
except it affects C++ applications instead of Java applications.
policies:target_secure_invocation_policy:requires
Specifies the minimum level of security required by a server. The value
of this variable is specified as a list of association options. For defaults,
see “Choosing Target Behavior” on page 114.

In accordance with CORBA security, this policy cannot be downgraded

programmatically by the application.
policies:target_secure_invocation_policy:supports

Specifies the maximum level of security supported by a server. The

value of this variable is specified as a list of association options. For

defaults, see “Choosing Target Behavior” on page 114.

This policy can be upgraded programmatically using either the QP or
the Est abl i shTrust policies.

policies:trusted_ca_list_policy
Contains a list of filenames (or a single filename), each of which
contains a concatenated list of CA certificates in PEM format. The
aggregate of the CAs in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted _ca list_policy =
["ASPInstallDirl asp/ 6. 0/ et c/ t | s/ x509/ ca/ ca_l i st 1. pent,
"ASPInstallDirl asp/ 6. 0/ etc/ t1 s/ x509/ ca/ ca_l i st_extra. pemi];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different
lists and to select a particular set of CAs for a security domain by
choosing the appropriate CA lists.

See also “Certificate Chaining” on page 65.

principal_sponsor Namespace

principal_sponsor Namespace

List of configuration variables

The pri nci pal _sponsor namespace stores configuration information to be
used when obtaining credentials. Artix provides an implementation of a
principal sponsor that creates credentials for applications automatically. The
principal sponsor automatically calls the aut henti cat e() operation on the
Princi pal Aut hent i cat or object after determining the data to supply.
Use of the Pri nci pal Sponsor is disabled by default and can only be enabled
through configuration.
The Pri nci pal Sponsor represents an entry point into the secure system. It
may be activated and authenticate the user, before any application specific
logic executes. This allows unmodified, security-unaware applications to
have Oredenti al s established transparently, prior to making invocations.
princi pal _sponsor: use_princi pal _sponsor
A boolean value that determines whether an attempt is made to obtain
Credentials automatically. Defaults to fal se. If set to true, the
following pri nci pal _sponsor variables must contain data in order for
anything to actually happen.
princi pal _sponsor: aut h_nethod_i d
A string that selects the authentication method to be used. The
following authentication methods are available:

pkcs12 file The authentication method uses a PKCS#12 file.

pkcsil Java only. The authentication data is provided by a
smart card.

security_label Windows and Schannel only. The authentication
data is specified by supplying the common name
(CN) from an application certificate’s subject DN.
For example, you can select the pkcs12_fi | e authentication method as
follows:

princi pal _sponsor:auth_nethod_id = "pkcs12_file";

153

CHAPTER A | Security Configuration

154

princi pal _sponsor: aut h_net hod_dat a
A string array containing information to be interpreted by the
authentication method represented by the aut h_met hod_i d.

For the pkcs12_fi | e authentication method, the following
authentication data can be provided in aut h_net hod_dat a:
fil ename A PKCS#12 file that contains a certificate chain and
private key—required.
passwor d A password for the private key—optional.

It is bad practice to supply the password from
configuration for deployed systems. If the password
is not supplied, the user is prompted for it.

password_file The name of a file containing the password for the
private key—optional.

This option is not recommended for deployed

systems.
For example, to configure an application on Windows to use a
certificate, bob. p12, whose private key is encrypted with the bobpass
password, set the aut h_net hod_dat a as follows:

princi pal _sponsor: auth_nethod_data =
["fil ename=c: \ user s\ bob\ bob. p12", "passwor d=bobpass"];

principal_sponsor:csi Namespace

principal_sponsor:csi Namespace

List of configuration variables

The pri nci pal _sponsor: csi hamespace stores configuration information to
be used when obtaining credentials. Artix provides an implementation of a
principal sponsor that creates credentials for applications automatically. The
principal sponsor automatically calls the aut henti cat e() operation on the
Princi pal Aut hent i cat or object after determining the data to supply.
Use of the Pri nci pal Sponsor is disabled by default and can only be enabled
through configuration.
The Pri nci pal Sponsor represents an entry point into the secure system. It
may be activated and authenticate the user, before any application specific
logic executes. This allows unmodified, security-unaware applications to
have Oredenti al s established transparently, prior to making invocations.
princi pal _sponsor: csi: use_pri nci pal _sponsor
A boolean value that switches the CSI principal sponsor on or off. If
true, the CSI principal sponsor is enabled; if f al se, the CSI principal
sponsor is disabled and the remaining pri nci pal _sponsor : csi
variables are ignored. Defaults to f al se.
princi pal _sponsor: csi: aut h_met hod_i d
A string that selects the authentication method to be used by the CSI
application. The following authentication methods are available:

GSSUPMech The Generic Security Service Username/Password
(GSSUP) mechanism.

For example, you can select the GSSUPMech authentication method as
follows:
princi pal _sponsor:csi:auth_nmethod id = "GSSUPMech";

155

CHAPTER A | Security Configuration

156

princi pal _sponsor: csi : aut h_met hod_dat a
A string array containing information to be interpreted by the
authentication method represented by the aut h_met hod_i d.

For the GssUPMech authentication method, the following authentication
data can be provided in aut h_net hod_dat a:

user nane The username for CSIv2 authorization over
transport.

Note that authentication of CSIv2 usernames and
passwords is performed on the server side.

passwor d The password associated with user nane.

It is not recommended to supply the password from
configuration for deployed systems.

domai n The CSIv2 authentication domain in which the
username/password pair is authenticated.

If any of the preceding data are omitted, the user is prompted to enter
authentication data when the application starts up.

For example, to log on to a CSIv2 application as the adni ni strat or
user in the US- Sant adl ar a domain:
princi pal _sponsor: aut h_met hod_data =

["username=adm ni strator", "domai n=US-Santad ara"];
When the application is started, the user is prompted for the
administrator password.

Note: It is currently not possible to customize the login prompt
associated with the CSIv2 principal sponsor. As an alternative, you
could implement your own login GUI by programming and pass the
user input directly to the principal authenticator.

APPENDIX B

1IS2 Configuration

This appendix provides details of how to configure the

iS2 server.
In this appendix This appendix contains the following sections:
Properties File Syntax page 158
iS2 Properties File page 159
Cluster Properties File page 172
log4| Properties File page 174

157

CHAPTER B | iS2 Configuration

Properties File Syntax

Overview

Property definitions

Specifying full pathnames

Specifying relative pathnames

158

The iS2 server uses standard Java property files for its configuration. Some
aspects of the Java properties file syntax are summarized here for your
convenience.

A property is defined with the following syntax:

<PropertyName >=<PropertyValue >

The <PropertyName> is a compound identifier, with each component
delimited by the . (period) character. For example,

i s2.current.server.id. The <PropertyValue> is an arbitrary string,
including all of the characters up to the end of the line (embedded spaces
are allowed).

When setting a property equal to a filename, you normally specify a full
pathname, as follows:

UNIX

/ horre/ dat a/ securi tyl nf o. xm

Windows

D /ionalsecuritylnfo.xm

or, if using the backslash as a delimiter, it must be escaped as follows:

D\\iona\\securitylnfo.xn

If you specify a relative pathname when setting a property, the root directory
for this path must be added to the iS2 server's classpath. For example, if
you specify a relative pathname as follows:

UNIX

securi tyl nfo. xm

The iS2 server's classpath must include the file’s parent directory. For
example:

CLASSPATH = / hone/ dat a/ : <rest_of classpath>

iS2 Properties File

iIS2 Properties File

Overview

File location

An iS2 properties file is used to store the properties that configure a specific
iS2 server instance. Generally, every iS2 server instance should have its own
iS2 properties file. This section provides descriptions of all the properties
that can be specified in an iS2 properties file.

The default location of the iS2 properties file is the following:
ASPInstallDirl et c/ domai ns/ DomainNamel/ i s2. properti es

In general, the iS2 properties file location is specified in the Orbix
configuration by setting the i s2. properti es property in the

pl ugi ns: j ava_ser ver : syst em properties property list.

For example, on UNIX the security server’s property list is normally
initialized in the i ona_ser vi ces. securi ty configuration scope as follows:

Qbix configuration file
i ona_services {
security {
pl ugi ns: j ava_server: system properties =
["org. omg. CORBA CRBA ass=com i ona. corba. art. artinpl . CRBl npl ",
"or g. ong. CORBA. ORBSi ngl et ond ass=com i ona. corba. art.artinpl . O
RBSi ngl et on",
"i s2. properti es=ASPInstallDirl et c/ domai ns/ DomainNamel/ i s2. pr o

perties"];

}s
¥

159

CHAPTER B | iS2 Configuration

List of properties The following properties can be specified in the iS2 properties file:
comiona.isp. adapters
Specifies the iS2 adapter type to be loaded by the iS2 server at
runtime. Choosing a particular adapter type is equivalent to choosing
an iSF security domain. Currently, you can specify one of the following

adapter types:
. file
. LDAP

. Si teM nder
For example, you can select the LDAP adapter as follows:

com i ona. i sp. adapt er s=LDAP

comiona.isp.adapter.file.class
Specifies the Java class that implements the file adapter.
For example, the default implementation of the file adapter provided
with Orbix E2A ASP is selected as follows:

comiona.isp.adapter.file.class=comiona.security.is2adapter.
file.FileAuthAdapter

comiona.isp.adapter.file.paramfil ename
Specifies the name and location of a file that is used by the file adapter
to store user authentication data.
For example, you can specify the file,
C /is2_config/security_ info.xm, as follows:

comiona.isp.adapter.file.paramfilenane=C /i s2_confi g/ securi
ty_info.xm

comiona.isp.adapter.file. parans
Obsolete. This property was needed by earlier versions of the iS2
server, but is now ignored.

com i ona. i sp. adapt er . LDAP. cl ass
Specifies the Java class that implements the LDAP adapter.
For example, the default implementation of the LDAP adapter provided
with Orbix E2A ASP is selected as follows:

comiona.isp. adapt er. LDAP. cl ass=com i ona. securi ty. i s2adapt er.
| dap. LdapAdapt er

160

iS2 Properties File

com i ona. i sp. adapt er. LDAP. par am CacheSi ze
Specifies the maximum LDAP cache size in units of bytes. This
maximum applies to the total LDAP cache size, including all LDAP
connections opened by this iS2 server instance.
Internally, the iS2 server uses a third-party toolkit (currently the
iPlanet SDK) to communicate with an LDAP server. The cache referred
to here is one that is maintained by the LDAP third-party toolkit. Data
retrieved from the LDAP server is temporarily stored in the cache in
order to optimize subsequent queries.
For example, you can specify a cache size of 1000 as follows:
com i ona. i sp. adapt er. LDAP. par am CacheSi ze=1000

com i ona. i sp. adapt er. LDAP. par am CacheTi neToLi ve
Specifies the LDAP cache time to-live in units of seconds.

com i ona. i sp. adapt er. LDAP. par am CacheTi meToLi ve=60

com i ona. i sp. adapt er. LDAP. param G oupBaseDN
Specifies the base DN of the tree in the LDAP directory that stores user
groups.
For example, you could use the RDN sequence, DC=i ona, DC=com as a
base DN by setting this property as follows:

com i ona. i sp. adapt er. LDAP. par am @ oupBaseDN=dc=i ona, dc=com

Note: The order of the RDNs is significant. The order should be
based on the LDAP schema configuration.

com i ona. i sp. adapt er. LDAP. param G oupNarreAt t r
Specifies the attribute type whose corresponding attribute value gives
the name of the user group.
Default is O\
For example, you can use the common name, CN, attribute type to
store the user group’s name by setting this property as follows:

com i ona. i sp. adapt er . LDAP. par am G oupNaneAt t r =cn

161

CHAPTER B | iS2 Configuration

com i ona. i sp. adapt er . LDAP. par am G oupQbj ect d ass
Specifies the object class that applies to user group entries in the LDAP
directory structure. An object class defines the required and allowed
attributes of an entry.
Default is gr oupCf Uni queNanes.
For example, to specify that all user group entries belong to the
gr oupCF Uni queNames object class:
com i ona. i sp. adapt er. LDAP. param G ouphj ect A ass=gr oupof uni qu
enanes

com i ona. i sp. adapt er . LDAP. par am G oupSear chScope
Specifies the group search scope. The search scope is the starting
point of a search and the depth from the base DN to which the search
should occur. This property can be set to one of the following values:
s+ BASE—Search a single entry (the base object).
. ONe—Search all entries immediately below the base DN.
+ SWB—Search all entries from a whole subtree of entries.
Default is SUB.
For example:
com i ona. i sp. adapt er. LDAP. par am G oupSear chScope=SUB

com i ona. i sp. adapt er. LDAP. par am host . <cluster_index>
For the <cluster_index> LDAP server replica, specifies the IP
hostname where the LDAP server is running. The <cluster_index> is
1 for the primary server, 2 for the first failover replica, and so on.
For example, you could specify that the primary LDAP server is running
on host 10. 81. 1. 100 as follows:
com i ona. i sp. adapt er. LDAP. par am host . 1=10. 81. 1. 100

com iona. i sp. adapt er . LDAP. par am MaxConnect i onPool S ze
Specifies the maximum LDAP connection pool size for the iS2 server (a
strictly positive integer). The maximum connection pool size is the
maximum number of LDAP connections that would be opened and
cached by the iS2 server.

Default is 1.

162

iS2 Properties File

For example, to limit the iS2 server to open a maximum of 50 LDAP
connections at a time:

com i ona. i sp. adapt er . LDAP. par am MaxConnect i onPool Si ze=50

com i ona. i sp. adapt er. LDAP. par am Menber DNAt t r
Specifies which LDAP attribute is used to retrieve group members. The
LDAP adapter uses the Menber DNAt t r property to construct a query to
find out which groups a user belongs to.

The list of the user's groups is needed to determine the complete set of
roles assigned to the user. The LDAP adapter determines the complete
set of roles assigned to a user as follows:

i. The adapter retrieves the roles assigned directly to the user.

ii. The adapter finds out which groups the user belongs to, and
retrieves all the roles assigned to those groups.

Default is uni queMenber .
For example, you can select the uni queMenber attribute as follows:
com i ona. i sp. adapt er . LDAP. par am Menber DNAL t r =uni queMenber

com i ona. i sp. adapt er. LDAP. param Menber Fi | t er
Specifies how to search for members in a group. The value specified
for this property must be an LDAP search filter (can be a custom filter).
No default.

com i ona. i sp. adapt er. LDAP. param M nConnect i onPool Si ze
Specifies the minimum LDAP connection pool size for the iS2 server.
The minimum connection pool size specifies the number of LDAP
connections that are opened during initialization of the iS2 server.
Default is 1.
For example, to specify a minimum of 10 LDAP connections at a time:

com i ona. i sp. adapt er . LDAP. par am M nConnect i onPool S ze=10

com i ona. i sp. adapt er. LDAP. param port . <cluster_index>
For the <cluster_index> LDAP server replica, specifies the IP port
where the LDAP server is listening. The <cluster_index> is 1 for the
primary server, 2 for the first failover replica, and so on.

Default is 389.

163

CHAPTER B | iS2 Configuration

For example, you could specify that the primary LDAP server is
listening on port 636 as follows:
com i ona. i sp. adapt er. LDAP. param port. 1=636

com i ona. i sp. adapt er. LDAP. par am Pri nci pal User DN <cluster_index>
For the <cluster_index> LDAP server replica, specifies the username
that is used to login to the LDAP server (in distinguished name format).
This property need only be set if the LDAP server is configured to
require username/password authentication.

No default.

com i ona. i sp. adapt er. LDAP. par am Pri nci pal User Passwor d. <cluster_ind
ex>

For the <cluster_index> LDAP server replica, specifies the password
that is used to login to the LDAP server. This property need only be set
if the LDAP server is configured to require username/password
authentication.

No default.

WARNING: Because the password is stored in plaintext, you must ensure
that the i s2. properti es file is readable and writable only by users with
administrator privileges.

com i ona. i sp. adapt er. LDAP. param Ret ri eveAut hl nf o
Specifies whether or not the iS2 server retrieves authorization
information from the LDAP server. This property selects one of the
following alternatives:

+ yes—the iS2 server retrieves authorization information from the
LDAP server.

. no—the iS2 server retrieves authorization information from the
iS2 authorization manager..

Default is no.
For example, to use the LDAP server's authorization information:

com i ona. i sp. adapt er. LDAP. param Ret ri eveAut hl nf o=yes

com i ona. i sp. adapt er . LDAP. par am Rol eNareAt t r
Specifies the attribute type that the LDAP server uses to store the role
name.

164

iS2 Properties File

Default is CN\.

For example, you can specify the common name, QN, attribute type as
follows:

com i ona. i sp. adapt er. LDAP. par am Rol eNarreAt t r =cn

com i ona. i sp. adapt er. LDAP. par am SSLCACert Di r . <cluster_index>
For the <cluster_index> LDAP server replica, specifies the directory
name for trusted CA certificates. All certificate files in this directory are
loaded and set as trusted CA certificates, for the purpose of opening an
SSL connection to the LDAP server. The CA certificates can either be in
DER-encoded X.509 format or in PEM-encoded X.509 format.

No default.

For example, to specify that the primary LDAP server uses the
d:/certs/test directory to store CA certificates:

comi ona.isp. adapt er. LDAP. param SSLCACertDir. 1=d: / cert s/ t est

comiona. i sp. adapt er. LDAP. param SSLA i ent Cert Fi | e. <cluster_index>
Specifies the client certificate file that is used to identify the iS2 server
to the <cluster_index> LDAP server replica. This property is needed
only if the LDAP server requires SSL/TLS mutual authentication. The
certificate must be in PKCS#12 format.

No default.

com i ona. i sp. adapt er. LDAP. param SSLA i ent Cer t Passwor d. <cluster_ind
ex>

Specifies the password for the client certificate that identifies the iS2
server to the <cluster_index> LDAP server replica. This property is
needed only if the LDAP server requires SSL/TLS mutual
authentication.

No default.

WARNING: Because the password is stored in plaintext, you must ensure
that the i s2. properti es file is readable and writable only by users with
administrator privileges.

165

CHAPTER B | iS2 Configuration

com i ona. i sp. adapt er. LDAP. par am SSLEnabl ed. <cluster_index>
Enables SSL/TLS security for the connection between the iS2 server
and the <cluster_index> LDAP server replica. The possible values are
yes Or no.

Default is no.

For example, to enable an SSL/TLS connection to the primary LDAP
server:

com i ona. i sp. adapt er. LDAP. par am SSLEnabl ed. 1=yes

com i ona. i sp. adapt er . LDAP. par am UseQ oupAsRol e
Specifies whether a user's groups should be treated as roles. The
following alternatives are available:

+ yes—each group name is interpreted as a role name.

. no—for each of the user’s groups, retrieve all roles assigned to the
group.

This option is useful for some older versions of LDAP, such as iPlanet

4.0, that do not have the role concept.

Default is no.
For example:
com i ona. i sp. adapt er. LDAP. par am UseG oupAsRol e=no

com i ona. i sp. adapt er . LDAP. par am User BaseDN
Specifies the base DN (an ordered sequence of RDNs) of the tree in the
LDAP directory that stores user object class instances.

For example, you could use the RDN sequence, DC=i ona, DC=com as a
base DN by setting this property as follows:

com i ona. i sp. adapt er . LDAP. par am User BaseDN=dc=i ona, dc=com

com i ona. i sp. adapt er. LDAP. par am User Cert At t r Nane
Specifies the attribute type that stores a user certificate.

Default is user Certifi cate.

For example, you can explicitly specify the attribute type for storing
user certificates to be user Certifi cate as follows:

com i ona.i sp. adapt er. LDAP. param User Cert At t r Nanme=user Certific
ate

166

iS2 Properties File

com i ona. i sp. adapt er . LDAP. par am User NanmeAt t r =ui d
Specifies the attribute type whose corresponding value uniquely
identifies the user. This is the attribute used as the user’s login ID.

Default is ui d.
For example:

com i ona. i sp. adapt er . LDAP. par am User NarmeAt t r =ui d

com i ona. i sp. adapt er. LDAP. par am User (bj ect d ass
Specifies the attribute type for the object class that stores users.
Default is or gani zat i onal Per son.
For example:
com i ona. i sp. adapt er. LDAP. par am User (hj ect d ass=or gani zat i ona

| Per son

com i ona. i sp. adapt er. LDAP. par am User Rol eDNAL t r
Specifies the attribute type that stores a user's role DN.

Default is nsRol eDn (from the Netscape LDAP directory schema).
For example:
com i ona. i sp. adapt er . LDAP. par am User Rol eDNAt t r =nsr ol edn

com i ona. i sp. adapt er. LDAP. par am User Sear chFi | ter
Custom filter for retrieving users. In the current version, $USER_NAVES is
the only replaceable parameter supported. This parameter would be
replaced during runtime by the LDAP adapter with the current User's
login ID. This property uses the standard LDAP search filter syntax.

For example:
& ui d=BUSER_NAIVES) (obj ect cl ass=or gani zat i onal Per son)

com i ona. i sp. adapt er. LDAP. par am User Sear chScope
Specifies the user search scope. This property can be set to one of the
following values:

. BASE—Search a single entry (the base object).

. ONE—Search all entries immediately below the base DN.
. SuB—Search all entries from a whole subtree of entries.
Default is SUB.

For example:

167

CHAPTER B | iS2 Configuration

com i ona. i sp. adapt er. LDAP. par am User Sear chScope=SUB

com i ona. i sp. adapt er . LDAP. par am ver si on
Specifies the LDAP protocol version that the iS2 server uses to
communicate with LDAP servers. The possible values are 2 (for LDAP
v2, http://www.ietf.org/rfc/rfc1777.txt) or 3 (for LDAP v3,
http://www.ietf.org/rfc/rfc2251 .txt).

Default is 3.
For example, to select the LDAP protocol version 3:

com i ona. i sp. adapt er. LDAP. par am ver si on=3

com i ona. i sp. adapt er . LDAP. par ans
Obsolete. This property was needed by earlier versions of the iS2
server, but is now ignored.

comiona.isp.adapter. S teM nder. cl ass
Specifies the Java class that implements the SiteMinder adapter.

For example, the default implementation of the SiteMinder adapter

provided with Orbix E2A ASP is selected as follows:

comiona.isp.adapter. SiteM nder.cl ass=comiona. security.is2ad
apt er. snadapt er . Si t eM nder Agent

com i ona.isp. adapter. S teM nder. par am Agent Nane
Specifies the SiteMinder agent’s name.

For example:

comiona.isp. adapter. SiteM nder. param Agent Nane=web

com iona.isp.adapter. S teM nder. par am Agent Secr et
Specifies the SiteMinder agent’s password.

For example:

comiona.isp. adapter. SiteM nder. param Agent Secr et =secr et

com i ona.isp.adapter. S teM nder. param Ser ver Addr ess
Specifies the IP hostname where the SiteMinder server is running.

For example:

comiona.isp. adapter. SiteM nder. param Ser ver Addr ess=| ocal host

168

http://www.ietf.org/rfc/rfc1777.txt
http://www.ietf.org/rfc/rfc2251.txt

iS2 Properties File

comiona.isp. adapter. SiteM nder. par am Ser ver Aut hnPor t
Specifies the IP port where the SiteMinder server is listening.
For example,
comiona.isp. adapter. SiteM nder. param Server Aut hnPor t =44442

comiona.isp. adapter. SiteM nder. par ans
Obsolete. This property was needed by earlier versions of the iS2
server, but is now ignored.

com i ona. security. azngr. adn nUser Narre
Specifies the name of the user who has privileges to administer the
authorization manager. The specified user's details must be stored in
the enterprise security backend accessed through an iS2 adapter (for
example, file adapter, LDAP adapter, or SiteMinder adapter).
For example, you can specify that the | NAAdm n user administers the
authorization manager by setting this property as follows:

com i ona. security.azngr.adm nUser Nare=| ONAAdm n

com i ona. security. azmgr. Persi st encePropert yFi | eNane
Specifies the file that stores the configuration properties of the
authorization manager.
For example, you can store the authorization manager configuration
properties in a file, C./azmgr _confi g/ azmgr . properti es, as follows:
com i ona. security.aznmyr. Persi st encePropertyFi | eName=C. / aznor _
config/azmygr. properties

com i ona. security. azngr. Real m\ane
Specifies the authorization manager's realm name. Only a single realm
name can be specified.

For example, to specify the realm name, Engi neeri ng:

comiona. security. aznygr. Real m\ane=Engi neeri ng

com i ona. security. azngr. usel ONAAut hori zat i onManager
Enables the authorization manager component of the iS2 server.
Possible values are yes or no.

For example:

com i ona. security.azmyr. usel ONAAut hori zat i onManager =yes

169

CHAPTER B | iS2 Configuration

is2.current.server.id

Specifies the current iS2 server's ID (required for clustering). When a
secure application obtains a single sign-on (SSO) token from this iS2
server, the server ID is embedded into the SSO token. Subsequently, if
the SSO token is passed to a second iS2 server instance, the second
iS2 server recognizes that the SSO token originates from the first iS2
server and delegates security operations to the first iS2 server.

For example, to assign a server ID of 1 to the current iS2 server:
is2.current.server.id=1

is2.cluster.properties.filename
Specifies the file that stores the configuration properties for clustering.
is2.cluster.properties.filename=C /is2_config/cluster.propert

| es

i s2. sso. cache. si ze
Specifies the maximum cache size (number of user sessions)
associated with single sign-on (SSO) feature. The SSO caches user
information, including the user's group and role information. If the

maximum cache size is reached, the oldest sessions are deleted from
the session cache.

No default.
For example:

i s2. sso. cache. si ze=1000

i s2. sso. enabl ed

Enables the single sign-on (SSO) feature of the iS2 server. The possible
values are yes (enabled) and no (disabled).

Default is yes.
For example:

i s2. sso. enabl ed=yes

i s2. ss0. session.idle.timout

Sets the session idle time-out in units of seconds for the single sign-on
(SSO) feature of the iS2 server. A zero value implies no time-out.

If a user logs on to the IONA Security Framework (supplying username
and password) with SSO enabled, the iS2 server returns an SSO token

170

iS2 Properties File

for the user. The next time the user needs to access a resource, there is
no need to log on again because the SSO token can be used instead.
However, if no secure operations are performed using the SSO token
for the length of time specified in the idle time-out, the SSO token
expires and the user must log on again.

Default is 0 (no time-out).

For example:

i s2.ss0. session.idl e.timout=0

i s2. sso. sessi on. ti neout
Sets the absolute session time-out in units of seconds for the single
sign-on (SSO) feature of the iS2 server. A zero value implies no
time-out.
This is the maximum length of time since the time of the original user
login for which an SSO token remains valid. After this time interval
elapses, the session expires irrespective of whether the session has
been active or idle. The user must then login again.
Default is 0 (no time-out).
For example:

i s2. ss0. sessi on. ti meout =0

| og4j . configuration
Specifies the log4j configuration filename. You can use the properties
in this file to customize the level of debugging output from the iS2
server. See also “log4j Properties File” on page 174.
For example,

| og4j . confi guration=d:/tenp/ nyconfig.txt

171

CHAPTER B | iS2 Configuration

Cluster Properties File

Overview

File location

List of properties

172

The cluster properties file is used to store properties common to a group of
iS2 server instances that operate as a cluster. This section provides
descriptions of all the properties that can be specified in a cluster file.

The location of the cluster properties file is specified by the

i s2.cluster. properties. fil ename property in the iS2 properties file. All of
the iS2 server instances in a specific cluster must share the same cluster
properties file.

The following properties can be specified in the cluster properties file:

com i ona. securi ty. common. securityl nst anceURL. <server_ID>
For the <server_ID> iS2 server instance, specifies the server's URL.
When single sign-on (SSO) and clustering are both enabled, the iS2
server instances use the specified instance URLs to communicate with
each other. By specifying the URL for a particular iS2 server instance,
you are instructing the instance to listen for messages at that URL.
Because the iS2 server instances share the same cluster file, they can
read each other's URLs and open connections to each other.

The connections between iS2 server instances can either be insecure
(HTTP cluster) or secure (HTTPS cluster). To enable SSL/TLS security,
use the https: prefix in each of the instance URLs.

For example, to configure two iS2 server instances to operate in a
cluster using insecure communications (HTTP):

com i ona. security.comon. securityl nstanceURL. 1=http://| ocal ho
st: 8080/ i sp/ Aut hServi ce

com i ona. security.comon. securityl nstanceURL. 2=http://I ocal ho
st: 8081/ i sp/ Aut hServi ce

Alternatively, to configure two iS2 server instances to operate in a

cluster using secure communications (HTTPS):

com i ona. security.common. securityl nstanceURL. 1=https://| ocal h
ost : 8080/ i sp/ Aut hServi ce

com i ona. security.common. securityl nstanceURL. 2=https://| ocal h
ost:8081/i sp/ Aut hServi ce

Cluster Properties File

In the secure case, you must also configure the certificate-related
cluster properties for each iS2 server instance.

com i ona. security. common. securityl nstanceCACert Dir. <server_ID>
For the <server_ID> iS2 server instance in a HTTPS cluster, specifies
the directory containing trusted CA certificates. The CA certificates can
either be in DER-encoded X.509 format or in PEM-encoded X.509
format.
For example, to specify d: / t enp/ cert as the CA certificate directory for
the primary iS2 server instance:

com i ona. security.comon. securityl nstanceCACertDir. 1=d:/t enp/
cert

com i ona. security. common. securityl nstancedient Cert. <server_ID>
For the <server_ID> iS2 server instance in a HTTPS cluster, specifies
the client certificate file that identifies the iS2 server to its peers within
a cluster. The certificate must be in PKCS#12 format.

No default.

com i ona. security. common. securitylnstanced i ent Cert Passwd. <server
ID>

For the <server_ID> iS2 server instance in a HTTPS cluster, specifies
the password for the client certificate that identifies the iS2 server to its
peers within a cluster.

No default.

WARNING: Because the password is stored in plaintext, you must ensure
that the i s2. properti es file is readable and writable only by users with
administrator privileges.

173

CHAPTER B | iS2 Configuration

logdj Properties File

Overview

log4j documentation

File location

List of properties

174

The log4j properties file configures log4j logging for your iS2 server. This
section describes a minimal set of log4j properties that can be used to
configure basic logging.

For complete log4j documentation, see the following Web page:
http://jakarta.apache.org/log4j/docs/documentation.html

The location of the log4] properties file is specified by the

| og4j . confi guration property in the iS2 properties file. For ease of
administration, different iS2 server instances can optionally share a
common log4j properties file.

To give you some idea of the capabilities of log4j, the following is an
incomplete list of properties that can be specified in a log4j properties file:
| og4j . appender. <AppenderHandle>

This property specifies a log4j appender class that directs

<AppenderHandle> logging messages to a particular destination. For

example, one of the following standard log4] appender classes could

be specified:

or g. apache. | og4j . Consol eAppender

or g. apache. | og4j . Fi | eAppender

or g. apache. | og4j . Rol | i ngFi | eAppender

or g. apache. | og4j . Dai | yRol | i ngFi | eAppender

or g. apache. | og4j . AsynchAppender

or g. apache. | og4j . Wi t er Appender

For example, to log messages to the console screen for the AL
appender handle:

| 0g4j . appender . Al=or g. apache. | og4j . Consol eAppender

| og4j . appender . <AppenderHandle>. | ayout
This property specifies a log4j layout class that is used to format
<AppenderHandle > logging messages. One of the following standard
log4| layout classes could be specified:

http://jakarta.apache.org/log4j/docs/documentation.html

log4j Properties File

or g. apache. | og4j . Pat t er nLayout
or g. apache. | og4j . HTM_Layout

or g. apache. | og4j . Si npl eLayout
or g. apache. | og4j . TTCCLayout

For example, to use the pattern layout class for log messages
processed by the Al appender:

| og4j . appender . Al. | ayout =or g. apache. | og4j . Pat t er nLayout

| og4j . appender . <AppenderHandle>. | ayout . Conver si onPat t ern
This property is used only in conjunction with the
or g. apache. | og4j . Pat t er nLayout class (when specified by the
| og4j . appender . <AppenderHandle>.| ayout property) to define the
format of a log message.

For example, you can specify a basic conversion pattern for the AL
appender as follows:

| og4j . appender . Al. | ayout . ConversionPattern=%4r [%] %5p %
% - Yo

| og4j . r oot Cat egory
This property is used to specify the logging level of the root logger and
to associate the root logger with one or more appenders. The value of
this property is specified as a comma separated list as follows:
<loglevel>, <AppenderHandleO1>, <AppenderHandle02>,
The logging level, <LogLevel>, can have one of the following values:

DEBUG
I NFO
WARN
ERCRR
FATAL

An appender handle is an arbitrary identifier that associates a logger
with a particular logging destination.

For example, to select all messages at the DEBUG level and direct them
to the Al appender, you can set the property as follows:

| 0g4j . r oot Cat egor y=DEBUG Al

175

CHAPTER B | iS2 Configuration

176

APPENDIX C

ASN.]1 and
Distinguished
Names

The OS! Abstract Syntax Notation One (ASN.1) and X.500
Distinguished Names play an important role in the security
standards that define X.509 certificates and LDAP directories.

In this appendix This appendix contains the following section:

ASN.1 page 178

page 179

Distinguished Names

177

CHAPTER C | ASN.1 and Distinguished Names

ASN.1

Overview

BER

DER

References

178

The Abstract Syntax Notation One (ASN.1) was defined by the OSI
standards body in the early 1980s to provide a way of defining data types
and structures that is independent of any particular machine hardware or
programming language. In many ways, ASN.1 can be considered a
forerunner of the OMG’s IDL, because both languages are concerned with
defining platform-independent data types.

ASN.1 is important, because it is widely used in the definition of standards
(for example, SNMP, X.509, and LDAP). In particular, ASN.1 is ubiquitous
in the field of security standards—the formal definitions of X.509 certificates
and distinguished names are described using ASN.1 syntax. You do not
require detailed knowledge of ASN.1 syntax to use these security standards,
but you need to be aware that ASN.1 is used for the basic definitions of
most security-related data types.

The OSI's Basic Encoding Rules (BER) define how to translate an ASN.1
data type into a sequence of octets (binary representation). The role played
by BER with respect to ASN.1 is, therefore, similar to the role played by
GIOP with respect to the OMG IDL.

The OSI's Distinguished Encoding Rules (DER) are a specialization of the
BER. The DER consists of the BER plus some additional rules to ensure that
the encoding is unique (BER encodings are not).

You can read more about ASN.1 in the following standards documents:
® ASN.1 is defined in X.208.
® BERis defined in X.209.

Distinguished Names

Distinguished Names

Overview

String representation of DN

DN string example

Structure of a DN string

OoID

Historically, distinguished names (DN) were defined as the primary keys in

an X.500 directory structure. In the meantime, however, DNs have come to

be used in many other contexts as general purpose identifiers. In the IONA

Security Framework, DNs occur in the following contexts:

® X.509 certificates—for example, one of the DNs in a certificate
identifies the owner of the certificate (the security principal).

® |LDAP—DNs are used to locate objects in an LDAP directory tree.

Although a DN is formally defined in ASN.1, there is also an LDAP standard
that defines a UTF-8 string representation of a DN (see RFC 2253). The
string representation provides a convenient basis for describing the structure
of a DN.

Note: The string representation of a DN does not provide a unique
representation of DER-encoded DN. Hence, a DN that is converted from
string format back to DER format does not always recover the original DER
encoding.

The following string is a typical example of a DN:
C=US, O=I ONA Technol ogi es, QJ=Engi neering, ONFA. N O her

A DN string is built up from the following basic elements:

* QID.

® Attribute types.
* AVA.

®* RDN.

An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely
identifies a grammatical construct in ASN. 1.

179

CHAPTER C | ASN.1 and Distinguished Names

Attribute types

The variety of attribute types that could appear in a DN is theoretically
open-ended, but in practice only a small subset of attribute types are used.
Table 5 shows a selection of the attribute types that you are most likely to

encounter:
Table 5: Commonly Used Attribute Types
String X.500 Attribute Type Size of Data Equivalent OID

Representation
C count r yNamre 2 .5.4.6
(@) or gani zat i onNane 1...64 .5.4.10
aJ or gani zat i onal Uni t Nane 1...64 .5.4.11
CN comonNane 1...64 .5.4.3
ST st at eOr Provi nceNane 1...64 .5.4.8
L | ocal i t yNarre 1...64 .5.4.7
STREET st reet Address
DC dormai nConponent
ub userid

AVA

180

An attribute value assertion (AVA) assigns an attribute value to an attribute
type. In the string representation, it has the following syntax:

<attr-type >=<attr-value>

For example:
CN=A. N Qther

Alternatively, you can use the equivalent OID to identify the attribute type in

the string representation (see Table 5). For example:

2.5.4.3=A° N Cher

RDN

Distinguished Names

A relative distinguished name (RDN) represents a single node of a DN (the
bit that appears between the commas in the string representation).
Technically, an RDN might contain more than one AVA (it is formally
defined as a set of AVAs); in practice, however, this almost never occurs. In
the string representation, an RDN has the following syntax:

<attr-type >=<attr-value >[+<attr-type >=<attr-value> ...]
Here is an example of a (very unlikely) multiple-value RDN:
QU=Eng1+0U=Eng2+QJ=Eng3

Here is an example of a single-value RDN:

QU=Engi neeri ng

181

CHAPTER C | ASN.1 and Distinguished Names

182

DTD file

APPENDIX D

Action-Role
Mapping DTD

This appendix presents the document type definition (DTD) for
the action-role mapping XML file.

The action-role mapping DTD is shown in Example 21.
Example 21:

<?xm version="1.0" encodi ng="UTF-8" 2>

<! ELEMENT acti on-nane (#PCDATA) >

<! ELEMENT rol e- nane (#PCDATA) >

<! ELEMENT ser ver - name (#PCDATA) >

<! ELEMENT acti on-rol e- mappi ng (server-nane, interface+)>

<! ELEMENT nane (#PCDATA) >

<IELEMENT interface (nane, action-role+)>

<l ELEMENT action-rol e (action-nane, rol e-nane+)>

<! ELEMENT al | owunl i st ed-interfaces (#PCDATA) >

<! ELEMENT secure-system (al | owunli sted-interfaces*,
act i on-r ol e- mappi ng+) >

183

CHAPTER D | Action-Role Mapping DTD

Action-role mapping elements

184

The elements of the action-role mapping DTD can be described as follows:
<! ELEMENT act i on- nane (#PCDATA) >

Specifies the action name to which permissions are assigned. In Artix,

the action name is equivalent to a WSDL operation name. That is, the

OperationName from a tag <oper at i on name="0OperationName" >.

You can also use the wildcard, *, to match all action names (WSDL

operation names) in an interface (WSDL port type). Use the wildcard to

assign roles to all actions in an interface.

<I ELEMENT action-rol e (action-nane, role-nane+)>
Groups together a particular action and all of the roles permitted to
perform that action.

<! ELEMENT action-rol e-mappi ng (server-nane, interface+)>
Contains all of the permissions that apply to a particular server
application.

<! ELEMENT al | owunli sted-interfaces (#PCDATA) >

Specifies the default access permissions that apply to interfaces

(WSDL port types) not explicitly listed in the action-role mapping file.

The element contents can have the following values:

+ true—for any interfaces not listed, access to all of the interfaces’
actions is allowed for all roles. If the remote user is
unauthenticated (in the sense that no credentials are sent by the
client), access is also allowed.

Note: However, if <al | ow unl i st ed-int erfaces>is true and a
particular interface is listed, then only the actions explicitly listed
within that interface’s <i nt er f ace> element are accessible. Unlisted
actions from the listed interface are not accessible.

+ fal se—for any interfaces not listed, access to all of the interfaces’
actions is denied for all roles. Unauthenticated users are also
denied access.

Default is fal se.

<! ELEMENT interface (name, action-role+)>

In the case of an Artix server, the <i nt er f ace> element contains all of

the access permissions for one particular WSDL port type.

<! ELEMENT nane (#PCDATA) >
Within the scope of an <i nt er f ace> element, identifies the interface
(WSDL port type) with which permissions are being associated. In
Artix, the interface name is a WSDL port type name specified in the
format NamespaceURI: PortTypeName. That is, the PortTypeName
comes from a tag, <port Type name="PortTypeName">, defined in the
NamespaceURI namespace. The NamespaceUR/ is usually defined in
the <defini tions target Namespace="NamespaceURI" ...> tag of
the WSDL contract.

<! ELEMENT rol e- name (#PCDATA) >
Specifies a role to which permission is granted. The role name can be
any role that belongs to the server's iSF authorization realm (for SOAP
bindings, the realm name is specified by the
pl ugi ns: asp: aut hori zat i on_r eal mconfiguration variable in the
server's configuration scope) or to the | ONAQ obal Real mrealm. The
roles themselves are defined in the iS2 server backend; for example, in
a file adapter file or in an LDAP backend.

<! ELEMENT secure-system (al | ow unli sted-interfaces*,
act i on-r ol e- nappi ng+) >

The outermost scope of an action-role mapping file groups together a
collection of <acti on-r ol e- mappi ng> elements.

<! ELEMENT server-name (#PCDATA) >
The <server - nanme> element specifies the configuration scope (that is,
the ORB name) used by the server in question. This is normally the
value of the - CRBnare parameter passed to the server executable on
the command line.

185

CHAPTER D | Action-Role Mapping DTD

186

APPENDIX E

OpenSSL Utilities

The openssl program consists of a large number of utilities that
have been combined into one program. This appendix
describes how you use the openssl program with Orbix when
managing X.509 certificates and private keys.

In this appendix This appendix contains the following sections:
Using OpenSSL Utilities page 188
The OpenSSL Configuration File page 197

187

CHAPTER E | OpenSSL Utilities

Using OpenSSL Utilities

The OpenSSL package

Command syntax

The openssl utilities

The - hel p option

Examples

188

Orbix ships a version of the OpenSSL program that is available with Eric
Young's openss| package. OpenSSL is a publicly available implementation of
the SSL protocol. Consult “License Issues” on page 203 for information
about the copyright terms of OpenSSL.

Note: For complete documentation of the OpenSSL utilities, consult the
documentation at the OpenSSL web site ht t p: // www. openssl . or g/ docs.

An openssl command line takes the following form:
openss| utility arguments

For example:

openssl x509 -in ObixCA -text

This appendix describes four openssl! utilities:

x509 Manipulates X.509 certificates.

req Creates and manipulates certificate signing requests, and self-signed
certificates.

rsa Manipulates RSA private keys.
ca Implements a Certification Authority (CA).

To get a list of the arguments associated with a particular command, use
the - hel p option as follows:

openssl utility -hel p
For example:
openssl x509 -hel p

A number of examples using openssl commands are described in
“Managing Certificates” on page 207.

Using OpenSSL Utilities

The x509 Utility

Purpose of the x509 utility In Orbix the x509 utility is mainly used for:

® Printing text details of certificates you wish to examine.

® Converting certificates to different formats.

Options The options supported by the openss| x509 utility are as follows:

-informarg

-outformarg

-keyformarg
-CAformarg
- CAkeyformarg
-in arg

-out arg
-serial

- hash

- subj ect

-i ssuer
-startdate
-enddat e

- dat es

- modul us
-fingerprint
- noout

-days arg

-signkey arg
- x509t or eq

input format - default PEM

(one of DER NET or PEM

output fornmat - default PEM

(one of DER, NET or PEM

private key format - default PEM
CA format - default PEM

CA key format - default PEM
input file - default stdin
output file - default stdout
print serial nunber val ue

print serial nunber val ue

print subject DN

print issuer DN

not Before field

not After field

both Before and After dates
print the RSA key nodul us

print the certificate fingerprint
no certificate output

How long till expiry of a signed certificate
def 30 days

self sign cert with arg

output a certification request object

189

CHAPTER E | OpenSSL Utilities

Using the x509 utility

190

-req - input is a certificate request, sign and
out put

-CA arg - set the CA certificate, nust be PEM format

- CAkey arg - set the CA key, nmust be PEMformat. If m ssing
it is assuned to be in the CAfile

- CAcreateseri al - create serial nunber fileif it does not exist

- CAseri al - serial file

-text - print the certificate in text form

-C - print out C code forms

-nd2/-md5/-shal/ - digest to do an RSA sign with
-ndc2

To print the text details of an existing PEM-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in M/Cert.pem -inform PEM -t ext

To print the text details of an existing DER-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in M/Cert.der -informDER -text

To change a certificate from PEM format to DER format, use the x509 utility
as follows:

openssl x509 -in M/Cert. pem -inform PEM - out f orm DER - out
M/Cert . der

Using OpenSSL Utilities

The req Utility

Purpose of the x509 utility

Options

The req utility is used to generate a self-signed certificate or a certificate
signing request (CSR). A CSR contains details of a certificate to be issued by
a CA. When creating a CSR, the req command prompts you for the
necessary information from which a certificate request file and an encrypted
private key file are produced. The certificate request is then submitted to a
CA for signing.

If the - nodes (no DES) parameter is not supplied to r eq, you are prompted

for a pass phrase which will be used to protect the private key.

Note: It is important to specify a validity period (using the - days
parameter). If the certificate expires, applications that are using that
certificate will not be authenticated successfully.

The options supported by the openssl req utility are as follows:

-informarg input format - one of DER TXT PEM
-outform arg output format - one of DER TXT PEM
-in arg inout file

-out arg output file

-text text formof request

- noout do not output REQ

-verify verify signature on REQ

- modul us RSA nodul us

- nodes do not encrypt the output key

-key file use the private key contained in file

-keyformarg
-keyout arg
-newkey rsa:bits

-newkey dsa:file

-[digest]

key file fornat

file to send the key to

generate a new RSA key of ‘bits’ in size
generate a new DSA key, paraneters taken from
CAin ‘file

D gest to sign with (md5, shal, nd2, mdc2)

191

CHAPTER E | OpenSSL Utilities

Using the req Utility

192

-config file request tenplate file
- new new request
-x509 out put an x509 structure instead of a

certificate req. (Used for creating self signed
certificates)

- days nunber of days an x509 generated by -x509 is
valid for
-asnl- kl udge Qutput the ‘request’ in a fornat that is wong

but sone CA' s have been reported as requiring
[It is now al ways turned on but can be turned
of f with -no-asnl-kl udge]

To create a self-signed certificate with an expiry date a year from now, the
req utility can be used as follows to create the certificate CA cert. pemand
the corresponding encrypted private key file CA_pk. pem

openssl req -config ss/_conf_path_name -days 365

-out CA cert.pem -new -x509 -keyout CA pk.pem

This following command creates the certificate request M/Reg. pemand the
corresponding encrypted private key file M/Encr ypt edKey. pem

openssl req -config ss/_conf path_name - days 365
-out M/Req. pem - new - keyout M/Encrypt edkey. pem

Using OpenSSL Utilities

The rsa Utility

Purpose of the rsa utility

Options

Using the rsa Utility

The rsa command is a useful utility for examining and modifying RSA
private key files. Generally RSA keys are stored encrypted with a symmetric
algorithm using a user-supplied pass phrase. The OpenSSL req command
prompts the user for a pass phrase in order to encrypt the private key. By
default, req uses the triple DES algorithm. The r sa command can be used
to change the password that protects the private key and to convert the
format of the private key. Any rsa command that involves reading an
encrypted rsa private key will prompt for the PEM pass phrase used to
encrypt it.

The options supported by the openssl rsa utility are as follows:

-informarg input format - one of DER NET PEM

-outformarg output fornmat - one of DER NET PEM

-in arg inout file

-out arg output file

- des encrypt PEMoutput w th cbc des

-des3 encrypt PEMoutput wth ede cbc des using
168 bit key

-text print the key in text

- noout do not print key out

- nodul us print the RSA key nodul us

Converting a private key to PEM format from DER format involves using the
rsa utility as follows:
openssl rsa -informDER -in MKey.der -outformPEM-out MKey. pem

Changing the pass phrase which is used to encrypt the private key involves
using the rsa utility as follows:

openssl rsa -informPEM-in MKey. pem -outformPEM -out M/Key. pem
-des3

Removing encryption from the private key (which is not recommended)
involves using the rsa command utility as follows:

193

CHAPTER E | OpenSSL Utilities

openssl rsa -informPEM-in M/Key. pem-outformPEM-out M/Key2. pem

Note: Do not specify the same file for the -i n and - out parameters,
because this can corrupt the file.

194

Using OpenSSL Utilities

The ca Utility

Purpose of the ca utility

Creating a new CA

Options

You can use the ca utility create X.509 certificates by signing existing
signing requests. It is imperative that you check the details of a certificate
request before signing. Your organization should have a policy with respect
to the issuing of certificates. Before implementing CAs, refer to “Managing
Certificates” on page 207 for more information.

The ca utility is used to sign certificate requests thereby creating a valid
X.509 certificate which can be returned to the request submitter. It can also
be used to generate Certificate Revocation Lists (CRLS). For information on
the ca - pol i cy and - nare options, refer to “The OpenSSL Configuration
File” on page 197.

To create a new CA using the openssl ca utility, two files (seri al and

i ndex. t xt) need to be created in the location specified by the openssl|
configuration file that you are using. See also “Set Up Your Own CA” on
page 219.

The options supported by the openssl ca utility are as follows:

-ver bose - Tal k al ot while doing things

-config file - Aconfig file

-nane arg - The particular CA definition to use

-gencrl - Cenerate a new CRL

-crldays days - Days is when the next CRL is due

-crlhours hours - Hours is when the next CRL is due

-days arg - nunber of days to certify the certificate for

-md arg - nd to use, one of mi2, md5, sha or shal

-policy arg - The CA ‘policy’ to support

-keyfile arg - PEMprivate key file

-key arg - key to decode the private key if it is
encrypt ed

-cert - The CA certificate

-in file - The input PEM encoded certificate request(s)

195

CHAPTER E | OpenSSL Utilities

-out file - Wiere to put the output file(s)

-outdir dir - Were to put output certificates

-infiles.... - The last argunent, requests to process

-spkac file - File contains DN and signed public key and
chal | enge

- preserveDN - Do not re-order the DN

- bat ch - Do not ask questions

- msi e_hack - nsie nodifications to handle all thos

uni versal strings

Note: Most of the above parameters have default values as defined in
openssl . cnf.

Using the ca Utility Converting a private key to PEM format from DER format involves using the
ca utility as shown in the following example. To sign the supplied CSR
M/Req. pemto be valid for 365 days and create a new X.509 certificate in
PEM format, use the ca utility as follows:

openssl ca -config ss/_conf_path_name -days 365
-in M/Reg. pem -out M/NewCert. pem

196

The OpenSSL Configuration File

The OpenSSL Configuration File

Overview A number of OpenSSL commands (for example, req and ca) take a - config
parameter that specifies the location of the openssl| configuration file. This
section provides a brief description of the format of the configuration file and
how it applies to the req and ca commands. An example configuration file is
listed at the end of this section.

Structure of openssl . cnf The openssl . cnf configuration file consists of a number of sections that
specify a series of default values that are used by the openssl commands.

In this section This section contains the following subsections:
[req] Variables page 198
[ca] Variables page 199
[policy] Variables page 200
Example openssl.cnf File page 201

197

CHAPTER E | OpenSSL Utilities

[req] Variables

Overview of the variables

def aul t _bi t s configuration
variable

defaul t _keyfil e configuration
variable

di sti ngui shed_nane
configuration variable

198

The req section contains the following variables:

default _bits = 1024

defaul t _keyfile = privkey. pem

di sti ngui shed_nane = reqg_di sti ngui shed_narme
attributes = reqg_attributes

The def aul t _bi t s variable is the default RSA key size that you wish to use.
Other possible values are 512, 2048, and 4096.

The def aul t _keyfil e variable is the default name for the private key file
created by req.

The di sti ngui shed_name variable specifies the section in the configuration
file that defines the default values for components of the distinguished name
field. The req_attri but es variable specifies the section in the configuration
file that defines defaults for certificate request attributes.

The OpenSSL Configuration File

[ca] Variables

Choosing the CA section

Overview of the variables

You can configure the file openssl . cnf to support a number of CAs that
have different policies for signing CSRs. The - nane parameter to the ca
command specifies which CA section to use. For example:

openssl ca -name MCa ...

This command refers to the CA section [M/Ca] . If - nare is not supplied to
the ca command, the CA section used is the one indicated by the

def aul t _ca variable. In the “Example openssl.cnf File” on page 201, this is
set to CA defaul t (which is the name of another section listing the defaults
for a number of settings associated with the ca command). Multiple
different CAs can be supported in the configuration file, but there can be
only one default CA.

Possible [ca] variables include the following

dir: The location for the CA database
The database is a sinple text database containing the
following tab separated fields:

st at us: Avalue of ‘R - revoked, ‘E -expired or ‘V valid
i ssued date: Wen the certificate was certified

revoked date: Wien it was revoked, blank if not revoked

serial nunber: The certificate serial nunber

certificate: Wiere the certificate is | ocated

O\ The name of the certificate

The serial nunber field should be unique, as should the CN/st at us
combination. The ca utility checks these at startup.

certs: This is where all the previously issued certificates are
kept

199

CHAPTER E | OpenSSL Utilities

[policy]l Variables

Choosing the policy section

Example policy section

The mat ch policy value

The optional policy value

The suppl i ed policy value

200

The policy variable specifies the default policy section to be used if the

- pol i cy argument is not supplied to the ca command. The CA policy section
of a configuration file identifies the requirements for the contents of a
certificate request which must be met before it is signed by the CA.

There are two policy sections defined in the “Example openssl.cnf File” on
page 201: pol i cy_mat ch and pol i cy_anyt hi ng.

The pol i cy_mat ch section of the example openssi . cnf file specifies the
order of the attributes in the generated certificate as follows:

count r yNarre

st at eO Provi nceNane

or gani zat i onNare

or gani zat i onal Uni t Nane
commonNane

enai | Addr ess

Consider the following value:
countryNanme = match
This means that the country name must match the CA certificate.

Consider the following value:
organi sational Unit Nane = opti onal
This means that the or gani sat i onal Uni t Nane does not have to be present.

Consider the following value:
commonNane = suppl i ed
This means that the commonNane must be supplied in the certificate request.

The OpenSSL Configuration File

Example openssl.cnf File

Listing

The following listing shows the contents of an example openssl . cnf
configuration file:

B R R R H R T
openssl exanpl e configuration file.

This is nostly used for generation of certificate requests.
B R R T R T
[ca]

default _ca= CA defaul t # The default ca section

B R R T R T

[CAdefault]
dir=/opt/iona/ O bi xSSL1. Oc/ certs # Wiere everything is kept

certs=$dir # Wiere the issued certs are kept
cri_dir= $dir/crl # Where the issued crl are kept
dat abase= $dir/index.txt # database index file
new certs_dir= $dir/new certs # default place for new certs
certificate=$dir/CA ObixCA # The CA certificate
serial = $dir/serial # The current serial nunber
crl=$%dir/crl.pem# The current CRL

private_key= $dir/ CA O bi xCA pk # The private key
RANDFI LE= $dir/.rand # private random nunber file
defaul t _days= 365 # how long to certify for
defaul t _crl_days= 30 # how | ong before next CRL
defaul t _md= nd5 # whi ch nessage digest to use
preserve= no # keep passed DN ordering

Afewdifferent ways of specifying how closely the request
shoul d
conformto the details of the CA

pol i cy= pol i cy_mat ch
For the CA policy

[poli cy_mat ch]

count ryNane= mat ch

st at eQ Provi nceNane= nat ch

or gani zat i onNarme= nat ch

or gani zat i onal Uni t Name= opt i onal
conmonNarre= suppl i ed

201

CHAPTER E | OpenSSL Utilities

enai | Addr ess= opti onal

For the ‘anything’ policy
At this point intime, you nust list all acceptable ‘object’
types

[policy_anything]

countryNane = opti onal

st at eQ Provi nceNanme= opt i onal

| ocal i t yNarme= opti onal

organi zat i onNane = opti onal

or gani zat i onal Uni t Name = opti onal
comonNamre= suppl i ed

enai | Addr ess= opti onal

[req]

default_bits = 1024

def aul t _keyfile= privkey. pem

di sti ngui shed_name = req_di sti ngui shed_nare
attributes = reqg_attributes

[req_distingui shed_nane]

countryNane= Country Nane (2 letter code)
countryNane_nin= 2

countryName_nax = 2

stat eQ Provi nceNane= State or Province Narme (full nane)
I ocalityName = Locality Name (eg, city)

organi zati onName = QO gani zati on Nane (eg, conpany)
organi zational UnitNane = Organi zational Unhit Nane (eg, section)
commonNare = Common Narme (eg. YOUR nane)
comronNane_nax = 64

enai | Address = Emai | Address

enai | Address_nmax = 40

[req_attributes]

chal | engePassword = A chal | enge password
chal | engePassword_nin = 4

chal | engePasswor d_nmax = 20

unst ruct ur edNane= An optional conpany narme

202

APPENDIX F

License Issues

This appendix contains the text of licenses relevant to Orbix.

In this appendix This appendix contains the following section:

OpenSSL License page 204

203

CHAPTER F | License Issues

OpenSSL License

Overview The licence agreement for the usage of the OpenSSL command line utility
shipped with Orbix2000 SSL/TLS is as follows:

The penSSL tool kit stays under a dual license, i.e. both the conditions of
the penSSL License and the original SSLeay |icense apply to the toolkit.
See bel ow for the actual |icense texts. Actually both |icenses are BSD-style
pen Source licenses. In case of any license issues related to QpenSSL

pl ease contact openssl -core@penssl . org.

penSSL Li cense

* Copyright (c) 1998-1999 The (penSSL Project. Al rights reserved.
* Redistribution and use in source and binary forns, with or without
* nodification, are permtted provided that the foll ow ng conditions

* are met:

* 1. Redistributions of source code nmust retain the above copyri ght
* notice, this list of conditions and the follow ng disclainer.

* 2. Redistributions in binary formnust reproduce the above copyright

* notice, this list of conditions and the followi ng disclainmer in
* the docunentation and/or other materials provided with the
* distribution.

* 3. Al advertising naterials mentioning features or use of this

* sof tware nmust display the foll owi ng acknow edgnent :

* "This product includes software devel oped by the QoenSSL Proj ect
* for use in the penSSL Tool kit. (http://ww. openssl.org/)"

* 4. The names "QpenSSL Tool kit" and "QpenSSL Project” must not be used to

* endorse or pronote products derived fromthis software w thout
* prior witten pernission. For witten permssion, please contact
* openssl - core@penssl . or g.

* 5. Products derived fromthis software nay not be called "QpenSSL"
* nor nay "QpenSSL" appear in their nanes without prior witten
* perm ssion of the QpenSSL Proj ect.

204

OpenSSL License

* 6. Redistributions of any formwhatsoever must retain the follow ng
* acknow edgrrent :

* "Thi s product includes software devel oped by the penSSL Proj ect
* for use in the QpenSSL Tool kit (http://ww:. openssl.org/)"

* TH'S SOFTWARE | S PROVI DED BY THE QpenSSL PRQJECT ""AS IS ' AND ANY
* EXPRESSED CR | MPLI ED WARRANTI ES, | NCLUDING BUT NOT LIMTED TO THE
* | MPLI ED WARRANTI ES CF MERCHANTABI LI TY AND FI TNESS FCR A PARTI QLAR
* PURPCBE ARE DI SCLAIMED. I N NO EVENT SHALL THE QpenSSL PRQJIECT CR
* | TS CONTR BUTCRS BE LI ABLE FCR ANY DI RECT, | NDI RECT, | NG DENTAL,

* SPEA AL, EXEMPLARY, CR CONSEQUENTI AL DAMVAGES (I NCLUDING BUT

* NOT LIMTED TO PROCUREMENT CF SUBSTI TUTE GOCDS CR SERVI CES;

* LOBS OF USE, DATA, OR PRCHI TS, CR BUSI NESS | NTERRUPTI QN

* HONEVER CAUSED AND ON ANY THECRY CF LIABILITY, WHETHER I N CONTRACT,
* STRICT LIABILITY, OR TCRT (I NCLUDI NG NEGLI GENCE CR OTHERW SE)

* ARISING IN ANY WAY QUT OF THE USE OF TH'S SCFTWARE, EVEN | F ADVI SED
* CF THE PCSSI BI LI TY CF SUCH DAVACGE

* This product includes cryptographic software witten by Eric Young
* (eay@ryptsoft.con). This product includes software witten by Tim
* Hudson (tj h@ryptsoft.conj.

Original SSLeay License

/* Copyright (Q 1995-1998 Eric Young (eay@ryptsoft.com
* Al rights reserved.

* This package is an SSL inplenmentation witten
* by Eric Young (eay@ryptsoft.con).
* The inplenentation was witten so as to conformwi th Netscapes SSL.

* This library is free for coomercial and non-commercial use as |long as
* the followi ng conditions are aheared to. The follow ng conditions

* apply to all code found in this distribution, be it the R4, RSA

* | hash, DES, etc., code; not just the SSL code. The SSL docunentation
* included with this distribution is covered by the sane copyright terns
* except that the holder is TimHudson (tjh@ryptsoft.con).

* Copyright remains Eric Young's, and as such any Copyright notices in

* the code are not to be renoved.

* |f this package is used in a product, Eric Young shoul d be given attribution
* as the author of the parts of the library used.

205

CHAPTER F | License Issues

* This can be in the formof a textual message at programstartup or
* in docunentation (online or textual) provided with the package.

* Redistribution and use in source and binary forns, with or without
* nodification, are permtted provided that the follow ng conditions
* are net:

* 1. Redistributions of source code nust retain the copyright

* notice, this list of conditions and the follow ng discl ai ner.

* 2. Redistributions in binary formnust reproduce the above copyright

* notice, this list of conditions and the follow ng disclaimer in the

* docunentation and/or other materials provided with the distribution.

* 3. Al advertising naterials nmentioning features or use of this software

* nust display the follow ng acknow edgenent :

* "This product includes cryptographic software witten by

* Eric Young (eay@ryptsoft.com"

* The word 'cryptographic' can be left out if the rouines fromthe library
* bei ng used are not cryptographic related :-).

* 4. If you include any Wndows specific code (or a derivative thereof) from

* the apps directory (application code) you rmust include an acknow edgenent:
* "This product includes software witten by Ti mHudson (tjh@ryptsoft.com"

* THS SOFTWARE | S PROVIDED BY ERIC YONG ""AS IS' AND

* ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDING BUT NOT LIMTED TQ THE

* | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI QULAR PURPCSE
* ARE DISCLAIMED. | N NO EVENT SHALL THE AUTHOR CR OONTR BUTCRS BE LI ABLE
* FOR ANY DI RECT, | NDIRECT, | NG DENTAL, SPEQ AL, EXEMPLARY, CR CONSEQUENTI AL
* DAMAGES (I NCLUDING BUT NOT LIMTED TQ PROCUREMENT CF SUBSTI TUTE GOCDS

* OR SERVICES;, LCSS OF USE, DATA, OR PRCFITS, COR BUSINESS | NTERRUPTI ON)

* HONEVER CAUSED AND ON ANY THECRY CF LI ABILITY, WHETHER I N OONTRACT, STR CT
* LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE CR OTHERW SE) AR SI NG I N ANY WAY
* QUT OF THE USE OF TH'S SCFTWARE, EVEN | F ADVI SED CF THE PCSSI BI LI TY CF

* SUCH DANVAGE

* The licence and distribution terns for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot sinply be
* copied and put under another distribution |icence

* [including the G\U Public Licence.]

*/

206

Index

Symbols
.NET

and principal propagation 135
<action-role-mapping> tag 57
<interface> tag 57
<name> tag 57
<realm> tag 49
<role> tag 49
<server-name> tag 57
<users> tag 49

A
ACL
<action-role-mapping> tag 57
<interface> tag 57
<name> tag 57
<server-name> tag 57
action_role_mapping configuration variable 55
action-role mapping file 55
action-role mapping file, example 56
action-role mapping
and role-based access control 43
action_role_mapping configuration variable 55
action-role mapping file
<action-role-mapping> tag 57
<interface> tag 57
<name> tag 57
<server-name> tag 57
CORBA
configuring 55
example 56
administration
OpenSSL command-line utilities 69
AgentSecret property 35
ASN.1 61
asp plug-in
default_password configuration value 130
security_type configuration variable 130
association options
and cipher suite constraints 122
client secure invocation policy, default 112
compatibility with cipher suites 123
SSL/TLS

Confidentiality 110
DetectMisordering 110
DetectReplay 110
EstablishTrustinClient 111
EstablishTrustinTarget 111
Integrity 110
NoProtection 110
setting 108
target secure invocation policy, default 114
authentication
own certificate, specifying 94
pass phrase
dialog prompt, C++ 98
in configuration 99
password file, from 98
SSL/TLS
mutual 90
target only 87
trusted CA list 93
authorization
role-based access control 43

roles
creating 45
special 47

authorization realm
adding a server 44
IONAGIobalRealm realm 47
iSF 43
roles in 45
servers in 44
special 47
authorization realms
creating 45

C

CA 60
choosing a host 64
commercial CAs 63
index file 71
list of trusted 66
multiple CAs 66
private CAs 64
private key, creating 72

207

INDEX

security precautions 64
See Alsocertificate authority
self-signed 72

serial file 71
trusted list 78, 93
199

CA, settingup 70
CACHE_CLIENT session caching value 125
CACHE_NONE session caching value 125
CACHE_SERVER_AND_CLIENT session caching
value 125
CACHE_SERVER session caching value 125
caching
CACHE_CLIENT session caching value 125
CACHE_NONE session caching value 125
CACHE_SERVER_AND_CLIENT session caching
value 125
CACHE_SERVER session caching value 125
SSL/TLS
cache size 125
validity period 125
Caching sessions 125
CAs 70
ca utility 195
certificate authority
and certificate signing 60
certificate_constraints_policy variable 102
Certificates
chain length 101
constraints 102
certificates
chaining 65
constraint language 102
contents of 61
creating and signing 73
deployment, 77
importing and exporting 68
length limit 66
own, specifying 94
pass phrase 98
peer 65
PKCS#12 file 67
public key 61
public key encryption 117
security handshake 87, 91
self-signed 65, 72
serial number 61
signing 60, 74
signing request 73

208

trusted CA list 78, 93
X.509 60
certificate signing request 73
common name 74
signing 74
chaining of certificates 65
ciper suites
order of 121
cipher suites
ciphersuites configuration variable 120
compatibility algorithm 123
compatibility with association options 123
default list 121
definitions 118
effective 122
encryption algorithm 117
exportable 118
integrity-only ciphers 117
key exchange algorithm 117
mechanism policy 120
secure hash algorithm 117
secure hash algorithms 118
security algorithms 117
specifying 116
standard ciphers 117
ciphersuites configuration variable 120
client secure invocation policy 122
IIOP/TLS 112
ClientSecurelnvocationPolicy policy 109
colocated invocations
and secure associations 106
colocation
incompatibility with principal propagation 128
common names
uniqueness 74
Confidentiality association option 110
Confidentiality option 110
Configuration file 197
constraint language 102
Constraints
for certificates 102
CORBA
action-role mapping file 55
action-role mapping file, example 56
configuring principal propagation 129
principal propagation 128
CSR 73

D
data encryption standard

see DES
default_password configuration value 130
DES

symmetric encryption 118
DetectMisordering association option 110
DetectMisordering option 110
DetectReplay association option 110
DetectReplay option 110

E
effective cipher suites

definition 122
enable_principal_service_context configuration

variable 129

encryption algorithm

RC4 118
encryption algorithms 117

DES 118

symmetric 118

triple DES 118
enterprise security service

and iSF security domains 41
EstablishTrustInClient association option 111
EstablishTrustInClient option 111
EstablishTrustinTarget association option 111
EstablishTrustinTarget option 111
exportable cipher suites 118

F

file adapter 26
properties 26

file domain
<realm> tag 49
<users> tag 49
example 48
file location 48
managing 48

G

GroupBaseDN property 30
GroupNameAttr property 30
GroupObjectClass property 30
GroupSearchScope property 31

INDEX

H
HTTPS
ciphersuites configuration variable 120

|
IIOP/TLS
ciphersuites configuration variable 120
index file 71
Integrity association option 110
integrity-only ciphers 117
Integrity option 110
interoperability
explicit principal header 136
0S/390, SSL/TLS 120
with .NET 135
with Orbix applications 128
IONAGIlobalRealm realm 47
is2.properties file 26
iS2 adapters
enterprise security service 41
file domain
managing 48
LDAP domain
managing 50
SiteMinder domain
managing 51
iS2 server
configuring 25
file adapter 26
is2.properties file 26
LDAP adapter 28
LDAP adapter, properties 29
log4j logging 37
security infomation file 26
SiteMinder adapter, configuring 34
iSF
security domain
creating 42
user account
creating 42

K
key exchange algorithms 117

L

LDAP adapter 28
basic properties 31
GroupBaseDN property 30

209

INDEX

GroupNameAttr property 30
GroupObjectClass property 30, 31
LDAP server replicas 32
MemberDNAttr property 31
PrincipalUserDN property 33
PrincipalUserPassword property 33
properties 29
replica index 32
RoleNameAttr property 30
SSLCACertDir property 33
SSLClientCertFile property 33
SSLClientCertPassword property 33
SSLEnabled property 33
UserBaseDN property 30
UserNameAttr property 30
UserObjectClass property 30
UserRoleDNAttr property 30

LDAP domain
managing 50

Lightweight Directory Access Protocol
see LDAP

logdj 37
documentation 37
properties file 37

logging
logdj 37

M
max_chain_length_policy configuration variable 101
MD5 110, 118
MechanismPolicy 110
mechanism policy 120
MemberDNAttr property 31
message attributes

and routing 131
message digest b

see MD5
message digests 110
message fragments 110
multiple CAs 66
mutual authentication 90

N

NoProtection association option 110
NoProtection option 110
NoSuchAttributeException exception 134

210

0]
OpenSSL 64, 187
openSSL

configuration file 197

utilities 188
openSSL.cnf example file 201
OpenSSL command-line utilities 69
05/390

interoperability with 120

P

pass phrase 98
dialog prompt, C++ 98
in configuration 99
password file, from 98
peer certificate 65
PKCS#12 files
creating 68, 73
definition 67
importing and exporting 68
pass phrase 98
viewing 68
POA_Coloc interceptor 128
policies
client secure invocation 122
ClientSecurelnvocationPolicy 109
[IOP/TLS
client secure invocation 112
target secure invocation 114
target secure invocation 122
TargetSecurelnvocationPolicy 109
200
principals
and colocation 128
configuring propagation 129
explicit principal header 136
from O/S username 129
interoperability 128
interoperating with .NET 135
NoSuchAttributeException exception 134
overview 128
reading on the server side 133
routing configuration 131
setting on the client side 132
principal_sponsor
auth_method_data 154, 156
use_principal_sponsor 153, 155
principal_sponsor Namespace Variables 153, 155

PrincipalUserDN property 33
PrincipalUserPassword property 33
private key 72
propagatelnputAttribute WSDL tag 131
protocol version

interoperability with 0S/390 120
protocol_version configuration variable 120
public key encryption 117
public keys 61

R
RC4 encryption 118
realm
see authorization realm
Replay detection 110
198
req utility 191
req Utility command 191
Rivest Shamir Adleman
see RSA
role-based access control 43
example 46
RoleNameAttr property 30
roles
creating 45
special 47
root certificate directory 66
routing
and principal propagation 131
RSA 117
symmetric encryption algorithm 118
RSA_EXPORT_WITH_DES40_CBC_SHA cipher
suite 117, 123
RSA_EXPORT_WITH_RC4_40_MD5 cipher
suite 117, 123
rsa utility 193
rsa Utility command 193
RSA_WITH_3DES_EDE_CBC_SHA cipher
suite 117, 123
RSA_WITH_DES CBC_SHA cipher suite 117, 123
RSA_WITH_NULL_MD5 cipher suite 117, 123
RSA_WITH_NULL_SHA cipher suite 117, 123
RSA_WITH_RC4 128 MD5 cipher suite 117, 123
RSA_WITH_RC4 128 SHA cipher suite 117, 123

S

secure associations
client behavior 112

INDEX

definition 106

TLS Coloc interceptor 106
secure hash algorithms 117, 118
security algorithms

and cipher suites 117
security domain

creating 42
security domains

architecture 41

iSF 42
security handshake

cipher suites 116

SSU/TLS 87,91
security infomation file 26
security_type configuration variable 130
self-signed CA 72
self-signed certificate 65
send_principal configuration variable 129
serial file 71
serial number 61
ServerAddress property 35
ServerAuthnPort property 35
session_cache_size configuration variable 125
session_cache_validity_period configuration

variable 125

session_caching_policy configuraion variable 125
session_caching_policy variable 125
SHA 118
SHA1 110
signing certificates 60
SiteMinder adapter

AgentSecret property 35

configuring 34

properties 34

ServerAddress property 35

ServerAuthnPort property 35
SiteMinder domain

managing 51
SOAP

principal propagation 128
SOAP binding

configuring principal propagation 129
Specifying ciphersuites 116
SSL/TLS

association options

setting 108

caching validity period 125

cipher suites 116

colocated invocations 106

211

INDEX

encryption algorithm 117
key exchange algorithm 117
mechanism policy 120

protocol_version configuration variable 120

secure associations 106

secure hash algorithm 117

secure hash algorithms 118

security handshake 87, 91

session cache size 125

TLS session 106
SSLCACertDir property 33
SSLClientCertFile property 33

SSLClientCertPassword property 33

SSLeay 64
SSLEnabled property 33
standard ciphers 117

symmetric encryption algorithms 118

I

Target
choosing behavior 114
target authentication 87

target secure invocation policy 122

[IOP/TLS 114

TargetSecurelnvocationPolicy policy 109

TLS

session caching 125
TLS_Coloc interceptor 106
TLS session

definition 106
triple DES 118
trusted CA list 78
trusted CA list policy 93
trusted CAs 66

U

use_message_attributes() function 132, 133

user

account

creating 42
UserBaseDN property 30
UserNameAttr property 30
UserObjectClass property 30
UserRoleDNALttr property 30
UserSearchScope property
LDAP adapter

212

UserObjectClass property 30

\'}
Variables 198, 199, 200

X
X.509
public key encryption 117
X.509 certificate
definition 60
X.509 certificates 59
x509 utility 189

INDEX

213

INDEX

214

INDEX

215

INDEX

216

	Artix Security Guide
	List of Tables
	List of Figures
	Preface
	1 Introduction to Security
	Security for SOAP Bindings
	Secure Hello World Example
	HTTPS Connection
	IIOP/TLS Connection
	Security Layer

	2 Configuring the iS2 Server
	Configuring the File Adapter
	Configuring the LDAP Adapter
	Configuring the SiteMinder Adapter
	Additional iS2 Configuration
	Configuring the Log4J Logging

	3 Managing Users, Roles and Domains
	Introduction to Domains and Realms
	iSF Security Domains
	iSF Authorization Realms

	Managing a File Security Domain
	Managing an LDAP Security Domain
	Managing a SiteMinder Security Domain

	4 Managing Access Control Lists
	Overview of Artix ACL Files
	Artix Action-Role Mapping ACL

	5 Managing Certificates
	What are X.509 Certificates?
	Certification Authorities
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	PKCS#12 Files
	Creating Your Own Certificates
	Set Up Your Own CA
	Use the CA to Create Signed Certificates

	Deploying Certificates
	Overview of Certificate Deployment
	Deploying Trusted Certificate Authority Certificates
	Deploying Application Certificates

	6 Configuring HTTPS and IIOP/TLS Authentication
	Requiring Authentication
	Target-Only Authentication
	Mutual Authentication

	Specifying Trusted CA Certificates
	Specifying an Application’s Own Certificate
	Providing a Certificate Pass Phrase
	Certificate Pass Phrase for HTTPS
	Certificate Pass Phrase for IIOP/TLS

	Advanced IIOP/TLS Configuration Options
	Setting a Maximum Certificate Chain Length
	Applying Constraints to Certificates

	7 Configuring IIOP/TLS Secure Associations
	Overview of Secure Associations
	Setting IIOP/TLS Association Options
	Secure Invocation Policies
	Association Options
	Choosing Client Behavior
	Choosing Target Behavior

	Specifying IIOP/TLS Cipher Suites
	Supported Cipher Suites
	Setting the Mechanism Policy
	Constraints Imposed on Cipher Suites

	Caching IIOP/TLS Sessions

	8 Principal Propagation
	Introduction to Principal Propagation
	Configuring
	Programming
	Interoperating with .NET
	Explicitly Declaring the Principal Header
	Modifying the SOAP Header

	Appendix A Security Configuration
	plugins Namespace
	policies Namespace
	principal_sponsor Namespace
	principal_sponsor:csi Namespace

	Appendix B iS2 Configuration
	Properties File Syntax
	iS2 Properties File
	Cluster Properties File
	log4j Properties File

	Appendix C ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	Appendix D Action-Role Mapping DTD
	Appendix E OpenSSL Utilities
	Using OpenSSL Utilities
	The x509 Utility
	The req Utility
	The rsa Utility
	The ca Utility

	The OpenSSL Configuration File
	[req] Variables
	[ca] Variables
	[policy] Variables
	Example openssl.cnf File

	Appendix F License Issues
	OpenSSL License

	Index

