Progress. | Artix.

ARTIX

Security Guide

Version 5.6, December 2011

susiness making procress” PROGRESS

software

© 2011 Progress Software Cor poration and/or itssubsidiaries or affiliates. All rights
reserved.

These materials and all Progre£s® software products are copyrighted and all rights are
reserved by Progress Software Corporation. Theinformation in these materialsis subject to
change without notice, and Progress Software Corporation assumes no responsibility for
any errorsthat may appear therein. The references in these materials to specific platforms
supported are subject to change.

Actional, Apama, Artix, Business Empowerment, DataDirect (and design), DataDirect Con-
nect, DataDirect Connect64, DataDirect Technologies, DataDirect XML Converters, Data-
Direct XQuery, DataXtend, Dynamic Routing Architecture, EdgeXtend, Empowerment
Center, Fathom, Fuse Mediation Router, Fuse Message Broker, Fuse Services Framework,
IntelliStream, IONA, Making Software Work Together, Mindreef, ObjectStore, OpenEdge,
Orbix, PeerDirect, POSSENET, Powered by Progress, PowerTier, Progress, Progress
DataXtend, Progress Dynamics, Progress Business Empowerment, Progress Empowerment
Center, Progress Empowerment Program, Progress OpenEdge, Progress Profiles, Progress
Results, Progress Software Developers Network, Progress Sonic, ProVision, PS Select,
Savvion, Sequelink, Shadow, SOAPscope, SOAPStation, Sonic, Sonic ESB, SonicMQ,
Sonic Orchestration Server, SpeedScript, Stylus Studio, Technical Empowerment, Web-
Speed, Xcalia (and design), and Your Software, Our Technol ogy—Experience the Connec-
tion are registered trademarks of Progress Software Corporation or one of its affiliates or
subsidiaries in the U.S. and/or other countries. AccelEvent, Apama Dashboard Studio,
Apama Event Manager, Apama Event Modeler, Apama Event Store, Apama Risk Firewall,
AppsAlive, AppServer, ASPen, ASP-in-a-Box, BusinessEdge, Business Making Progress,
Cache-Forward, CloudEdge, DataDirect Spy, DataDirect SupportLink, Fuse, FuseSource,
Future Proof, GVAC, High Performance I ntegration, ObjectStore | nspector, ObjectStore
Performance Expert, OpenAccess, Orbacus, Pantero, POSSE, ProDataSet, Progress Arcade,
Progress CloudEdge, Progress Control Tower, Progress ESP Event Manager, Progress ESP
Event Modeler, Progress Event Engine, Progress RFID, Progress RPM, Progress Software
Business Making Progress, PSE Pro, SectorAlliance, SeeThinkAct, Shadow z/Services,
Shadow z/Direct, Shadow z/Events, Shadow z/Presentation, Shadow Studio, SmartBrowser,
SmartComponent, SmartDataBrowser, SmartDataObjects, SmartDataView, SmartDialog,
SmartFolder, SmartFrame, SmartObjects, SmartPanel, SmartQuery, SmartViewer, Smart-
Window, Sonic Business Integration Suite, Sonic Process Manager, Sonic Collaboration
Server, Sonic Continuous Availability Architecture, Sonic Database Service, Sonic Work-
bench, Sonic XML Server, The Brains Behind BAM, WebClient, and Who Makes Progress
are trademarks or service marks of Progress Software Corporation and/or its subsidiaries or
affiliatesin the U.S. and other countries. Javaisaregistered trademark of Oracle and/or its
affiliates. Any other marks contained herein may be trademarks of their respective owners.

Third Party Acknowledgments:

Progress Artix ESB for C++ v5.6 incorporates Xalan v2.3.1technol ogies from the Apache
Software Foundation (http://www.apache.org). Such Apache technologies are subject to the
following terms and conditions: The Apache Software License, Version 1.1. Copyright (C)
1999-2002 The Apache Software Foundation. All rights reserved. Redistribution and use in
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: 1. Redistributions of source code must retain the above copy-
right notice, thislist of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, thislist of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution. 3.
The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/). Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. Thenames"Ant", "Xerces," "Xaan," "Log 4J," and "Apache Software Foundation" must
not be used to: endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org. 5. Products derived
from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "AS|S' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE. This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache Software
Foundation, please see http://www.apache.org/. Xalan was originally based on software
copyright (c) 1999, Lotus Development Corporation., http://www.lotus.com. Xerces was
originally based on software copyright (c) 1999, International Business Machines, Inc.,
http://www.ibm.com.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v2.4 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 1999-2001 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of condi-
tions and the following disclaimer.

http://www.apache.org
http://www.apache.org
http://www.apache.org
http://www.apache.org

2. Redistributions in binary form must reproduce the above copyright notice, thislist of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software devel oped by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names "Xerces' and "Apache Software Foundation” must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache”, nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE ISPROVIDED “ASIS' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Apache Xerces v2.5.0 technology from the
Apache Software Foundation ((http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 1999-2002 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of condi-
tions and the following disclaimer.

2. Redistributionsin binary form must reproduce the above copyright notice, thislist of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software devel oped by the Apache Soft-
ware Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.
4. The names "Xerces' and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache”, nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.

http://www.apache.org

THIS SOFTWARE ISPROVIDED "ASIS' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation and was originally based on software copyright (c) 1999,
International Business Machines, Inc., http://www.ibm.com. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Xerces C++ v1.7 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1. - Copy-
right (c) 1999-2004 The Apache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the fol-
lowing acknowledgment: "This product includes software developed by the Apache Soft-
ware Foundation (http://www.apache.org/).” Alternately, this acknowledgment may appear
in the software itself, if and wherever such third-party acknowledgments normally appear.

4. The names " Xaan" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE ISPROVIDED “ASIS' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-

ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individual s on behalf of the
Apache Software Foundation and was originally based on software copyright (c) 1999,

L otus Development Corporation., http://www.lotus.com. For more information on the
Apache Software Foundation, please see <http://www.apache.org/>.

Progress Artix ESB for C++ v5.6 incorporates Apache Velocity v1.3 technology from the
Apache Software Foundation (http://www.apache.org). Such Apache technology is subject
to the following terms and conditions: The Apache Software License, Version 1.1 - Copy-
right (c) 2000-2003 The A pache Software Foundation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgement: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/)." Alternately, this acknowledgement may
appear in the software itself, if and wherever such third-party acknowledgements normally
appear.

4, The names "The Jakarta Project”, "Velocity", and "Apache Software Foundation" must
not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache”, "Velocity" nor may
"Apache" appear in their names without prior written permission of the Apache Group.

THIS SOFTWARE ISPROVIDED “ASIS' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS
CLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates Log4J v1.2.6 technology from the Apache
Software Foundation (http://www.apache.org). Such Apache technology is subject to the
following terms and conditions. The Apache Software License, Version 1.1 - Copyright (C)
1999 The Apache Software Foundation. All rights reserved. Redistribution and use in

source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the
following acknowledgment: "This product includes software developed by the Apache
Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party acknowledgments normally
appear.

4. The names "log4j" and " Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache"
appear in their name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE ISPROVIDED "ASIS' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
ORITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLU DING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, ORTORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the
Apache Software Foundation. For more information on the Apache Software Foundation,
please see <http://www.apache.org/>.

(a) Progress Artix ESB for C++ v5.6 incorporates JDOM Beta 9 technology from JDOM.
Such technology is subject to the following terms and conditions. Copyright (C) 2000-2004
Jason Hunter & Brett McLaughlin. All rights reserved. Redistribution and usein source and
binary forms, with or without modification, are permitted provided that the following condi-
tions are met: 1. Redistributions of source code must retain the above copyright notice, this
list of conditions, and the following disclaimer. 2. Redistributions in binary form must
reproduce the above copyright notice, thislist of conditions, and the disclaimer that follows
these conditions in the documentation and/or other materials provided with the distribution.
3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact
<request_AT_jdom_DOT_org>. 4. Products derived from this software may not be called
"JDOM", nor may "JDOM" appear in their name, without prior written permission from the
JDOM Project Management <request_AT_jdom_DOT_org>. In addition, we request (but
do not require) that you include in the end-user documentation provided with the redistribu-
tion and/or in the software itself an acknowledgement equivalent to the following: "This

product includes software developed by the JIDOM Project (http://www.jdom.org/)." Alter-
natively, the acknowledgment may be graphical using the logos available at http://
www.jdom.org/images/logos. THIS SOFTWARE ISPROVIDED ASISAND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JDOM
AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-
GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. This software
consists of voluntary contributions made by many individuals on behalf of the JDOM
Project and was originally created by Jason Hunter <jhunter AT jdom_DOT _org> and
Brett McLaughlin <brett_ AT_jdom_DOT_org>. For more information on the JDOM
Project, please see <http://www.jdom.org/>

Progress Artix ESB for C++ v5.6 incorporates IBM-ICU v2.6 and IBM-ICU v2.6.1 technol -
ogies from IBM. Such technologies are subject to the following terms and conditions: Cop-
yright (c) 1995-2003 International Business Machines Corporation and others All rights
reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the " Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge, pub-
lish, distribute, and/or sell copies of the Software, and to permit persons to whom the Soft-
wareis furnished to do so, provided that the above copyright notice(s) and this permission
notice appear in al copies of the Software and that both the above copyright notice(s) and
this permission notice appear in supporting documentation. THE SOFTWARE 1S PRO-
VIDED "ASIS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS
INCLUDED IN THISNOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Except as contained in this notice, the name of a copyright holder shall not be used in adver-
tising or otherwise to promote the sale, use or other dealingsin this Software without prior
written authorization of the copyright holder. All trademarks and registered trademarks
mentioned herein are the property of their respective owners.

Progress Artix ESB for C++ v5.6 incorporates John Wilson MinML v1.7 technology from
John Wilson. Such technology is subject to the following terms and conditions: Copyright
(c) 1999, John Wilson (tug@wilson.co.uk). All rights reserved. Redistribution and use in

source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met: Redistributions of source code must retain the above copyright

notice, thislist of conditions and the following disclaimer. Redistributionsin binary form
must reproduce the above copyright notice, thislist of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. All
advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by John Wilson. The name of
John Wilson may not be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED BY JOHN
WILSON “ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL JOHN WILSON BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates SourceForge - NET-SNMP v5.0.7 technol-
ogy from SourceForge and Networks Associates Technology, Inc. Such technology is sub-
ject to the following terms and conditions: Various copyrights apply to this package, listed
in various separate parts below. Please make surethat you read all the parts. Up until 2001,
the project was based at UC Davis, and thefirst part coversall code written during thistime.
From 2001 onwards, the project has been based at SourceForge, and Networks Associates
Technology, Inc hold the copyright on behalf of the wider Net-SNM P community, covering
all derivative work done since then. An additional copyright section has been added as Part
3 below also under aBSD license for the work contributed by Cambridge Broadband Ltd. to
the project since 2001. An additional copyright section has been added as Part 4 below also
under aBSD license for the work contributed by Sun Microsystems, Inc. to the project since
2003. Code has been contributed to this project by many people over theyearsit hasbeenin
development, and a full list of contributors can be found in the README file under the
THANKS section. ---- Part 1: CMU/UCD copyright notice: (BSD like) ----- Copyright
1989, 1991, 1992 by Carnegie Mellon University. Derivative Work - 1996, 1998-2000.
Copyright 1996, 1998-2000 The Regents of the University of California. All Rights
Reserved. Permission to use, copy, modify and distribute this software and its documenta-
tion for any purpose and without fee is hereby granted, provided that the above copyright
notice appearsin all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of CMU and The Regents of the
University of Californianot be used in advertising or publicity pertaining to distribution of
the software without specific written permission. CMU AND THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA DISCLAIM ALL WARRANTIESWITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTA-
BILITY AND FITNESS. IN NO EVENT SHALL CMU OR THE REGENTS OF THE
UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM THE LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR

IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ----
Part 2: Networks Associates Technology, Inc copyright notice (BSD) ----- Copyright (c)
2001-2003, Networks A ssociates Technology, Inc. All rights reserved. Redistribution and
use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met: * Redistributions of source code must retain the above
copyright notice, thislist of conditions and the following disclaimer.* Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribu-
tion.* Neither the name of the Networks A ssociates Technology, Inc nor the names of its
contributors may be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE |S PROVIDED BY THE COPY-
RIGHT HOLDERS AND CONTRIBUTORS "ASIS' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. ---- Part 3: Cambridge Broadband Ltd. copyright notice
(BSD) ----- Portions of this code are copyright (c) 2001-2003, Cambridge Broadband Ltd.
All rights reserved. Redistribution and use in source and binary forms, with or without mod-
ification, are permitted provided that the following conditions are met:* Redistributions of
source code must retain the above copyright notice, thislist of conditions and the following
disclaimer.* Redistributionsin binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.* The name of Cambridge Broadband Ltd. may not be used to
endorse or promote products derived from this software without specific prior written per-
mission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER “ASIS"
AND ANY EXPRESSOR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY,WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 4: Sun
Microsystems, Inc. copyright notice (BSD) ----- Copyright © 2003 Sun Microsystems, Inc.,
4150 Network Circle, Santa Clara, California 95054, U.S.A. All rightsreserved. Useis
subject to license terms below. This distribution may include materials developed by third
parties. Sun, Sun Microsystems, the Sun logo and Solaris are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the U.S. and other countries. Redistribution and usein
source and binary forms, with or without modification, are permitted provided that the fol-

lowing conditions are met:* Redistributions of source code must retain the above copyright
notice, thislist of conditions and the following disclaimer.* Redistributionsin binary form
must reproduce the above copyright notice, thislist of conditions and the following dis-
claimer in the documentation and/or other material s provided with the distribution.* Neither
the name of the Sun Microsystems, Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written per-
mission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIA-
BILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE. ---- Part 5: Sparta, Inc copyright notice (BSD) ----- Copy-
right (c) 2003-2005, Sparta, Inc. All rights reserved. Redistribution and use in source and
binary forms, with or without modification, are permitted provided that the following condi-
tions are met:* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.* Redistributionsin binary form must repro-
duce the above copyright notice, thislist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.* Neither the name of
Sparta, Inc nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS
PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "ASIS' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 6: Cisco/BUPTNIC
copyright notice (BSD) ----- Copyright (¢) 2004, Cisco, Inc and Information Network
Center of Beijing University of Posts and Telecommunications. All rights reserved. Redis-
tribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:* Redistributions of source code must retain
the above copyright notice, thislist of conditions and the following disclaimer. * Redistribu-
tions in binary form must reproduce the above copyright notice, thislist of conditions and
the following disclaimer in the documentation and/or other materials provided with the dis-
tribution. * Neither the name of Cisco, Inc, Beijing University of Posts and Telecommunica-
tions, nor the names of their contributors may be used to endorse or promote products
derived from this software without specific prior written permission. THIS SOFTWARE IS

PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "ASIS'AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCI-
DENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---- Part 7: Fabasoft R& D Soft-
ware GmbH & Co KG copyright notice (BSD) ----- Copyright (c) Fabasoft R&D Software
GmbH & Co KG, 2003 oss@fabasoft.com Author: Bernhard Penz. Redistribution and usein
source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:* Redistributions of source code must retain the above copyright
notice, thislist of conditions and the following disclaimer.* Redistributionsin binary form
must reproduce the above copyright notice, thislist of conditions and the following dis-
claimer in the documentation and/or other materials provided with the distribution. * The
name of Fabasoft R& D Software GmbH & Co KG or any of its subsidiaries, brand or prod-
uct names may not be used to endorse or promote products derived from this software with-
out specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE
COPYRIGHT HOLDER "ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates OpenSSL/SSL eay v0.9.8i technology from
OpenSSL..org. Such Technology is subject to the following terms and conditions: LICENSE
ISSUES
The OpenSSL toolkit stays under adual license, i.e. both the conditions of the OpenSSL
License and the original SSLeay license apply to the toolkit. See below for the actual
license texts. Actually both licenses are BSD-style Open Source licenses. In case of any
license issues related to OpenSSL please contact openssl-core@openssl.org.

OpenSSL License ---------------
/*

Copyright (c) 1998-2008 The OpenSSL Project. All rightsreserved. Redistribution and use
in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of
conditions and the following disclaimer in the documentation and/or other materials pro-
vided with the distribution.

3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgment: "This product includes software developed by the OpenSSL
Project for usein the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project” must not be used to endorse or
promote products derived from this software without prior written permission. For written
permission, please contact openss-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL"
appear in their names without prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment:
"This product includes software devel oped by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT “ASIS' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL
PROJECT OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES;, LOSS OF USE, DATA, OR PROFITS; OR BUSINESSINTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay @cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License
Copyright (C) 1995-1998 Eric Young (eay @cryptsoft.com) All rights reserved.

This package is an SSL implementation written by Eric Young (eay @cryptsoft.com). The
implementation was written so asto conform with Netscapes SSL. Thislibrary isfreefor
commercial and non-commercial use aslong as the following conditions are aheared to.
The following conditions apply to all code found in this distribution, be it the RC4, RSA,
Ihash, DES, etc., code; not just the SSL code. The SSL documentation included with this
distribution is covered by the same copyright terms except that the holder is Tim Hudson
(tih@cryptsoft.com). Copyright remains Eric Young's, and as such any Copyright noticesin
the code are not to be removed. If this package is used in a product, Eric Young should be

given attribution as the author of the parts of the library used. This can bein the form of a
textual message at program startup or in documentation (online or textual) provided with
the package. Redistribution and use in source and binary forms, with or without modifica-
tion, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, thislist of conditionsand
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. All advertising materials mentioning features or use of this software must display the fol-
lowing acknowledgement: "This product includes cryptographic software written by Eric
Young (eay @cryptsoft.com)" The word 'cryptographic' can be left out if the rouines from
the library being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps direc-
tory (application code) you must include an acknowledgement: "This product includes soft-
ware written by Tim Hudson (tjh@cryptsoft.com)"

THISSOFTWARE ISPROVIDED BY ERIC YOUNG TASIS'AND ANY EXPRESSOR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBU-
TORSBE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE. The licence and distribution terms for any publically available ver-
sion or derivative of this code cannot be changed. i.e. this code cannot simply be copied and
put under another distribution licence [including the GNU Public Licence.]

Progress Artix ESB for C++ v5.6 incorporates Bouncycastle v1.3.3 cryptographic technol-
ogy from the Legion Of The Bouncy Castle (http://www.bouncycastle.org). Such Bouncy-
castle 1.3.3 cryptographic technology is subject to the following terms and conditions:
Copyright (c) 2000 - 2006 The Legion Of The Bouncy Castle (http://www.bouncycas-
tle.org). Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the " Software"), to deal in the Software with-
out restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit personsto whom the
Software is furnished to do so, subject to the following conditions: The above copyright
notice and this permission notice shall beincluded in al copies or substantial portions of the
Software. THE SOFTWARE ISPROVIDED "ASIS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRAN-
TIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERSBE LIABLE FOR ANY CLAIM, DAMAGESOR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Progress Artix ESB for C++ v5.6 incorporates PCRE 7.8 from PCRE for the purpose of
providing a set of functions that implement regular expression pattern matching using the
same syntax and semantics as Perl 5. Such technology is subject to the following terms and
conditions: PCRE LICENCE. PCRE isalibrary of functionsto support regular expressions
whose syntax and semantics are as close as possible to those of the Perl 5 language. Release
7 of PCRE is distributed under the terms of the "BSD" licence, as specified below. The doc-
umentation for PCRE, supplied inthe"doc" directory, isdistributed under the sameterms as
the software itself. The basic library functions are written in C and are freestanding. Also
included in the distribution is a set of C++ wrapper functions. THE BASIC LIBRARY
FUNCTIONS. Written by: Philip Hazel. Email local part: ph10. Email domain:
cam.ac.uk. University of Cambridge Computing Service, Cambridge, England. Copyright
(c) 1997-2008 University of Cambridge All rights reserved. THE C++ WRAPPER FUNC-
TIONS. Contributed by: Google Inc. Copyright (c) 2007-2008, Google Inc. All rights
reserved. THE "BSD" LICENCE. Redistribution and use in source and binary forms, with
or without modification, are permitted provided that the following conditions are met: *
Redistributions of source code must retain the above copyright notice, thislist of conditions
and the following disclaimer. * Redistributions in binary form must reproduce the above
copyright notice, thislist of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution. * Neither the name of the University
of Cambridge nor the name of Google Inc. nor the names of their contributors may be used
to endorse or promote products derived from this software without specific prior written
permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS"ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-
CLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Progress Artix ESB for C++ v5.6 incorporates mecpp v2.6.4 from Kiyoshi Matsui. Such
technology is subject to the following termsand conditions: Copyright (c) 1998, 2002-2007
Kiyoshi Matsui kmatsui @t3.rim.or.jp All rights reserved. This software including the files
in this directory is provided under the following license. Redistribution and use in source
and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE ISPROVIDED BY THE AUTHOR “ASIS' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSE-
QUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Progress Artix ESB for C++ v5.6 contains IBM Licensed Materials Copyright IBM Corpo-
ration 2010 (IBM 32-bit Runtime Environment for AlX, Java Technology Edition v 1.6.0
SR9 FP2).

Updated: December 5, 2011

Contents

List of Tables
List of Figures

Preface
What is Covered in This Book
Who Should Read This Book
The Artix Documentation Library

Part | Introduction to Security

Chapter 1 Getting Started with Artix Security
Secure SOAP Demonstration
Secure Hello World Example
HTTPS Connection
IITOP/TLS Connection
Security Layer
Secure Container Demonstration
Debugging with the openssl Utility

Chapter 2 Introduction to the Artix Security Framework
Artix Security Architecture
Types of Security Credential
Protocol Layers
Security Layer
Using Multiple Bindings
Caching of Credentials

Chapter 3 Security for HTTP-Compatible Bindings
Overview of HTTP Security

25

27

29
29
29
29
30

33
34
35
38

49
55
62

67
68
69
71
73
74
75

77
78

17

CONTENTS

Securing HTTP Communicationswith TLS
HTTP Basic Authentication
X.509 Certificate-Based Authentication

Chapter 4 Security for SOAP Bindings

Overview of SOAP Security
WSS X.509 Certificates and Authentication

Chapter 5 Security for CORBA Bindings

Overview of CORBA Security

Securing 11OP Communicationswith SSL/TLS

Securing Two-Tier CORBA Systemswith CSI

Securing Three-Tier CORBA Systemswith CSI

X.509 Certificate-Based Authentication for CORBA Bindings

Part Il TLS Security Layer

Chapter 6 Managing Certificates

What are X.509 Certificates?
Certification Authorities
Commercial Certification Authorities
Private Certification Authorities
Certificate Chaining
PKCS#12 Files
Special Requirementson HTTPS Certificates
Creating Your Own Certificates
Set Up Your Own CA
Use the CA to Create Signed PKCS#12 Certificates
Use the CA to Create Signed Certificates in a Java Keystore
Generating a Certificate Revocation List

Chapter 7 ConfiguringHTTPSand I1OP/TLS

18

Authentication Alter natives
Target-Only Authentication
Mutual Authentication
No Authentication

81
92
96

101
102
106

111
112
114
120
126
132

141
142
144
145
146
147
149
151
154
155
158
163
166

169
170
171
174
178

Specifying Trusted CA Certificates
Specifying Trusted CA Certificatesfor HTTPS
Specifying Trusted CA Certificatesfor IOP/TLS
Specifying an Application’s Own Certificate
Deploying Own Certificate for HTTPS
Deploying Own Certificate for IOP/TLS
Specifying a Certificate Revocation List
Advanced Configuration Options
Setting a Maximum Certificate Chain Length
Applying Constraints to Certificates

Chapter 8 Configuring Secure Associations
Overview of Secure Associations
Setting Association Options
Secure Invocation Policies
Association Options
Choosing Client Behavior
Choosing Target Behavior
Hints for Setting Association Options
Specifying Cipher Suites
Supported Cipher Suites
Setting the Mechanism Policy
Constraints Imposed on Cipher Suites
Caching Sessions

Part 11 The Artix Security Service

Chapter 9 Configuring the Artix Security Service
Configuring the Security Service
Security Service Accessible through IHOP/TLS
Security Service Accessible through HTTPS
Configuring the File Adapter
Configuring the LDAP Adapter
Configuring the Kerberos Adapter
Overview of Kerberos Configuration
Configuring the Adapter Properties
Configuring the KDC Connection

CONTENTS

182
183
188
190
191
196
198
200
201
202

205
206
208
209
211
213
215
217
221
222
226
229
232

235
236
237
246
257
259
265
266
268
272

19

CONTENTS

Configuring JAAS Login Properties
Configuring the LDAP Connection
Clustering and Federation
Federating the Artix Security Service
Failover
Client Load Balancing
Additional Security Configuration
Configuring Single Sign-On Properties
Configuring the Log4J Logging

Chapter 10 Managing Users, Roles and Domains
Introduction to Domains and Realms
Artix security domains
Artix Authorization Realms
Managing a File Security Domain
Managing an LDAP Security Domain

Chapter 11 Managing Access Control Lists
Overview of Artix ACL Files
ACL File Format
Generating ACL Files
Deploying ACL Files

Chapter 12 Configuring the Artix Security Plug-In
The Artix Security Plug-In
Configuring an Artix Configuration File
Configuringa WSDL Contract

Part IV Artix Security Features

Chapter 13 Single Sign-On
SSO and the Login Service
User name/Passwor d-Based SSO for SOAP Bindings

Chapter 14 Publishing WSDL Securely
Introduction to the WSDL Publish Plug-In

20

275
279
282
283
288
295
298
299
301

303
304
305
307
312
317

319
320
321
324
327

329
330
331
333

339
340
342

353
354

Deploying WSDL Publish in a Container
Preprocessing Published WSDL Contracts
Enabling SSL/TLSfor WSDL Publish Plug-In

Chapter 15 Partial M essage Protection

Introduction to SOAP PMP

Setting Up a Java Keystore

Artix Configuration

Policy Configuration
Introduction to Policy Configuration
Action Definitions
Action Properties
Protection Policy Definitions
Conditions

Example of WSS Signing and Encryption
Basic Signing and Encryption Scenario
Configuring the Client
Configuring the Server

Exception Handling

Chapter 16 Principal Propagation
Introduction to Principal Propagation
Configuring
Programming
I nteroperating with .NET

Explicitly Declaring the Principal Header
Modifying the SOAP Header

Chapter 17 Bridging between SOAP and CORBA
SOAP-to-CORBA Scenario
Overview of the Secure SOAP-to-CORBA Scenario
SOAP Client
SOAP-to-CORBA Router
CORBA Server
Single Sign-On SOAP-to-CORBA Scenario
Overview of the Secure SSO SOAP-to-CORBA Scenario
SSO SOAP Client
SSO SOAP-to-CORBA Router

CONTENTS

357
361
362

367
368
372
378
382
383
385
392
396
400
403
404
406
411
417

419
420
421
424
427
428
430

433

435
437
441
447
450
451
453
455

21

CONTENTS

CORBA-t0-SOAP Scenario
Overview of the Secure CORBA-to-SOAP Scenario
CORBA Client
CORBA-t0-SOAP Router
SOAP Server

Part V Programming Security

Chapter 18 Programming Authentication

Configuration for SOAP 1.2 Bindings
Propagating a User name/Password Token
Propagating a Kerberos Token
Propagating an X.509 Certificate

Chapter 19 Developing an iSF Adapter

iSF Security Architecture
iSF Server Module Deployment Options
iSF Adapter Overview
Implementing the | S2Adapter I nterface
Deploying the Adapter
Configuring iSF to Load the Adapter
Setting the Adapter Properties
Loading the Adapter Class and Associated Resource Files

Appendix A Artix Security

22

Applying Constraintsto Certificates
bus:initial_contract
bus:security

initial_references
password_retrieval_mechanism
plugins:asp

plugins.at_http
plugins:atli2_tls

plugins:cs

plugins:gsp

plugins:https

457
458
460
462
468

473
474
475
480
485

491
492
496
498
499
508
509
510
511

513
515
517
518
520
522
523
527
532
533
534
539

CONTENTS

plugins:iiop_tls 540
plugins:;java_server 544
plugins:login_client 547
plugins:login_service 548
plugins:schanne 549
plugins:security 550
plugins:security_cluster 553
plugins:wsdl_publish 554
plugins:wss 555
policies 557
policies.asp 564
policies:bindings 568
policies.csi 570
policies.external_token_issuer 573
policies: https 574
policies.iiop_tls 580
policies:security server 590
policies;soap:security 592
principal_sponsor 593
principal_sponsor:csi 597
principal_sponsor:http 600
principal_sponsor:https 602
principal_sponsor:iiop_tls 604
principal_sponsor:wsse 606
Appendix B iSF Configuration 609
Properties File Syntax 610
iSF PropertiesFile 611
Cluster PropertiesFile 636
log4j PropertiesFile 639
Appendix C ASN.1 and Distinguished Names 643
ASN.1 644
Distinguished Names 645

23

CONTENTS

Appendix D Action-Role Mapping DTD 649
Appendix E OpenSSL Utilities 655
Using OpenSSL Utilities 656

The x509 Utility 657

Thereq Utility 659

Thersa Utility 661

The ca Utility 663

Thes client Utility 665

Thes server Utility 667

The OpenSSL Configuration File 670

[req] Variables 671

[ca] Variables 672

[policy] Variables 673

Example openss.cnf File 674

Appendix F Licenselssues 677
OpenSSL License 678
Index 681

24

List of Tables

Table 1: Description of Different Types of Association Option

Table 2: Setting EstablishTrustinTarget and EstablishTrustInClient Association Options
Table 3: Setting Quality of Protection Association Options

Table 4: Setting the NoProtection Association Option

Table 5: Cipher Suite Definitions

Table 6: Association Options Supported by Cipher Suites

Table 7: LDAP Propertiesin the com.iona.isp.adapter.L DAP.param Scope
Table 8: The Artix Security Plug-In Configuration Variables

Table 9: <bus-security:security> Attributes

Table 10: Properties of an Action Definition

Table 11: Condition Properties

Table 12: Standard WSS Fault Codes

Table 13: Progress Proprietary Fault Codes

Table 14: Mechanism Policy Cipher Suites

Table 15: Mechanism Policy Cipher Suites

Table 16: Mechanism Policy Cipher Suites

Table 17: Commonly Used Attribute Types

217
218
219
220
224
230
263
331
333
392
400
418
418
560
576
585
646

25

LIST OF TABLES

26

List of Figures

Figure 1: Overview of the Secure HelloWorld Example

Figure 2: A HTTPS Connection in the HelloWorld Example
Figure 3: An IIOP/TLS Connection in the HelloWorld Example
Figure 4: The Security Layer in the HelloWorld Example
Figure 5: Connecting to a Secure Container Service

Figure 6: Protocol Layersin a HTTP-Compatible Binding

Figure 7: Protocol Layersin a SOAP Binding

Figure 8: Protocol Layersin a CORBA Binding

Figure 9: Example of an Application with Multiple Bindings

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:

HTTP-Compatible Binding Security Layers

Overview of Certificate-Based Authentication with HTTPS
Overview of Security for SOAP Bindings

Overview of Certificate-Based Authentication with WSS

A Secure CORBA Application within the Artix Security Framework
Two-Tier CORBA System Using CS| Credentials
Three-Tier CORBA System Using CSlv2

Overview of Certificate-Based Authentication

A Certificate Chain of Depth 2

A Certificate Chain of Depth 3

Elementsin aPKCS#12 File

Target Authentication Only

Mutual Authentication

Configuration of a Secure Association

Constraining the List of Cipher Suites

An iSF Federation Scenario

Failover Scenario for a Cluster of Three Security Services

35
38

49
55
71
72
72
74
78
96
102
106
112
120
126
133
147
148
149
171
174
207
229
284
289

27

LIST OF FIGURES

Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:

Figure 45
Figure 46

28

Architecture of an Artix security domain

Server View of Artix authorization realms

Role View of Artix authorization realms

Assignment of Realms and Roles to Users Janet and John
Locally Deployed Action-Role Mapping ACL File

Client Requesting an SSO Token from the Login Service
Overview of Username/Password Authentication without SSO
Overview of Username/Password Authentication with SSO
Endpoints Used by the WSDL Publishing Service

WSDL Publish Plug-In Deployed in a Secure Container
HTML Page Served Up by the WSDL Publishing Service
Basic Client-Server Scenario

Overview of Keystores for a Client-Server Application

Basic Signing and Encryption Scenario

Propagating Credentials Across a SOAP-to-CORBA Router
Propagating an SSO Token Across a SOAP-to-CORBA Router
Propagating Credentials Across a CORBA-to-SOAP Router
Overview of the Artix Security Service

: iISF Server Module Deployed as a CORBA Service

: iISF Server Module Deployed as a Java Library

305
308
309
310
320
341
342
343
354
357
365
369
374
404
435
451
458
493
496
497

Preface

What is Covered in This Book

This book describes how to develop and configure secure Artix solutions.

Who Should Read This Book

This book is aimed at the following kinds of reader: security administrators and
C++ programmers who need to write security code.

If you would like to know more about WSDL concepts, see the Introduction to
WSDL in Getting Started with Artix.
The Artix Documentation Library

For information on the organization of the Artix library, the document
conventions used, and where to find additional resources, see Using the Artix
Library

29

http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903
http://communities.progress.com/pcom/docs/DOC-106903

PREFACE

30

In thispart

Part |

Introduction to Security

This part contains the following chapters:

Getting Started with Artix Security page 33
Introduction to the Artix Security Framework page 67
Security for HTTP-Compatible Bindings page 77
Security for SOAP Bindings page 101
Security for CORBA Bindings page 111

31

32

In this chapter

CHAPTER 1

Getting Started
with Artix Security

Thischapter introducesfeatures of Artix security by explaining the
architecture and configuration of the secure Helloworld
demonstration in some detail.

This chapter discusses the following topics:

Secure SOAP Demonstration page 34
Secure Container Demonstration page 55
Debugging with the opensd Utility page 62

33

CHAPTER 1 | Getting Started with Artix Security

Secure SOAP Demonstration

Overview This section provides a brief overview of how the Artix security framework
provides security for SOAP bindings between an Artix client and an Artix
server. The Artix security framework is a comprehensive security framework
that supports authentication and authorization using data stored in a central
security service (the Artix security service). This discussion isillustrated by
reference to the secure HelloWorld demonstration.

In this section This section contains the following subsections:
Secure Hello World Example page 35
HTTPS Connection page 38
ITOP/TLS Connection page 43
Security Layer page 49

34

Secure SOAP Demonstration

Secure Hello World Example

Overview This section provides an overview of the secure Helloworld demonstration,
which introduces several features of the Artix Security Framework. In particular,
this demonstration shows you how to configure atypical Artix client and server
that communicate with each other using a SOAP binding over aHTTPS
transport. Figure 1 shows all the parts of the secure HelloWorld system,
including the various configuration files.

Figurel: Overview of the Secure Helloworld Example

----- Artix Client remmee Artix Server

i HTTP Basic Authentication
---> Security layer

N
i
1
|
1
1
1
1
1
|

Security layer

--=3 HTTPS 1 § HTTPS IIOP/TLS

>

1
1
:
13
1
1
H HTTPS H
3
1
]
]
]
]
]
H

7o [.

3
)
o]
[
3
)
o]
[
x
o |---
(=]
©
>

Client copy Server copy Cert for HTTPS hello_wgrld_action_role_mapping.xml

Artix Security

File Service
User Data Adapter

<

SR S,

IIOP/TLS
is2_user_password_file.txt ~

A

1

1

i
X.509

Cert for security service is2.properties

35

CHAPTER 1 | Getting Started with Artix Security

L ocation

Main elements of the example

HelloWworld client

HelloWorld server

Artix security service

36

The secure Helloworld demonstration is located in the following directory:

ArtixInstallDir/samples/security/full_security

The main elements of the secure HelloWorld example shown in Figure 1 are, as
follows:

4 HelloWorld client.
4 HellowWorld server.
® Artix security service.

The Helloworld client communicates with the HellowWorld server using SOAP
over HTTPS, thus providing confidentiality for transmitted data. In addition, the
HelloWorld client is configured to use HTTP BASIC authentication to transmit
ausername and a password to the server.

The Helloworld server employs two different kinds of secure transport,
depending on which part of the system it istalking to:

® HTTPS—to receive SOAP invocations securely from the Helloworld
client.

° I1OP/TLS—to communicate securely with the Artix security service,
which contains the central store of user data.

The Artix security service manages a central repository of security-related user
data. The Artix security service can be accessed remotely by Artix servers and
offers the service of authenticating users and retrieving authorization data.

The Artix security service supports a number of adapters that can be used to
integrate with third-party security products (for example, an LDAP adapter is
available). This example usesthe iSF file adapter, which is a simple adapter
provided for demonstration purposes.

Note: Thefile adapter is a simple adapter that does not scale well for large
enterprise applications. Progress supports the use of the file adapter in a
production environment, but the number of usersis limited to 200.

Security layers

HTTPS layer

[IOP/TLS layer

Security layer

Secure SOAP Demonstration

Tofacilitate the discussion of the HellowWorld security infrastructure, it is helpful
to analyze the security featuresinto the following layers:

. HTTPS layer.
* |IOP/TLSlayer.
® Security layer.

The HTTPS layer provides a secure transport layer for SOAP bindings. In Artix,
the HTTPS transport is configured by editing the Artix configuration file (for
example, full_security.cfg). Some of the HTTPS settings can optionally be
set in the WSDL contract instead (both the client copy and the server copy).

For more details, see “HTTPS Connection” on page 38.

The [IOP/TLS layer consists of the OMG's Internet Inter-ORB Protocol (110P)
combined with the SSL/TL S protocoal. In Artix, the IOP/TLS is configured by
editing the Artix configuration file.

For more details, see “11OP/TLS Connection” on page 43.

The security layer provides support for a simple username/password

authenti cation mechanism, a principal authentication mechanism and support for
authorization. A security administrator can edit an action-role mapping file to
restrict user access to particular WSDL port types and operations.

For more details, see “ Security Layer” on page 49.

37

CHAPTER 1 | Getting Started with Artix Security

HTTPS Connection

Overview Figure 2 shows an overview of the HelloWorld example, focusing on the
elements relevant to the HTTPS connection. HTTPS is used on the SOAP
binding between the Artix client and the Artix server.

Figure2: A HTTPS Connection in the HelloWorld Example

r---> Artix Client pmmm3 > Artix Server
:»----> Security layer E_______); Security layer
i HTTPS i
pmo-3 HTTPS R ; HTTPS IIOP/TLS
i i
WS.DL WS.DL X.509
Client copy Server copy Cert for HTTPS
SSL/TLScipher suites Artix supports awide range of SSL/TLS cipher suites—see “ Supported Cipher
Suites’ on page 222.
M utual authentication The HellowWorld example is configured to use mutual authentication on the

client-to-server HTTPS connection. That is, during the TL S handshake, the
server authenticates itself to the client (using an X.509 certificate) and the client
authenticates itself to the server. Hence, both the client and the server require
their own X.509 certificates.

Note: You can also configure your application to use target-only
authentication, where the client does not require an own X.509 certificate. See
“Authentication Alternatives’ on page 170 for details.

38

Secure SOAP Demonstration

Enabling HTTPS To enable HTTPS, you must ensure that the URL identifying the service

endpoint in the WSDL contract hasthe https: prefix. For example, the

HelloWorld service specifies a SOAP over HTTPS endpoint in the
hello_world.wsdl file asfollows:

<wsdl:definitions name="HelloWorld"

targetNamespace="http://www.iona.com/hello_world soap_http"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" .>

<wsdl:service name="SOAPService">
<wsdl:port binding="tns:Greeter_SOAPBinding"
name="SoapPort">

<soap:address location="https://localhost:9000"/>
</wsdl :port>

</wsdl:service>
</wsdl:definitions>

39

CHAPTER 1 | Getting Started with Artix Security

Client HTTPS configuration

40

Example 1 shows how to configure the client side of an HTTPS connection, in

the case of mutual authentication.

Example1l: Extract fromthe Secure Client HTTPS Configuration

Artix Configuration File
include "../../../../etc/domains/artix.cfg";

secure_artix

{

full_security
{
client
{
orb_plugins = ["local_log_stream"];

plugins:at_http:client:use_secure_sockets="true";

plugins:at_http:client:trusted _root_certificates

7

"ArtixInstallDir/samples/security/certificates/openssl/x509/c

a/cacert.pem";
plugins:at_http:client:client_certificate =

"ArtixInstallDir/samples/security/certificates/openssl/x509/c

erts/testaspen.pl2";

plugins:at_http:client:client_private key password =

"testaspen";

The preceding extract from full_security.cfg can be explained as follows:
1. Theuse_secure_sockets configuration variableis set to true to enable

HTTPS security.

Note: Thisisnot the only approach you can use to configure HTTPS

security. The aternative approach isto configure HTTPS security

policies directly, which gives you more control over the TLS connection
properties. For example, see “ Securing HT TP Communications with

TLS’ on page 81.

Server HTTPS configuration

Secure SOAP Demonstration

2. A HTTPS application needs alist of trusted CA certificates, which it uses
to determine whether or not to trust certificates received from other
HTTPS applications. See “ Specifying Trusted CA Certificates’ on
page 182 for more details.

3. Because this example uses mutual authentication, you are required to
provide the client with its own X.509 certificate, by setting the
plugins:at_http:client:client_certificate configuration variable.
The certificate must be in PKCS#12 format. See “Managing Certificates’
on page 141 for more details about X.509 certificates.

4. A password must be provided for the preceding certificate (in PK CS#12
format, the certificate and its private key are encrypted).

Example 2 shows how to configure the server side of an HTTPS connection, in
the case of target-only authentication.

Example2: Extract from the Secure Server HTTPS Configuration

Artix Configuration File
include "../../../../etc/domains/artix.cfg";

secure_artix

{
full_security
{

server

{
orb plugins = ["local_ log_stream", "iiop_profile",
"giop", "iiop_ tls", "artix security"];
binding:artix:server_request_interceptor_ list=
"security";

plugins:at_http:server:use_secure_sockets="true";

plugins:at_http:server:trusted_root_certificates =
"ArtixInstallDir/samples/security/certificates/openssl/x509/c
a/cacert.pem";

plugins:at_http:server:server_ certificate =
"ArtixInstallDir/samples/security/certificates/openssl/x509/c
erts/testaspen.pl2";

plugins:at_http:server:server private key password =
"testaspen";

41

CHAPTER 1 | Getting Started with Artix Security

42

Example2: Extract fromthe Secure Server HTTPS Configuration

The preceding extract from full_security.cfg can be explained as follows:

1

The use_secure_sockets configuration variable is set to true to enable
HTTPS security.

The server needs alist of trusted CA certificates, which it usesto determine
whether or not to trust certificates received from the client over HTTPS.
See “ Specifying Trusted CA Certificates’ on page 182 for more details.
Y ou must provide the server with its own X.509 certificate, by setting the
plugins:at_http:server:server_certificate configuration variable.
The certificate must be in PK CS#12 format. See “Managing Certificates”
on page 141 for more details about X.509 certificates.

A password must be provided for the preceding certificate (in PK CS#12
format, the certificate and its private key are encrypted).

Secure SOAP Demonstration

[IOP/TL S Connection

Overview Figure 3 shows an overview of the HelloWorld example, focusing on the
elements relevant to the IIOP/TL S connection between the Artix server and the
Artix security service. In generd, the Artix security serviceis usually accessed
through the IIOP/TLS transport.

Figure3: AnIIOP/TLS Connection in the HelloWorld Example

.............

Artix Security

: : File | Service
! User Data : ' Adapter !
BREEREEE : IIOP/TLS <
is2_user_password_file.txt ~ t-cccceeeeees 74
i
X.509
Cert for Artix security service
SSL/TL Scipher suites Artix supports awide range of SSL/TLS cipher suites—see “ Supported Cipher

Suites’ on page 222.

43

CHAPTER 1 | Getting Started with Artix Security

Mutual authentication

Artix server [IOP/TLS
configuration

a4

The Helloworld example is configured to use mutual authentication on the
client-to-server IIOP/TLS connection. That is, during the TL S handshake, the
server authenticates itself to the client (using an X.509 certificate) and the client
authenticates itself to the server. Hence, both the client and the server require
their own X.509 certificates.

Note: Y ou can also configure your application to use target-only
authentication, where the client does not require an own X.509 certificate. See
“ Authentication Alternatives’ on page 170 for details.

The Artix server’s [IOP/TLS transport is configured by the settings in the
ArtixInstallDir/samples/security/full_security/etc/full_security.
cfg file. Example 3 shows an extract from the full_security.cfg file,
highlighting some of the settings that are important for the Helloworld Artix
Server.

Example3: Extract fromthe Artix Server 1|OP/TLS Configuration

Artix Configuration File
include "../../../../etc/domains/artix.cfg";

secure_artix
{
full_security
{
initial_references:IT SecurityService:reference =
"corbaloc:it_iiops:1.2@localhost:55020/IT SecurityService";

server
{
binding:artix:server_request_interceptor_ list=
"security";
orb _plugins = ["local_ log_stream", "iiop_profile",
"giop", "iiop_tls", "artix_security"];

secure iiop_tls server -> security service

principal_sponsor:iiop_tls:use principal_sponsor =
"true";

principal_sponsor:iiop_tls:auth method_ id =
"pkcsl2_file";

Secure SOAP Demonstration

Example3: Extract fromthe Artix Server 11OP/TLS Configuration

principal_sponsor:iiop tls:auth method data =
["filename=ArtixInstallDir/samples/security/certificates/tls/
x509/certs/services/administrator.pl2",
"password file=ArtixInstallDir/samples/security/certificates/
tls/x509/certs/services/administrator.pwf"];

policies:iiop_tls:trusted ca_list policy =
"ArtixInstallDir/samples/security/certificates/tls/x509/trust
ed_ca_lists/ca_listl.pem";

The preceding extract from the Artix configuration file can be explained as
follows:

1

The IT_securityservice initial reference gives the location of the Artix
security service. The Artix server uses this corbaloc URL to open an
ITOP/TLS connection to the Artix security service. In this example, the
Artix security serviceis presumed to be running on localhost and
listening on the 55020 IP port.

The orb_plugins list specifieswhich Artix plug-insto load as the server
startsup. The iiop_tls plug-inisincluded in the list (thus enabling
IIOP/TLS connections), whereas the iiop plug-inis excluded (thus
disabling plain, insecure |1OP connections).

Theprincipal_sponsor Settings are used to attach a certificate to the
Artix server. The server usesthis certificate to identify itself to the security
service during the IIOP/TL S handshake.

Note: In thisexample, the certificate password is specified in a
password file, administrator.pwf (in aplain text format). For
dternative ways of specifying the certificate password, see “Deploying
Own Certificate for IOP/TLS’ on page 196.

Thepolicies:iiop_tls:trusted ca_list_policy variable specifi esa

file containing a concatenated list of CA certificates. These CA certificates
are used to check the acceptability of any certificates received by the Artix

45

CHAPTER 1 | Getting Started with Artix Security

server over the IOP/TL S transport. If areceived certificate has not been
digitally signed by one of the CA certificatesin thelist, it will be rejected
by the Artix server.

For more details, see “ Specifying Trusted CA Certificates’ on page 182.

Artix security service [IOP/TLS Example 4 shows an extract from the full_security.cfg file, highlighting the
configuration IIOP/TLS settings that are important for the Artix security service.

Example4: Extract fromthe Security Service ||OP/TLS Configuration

full_security.cfg File
secure_artix
{
full_security
{
initial_references:IT SecurityService:reference =
"corbaloc:it_iiops:1.2@localhost:55020/IT_ SecurityService";

security_ service
{
IIOP/TLS Settings

1 policies:trusted_ca_list _policy =
"ArtixInstallDir/samples/security/certificates/tls/x509/trust
ed _ca_lists/ca_listl.pem";

2 principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth method id = "pkcsl2_file";
principal_ sponsor:auth method data =

["filename=ArtixInstallDir/samples/security/certificates/tls/
x509/certs/services/administrator.pl2",
"password_file=ArtixInstallDir/samples/security/certificates/
tls/x509/certs/services/administrator.pwf"];

3 policies:target_secure_ invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"] ;

policies:target_secure_ invocation_policy:supports
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

4 policies:client_secure invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"] ;

46

Secure SOAP Demonstration

Example4: Extract fromthe Security Service IIOP/TLS Configuration

policies:client_secure invocation policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

orb_plugins = ["local_log_stream", "iiop_profile",
ugiopu , "iiop_tls" 1;

plugins:security:iiop_tls:addr_list =
["localhost:55020"];

policies:security server:client_certificate constraints=["CN=Orb
1x2000 IONA Services (demo cert)"];
policies:external_token_issuer:client_certificate constraints=[]

The preceding extract from the Artix configuration file can be explained as

follows:

1. Thepolicies:trusted ca_list_policy variable specifiesafile
containing aconcatenated list of CA certificates. These CA certificates are
used to check the acceptability of any certificates received by the Artix
security service over the IIOP/TLS transport. If areceived certificate has
not been digitally signed by one of the CA certificatesin thelist, it will be
rejected by the Artix security service.

2. Theprincipal_sponsor Settings are used to attach an X.509 certificate to
the Artix security service. The certificate is used to identify the Artix
security service to its peers during an I1OP/TL S handshake.

In this example, the Artix security service's certificate is stored in a
PKCS#12 file, administrator.p12, and the certificate’ s private key
password is stored in another file, administrator.pwf.

For more details about configuring the IIOP/TLS principal sponsor, see
“principal_sponsor” on page 593 and “ Deploying Own Certificate for
IIOP/TLS" on page 196.

a7

CHAPTER 1 | Getting Started with Artix Security

48

The target secure invocation policies specify what sort of secure [IOP/TLS
connections the Artix security service can accept when it actsin a server
role. For more details about the target secure invocation policy, see
“Setting Association Options’ on page 208.

Note: Although not specified explicitly herein the target secure
invocation policies, the security service always requires clientsto present
an X.509 certificate (equivalent to requiring EstablishTrustInClient).

The client secure invocation policies specify what sort of secure [IOP/TLS
connectionsthe Artix security service can open when it actsin aclient role.

The orb_plugins list specifies which plug-ins should be loaded into the
Artix security service. Of particular relevance isthe fact that the iiop_t1s
plug-inisincluded in the list (thus enabling ITOP/TLS connections),
whereasthe iiop plug-inisexcluded (thus disabling plain 11OP
connections).

If you want to relocate the Artix security service, you must modify the
plugins:security:iiop_tls:addr list Setting to specify the host
where the server is running and the IP port on which the server listens for
secure I|OP/TLS connections. The address entry shown hereis of the form
Host: Port.

Note: Normally, only one address is required. Multiple entries can be
added to the address list in order to support failover and clustering. See
“Clustering and Federation” on page 282 for details.

An application can open a connection to the Artix security service only if it
presents an X.509 certificate that satisfies the certificate constraints
specified by this setting. For a detailed explanation of this setting, see
“Setting client certificate constraints’ on page 238.

Disable the external token issuer feature by setting the token issuer
certificate constraints to be an empty list (as shown here). This feature
would be enabled only in the context of an integration with Artix
mainframe.

Secure SOAP Demonstration

Security Layer

Overview

Figure 4 shows an overview of the HelloWorld example, focusing on the
elements relevant to the security layer. The security layer, in general, takes care
of those aspects of security that arise after the initial SSL/TL S handshake has

occurred and the secure conn

ection has been set up.

Figure4: The Security Layer in the HelloWorld Example

Artix Client | ee--o-2 > Artix Server

WS Username/Password

Security layer

Client copy

Server copy

Security layer e 5

'
'
'
'
'
.

hello_warld_action_role_mapping.xml

File
User Data Adapter

<

Artix Security
Service

is2_user_password_file.txt

is2.properties

49

CHAPTER 1 | Getting Started with Artix Security

The security layer normally uses a simple username/password combination for
authentication, because clients do not always have a certificate with which to
identify themselves. The username and password are sent along with every
operation, enabling the Artix server to check every invocation and make
fine-grained access decisions.

WSS username/password login The mechanism that the Artix client uses to transmit a username and password
over the SOAP binding is the WS username/password credential. This
mechanism is defined by the WS-Security standard and it involves transmitting a
username token and a password token embedded in a SOAP header. In this
example, the username and password tokens are protected from eavesdropping,
because they are transmitted through an encrypted HT TPS connection.

The following extract from the Artix configuration file shows how to use the
WSSE principal sponsor configuration variables to set the username and
password tokens for the Artix SOAP client.

Artix Configuration File
secure_artix {
full_security {
client {

WSSE principle sponsor mechanism
principal_sponsor:wsse:use_principal_sponsor =
"true";
principal_sponsor:wsse:auth _method_id =
"USERNAME_ PASSWORD" ;
principal_sponsor:wsse:auth_method_data =
["username=user_test", "password=user password"];
b8
e
iy

In this example, the password is supplied directly in the Artix configuration file.

For alternative ways of specifying the password, see “principal_sponsor:wsse”
on page 606.

50

Authentication through the iSF
file adapter

Secure SOAP Demonstration

On the server side, the Artix server delegates authentication to the Artix security
service, which acts as a central repository for user data. The Artix security
serviceis configured by the is2.properties file, whose location is specified in
the full_security.cfg file asfollows:

full_security.cfg File
secure_artix {

full_security {

security service {

plugins:java_server:system properties =
["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=ArtixInstallDir/samples/security/full_ securit
y/etc/is2.properties.FILE",
"java.endorsed.dirs=C:\artix 30/artix/3.0/1lib/endorsed"];

Inthisexample, the is2.properties file specifiesthat the Artix security service
should use afile adapter. The file adapter is configured as follows:

is2.properties File

FHEHEE R S

##

File Adapter Properties

##

A

com.iona.isp.adapter.file.class=com.iona.security.is2adapter.fil
e.FileAuthAdapter

com.iona.isp.adapter.file.params=filename

com.iona.isp.adapter.file.param.filename=is2 user password file.
txt

51

CHAPTER 1 | Getting Started with Artix Security

52

Thecom.iona.isp.adapter.file.param. filename property isused to specify
the location of afile, is2_user_password_file.txt, which contains the user
datafor theiSF file adapter. Example 5 shows the contents of the user datafile
for the secure HelloWorld demonstration.

Example5: User Datafromtheis2 user_password_file.txt File
<?xml version="1.0" encoding="utf-8" ?>

<ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
<users>
<user name="user_test" password="user_password">
<realm name="IONAGlobalRealm">
<role name="IONAUserRole" />
<role name="IONASupplierRole"/>
</realm>
</user>
</users>
</ns:securityInfo>

In order for the login step to succeed, an Artix client must supply one of the
usernames and passwords that appear in thisfile. Therealm and role data, which
also appear, are used for authorization and access control.

For more details about the iSF file adapter, see “Managing a File Security
Domain” on page 312.

Note: Thefile adapter is a simple adapter that does not scale well for large
enterprise applications. Progress supports the use of the file adapter in a
production environment, but the number of usersis limited to 200.

Server domain configuration and
access control

Secure SOAP Demonstration

On the server side, authentication and authorization must be enabled by the
appropriate settings in the full_security.cfg file. Example 6 explains the
security layer settings that appear in the full_security.cfgfile.

Example6: Security Layer Settings from the full_security.cfg File

Artix Configuration File
include "../../../../etc/domains/artix.cfg";

secure_artix
{
full_security
{
server
{
ITOP/TLS Settings

Security Layer Settings
binding:artix:server_request_interceptor_ list=

"security";

orb_plugins = ["xmlfile_log_stream", "iiop_profile",
"giop", "iiop_tls", "soap", "at_http", "artix security",
"https "

policies:asp:enable authorization = "true";

plugins:is2_authorization:action role_mapping =
"file://ArtixInstallDir/samples/security/full_security/etc/he
lloworld _action role_mapping.xml";
plugins:asp:authorization realm = "IONAGlobalRealm";
plugins:asp:security_level = "REQUEST LEVEL";
plugins:asp:authentication_cache_size = "5";
plugins:asp:authentication cache timeout = "10";

The security layer settings fromthe full_security.cfg file can be explained as
follows:

1. TheArtix server request interceptor list must include the security
interceptor, which provides part of the functionality for the Artix security

layer.
2. Theserver'sorb plugins list must include the artix_security plug-in.

53

CHAPTER 1 | Getting Started with Artix Security

3. Thepolicies:asp:enable authorization variableisset to true to
enable authorization.

4. Thissetting specifies the location of an action-role mapping file that
provides fine-grained access control to operations and port types.

5. The Artix authorization realm determines which of the user’sroles will be
considered during an access control decision. Artix authorization realms
provide away of grouping user roles together. The ToNAGlobalRealm (the
default) includes all user roles.

6. Theplugins:asp:security_ level variable specifieswhich client
credentials are used for the purposes of authentication and authorization on
the server side (in this case, the REQUEST LEVEL value indicates that the
username/password credentials are sent in the SOAP header).

Example 7 shows the contents of the action-role mapping file for the
Helloworld demonstration.

Example7: Action-Role Mapping file for the HelloWorld Demonstration

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>

<action-role-mapping>

<server-name>secure_artix.full_security.server</server-name>

<interface>
<name>http://www.iona.com/full_security:Greeter</name>
<action-role>
<action-name>sayHi</action-name>
<role-name>IONAUserRole</role-name>
</action-role>
<action-role>
<action-name>greetMe</action-name>
<role-name>IONAUserRole</role-name>
</action-role>
</interface>

</action-role-mapping>
</secure-system>

For adetailed discussion of how to define access control using action-role
mapping files, see “Managing Users, Roles and Domains’ on page 303.

54

Secure Container Demonstration

Secur e Container Demonstration

L ocation of demonstration The secure container demonstration islocated in the following directory:

ArtixInstallDir/samples/advanced/container/secure_container

Scenario description The secure container demonstration illustrates a scenario where some
components are configured to be secure while others are insecure. The various
components are configured as follows:
® WSDL publishing service—provides the main point of contact with the
container (runs on the port specified by the container’s -port option). This
endpoint isinsecure.

®* Container service—provides administrative operations, which can be
accessed using the it_container_admin utility. This endpoint is secured
through HTTPS and the Artix security layer.

® Other Artix services—can be either secure or insecure, depending on the
settings in the WSDL contract.

Connecting to the container Figure 5 shows an overview of how the it_container admin client establishes
service a secure connection to the Containerservice service.

Figure5: Connecting to a Secure Container Service

Container
WSDL Publishing

it_container_admin
Client

55

CHAPTER 1 | Getting Started with Artix Security

Configuring the secure container

56

The connection from the it_container admin client to the ContainerService
serviceis established in two steps, as follows:

1

The it_container_admin client sends a message to the port supplied to
the -port option, requesting the WSDL publishing service to send the
WSDL contract for the containerService service.

Note: Thisinitial connectionisinsecure, becausethe WSDL publishing
service is configured to be insecure in this demonstration. The username
and password sent by the it_container_ admin client are therefore
potentially vulnerable to eavesdropping in this scenario.

Using the endpoint details from the retrieved WSDL contract, the
it_container_admin client establishes a secure connection to the
ContainerService endpoint. With every operation invocation on the
ContainerService service, the it_container admin client sends WSS
username and password credentials, u/p, to authenticate itself to the
container.

In this scenario, the container service is configured to have the following
security characteristics:

The container service accepts only HTTPS connections.

Clients of the container service can present X.509 certificates, but are not
required to do so.

Clients must present WSS username and password credentials.
Thereceived WSS username and password credentials are sent to the Artix
security service to be authenticated.

Depending on which configuration is used to run the container service, the
Artix security plug-in might also limit what clients can do by applying
role-based access control.

For most of the preceding security features, the container serviceis configuredin
asimilar way to any other Artix server (for example, see the details of secure
Artix server configuration in “ Secure SOAP Demonstration” on page 34).

The following configuration setting, however, is specific to the secure container
service:

plugins:at_http:server:use_secure_ sockets:container = "true";

Configuring the secure
it_container_admin utility

Secure Container Demonstration

This boolean variable enables the HTTPS protocol for the container service

alone. Because the effect of thisvariableis restricted to the container service, it
is possible also to deploy other insecure servicesinto the container.

When plugins:at_http:server:use_secure_sockets:container iS true,
HTTPS is enabled for the container service only (subject to the effective target
secure invocation policy); when false, HTTPSis not specifically enabled
(although other configuration settings might enable it). The default is false.

Note: This behavior contrasts with the behavior of the
plugins:at_http:server:use_secure_sockets variable, which enables
HTTPSfor all servicesin the container (including the containerservice

service itself).

In order to administer asecure container withthe it_container admin utility, it
is necessary to define a custom configuration scope. The configuration scope
enables enablesthe it_container admin utility to invoke remote
administration commands securely.

Example8: Configuration for Connecting to Secure Container

Artix Configuration File
secure_artix
{

secure_container

{

client_authentication

{
orb plugins = ["xmlfile_log_stream", "https"];

policies:https:trusted ca_ list_policy =
"% {ROOT_TRUSTED_CA_LIST POLICY_ 1}";

bus:security:enable_security = "true";

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth method id = "pkcsl2_file";
principal_sponsor:auth _method _data =

["filename=%{PRIVATE_CERT 1}",

"password_file=%{PRIVATE_CERT PASSWORD_FILE 1}"];

B g
b
197

57

CHAPTER 1 | Getting Started with Artix Security

58

The preceding configuration can be explained as follows:

1. Thislineloadsthe https plug-in at start-up time. Thisis not strictly
necessary, however, because Artix can load the ht tps plug-in dynamically
whenever it is needed.

Note: In particular, loading the https plug-in does not automatically
enable HTTPS security. The it_container admin client dynamically
enables security for any service whose address URL starts with the
https: prefix.

2. Theclient side of aHTTPS connection must always provide alist of
trusted CA certificates. During the SSL/TL S handshake, the client checks
that the server certificate has been signed by atrusted CA.

3. Thebus:security:enable_security Variableis set to true, to enable
authentication using WSS username and password on the client side. In
this case, because the username and password are not explicitly providedin
configuration, the it_container_admin utility will prompt the user to
enter the username and password from the command line in a secure mode
(where keystrokes cannot be intercepted).

4. Theprincipal_sponsor Settings associate an X.509 certificate with the
it_container admin client. You only need to include these settings, if the
container is configured to require client authentication.

Torunthe it_container_admin Utility with the preceding configuration, enter a
command of the following form:

it_container admin -BUSname
secure_artix.secure_container.client_authentication_config
-port Port CommandOption

Where the port option specifies the IP port where the container is listening for
connections and the commandopt ion specifies one of the container
administration commands (see Configuring and Deploying Artix Solutions for
details of it_container admin commands).

When you run the it_container_admin command, you will be prompted as
follows for the WSS username and password:

Please enter login : WSS_Username
Please enter password :

Configuring deployed Artix
services

Secure Container Demonstration

Instead of providing the WSS username and password at the command line, you
can provide them directly in the configuration file using the following settings:

bus:security:user_name = "WSS_Username";
bus:security:user_password = "WSS_Password";

Because the services in the container (including the containerservice itself)
all share the same Artix configuration, you must edit the endpoint settingsin the
WSDL contract, in order to tailor the security settings for individual services.

For example, for a SOAP over HTTP service, there are two main aspects of

security that can be enabled:

® HTTPSsecurity—requiresincoming connectionsto use SSL/TLS.

® Artix security layer—enables authentication of credentials through the
Artix security service. Optionally, this might also involve authorization
using role-based access control.

Y ou can selectively enable or disable these two security features by editing the
service' sWSDL contract as follows:

Enable HTTPS security and Artix security layer

To enable both HTTPS security and the Artix security layer for the
WellwWisherService Servicein the secure container demonstration, use the
following endpoint configuration:

<definitions ... >

<service name="WellWisherService">
<port binding="tns:WellWisher SOAPBinding"
name="WellWisherPort">
<soap:address
location="https://localhost:9999 /wellwisher"/>
</port>
</service>
</definitions>

Where the HTTPS protocol is enabled by putting the ht tps: prefix in the SOAP
URL and the Artix security layer isimplicitly enabled (because the container
configuration already enables Artix security).

59

CHAPTER 1 | Getting Started with Artix Security

Enable HTTPS security only

To enable HTTPS only for the wellwisherService Service, use the following
endpoint configuration:

<definitions ... >

<service name="WellWisherService">
<port binding="tns:WellWisher_ SOAPBinding"
name="WellWisherPort">
<soap:address
location="https://localhost:9999/wellwisher"/>
<bus-security:security enableSecurity="false"/>
</port>
</service>
</definitions>

Where the Artix security layer isexplicitly disabled (for this endpoint only) by
Setting the enableSecurity attributeto false in the bus-security:security
element.

Insecure service

To disable security completely for the wellwisherService Service, usethe
following endpoint configuration:

<definitions ... >

<service name="WellWisherService">
<port binding="tns:WellWisher_SOAPBinding"
name="WellWisherPort">
<soap:address
location="http://localhost:9999/wellwisher" />
<bus-security:security enableSecurity="false"/>
</port>
</service>
</definitions>

Where the insecure HT TP protocol is selected by putting the http: prefix inthe
SOAP URL and the Artix security layer isexplicitly disabled for this endpoint.
Y ou must also ensure that plugins:at_http:use_secure_sockets iSnot Set to
true in the Artix configuration (this setting would force the port to use the
HTTPS protocal).

60

Securing the WSDL publishing
service

Secure Container Demonstration

It is possible to make the container completely secure by securing the WSDL
publishing service (in addition to securing the container service).

Details of how to deploy the WSDL publishing service securely in a container
aregiven in “Deploying WSDL Publish in a Container” on page 357.

Note: Artix 4.0 has alimitation, which forces you to make all of the services
in acontainer secure, if you make the WSDL publishing service secure.

61

CHAPTER 1 | Getting Started with Artix Security

Debugging with the openssl Utility

Overview

OpenSSL command-line utility

References

Debugging example

62

The OpenSSL toolkit is an open source implementation of SSL and TLS.
OpenSSL provides a utility, openss1, which includes two powerful tools for
debugging SSL/TLS client and server applications, as follows:

L openssl s_client—an SSL/TLStest client, which can be used to test
secure Artix servers. The test client can connect to a secure port, while
providing a detailed log of the steps performed during the SSL/TLS
handshake.

o openssl s_server—an SSL/TLStest server, which can be used to test
secure Artix clients. The test server can simulate a bare bones SSL/TLS
server (handshake only). Additionally, by supplying the -www switch, the
test server can also simulate a simple secure Web server.

Artix versions 4.1 and later include the openss1 command-line utility, which is
ageneral-purpose SSL/TLS utility. See “OpenSSL Utilities” on page 655 for
more details.

For complete details of the openss1 s_client and the openssl s_server
commands, see the following OpenSSL documentation pages:

* http://www.openssl.org/docs/apps/s_client.html
* http://www.openssl.org/docs/apps/s_server.html

Consider the HelloWorld demonstration discussed in the previous section,
Secure SOAP Demonstration page 34. This demonstration consists of aclient
and atarget server.

To demonstrate SSL debugging, you can use the openss1 test client to connect
directly to the target server.

http://www.openssl.org/docs/apps/s_client.html
http://www.openssl.org/docs/apps/s_server.html

Debugging steps

Convert the client certificate to
PEM for mat

Debugging with the openssl Utility

The following table shows the steps required to debug a secure server by
connecting to that server using the openss1 test client:

Step Action

1 | Convert the client certificate to PEM format.

2 | Runthetarget server.

3 | Obtain thetarget server’s|P port.

4 | Runthetest client.

Certificatesfor Artix applications are deployed in PK CS#12 format, whereasthe
openss1 test client requires the certificate to bein PEM format (aformat that is
proprietary to OpenSSL). It is, therefore, necessary to convert the client
certificate to the PEM format.

For example, given the certificate testaspen.p12 (located in the
ArtixInstallDir/samples/security/certificates/openssl/x509/certs
directory), you can convert the certificate to PEM format as follows.

1

Run the openssl pkes12 command, as follows:

openssl pkcsl2 -in testaspen.pl2 -out testaspen.pem

When you run this command you are prompted to enter, first of al, the
pass phrase for the testaspen.p12 file and then to enter a pass phrase for
the newly created testaspen.pen file.

The testaspen.pen file generated in the previous step contains a CA
certificate, an application certificate, and the application certificate's
private key. Before you can use the testaspen. pem file with the openss1
test client, however, you must remove the CA certificate from thefile. That
is, the file should contain only the application certificate and its private
key.

For example, after deleting the CA certificate from the testaspen.pem
file, the contents of the file should ook something like the following:

Bag Attributes

localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C 91
Cl E1 FF 4A
friendlyName: Administrator

63

CHAPTER 1 | Getting Started with Artix Security

64

subject=/C=US/ST=Massachusetts/O=ABigBank -- no warranty -- demo
purposes/OU=Administration/CN=Administrator/emailAddress=admi
nistrator@abigbank.com

issuer=/C=US/ST=Massachusetts/L=Boston/0O=ABigBank -- no warranty
-- demo purposes/OU=Demonstration Section -- no warranty
--/CN=ABigBank Certificate
Authority/emailAddress=info@abigbank.com

MIIEiTCCA/KgAwIBAGIBATANBgkahkiGOwOBAQQFADCES5] ELMAKGA1UEBhMCVVMX
FjAUBgNVBAgGTDU1hc3NhY2h1c2VOdHMxDZzANBgNVBACTBkIvc3Rvb] EXMC8GALUE
ChMoQUJIpZ0JhbmsgLS0gbm8gd2FycmFudHkgLS0gZGVtbyBwdXJwb3N1czEwMCAG
AJUECXMNRGVtb25zdHThdG1vbiBTZWNOaw9uIC0tIG5vIHdhcnIhbnR5ICOtMScw
JQYDVQQDExX5BOmlnQmFuayBDZXJ0aWZpY2F0ZSBBAXRob3JpdHkxIDAeBgkahkiG
IwOBCQEWEW1UuZm9AYWIpZ2JhbmsuY?2 9 tMB4XDTAOMTEXODEWNTE1NVoXDTEOMDgw
NzEWNTE1NVowghbQxCzAITBgNVBAYTA1VTMRYWFAYDVQQTEwINYXNZ YWNodXN1dHRZ
MTEWLwYDVQQKEYyhBOm1nQmFuayAtLSBubyB3YXJyYW50eSAtLSBkZW1vIHBlcnBv
c2VzMRcwFQYDVQQLEwWSBZG1pbml zdHThdG1vbj EWMBQGATUEAXMNQWR taW5pc3Ry
YXRvc]jEpMCcGCSAGSIb3DOEJARYaYWRtaWspc 3Ry YXRvekBhYmlnYmFuay 53 b2 0w
gZ8wDQYJKoZ IThvcNAQEBRBQADgY 0AMIGJIAOGBANK 7503 YBkk jCvgy OpOPXAU+M6RE
00zaQ8/Y1ciWlQ/oCT/17+3P/ZhHAJaT+QxmahQHAY5ePixGyaE7raut2MdjHOUO
wCKtZglhuNa8juJSvsN5iTUupzp/mRQ/ j4rOxr8gWI5dh5d/kF4A+H5s8yrxNjrDg
tY7£dxPIKt0x9sYPAGMBAAG]ggF1MI IBCTAJBgNVHRMEA j AAMCWGCWCGSAGG+EIB
DQQfFh1PcGVUU1NMIEd1bmVyYXR1 ZCBDZXJI0aWZpY2F 0 ZTAGBgNVHQAEFgQUIBAK
9LPZPsaE9+a/FWWbCz2LOxWkwggEVBgNVHSMEggEMMI TBCIAUhJ z90oNb6Yg8d1lnbH
BPj tS7ulOWyhgeykgekwgeYxCzATBgNVBAYTALIVTMRYWFAYDVQQTEwlNYXNzYWNO
AXN1dHRZMQ8wWDQYDVQOHEWZCb3N0b2 4XMTAVBgNVBAOTKEFCaWdCYWS5r ICOt IG5v
THdhcnJIhbnR5ICOtIGR1bW8gcHVYcG9 z ZXMXxMDAUBgNVBASTI OR1bW9uc 3Ry YXRp
124gU2VjdGlvbiAtLSBubyB3YXJIyYW50eSAtLTENMCUGA1UEAXMeQUJpZ 0Thbmsg
Q2VydGlmaWNhdGUgQXV0aG9yaXR5MSAWHGYJIK0Z ThveNAQKkBFhFpbmZvQGFiawdi
YW5rLiNvbY IBADANBgkahkiGOwOBAQQFAAOBGQC7S5R1iDsK3 ZChIVPHPQrpQ] 5BA
J5DYTAmgzac7pkxy8rQzYvG5FjHL7beuzT3jdM2 fvQJI 8M7 t SEMKHKPgeguATrnY+x
3VNGwiv1kr5jQTDe0d7d9T102fknQAl14j /wPFEDUwdz4n9TThjE7 1p]j62zG27EivE
cm/h2L/DpWgZK0TQ9Q==

Bag Attributes
localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C 91
Cl E1 FF 4A
friendlyName: Administrator

Key Attributes: <No Attributes>

Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,ADSF864A0E97FB4E

e3cexhY+kAujb6cOs9skerP2gZsauc3ldyypdcdZirkailcemfA/mlv2pfgao8gfu9
yroNvYyDADEZzagEyzF/4FGUInScZjAiy9Imi9mA/1SHD5g1HH/wl2bgXcl1BgtC3
Gr f1HzGMbWyzDUJ 0PHjw/EkbyxQBJsCed f PUCGVH7 frgCPeE1g2 EqRKBHCa3vkHr
6hrwuiWS18TXn8Dt cCFFtugouHXwKeG]jIJXE5PY fKak1l8BOwKgiZgt j 1DHY 6G20ERL

Run thetarget server

Obtain thetarget server’s|P port

Run thetest client

Debugging with the openssl Utility

ZgNtAB+XFIvrA5XZHNSU6RBeXMVSrUl0GzdVrCnojded8Be7Q7KBSHDVIX zZ1 PKp
7DYVn5DyFSEQ7kYs9dsaz5Id5iNkMI1iscPp7AL2 STAWPY1UfENSgFnIYiwXPlckE
STTig+BG8UPPM6G3KGgRZMZ0Th7DySZufbE24NTrN74kXVIVE /RpxzNiMz / PbLAG
6wiypd7We/40gxLv8YIjGGEdYyaB/Y7XEyEIZL74Dc3CcuSvtA2 fC8hU3cXjKBu7
YsVz/Dg8G0w2230owpZ0Qz2KU19CLg/hmYLOJt1yLVoaGZud1CWXdgX0dComDOR8K
alaUagy/Gz2zys20N5WRK+s+HzgoB0vneOy4Z1Ss71HfGAUemiRTAT 8DX1zgyHYK
5m61SSB961x0M7YI58JYOGNLMXz1LmCUAYCQhk1WGIFEN4AcZBrkh506r+U4FcwhF
dvDoBu39Xie5gHFrdU86ghzxi202h0s02vexvujSGyNy009PJGKEAhIGEOG+a2Qg

VBwuUZgo0zIJ6gUrMV1LOAWWL 7 zFxyKaF511jF1C9Kxt EKm0393 zag==

Run the target server, as described in the ReapME. txt filein the
demos/security/full_security di rectory.

In this demonstration, the server’s IP port is specified explicitly in the WSDL
contract, demos/security/full_security/etc/hello_world.wsdl. For
example, in this contract the SOAPService service is configured as follows:

<wsdl:definitions name="HelloWorld"
targetNamespace="http://www.iona.com/full_security"

<wsdl:service name="SOAPService">
<wsdl:port binding="tns:Greeter_SOAPBinding"
name="SoapPort">
<soap:address location="https://localhost:9000"/>
</wsdl :port>
</wsdl:service>
</wsdl:definitions>

In this example, the target server’sIP port is 9000.

To run the openss1 test client, open acommand prompt, change directory to the
directory containing the testaspen.pen file, and enter the following command:

openssl s_client -connect localhost:9000 -ssl3 -cert
testaspen.pem

When you enter the command, you are prompted to enter the pass phrase for the

testaspen.pemf”e
The openssl s_client command switches can be explained as follows:

65

CHAPTER 1 | Getting Started with Artix Security

66

-connect host:port

Open a secure connection to the specified host and port.

-ssl3

This option configures the client to initiate the handshake using SSL v3
(the default is SSL v2). To see which SSL version (or versions) the target
server is configured to use, check the value of the

policies:mechanism policy:protocol_version variablein the Artix
configuration file. Artix servers can also be configured to use TLSv1, for
which the corresponding openss1 command switch is -t1s1.

-cert testaspen.pem

Specifies testaspen.pem as the test client’s own certificate. The PEM file
should contain only the application certificate and the application
certificate’' s private key. The PEM file should not contain a complete
certificate chain.

If your server isnot configured to require a client certificate, you can omit
the —cert switch.

Other command switches

The openssl s_client command supports numerous other command
switches, details of which can be found on the OpenSSL document pages.
Two of the more interesting switches are -state and -debug, which log
extra detail s to the command console during the handshake.

In this chapter

CHAPTER 2

| ntroduction to the
Artix Security
Framework

Thischapter describestheoverall architectureof the Artix Security
Framework.

This chapter discusses the following topics:

Artix Security Architecture page 68

Caching of Credentials page 75

67

CHAPTER 2 | Introduction to the Artix Security Framework

Artix Security Architecture

Overview The Artix security architecture embraces a variety of protocols and security
technologies. This section provides a brief overview of the security features
supported by the different kinds of Artix bindings.

In this section This section contains the following subsections:
Types of Security Credential page 69
Protocol Layers page 71
Security Layer page 73
Using Multiple Bindings page 74

68

Artix Security Architecture

Types of Security Credential

Overview

WSS username token

WSS Kerberostoken

CORBA Principal

The following types of security credentials are supported by the Artix security
framework:

® WSS username token.

®* WSSKerberos token.

® CORBA Principal.

° HTTP Basic Authentication.

® X.509 certificate.

® CSl authorization over transport.
® CSl identity assertion.

® SSOtoken.

The Web service security (WSS) UsernameToken is a username/password
combination that can be sent in a SOAP header. The specification of WSS
UsernameToken is contained in the WSS UsernameT oken Profile 1.0 document
from OASIS (www.0oasis-open.org).

Thistype of credential is available for the SOAP binding in combination with
any kind of Artix transport.

The WSS Kerberos specification is used to send a Kerberos security tokenin a
SOAP header. The implementation is based on the Kerberos Token Profile v1.0
specification (wss-kerberos-token-profile-1.0). If you use Kerberos, you must

a so configure the Artix security service to use the Kerberos adapter.

Thistype of credential is available for the SOAP binding in combination with
any kind of Artix transport.

The CORBA Principal isalegacy feature originally defined in the early versions
of the CORBA GIOP specification. The CORBA Principal is effectively just a
username (no password can be propagated).

Thistype of credential is available only for the CORBA binding and for SOAP
over HTTP.

69

http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
www.oasis-open.org

CHAPTER 2 | Introduction to the Artix Security Framework

HTTP Basic Authentication

X.509 certificate

CSl authorization over transport

CSl identity assertion

SSO token

70

HTTP Basic Authentication is used to propagate username/password credentials
inaHTTP header.

Thistype of credential is available to any HTTP-compatible binding.

Two different kinds of X.509 certificate-based authentication are provided,

depending on the type of Artix binding, as follows:

® HTTP-compatible binding—in this case, the common name (CN) is
extracted from the X.509 certificate’'s subject DN. A combination of the
common name and a default password is then sent to the Artix security
service to be authenticated.

. CORBA hinding—in this case, authentication is based on the entire X.509
certificate, which is sent to the Artix security service to be authenticated.

Thistype of credential is available to any transport that uses SSL/TLS.

The OMG's Common Secure Interoperability (CSI) specification defines an
authorization over transport mechanism, which passes username/password data
inside a GIOP service context. Thiskind of authentication is available only for
the CORBA binding.

Thistype of credential is available only for the CORBA binding.

The OMG’s Common Secure Interoperability (CSl) specification also definesan
identity assertion mechanism, which passes username data (no password) inside
a GIOP service context. The basic idea behind CSI identity assertion isthat the
request message comes from a secure peer that can be trusted to assert the
identity of auser. Thiskind of authentication is available only for the CORBA
binding.

Thistype of credential is available only for the CORBA binding.

An SSO token is propagated in the context of a system that uses single sign-on.
For details of the Artix single sign-on feature, see “Single Sign-On” on
page 339.

Artix Security Architecture

Protocol Layers

Overview

HTTP-compatible binding

Within the Artix security architecture, each binding type consists of a stack of
protocol layers, where a protocol layer istypically implemented as a distinct
Artix plug-in. This subsection describes the protocol layers for the following
binding types:

® HTTP-compatible binding.

e SOAPbinding.

®* CORBA binding.

HTTP-compatible means any Artix binding that can be layered on top of the
HTTP protocol. Figure 6 shows the protocol layers and the kinds of
authentication available to a HTTP-compatible binding.

Figure6: Protocol Layersin a HTTP-Compatible Binding

HTTP-compatible
binding

HTTP «—— HTTP Basic Authentication

SSL/TLS

71

CHAPTER 2 | Introduction to the Artix Security Framework

SOAP binding The SOAP binding is a specific example of a HTTP-compatible binding. The
SOAP binding is special, because it defines several additional credentials that
can be propagated only in a SOAP header. Figure 7 shows the protocol layers
and the kinds of authentication available to the SOAP binding over HTTP.

Figure7: Protocol Layersina SOAP Binding

l«—— WSS UsernameToken
SOAP l¢—— WSS Kerberos
«—— CORBA Principal

HTTP 4—— HTTP Basic Authentication
SSL/TLS
CORBA binding For the CORBA hinding, there are only two protocol layers (CORBA binding

and IIOP/TLS). Thisis because CORBA is compatible with only one kind of
message format (that is, GIOP). Figure 8 showsthe protocol layers and the kinds
of authentication available to the CORBA binding.

Figure8: Protocol Layersin a CORBA Binding

CORBA
binding
+—— CS| authentication over transport

GIOP l&—— CSl identity assertion
«—— CORBA Principal

X.509

IIOP/TLS —

72

Artix Security Architecture

Security Layer

Overview

Authentication

Authorization

Single sign-on

Artix security plug-in

GSP security plug-in

The security layer is responsible for implementing a variety of different security
features with the exception, however, of propagating security credentials, which
isthe responsibility of the protocol layers. The security layer is at least partidly
responsible for implementing the following security features:

* Authentication.
o Authorization.
®* Singlesign-on.

On the server side, the security layer selects one of the client credentias (a
server can receive more than one kind of credentials from a client) and calls the
central Artix security service to authenticate the credentials. If the authentication
call succeeds, the security layer proceeds to make an authorization check;
otherwise, an exception is thrown back to the client.

The security layer makes an authorization check by matching a user’sroles and
realms against the ACL entries in an action-role mapping file. If the user does
not have permission to invoke the current action (that is, WSDL operation), an
exception is thrown back to the client.

Single sign-on is an optional feature that increases security by reducing the
number of times that a user’s credentials are sent across the network. The
security layer works in tandem with the login service to provide the single
sign-on feature.

The Artix security plug-in provides the security layer for all Artix bindings
except CORBA. The ASP security layer isloaded, if artix_security islisted
inthe orb_plugins list in the Artix domain configuration, artix.cfg.

The GSP security plug-in provides the security layer for the CORBA binding
only. The GSP security layer isloaded, if gsp islisted inthe orb_plugins listin
the Artix domain configuration, artix.cfg.

73

CHAPTER 2 | Introduction to the Artix Security Framework

Using M ultiple Bindings

Overview

Example bindings

74

Figure 9 shows an example of an advanced application that uses multiple secure
bindings.

Figure9: Example of an Application with Multiple Bindings

Application

GSP

ASP security security

G2++ SOAP | CORBA

HTTP GIOP
110P/
SSL/TLS TLS

This type of application might be used as a bridge, for example, to link a
CORBA domain to a SOAP domain. Alternatively, the application might be a
server designed as part of amigration strategy, where the server can support
requests in multiple formats, such as G2++, SOAP, or CORBA.

The following bindings are used in the application shown in Figure 9:

® G2++—consisting of the following layers: ASP security, G2++ binding,
HTTP, SSL/TLS.

® SOAP—consisting of the following layers: ASP security, SOAP binding,
HTTP, SSL/TLS.

® CORBA—consisting of the following layers: GSP security, CORBA
binding, GIOP, IIOP/TLS.

Caching of Credentials

Caching of Credentials

Overview

Cachetime-out

Cachesize

GSP configuration variables

ASP configuration variables

To improve the performance of servers within the Artix Security Framework,
both the GSP plug-in (CORBA binding only) and the artix security plug-in (C++
runtime) implement caching of credentials (that is, the authentication and
authorization data received from the Artix security service).

The credentials cache reduces a server’s response time by reducing the number
of remote calls to the Artix security service. On thefirst call from a given user,
the server callsthe Artix security service and cachesthe received credentials. On
subsequent calls from the same user, the cached credentials are used, thereby
avoiding aremote call to Artix security service.

The cache can be configured to time-out credentials, forcing the server to call the
Artix security service again after using cached credentials for a certain period.

The cache can also be configured to limit the number of stored credentials.

The following variables configure the credentials cache for CORBA bindings:
plugins:gsp:authentication_cache_ size
The maximum number of credentials stored in the authentication cache. If
this size is exceeded the oldest credential in the cache isremoved.

A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

plugins:gsp:authentication cache_timeout
The time (in seconds) after which a credential is considered stale. Stale
credentials are removed from the cache and the server must re-authenticate
with the Artix security service on the next call from that user.

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

The following variables configure the credentials cache for all non-CORBA
bindings:

plugins:asp:authentication cache_size

75

CHAPTER 2 | Introduction to the Artix Security Framework

The maximum number of credentials stored in the authentication cache. If
this size is exceeded the oldest credentia in the cache is removed.
A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

plugins:asp:authentication cache_timeout
Thetime (in seconds) after which a credential is considered stale. Stale
credentials are removed from the cache and the server must re-authenticate
with the Artix security service on the next call from that user.
A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

76

CHAPTER 3

Security for
HTTP-Compatible
Bindings

Thischapter describesthe security features supported by the Artix
HTTP transport. These security featuresare availableto any Artix
binding that can be layered on top of the HTTP transport.

In this chapter This chapter discusses the following topics:
Overview of HTTP Security page 78
Securing HTTP Communicationswith TLS page 81
HTTP Basic Authentication page 92
X.509 Certificate-Based Authentication page 96

7

CHAPTER 3| Security for HTTP-Compatible Bindings

Overview of HTTP Security

Overview Figure 10 gives an overview of HTTP security within the Artix security
framework, showing the various security layers (security layer, binding layer,
HTTP, and SSL/TLS) and the different authentication types associated with the
security layers. Because many different binding types (for example, SOAP,
tagged or fixed) can be layered on top of HTTP, Figure 10 does not specify a
particular binding layer. Any HT TP-compatible binding could be substituted
into this architecture.

Figure 10: HTTP-Compatible Binding Security Layers

ARM

- Action-role
authorization L
mapping file
Security layer authentication
HTTP-compatible \l/
binding Artix Security Service
HTTP Basic Authentication —| HTTP
X.509
SSL/TLS
User Data
Security layers Asshown in Figure 10, aHT TP-compatible binding has the following security
layers:
® SSL/TLSlayer.
* HTTPlayer.
® HTTP-compatible binding layer.
® Security layer.
SSL/TLSlayer The SSL/TLS layer provides guarantees of confidentiality, message integrity,

and authentication (using X.509 certificates).

78

HTTP layer

HTTP-compatible binding layer

Security layer

Overview of HTTP Security

The HTTP layer supports the sending of username/password datain the HTTP

message header—that is, HTTP Basic Authentication.

Inthe Artix C++ runtime, the HTTP/S protocol isimplemented by the following

plug-ins:

® at http plug-in—thisplug-inisathin layer that integrates the other two
plug-ins, http and https, with the Artix core. The at_http plug-inis
automatically loaded, if either the <http-conf:client> Or
<http-conf:server> tags appear amongst the WSDL port settings.

® http plug-in—implementsinsecure HTTP only. The http plug-inis
automatically loaded by the at_http plug-in.

® https plug-in—implements secure HTTPS only. The https plug-in must
be added explicitly to the orb_plugins list in order to load.

The HTTP-compatible binding layer could provide additional security features
(for example, propagation of security credentials), depending on the type of
binding. The following binding types are HTTP-compatible:

e SOAPbinding.

* XML format binding.

® Fixed record length binding.
® Tagged data binding.

* MIME binding.

The Security layer isimplemented by the Artix security plug-in, which provides

authentication and authorization checks for all binding types, except the

CORBA binding, as follows:

* Authentication—by selecting one of the available client credentials and
calling out to the Artix security service to check the credentials.

® Authorization—by reading an action-role mapping (ARM) file and
checking whether a user’sroles allow it to perform a particular action.

® S0OAP 1.2 headers (C++ runtime)—in programs implemented using the
C++ runtime, the security layer is also responsible for adding SOAP 1.2
headers on the client side.

79

CHAPTER 3| Security for HTTP-Compatible Bindings

Authentication options

HTTP Basic Authentication

X.509 certificate-based
authentication

80

The following authentication options are common to all HTTP-compatible
bindings:

® HTTP Basic Authentication.

® X.509 certificate-based authentication.

HTTP Basic Authentication works by sending a username and password
embedded in the HTTP message header. This style of authentication is
commonly used by clients running in a Web browser.

For details of HTTP Basic Authentication, see “HTTP Basic Authentication” on
page 92.

X.509 certificate-based authentication is an authentication step that is performed
in addition to the checks performed at the socket layer during the SSL/TLS
security handshake.

For details of X.509 certificate-based authentication, see “ X.509
Certificate-Based Authentication” on page 96.

Securing HTTP Communicationswith TLS

Securing HTTP Communicationswith TLS

Overview

Generating X.509 certificates

This subsection describes how to configurethe HTTP transport (C++ runtime) to
use SSL/TL S security, acombination usually referred to asHTTPS. In the Artix
C++ runtime, HTTPS security isimplemented by a combination of the at_http
and https plug-ins and configured by settingsin the artix.cfg file.

The following topics are discussed in this subsection:

® Generating X.509 certificates.

®* Enabling HTTPS.

° HTTPS client with no certificate.

. HTTPS client with certificate.

® HTTPS server configuration.

A basic prerequisite for using SSL/TLS security isto have a collection of X.509
certificates available to identify your server applications and, optionally, your
client applications. Y ou can generate X.509 certificatesin one of the following
ways:
®* Useacommercial third-party to tool to generate and manage your X.509
certificates.
® Usethefree openss1 utility (which can be downloaded from
http://www.openssl.org)—see “ Creating Y our Own Certificates’ on
page 154 for details of how to useit.

Note: TheHTTPS protocol mandates an URL integrity check, which requires
acertificate' s identity to match the hostname on which the server is deployed.
See “ Specia Requirements on HTTPS Certificates’ on page 151 for details.

81

http://www.openssl.org

CHAPTER 3| Security for HTTP-Compatible Bindings

Enabling HTTPS There are two approaches to enabling HTTPS, depending on whether or not the
configuration in the WSDL contract explicitly specifiesaHTTPS URL.

HTTPS specified in the WSDL contract

The usual way to enable HTTPS is by specifying the endpoint addressin the
WSDL contract as an URL with the https: prefix. For example, to enable
SOAP over HTTPS, you would specify the endpoint address as follows:

<wsdl:definitions name="HelloWorld"
targetNamespace="http://www.ilona.com/hello_world soap_http"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" ... >

<wsdl:service name="SOAPService">
<wsdl :port binding="tns:Greeter SOAPBinding"
name="SoapPort ">
<soap:address location="https://localhost:9000"/>
</wsdl :port>
</wsdl:service>
</wsdl:definitions>

Where the location attribute of the soap : address element is configured to use
aHTTPS URL. For bindings other than SOAP, you would edit the URL
appearing in the location attribute of the http:address element.

HTTPS not specified in the WSDL contract

If the endpoint addressin the WSDL contract is specified as an URL with the
http: prefix (insecure HTTP), it is possible to force the endpoint to use
SSL/TLS security by editing the Artix configuration file, setting
plugins:at_http:client:use_secure sockets t0 true on theclient side and
plugins:at_http:server:use_secure_sockets t0 true onthe server side. In
general, however, it is better to specify the HTTPS protocol by modifying the
URL in the WSDL contract (the first approach).

82

Securing HTTP Communicationswith TLS

HTTPS client with no certificate For example, consider the configuration for a secure HTTPS client with no
certificate. Example 9 shows how to configure such a sample client.

Example9: Sample HTTPS Client with No Certificate

Artix Configuration File
General configuration at root scope.

my_secure_apps {
Common SSL/TLS configuration settings.
1 orb_plugins = ["xml_log_stream", ..., "at_http", "https"];

binding:client_binding list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA _Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+ITOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

2 policies:https:trusted _ca_list_policy =
"ArtixInstallDir\samples\security\certificates\tls\x509\trust
ed _ca_lists\ca_listl.pem";

3 policies:https:mechanism policy:protocol_version = "SSL_V3";

policies:https:mechanism policy:ciphersuites =
["RSA_WITH_RC4_128_ SHA", "RSA_WITH RC4_128 MD5"];

4 event_log:filters = ["IT_ATLI TLS=*", "IT IIOP=*",
"IT_IIOP_TLS=*", "IT TLS=*"];

my_client {
Specific HTTPS client configuration settings

5 principal_sponsor:use_principal_sponsor = "false";

6 policies:https:client_secure_invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:https:client_secure_invocation_policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

5o

83

CHAPTER 3| Security for HTTP-Compatible Bindings

84

The preceding client configuration can be described as follows:

1

The at_http and https plug-ins together provide support for the HTTP
and HTTPS protocols. Y ou can optionally include these plug-insin the
orb_plugins list. If they are not explicitly listed, Artix will automatically
load them when necessary.

Note: Loading the https plug-inis not sufficient to make a service
secure. Y ou must also configure the endpoints to have HTTPS URLsin
the WSDL contract—see “Enabling HTTPS’ on page 82.

If you plan to use the full Artix Security Framework, you should include
the ASP plug-in, artix_security, inthe ORB plug-inslist aswell.

A HTTPS application needs alist of trusted CA certificates, which it uses
to determine whether or not to trust certificates received from other
HTTPS applications. Y ou must, therefore, edit the
policies:https:trusted ca_list_policy variableto point at alist of
trusted certificate authority (CA) certificates. See“ Specifying Trusted CA
Certificates’ on page 182.

The mechanism policy specifies the default security protocol version and
the available cipher suites—see “ Specifying Cipher Suites’ on page 221.
This line enables console logging for security-related events, which is
useful for debugging and testing. Because there is a performance penalty
associated with this option, you might want to comment out or delete this
line in a production system.

The SSL/TLS principal sponsor isamechanism that can be used to specify
an application’s own X.509 certificate. Because this client configuration
does not use a certificate, the principal sponsor is disabled by setting

principal_sponsor:use_principal_sponsor {0 false.

HTTPSclient with certificate

Securing HTTP Communicationswith TLS

Thefollowing two lines set the required options and the supported options
for the HTTPS client secure invocation policy. In this example, the policy

is set asfollows:

*

Required options—the options shown here ensure that the client can
open only secure HTTPS connections.

Supported options—the options shown include all of the association
options, except for the EstablishTrustInClient option. The client
cannot support EstablishTrustInClient, becauseit has no X.509

certificate.

For example, consider a secure HTTPS client that is configured to have its own

certificate. Example 10 shows how to configure such a sample client.

Example 10: Sample HTTPS Client with Certificate

Artix Configuration File

General configuration at root scope.

my_secure_apps {

Common SSL/TLS configuration settings.

orb_plugins = ["xml_log_stream",

binding:client_binding list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

policies:https:trusted ca_ list policy =

"at_http", "https"];

"GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",

"ArtixInstallDir\samples\security\certificates\tls\x509\trust

ed_ca_lists\ca_listl.pem";

policies:https:mechanism policy:protocol_version = "SSL_V3";

policies:https:mechanism policy:ciphersuites
["RSA WITH RC4_128 SHA", "RSA WITH RC4_128 MD5"];
event_log:filters = ["IT ATLI TLS=*", "IT IIOP=*",
"IT ITOP_TLS=*", "IT TLS=*"];

my_client {
Specific HTTPS client configuration settings

85

CHAPTER 3| Security for HTTP-Compatible Bindings

Example 10: Sample HTTPSClient with Certificate

1 principal sponsor:use principal sponsor = "true";
2 principal_sponsor:auth method id = "pkcsl2_ file";
3 principal_sponsor:auth method data =

["filename=C:\artix 30/artix/3.0/demos/security/certificates/
openssl/x509/certs/testaspen.pl2”];

4 policies:https:client_secure_invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:https:client_secure_invocation policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];
};

17

The preceding client configuration can be described as follows:

1. TheSSL/TLS principal sponsor isamechanism that can be used to specify
an application’sown X.509 certificate. The principal sponsor is enabled by
setting principal_sponsor:use_principal_sponsor tO true.

2. Thisline specifiesthat the X.509 certificate is contained in a PK CS#12
file. For aternative methods, see “ Specifying an Application’s Own
Certificate” on page 190.

3. Specify the X.509 certificate location by editing the £ilename valueto
point at a custom X.509 certificate file, which should be in PK CS#12
format—see “ Specifying an Application’s Own Certificate” on page 190
for more details.

For details of how to specify the certificate’ s pass phrase, see “ Deploying
Own Certificate for HTTPS’ on page 191.

4. Thefollowing two lines set the required options and the supported options
for the client secure invocation policy. In this example, the policy is set as
follows:

+ Required options—the options shown here ensure that the client can
open only secure HTTPS connections.

+ Supported options—the association options shown here include the
EstablishTrustInClient option. Thisassociation option must be
supported when the client has an X.509 certificate.

86

Securing HTTP Communicationswith TLS

Alternatively, you could configure security for aHTTPS client by editing the
port settings in the WSDL contract (but only for mutual authentication).
Example 11 shows how to configure the client side of aHTTPS connectionin
Artix, in the case of mutual authentication.

Example 11: WSDL Contract for HTTPS Client with Certificate

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:http-conf="http://schemas.iona.com/transports/http/configu
ration" ... >

<service name="HelloWorldService">
<port binding="tns:HelloWorldPortBinding"
name="HelloWorldPort">
<soap:address location="https://localhost:55012"/>
<http-conf:client
UseSecureSockets="true"
TrustedRootCertificates="../certificates/openssl/x509/ca/cacert.

pl2"
ClientCertificate="../certificates/openssl/x509/certs/client_cer
t.pl2"
ClientPrivateKeyPassword="ClientPrivKeyPass"
/>
</port>
</service>
</definitions>

The preceding WSDL contract can be described as follows:

1. Theclientcertificate attribute specifiesthe client’s own certificate in

PKCS#12 format.

The clientPrivateKeyPassword attribute specifies the password to
decrypt the contents of the clientCertificate file.

Note: The presence of the private key password in the WSDL contract
file implies that this file must be read and write-protected to prevent
unauthorized users from obtaining the password.

WARNING: If you include security settingsin the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you configure

the WSDL publishing service to be secure. See “Publishing WSDL Securely”
on page 353.

87

CHAPTER 3| Security for HTTP-Compatible Bindings

HTTPS server configuration

88

S

Generally speaking, it israrely necessary to configure such athing asapure
server (that is, a server that never makes any requests of its own). Most real
servers are applications that act in both a server role and aclient role. The
sample server described here combinesthefollowing qualities: in the server role,
the application requests clients to send a certificate; in the client role, the
application requires security and includes a certificate.

Example 12 shows how to configure such a sample server.

Example 12: Sample HTTPS Server Configuration

Artix Configuration File
General configuration at root scope.

my_secure_apps {
Common SSL/TLS configuration settings.
my_server {
Specific HITPS server configuration settings
policies:https:target_secure_invocation policy:requires
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"] ;
policies:https:target_secure_invocation_ policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

principal_sponsor:https:use principal_ sponsor = "true";

principal_sponsor:https:auth_method_id = "pkcsl2_file";

principal_sponsor:https:auth _method_data =
["filename=CertsDir\server_cert.pl2"];

Specific HTTPS client configuration settings

policies:https:client_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:https:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];
137

Securing HTTP Communicationswith TLS

The preceding server configuration can be described as follows:

1

Y ou can use the same common SSL/TL S settings here as described in the

preceding “HTTPS client with no certificate” on page 83.

Thefollowing two lines set the required options and the supported options

for the target secure invocation policy. In this example, the policy is set as

follows:

+ Required options—the options shown here ensure that the server
accepts only secure HTTPS connection attempts.

+ Supported options—all of the target association options are
supported.

A secure server must always be associated with an X.509 certificate.

Hence, thisline enables the SSL/TL S principal sponsor, which specifies a

certificate for the application.

This line specifies that the X.509 certificate is contained in a PK CS#12

file. For aternative methods, see “ Specifying an Application’s Own

Certificate” on page 190.

Specify the location of the X.509 certificate file, by editing the filename

valueto point at a custom X.509 certificate, which should be in PK CS#12

format—see “ Specifying an Application’s Own Certificate” on page 190

for more details.

For details of how to specify the certificate’ s pass phrase, see “ Deploying

Own Certificate for HTTPS’ on page 191.

The following two lines set the required options and the supported options

for the client secure invocation policy. In this example, the policy is set as

follows:

+ Required options—the options shown here ensure that the application
can open only secure SSL/TL S connections to other servers.

+ Supported options—all of the client association options are
supported. In particular, the EstablishTrustInClient Optionis
supported when the application isin a client role, because the
application has an X.509 certificate.

89

CHAPTER 3| Security for HTTP-Compatible Bindings

90

A WNBE

o Ul

Alternatively, you could configure security for aHTTPS server by editing the
port settings in the WSDL contract (but only for mutual authentication).
Example 13 shows how to configure the server side of aHTTPS connection for
mutual authentication in Artix.

Example 13: WSDL Contract with Server HTTPS Configuration

<definitions name="HelloWorldService"
targetNamespace="http: //xmlbus.com/HelloWorld"
xmlns:soap="http: //schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu
ration" ... >

<service name="HelloWorldService">
<port binding="tns:HelloWorldPortBinding"
name="HelloWorldPort">
<soap:address location="https://localhost:55012"/>
<http-conf:server
UseSecureSockets="true"
ServerCertificate="../certificates/openssl/x509/certs/server cer
t.pl2"
ServerPrivateKeyPassword="ServerPrivKeyPass"
TrustedRootCertificates="../certificates/openssl/x509/ca/cacert.
pla2"
/>
</port>
</service>
</definitions>

The preceding WSDL contract can be described as follows:

1. Thefact that thisis asecure connection is signalled by using https:
instead of http: inthelocation URL attribute.

2. The<http-conf:server>tag containsall the attributesfor configuring the
server side of the HTTPS connection.

3. If theusesecuresockets attribute is true, the server will open aport to
listen for secure connections.

Note: |f UseSecureSockets iS false and the <soap:address> location
URL beginswith https:, however, the server will listen for secure
connections.

Securing HTTP Communicationswith TLS

4. Theservercertificate attribute specifiesthe server’s own certificate in
PKCS#12 format. For more background details about X.509 certificates,
see “Managing Certificates’ on page 141.

5. TheserverprivatekeyPassword attribute specifies the password to
decrypt the server certificate' s private key.

Note: The presence of the private key password in the WSDL contract
file implies that this file must be read and write-protected to prevent
unauthorized users from obtaining the password.

For the same reason, it is also advisable to remove the
<http-conf:server> tag from the copy of the WSDL contract that is
distributed to clients.

6. Thefile specified by the Trustedrootcertificates containsa
concatenated list of CA certificatesin PKCS#12 format. This attribute
valueisneeded for mutual authentication (for checking the certificates sent
by clients).

WARNING: If you include security settings in the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you configure
the WSDL publishing service to be secure. See “Publishing WSDL Securely”
on page 353.

91

CHAPTER 3| Security for HTTP-Compatible Bindings

HTTP Basic Authentication

Overview

HTTP Basic Authentication client
configuration—WSDL file

92

This section describes how to configure an Artix client and server to use HTTP
Basic Authentication. With HTTP Basic Authentication, username/password
credentials are sent in aHTTP header.

For more details, see the W3 specification
(http://ww.w3.org/Protocol /HT TP/1.0/spec.html) for HTTP/1.0.

Example 14 shows how to configure aclient WSDL contract to use HTTP Basic
Authentication.

Example 14: WSDL Contract with Client HTTP Basic Authentication

<definitions name="HelloWorldService"
targetNamespace="http: //xmlbus.com/HelloWorld"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu
ration"
xmlns :bus-security="http://schemas.iona.com/bus/security"
0 =

<service name="HelloWorldService">
<port binding="tns:HelloWorldPortBinding"
name="HelloWorldPort">
<soap:address location="https://localhost:55012"/>
<http-conf:client

UserName="user_test"
Password="user password"
/>
<bus-security:security enableSecurity="true" />
</port>
</service>
</definitions>

http://www.w3.org/Protocols/HTTP/1.0/spec.html

HTTP Basic Authentication client
configur ation—principal sponsor

HTTP Basic Authentication

The preceding WSDL contract can be described as follows:

1. Thebus-security hamespace prefix is needed for the ASP plug-in
settings.

2. Inthisexample, HTTP Basic Authentication is combined with SSL/TLS
security (see “Securing HT TP Communications with TLS” on page 81).
This ensures that the username and password are transmitted across an
encrypted connection, protecting them from snooping.

3. TheuserName attribute sets the user name for the HTTP Basic
Authentication credentials.

4. The rassword attribute sets the password for the HTTP Basic
Authentication credentials.

5. The presence of the <bus-security:security> tag ensures that the ASP
plug-in, artix_security, isloaded into your application. Thisplug-inis
responsible for the authentication and authorization features.

WARNING: If you include security settings in the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you configure
the WSDL publishing service to be secure. See “Publishing WSDL Securely”
on page 353.

Instead of setting the HTTP Basic Authentication username and password in the
WSDL contract, you can specify the username and password in the Artix
configuration file using the relevant principal sponsor configuration variables.
Example 15 shows how to configure the username and password in the Artix
configuration file.

Example 15: Artix Configuration with Client HTTPS Basic Authentication

// Artix Configuration File
secure_artix {

client {
// SSL/TLS Configuration
. // (Not shown)
// Configure the HTTP/BA Username and Password
principal sponsor:http:use principal sponsor = "true";
principal_ sponsor:http:auth method_id =
"USERNAME PASSWORD";

93

CHAPTER 3| Security for HTTP-Compatible Bindings

HTTPBasicAuthentication server
configuration

94

Example 15: Artix Configuration with Client HTTPS Basic Authentication

principal sponsor:http:auth method data =
["username=test_ username", "password=test_password"];
137
iy

The preceding configuration can be described as follows:

1. Thisexample assumesthat you are using SSL/TL S security to protect the
password from snooping. See “ Securing HT TP Communications with
TLS’ on page 81 for details.

2. Theprincipal_ sponsor:http:use principal_sponsor configuration
variableis set to true to enable HTTP feature.

3. Theprincipal sponsor:http:auth method id configuration variable
selects the type of credential to send in the HTTP header. Currently, the
only valid option iS USERNAME_PASSWORD (equivalent to HTTP Basic
Authentication).

4. Theprincipal_sponsor:http:auth method_data configurationvariable
sets the Basic Authentication username and password.

Thereis no need to make any modifications to the WSDL contract for servers
that support HTTP Basic Authentication.

However, it is necessary to make modifications to the domain configuration file,
artix.cfg (inthe ArtixInstallbir/etc/domains directory), asshownin
Example 16.

Example 16: Artix Configuration for Server HTTP Basic Authentication

Artix Configuration File
security artix {
demos
{
hello_world
{
plugins:artix_security:shlib_name="it_ security plugin";
binding:artix:server_request_interceptor list=
"security";
binding:client_binding_ list = ["OTS+POA_Coloc",
"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];

a

HTTP Basic Authentication

Example 16: Artix Configuration for Server HTTP Basic Authentication

orb plugins = ["xmlfile log_stream", ..., "at_http",
"artix security", "https"];

plugins:is2_authorization:action_ role_mapping =
"file://ArtixInstallDir/samples/security/full_security/etc/he
lloworld_action_role mapping.xml";

policies:asp:enable_authorization = "true";

plugins:asp:security level = "MESSAGE_LEVEL";

plugins:asp:authentication cache size = "5";

plugins:asp:authentication _cache timeout = "10";

iy

g

The preceding extract from the domain configuration can be explained as

follows:

1. TheArtix server request interceptor list must include the security
interceptor, which provides part of the functionality for the Artix security
layer.

2. Theorb_plugins list should include the artix_security plug-in, which
is responsible for enabling authentication and authorization.

3. Theaction-role mapping fileis used to apply access control rules to the
authenticated user. The file determines which actions (that is, WSDL
operations) can be invoked by an authenticated user, on the basis of the
roles assigned to that user.

See “Managing Access Control Lists’ on page 319 for more details.

4, Thepolicies:asp:enable authorization variable must be set to true
to enable authorization.

5. Theplugins:asp:security_level configuration variable specifiesthe
type of credentials authenticated on the server side. The MESSAGE_LEVEL
security type, selects the username/password credentials from the HTTP
Basic Authentication header.

6. Thenext pair of configuration variables configure the asp caching
mechanism. For more details, see “ ASP configuration variables’ on
page 75.

95

CHAPTER 3| Security for HTTP-Compatible Bindings

X.509 Certificate-Based Authentication

Overview This section describes how to enable X.509 certificate authenticationin a
two-tier client/server scenario for applications based on the C++ runtime. In this
scenario, the Artix security service authenticates the client’ s certificate and
retrieves roles and realms based on the identity of the certificate subject. When
certificate-based authentication is enabled, the X.509 certificate is effectively
authenticated twice, as follows:
® SS/TLSlevel authentication—this authentication step occurs during the
SSL/TLS handshake and is governed by the HTTPS configuration settings
in the Artix configuration file, artix.cfg.

® Artix security-level authentication and authorization—this authentication
step occurs after the SSL/TLS handshake and is performed by the Artix
security service working in tandem with the artix_security plug-in.

Certificate-based authentication Figure 11 shows an example of atwo-tier system, where authentication of the
scenario client’s X.509 certificate isintegrated with the Artix security service.

Figure 11: Overview of Certificate-Based Authentication with HTTPS

SSL/TLS-level @ Apply access

authentication control
Target
"

@ Retrieve user's
realms and roles

@ authenticate ()

A 4

Artix Security Service

A4

96

X.509 Certificate-Based Authentication

Scenario description The scenario shown in Figure 11 can be described as follows:
Stage Description
1 | When the client opens a connection to the server, the client sends

its X.509 certificate as part of the SSL/TLS handshake (HTTPS).

The server then performs SSL/TL S-level authentication, checking

the certificate as follows:

®* Thecertificateis checked against the server’s trusted CA list
to ensure that it is signed by atrusted certification authority.

® Theserver sends achallenge to the client, which reguires the
client to prove that it possesses the certificate’ s private key.

The server performs security layer authentication by calling
authenticate () onthe Artix security service, passing acopy of
the client’s certificate to the Artix security service.

The details of this authentication step depend on the particular
security adapter that is plugged into the Artix security service. For
example, the file adapter would authenticate the client certificate
asfollows:
®* Theuser'sidentity isextracted from the certificate’'s
subject DN.
®* Toverify the user’ sidentity, the file adapter compares the
client certificate with a cached copy. The authentication
succeeds, only if the certificates are equal.

If authenticationis successful, the Artix security servicereturnsthe
user’srealms and roles.

The ASP security layer controls access to the target’s WSDL
operations by consulting an action-role mapping file to determine
what the user is alowed to do.

97

CHAPTER 3| Security for HTTP-Compatible Bindings

Credentials priority

HTTPS prerequisites

Certificate-based authentication
security service configuration

Certificate-based authentication
client configuration

Certificate-based authentication
server configuration

98

When performing authentication at the Artix security level, the X.509 certificate
credentials have alower priority than HTTP Basic Authentication credentials.
Hence, if both HTTP Basic Authentication credentials and X.509 certificate
credentials are presented, the credentials from HTTP Basic Authentication are
used to perform authentication and authorization at the Artix security layer.

In general, abasic prerequisite for using X.509 certificate-based authentication
isthat both client and server are configured to use HTTPS.

See “Securing HTTP Communications with TLS” on page 81.

A basic prerequisite for using certificate-based authentication isto configure the
security adapter that plugs into the Artix security service. The details of this
configuration step are specific to each security adapter. Typicaly, it involves
caching copies of the X.509 certificates for all users with security privileges.

Specific details of how to configure each adapter for certificate-based

authentication are available, asfollows:

® Fileadapter—see*“ Certificate-based authentication for the file adapter” on
page 314.

®* LDAP adapter—see “Certificate-based authentication for the LDAP
adapter” on page 317.

® Custom adapter—see “Developing an iSF Adapter” on page 491.

To enable certificate-based authentication on the client side, it is sufficient for
the client to be configured to use HTTPS with its own certificate. For example,
see “HTTPS client with certificate” on page 85.

A prerequisite for using certificate-based authentication on the server sideisthat
the server’s WSDL contract is configured to use HTTPS. For example, see
“HTTPS server configuration” on page 88.

Additionally, on the server sideit is also necessary to configure the ASP security
layer by editing the Artix configuration file, as shown in Example 17.

Example 17: Artix Configuration for X.509 Certificate-Based Authentication

Artix Configuration File
security artix {

X.509 Certificate-Based Authentication

Example 17: Artix Configuration for X.509 Certificate-Based Authentication

demos
{
hello_world
{
plugins:artix_security:shlib name =
"it_security plugin";
binding:artix:server_request_interceptor_list=
"security";
binding:client_binding list = ["OTS+POA_Coloc",
"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];
orb plugins = ["xmlfile log_stream", ..., "at_http",
"artix security", "https"];
plugins:is2_authorization:action_role mapping =
"file://ArtixInstallDir/samples/security/full_security/etc/he
lloworld _action role_mapping.xml";

policies:asp:enable_authorization = "true";
plugins:asp:security level = "MESSAGE LEVEL";
plugins:asp:authentication cache size = "5";
plugins:asp:authentication_cache_timeout = "10";

plugins:asp:enable security service cert_authentication ="true";

SSL/TLS Settings for HTTPS Transport

The preceding extract from the domain configuration can be explained as
follows:

1

The Artix server request interceptor list must include the security
interceptor, which provides part of the functionality for the Artix security
layer.

The orb_plugins list should include the artix_security plug-in, which
is responsible for enabling authentication and authorization. Y ou can
optionally include the nttps plug-in, which implementsthe HTTPS
transport protocol (if you don’'t includeit here, it will be loaded
dynamically in any case).

99

CHAPTER 3| Security for HTTP-Compatible Bindings

3. Theaction-role mapping file is used to apply access control rules to the
authenticated user. The file determines which actions (that is, WSDL
operations) can be invoked by an authenticated user, on the basis of the
roles assigned to that user.

See “Managing Access Control Lists” on page 319 for more details.

4. policies:asp:enable_authorization variable must be set to true to
enable authorization.

5. Theplugins:asp:security_level configuration variable specifies
whether the credentials are taken from a reguest-level header or from a
transport-level header. By setting the security level to MESSAGE_LEVEL, you
indicate that the credentials are taken either from HTTP Basic
Authentication credentials or from an X.509 certificate at the SSL/TLS
layer.

6. Thenext pair of configuration variables configure the ASP caching
mechanism. For more details, see “ ASP configuration variables’ on
page 75.

7. The plugins:asp:enable_security service cert_authentication
variable must be set to true in order to enable X.509 certificate
authentication at the Artix security level.

8. You aso need to include the settings for configuring the SSL/TLS layer.
See “HTTPS server configuration” on page 88 for details.

100

In this chapter

CHAPTER 4

Security for SOAP
Bindings

Thischapter describesthe security featuresthat are specific to the
SOAP bhinding—for example, such as security credentialsthat can
be propagated in a SOAP header.

This chapter discusses the following topic:

Overview of SOAP Security page 102

WSS X.509 Certificates and Authentication page 106

101

CHAPTER 4 | Security for SOAP Bindings

Overview of SOAP Security

Overview

Security layers

SSL/TLSlayer

102

HTTP Basic Authentication —»; HTTP

Figure 12 gives an overview of security for a SOAP binding within the Artix
security framework. SOAP security consists of four different layers (SSL/TLS,
HTTP, SOAP, and security layer) and support is provided for several different
types of credentials. Figure 12 shows how the different credential types are
associated with the different security layers.

Figure 12: Overview of Security for SOAP Bindings

>
)
<

- Action-role
authorization = L
mapping file
Security layer authentication
WSS UsernameToken —pf \l/
WSS Kerberos —p ! ! .
Artix Security Service
WSS X.509 Certificate — | SOAP y

CORBA Principal —p!

x
o
=}
©

—P SSL/TLS User Data

Asshown in Figure 12, the SOAP binding includes the following security
layers:

® SSL/TLSlayer.

® HTTPlayer.

* SOAPIlayer.

® Security layer.

The SSL/TLS layer provides the SOAP binding with message encryption,
message integrity and authentication using X.509 certificates.

For details of how to enable SSL/TLSfor HTTP, see “ Securing HTTP
Communications with TLS’ on page 81.

HTTP layer

SOAP layer

Security layer

Overview of SOAP Security

The HTTP layer provides a means of sending username/password credentialsin
aHTTP header (HTTP Basic Authentication). The HTTP layer relies on
SSL/TLS to prevent password snooping.

The SOAP layer can send various credentials (WSS UsernameToken, WSS
Kerberos, WSS X.509 certificate, and CORBA Principal) embedded in a SOAP
message header. The SOAP layer relies on SSL/TLS to prevent credentials
snooping.

Note: C++ runtime only—The division of labor between the SOAP layer and

the security layer differs between SOAP 1.1 and SOAP 1.2, asfollows:

® SOAP 1.1—the Artix SOAP plug-in is responsible for inserting and
extracting security credentials.

® SOAP1.2—the Artix security plug-in (ASP security layer) isresponsible
for inserting and extracting security credentials.

The security layer implements a variety of security features for non-CORBA

bindings. The main features of the security layer are:

® Authentication—the security layer calls the Artix security service (which
maintains a database of user data) to authenticate a user’s credentials. If
authentication is successful, the Artix security service returnsalist of the
user’sroles and realms.

® Authorization—the security layer matches the user’ s roles and realms
against an action-role mapping file to determine whether the user has
permission to invoke the relevant WSDL operation.

° Inserting and extracting SOAP 1.2 security credentials (C++ runtime
only)—the security layer is responsible for inserting and extracting
security credentials to and from SOAP 1.2 message headers.

103

CHAPTER 4 | Security for SOAP Bindings

Authentication options

WSS User nameT oken

WSS Kerberos

104

Asshown in Figure 12 on page 102, the SOAP binding supports the following
authentication options:

® WSS UsernameToken.

® WSSKerberos.

® WSS X.509 certificate.

® CORBA Principal—C++ runtime.
° HTTP Basic Authentication.

N SSL/TLS X.5009 certificate.

The Web service security extension (WSS) UsernameToken isa
username/password combination that can be sent in a SOAP header. The
specification of WSS UsernameToken is contained in the WSS UsernameToken
Profile 1.0 document from OASIS (www.0asi s-open.org).

Prior to Artix version 4.0.1, the WSS UsernameToken could be set only by
programming. From Artix 4.0.1 onward, the WSS UsernameT oken can be set
either by programming or through configuration. See “ Propagating a
Username/Password Token” on page 475 and “ principal _sponsor:wsse” on
page 606.

Note: C++ runtime only—if using a SOAP 1.2 binding, you must also load
the Artix security plug-in on the client side in order to transmit WSS
UsernameTokens. See “Load the artix_security plug-in” on page 330 for
details.

The WSS Kerberos specification is used to send a Kerberos security token in a
SOAP header. If you use Kerberos, you must also configure the Artix security
service to use the Kerberos adapter—see “ Configuring the Kerberos Adapter”
on page 265.

Currently, the WSS Kerberos token can be set only by programming. See
“Propagating a Kerberos Token” on page 480.

Note: C++ runtime only—if using a SOAP 1.2 binding, you must also load
the Artix security plug-in on the client side in order to transmit WSS Kerberos
tokens. See “Load the artix_security plug-in” on page 330 for details.

http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/5074/oasis-200401-wss-username-token-profile-1.0.pdf
www.oasis-open.org

WSS X.5009 certificate

CORBA Principal—C++ runtime

HTTP Basic Authentication

SSL/TL S X.509 certificate

Overview of SOAP Security

The WSS specification allows you to send an X.509 certificate in a SOAP
header. For the purpose of authentication, Artix takes the username to be the
common name from the certificate’ s subject DN.

For details, see “WSS X.509 Certificates and Authentication” on page 106.

Note: C++ runtime only—if using a SOAP 1.2 binding, you must also load
the Artix security plug-in on the client sidein order to transmit WSS X.509
certificates. See “Load the artix_security plug-in” on page 330 for details.

The CORBA Principal isalegacy feature originally defined in the early versions
of the CORBA GIOP specification. To facilitate interoperability with early
CORBA implementations, the Artix SOAP binding is also able to propagate
CORBA Principals. Thisfeature is available only for SOAP over HTTP and a
SOAP header is used to propagate the CORBA Principal.

For details, see “Principal Propagation” on page 419.

Note: C++ runtime only—if using a SOAP 1.2 binding, you must also |oad
the Artix security plug-in on the client sidein order to transmit CORBA
Principals. See “Load the artix_security plug-in" on page 330 for details.

HTTP Basic Authentication is used to propagate username/password credentials
inaHTTP header. Thiskind of authentication is available to any
HTTP-compatible binding.

For details, see “HTTP Basic Authentication” on page 92.

Y ou can use an X.509 certificate from the SSL/TLS layer for the purpose of
performing authenti cation and authorization at the Artix security layer. Thiskind
of authentication is available to any HTTP-compatible binding.

For details, see“X.509 Certificate-Based Authentication” on page 96.

105

CHAPTER 4 | Security for SOAP Bindings

WSS X.509 Certificates and Authentication

Overview This section describes how to enable X.509 certificate authentication for
certificates extracted from a WSS SOAP header, based on a simple two-tier
client/server scenario. In this scenario, the Artix security service retrieves roles
and realms based on the identity of the certificate subject.

WARNING: The WSS X.509 certificate is not authenticated by the server, and
the security service does not verify the identity of the certificate owner. The
receiver of the WSS X.509 certificate relies on the sender to perform
authentication. This contrasts with the case of X.509 certificates sent over a
TL S transport, where the receiver does verify the certificate owner’ s identity.

Certificate-based authentication Figure 13 shows an example of atwo-tier system, where authentication of the
scenario client'sWSS X.509 certificate is integrated with the Artix security service.

Figure 13: Overview of Certificate-Based Authentication with WSS

@ Transmit X.509 @ Apply access

cert. over WSS control
>

A

User login

@ Retrieve user's

@ authenticate ()
realms and roles

A 4

Artix Security Service |

A4

106

Scenario description

Credentialspriority

Programming the client for WSS
certificate-based authentication

WSS X.509 Certificates and Authentication

The scenario shown in Figure 13 can be described as follows:

Stage Description

1 | When the client opens a connection to the server, the client sends
an X.509 certificatein aWSS SOAP header. The server does not
check the certificate itself.

2 | The server performs security layer authentication by calling
authenticate () onthe Artix security service, passing username
and password arguments as follows:

®* Username—obtained by extracting the common name (CN)
from the client certificate’ s subject DN.

o Password—obtained from the value of the
plugins:asp:default_password configuration variablein
the server’'s artix.cfg domain configuration.

WARNING: Thisstep is not atrue authentication step, because the

password is cached on the server side. Effectively, this
authentication is performed with adummy password.

3 | If the preceding step is successful, the Artix security service
returns the user’ srealms and roles.

4 | The ASP security layer controls access to the target’s WSDL
operations by consulting an action-role mapping file to determine
what the user is allowed to do.

When performing authentication, the X.509 certificate credentials have alower
priority than that of the other SOAP credentia types. For example, if both WSS
UsernameToken credentials and X.509 certificate credentials are available, the
WSS UsernameT oken credential s take priority over the X.509 certificate and are
used to perform authentication and authorization at the Artix security layer.

On the client side, you need to insert an X.509 certificate into the WSS SOAP
header by programming the bus-security context (thereis currently no
configuration option for doing this). For details, see “Propagating an X.509
Certificate” on page 485.

107

CHAPTER 4 | Security for SOAP Bindings

Configuring the server for WSS
certificate-based authentication

108

~N o o b

On the server sideiit is necessary to configure the ASP security layer by editing
the Artix configuration file, as shown in Example 18.

Example 18: Configuration for WSS Certificate-Based Authentication

Artix Configuration File
security artix {

demos
{
hello_world
{
plugins:artix_security:shlib_name =
"it_security plugin";
binding:artix:server_request_interceptor_ list=
"principal_context+security";
binding:client_binding list = ["OTS+POA_Coloc",
"POA_Coloc", "OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];
orb_plugins = ["xmlfile log_stream", ..., "at_http",
"artix security", "https"];
plugins:is2_authorization:action_role mapping =
"file://ArtixInstallDir/samples/security/full_security/etc/he
lloworld action role_mapping.xml";
policies:asp:enable_authorization = "true";
plugins:asp:security level = "REQUEST LEVEL";
plugins:asp:default_password = "CertPassword";
plugins:asp:authentication cache size = "5";
plugins:asp:authentication_cache_timeout = "10";

The preceding extract from the domain configuration can be explained as
follows:

1

The Artix server request interceptor list must include the security
interceptor, which provides part of the functionality for the Artix security
layer.

The orb_plugins list should include the artix_security plug-in, which
is responsible for enabling authentication and authorization.

WSS X.509 Certificates and Authentication

The action-role mapping file is used to apply access control rules to the
authenticated user. The file determines which actions (that is, WSDL
operations) can be invoked by an authenticated user, on the basis of the
roles assigned to that user.

See “Managing Access Control Lists’ on page 319 for more details.

policies:asp:enable authorization variable must be set to true to
enable authorization.

Theplugins:asp:security_ level configuration variable specifies
whether the credentials are taken from a request-level header or from a
transport-level header. By setting the security level to REQUEST LEVEL, you
indicate that the credentials are taken from a SOAP header (for example,
WSS X.509 certificate or WSS UsernameToken credentials).

In the case of WSS X.509 certificate-based authentication, the usernameis
taken to be the common name (CN) from the client certificate' s subject DN
(for an explanation of X.509 certificate terminology, see “ASN.1 and
Distinguished Names” on page 643).

When WSS X.509 certificate-based authentication is used, a default
password, certPassword, must be supplied on the server side. This
password is then used for authenticating with the Artix security service.
The next pair of configuration variables configure the ASP caching
mechanism. For more details, see “ ASP configuration variables’ on

page 75.

109

CHAPTER 4 | Security for SOAP Bindings

110

In this chapter

CHAPTER 5

Security for
CORBA Bindings

Using Progress's modular ART technology, you make a CORBA
binding secure by configuring it to load the relevant security
plug-ins. Thissection describeshowtoload and configure security
plug-insto reach the appropriate level of security for applications
with a CORBA binding.

This chapter discusses the following topics:

Overview of CORBA Security page 112
Securing I11OP Communications with SSL/TLS page 114
Securing Two-Tier CORBA Systems with CSI page 120
Securing Three-Tier CORBA Systems with CSI page 126
X.509 Certificate-Based Authentication for CORBA Bindings page 132

111

CHAPTER 5| Security for CORBA Bindings

Overview of CORBA Security

Overview There are three layers of security available for CORBA bindings: 11OP over
SSL/TLS (IIOP/TLS), which provides secure communication between client and
server; CSl, which provides a mechanism for propagating username/password
credentials; and the GSP plug-in, which is concerned with higher-level security
features such as authentication and authorization.

The following combinations are recommended:

° ITOP/TLS only—for apure SSL/TL S security solution.

. IIOP/TLS, CSl, and GSP layers—for a highly scalable security solution,
based on username/password client authentication.

CORBA applications and the Figure 14 showsthe main features of a secure CORBA application in the context
Artix security framework of the Artix security framework.

Figure 14: A Secure CORBA Application within the Artix Security Framework

ARM .
-~ Action-role
authorization = L
mapping file
GSP security authentication
CORBA \l/
binding Artix Security Service
CSI authentication over transport —»|
CSl identity assertion —»| GIOP
CORBA Principal —»
X.509
—> IIOP/TLS
B User Data
Security plug-ins Within the Artix security framework, a CORBA application becomes fully

secure by loading the following plug-ins:
° ITOP/TLS plug-in

® CSlv2plug-in

® GSPplug-in

112

[TOP/TLS plug-in

CSIv2 plug-in

GSP plug-in

Overview of CORBA Security

ThellOP/TLS plug-in, iiop_t1s, enablesa CORBA application to transmit and
receive I1OP requests over a secure SSL/TLS connection. This plug-in can be
enabled independently of the other two plug-ins.

See " Securing I10P Communications with SSL/TLS” on page 114 for details on
how to enable IIOP/TLS in a CORBA application.

The CSIv2 plug-in, csi, provides aclient authentication mechanism for CORBA
applications. The authentication mechanism is based on a username and a
password. When the CSIv2 plug-in is configured for use with the Artix security
framework, the username and password are forwarded to a central Artix security
service to be authenticated. This plug-in is needed to support the Artix security
framework.

Note: ThellOP/TLS plug-in also provides aclient authentication mechanism
(based on SSL/TLS and X.509 certificates). The SSL/TLS and CSIv2
authentication mechanisms are independent of each other and can be used
simultaneously.

The GSP plug-in, gsp, provides authorization by checking a user’s roles against
the permissions stored in an action-role mapping file. This plug-in is needed to
support the Artix security framework.

113

CHAPTER 5| Security for CORBA Bindings

Securing [1OP Communications with
SSL/TLS

Overview This section describes how to configure a CORBA binding to use SSL/TLS
security. In this section, it is assumed that your initial configuration comes from
a secure location domain.

WARNING: The default certificates used in the CORBA configuration
samples are for demonstration purposes only and are completely insecure. You
must generate your own custom certificates for use in your own CORBA
applications.

Sample client configuration For example, consider the configuration for a secure SSL/TLS client with no
certificate.

Example 19 shows how to configure such a sample client.
Example 19: Sample SSL/TLS Client Configuration

Artix Configuration File

;\E.(.}eneral configuration at root scope.

my_secure_apps {
Common SSL/TLS configuration settings.

1 orb _plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls"];
2 binding:client_binding list = ["GIOP+EGMIOP",

"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

3 policies:trusted ca_list_policy =

"ArtixInstallDir\samples\certificates\tls\x509\trusted_ca_lis
ts\ca_listl.pem";

114

Securing I1OP Communicationswith SSL/TLS

Example 19: Sample SSL/TLSClient Configuration

policies:mechanism policy:protocol_version = "SSL_V3";

policies:mechanism policy:ciphersuites =
["RSA_WITH RC4_128_SHA", "RSA WITH RC4_128 MD5"];

event_log:filters = ["IT ATLI_TLS=*", "IT IIOP=*",
"IT _ITOP_TLS=*", "IT_TLS=*"];

my_client {
Specific SSL/TLS client configuration settings
principal_sponsor:use_principal_sponsor = "false";

policies:iiop_tls:client_secure_invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

5o

The preceding client configuration can be described as follows:
1. Makesurethat the orb_plugins variable in this configuration scope
includesthe iiop_tls plug-in.

Note: For fully secure applications, you should exclude the iiop
plug-in (insecure 11OP) from the ORB plug-inslist. This renders the
application incapable of making insecure I1OP connections.

For semi-secure applications, however, you should include the iiop
plug-in before the 1iop_tis plug-ininthe ORB plug-inslist.

If you plan to use the full Artix Security Framework, you should include
the gsp plug-in in the ORB plug-ins list as well—see “ Securing Two-Tier
CORBA Systemswith CSI” on page 120.

2. Makesurethat the binding:client binding list variableincludes
bindings with the 1Top_TLS interceptor. Y ou can use the value of the
binding:client_binding list shown here.

115

CHAPTER 5| Security for CORBA Bindings

An SSL/TLS application needs alist of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from other
SSL/TLS applications. Y ou must, therefore, edit the
policies:trusted_ca_list_policy Variableto point at alist of trusted
certificate authority (CA) certificates. See “ Specifying Trusted CA
Certificates’ on page 182.

Note: If using Schannel as the underlying SSL/TL S toolkit (Windows
only), thepolicies:trusted ca_list_policy variableisignored.
Within Schannel, the trusted root CA certificates are obtained from the
Windows certificate store.

The SSL/TLS mechanism policy specifies the default security protocol
version and the available cipher suites—see “ Specifying Cipher Suites’ on
page 221.

This line enables console logging for security-related events, which is

useful for debugging and testing. Because there is a performance penalty

associated with this option, you might want to comment out or delete this
linein a production system.

The SSL/TLS principal sponsor isamechanism that can be used to specify

an application’s own X.509 certificate. Because this client configuration

does not use a certificate, the principal sponsor is disabled by setting
principal_sponsor:use_principal_sponsor {0 false.

Thefollowing two lines set the required options and the supported options

for the client secure invocation policy. In this example, the policy is set as

follows:

+ Required options—the options shown here ensure that the client can
open only secure SSL/TLS connections.

+ Supported options—the options shown include all of the association
options, except for the EstablishTrustInClient option. The client
cannot support EstablishTrustInClient, because it hasno X.509
certificate.

Sample server configuration Generally speaking, it israrely necessary to configure such athing asapure
server (that is, aserver that never makes any requests of its own). Most real
servers are applications that act in both a server role and aclient role.

116

N

Securing I1OP Communicationswith SSL/TLS

Example 20 shows how to configure a sample server that acts both as a secure
server and as a secure client.

Example20: Sample SSL/TLS Server Configuration

Artix Configuration File

General configuration at root scope.

my_secure_apps {

Common SSL/TLS configuration settings.
my_server {
Specific SSL/TLS server configuration settings
policies:target_secure invocation policy:requires
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];
policies:target_secure invocation policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",

"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

principal_sponsor:use_principal_sponsor = "true";

principal_sponsor:auth method id = "pkcsl2_file";

principal_sponsor:auth _method data =
["filename=CertsDir\server_cert.pl2"];

Specific SSL/TLS client configuration settings

policies:iiop_tls:client_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

5o

117

CHAPTER 5| Security for CORBA Bindings

The preceding server configuration can be described as follows:

1. You can usethe same common SSL/TLS settings here as described in the
preceding “ Sample client configuration” on page 114

2. Thefollowing two lines set the required options and the supported options
for the target secure invocation policy. In this example, the policy is set as
follows:

+ Required options—the options shown here ensure that the server
accepts only secure SSL/TLS connection attempts.

+ Supported options—all of the target association options are
supported.

3. A server must always be associated with an X.509 certificate. Hence, this
line enables the SSL/TLS principal sponsor, which specifies a certificate
for the application.

4. Thisline specifies that the X.509 certificate is contained in a PKCS#12
file. For aternative methods, see “ Specifying an Application’s Own
Certificate” on page 190.

5. Replacethe X.509 certificate, by editing the filename option in the
principal_sponsor:auth method data configuration variableto point at
acustom X.509 certificate. The £ilename value should beinitialized with
the location of acertificate file in PK CS#12 format—see “ Specifying an
Application’s Own Certificate” on page 190 for more details.

For details of how to specify the certificate’ s pass phrase, see “ Deploying

Own Certificate for HTTPS’ on page 191.

6. Thefollowingtwo lines set the required options and the supported options
for the client secure invocation policy. In this example, the policy is set as
follows:

+ Required options—the options shown here ensure that the application
can open only secure SSL/TLS connections to other servers.

+ Supported options—all of the client association options are
supported. In particular, the EstablishTrustInClient optionis
supported when the application isin a client role, because the
application has an X.509 certificate.

118

Mixed security configurations

Customizing SSL/TL S security
policies

Securing I1OP Communicationswith SSL/TLS

Most realistic secure server configurations are mixed in the sense that they
include both server settings (for the server role), and client settings (for the client
role). When combining server and client security settings for an application, you
must ensure that the settings are consistent with each other.

For example, consider the case where the server settings are secure and the client
settings are insecure. To configure this case, set up the server role as described
in “ Sample server configuration” on page 116. Then configure the client role by
adding (or modifying) the following linesto themy secure_apps.my_server
configuration scope:

orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop", "iiop_tls"];

policies:iiop_tls:client_secure_invocation policy:requires =
["NoProtection"];

policies:iiop_tls:client_secure_invocation_policy:supports =
["NoProtection"];

Thefirst line sets the ORB plug-ins list to make sure that the iiop plug-in
(enabling insecure [10OP) isincluded. The Noprotection association option,
which appears in the required and supported client secure invocation policy,
effectively disables security for the client role.

Y ou can, optionally, customize the SSL/TL S security policiesin various ways.
For details, see the following references:

®* “Configuring Secure Associations’ on page 205.
e “Configuring HTTPS and [IOP/TLS" on page 169.

119

CHAPTER 5| Security for CORBA Bindings

Securing Two-Tier CORBA Systemswith CSl

Overview

Two-tier CORBA system

120

This section describes how to secure atwo-tier CORBA system using the
OMG's Common Secure I nteroperability specification version 2.0 (CSIv2). The
client supplies username/password authentication data which is transmitted as
CSl credentials and then authenticated on the server side. The following
configurations are described in detail:

® Client configuration.
® Target configuration.

Figure 15 shows a basic two-tier CORBA system using CSI credentials,
featuring aclient and atarget server.

Figure 15: Two-Tier CORBA System Using CS Credentials

_ ”’ . Propag{ite . Apply access
@ User login @ authentication @

=, control

token

Request + | u/p/d Target
7y

@ Retrieve user's
realms and roles

Client

Client credentials .
@ authenticate()

A 4

Artix Security
Service

Securing Two-Tier CORBA Systemswith CSI

Scenario description The scenario shown in Figure 15 can be described as follows:

Stage Description

1 | Theuser enters ausername, password, and domain name (u/p/d)
on theclient side.

Note: The domain name must match the value of the
policies:csi:auth_over_ transport:server domain_name
configuration variable set on the server side.

2 | When the client makes aremote invocation on the server, the CSI
username/password/domain authentication data is transmitted to
the target along with the invocation request.

3 | The server authenticates the received username and password by
calling out to the external Artix security service.

4 | If authenticationissuccessful, the Artix security servicereturnsthe
user’srealms and roles.

5 | The GSP security layer controls accessto the target’s IDL
interfaces by consulting an action-role mapping file to determine
what the user is alowed to do.

Client configuration The CORBA client from Example 15 on page 120 can be configured as shown
in Example 21.

Example21: Configuration of a CORBA client Using CS Credentials
Artix Configuration File
General configuration at root scope.

my_secure_apps {
1 # Common SSL/TLS configuration settings.

Common Artix security framework configuration settings.

2 orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiOpﬁtlS" , "gsp"] ;

121

CHAPTER 5| Security for CORBA Bindings

122

Example 21: Configuration of a CORBA client Using CS Credentials

binding:client_binding list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA_Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+ITIOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];
binding:server_binding list = ["CSI+GSP+0TS", "CSI+GSP",
"CSI+OTS", "CSI"];

my_client {
Specific SSL/TLS configuration settings.

Specific Artix security framework settings.
policies:csi:auth_over transport:client_supports =
["EstablishTrustInClient"];

principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:auth _method id = "GSSUPMech";
principal_sponsor:csi:auth _method data = [];
};
17

The preceding client configuration can be explained as follows:

1. The SSL/TLS configuration variables common to al of your applications
can be placed here—see “ Securing [1OP Communications with SSL/TLS”
on page 114 for details of the SSL/TLS configuration.

2. Make surethat the orb_plugins variablein this configuration scope
includes both the iiop_t1s and the gsp plug-insin the order shown.

3. Makesurethat the binding:client_binding list variableincludes
bindings with the cst interceptor. Y our can use the value of the
binding:client_binding list shown here.

4. Make sure that the binding: server_binding list variable includes
bindings with both the cst and Gsp interceptors. Y our can use the value of
the binding:server binding list shown here.

5. The SSL/TLS configuration variables specific to the CORBA client can be
placed here—see “ Securing I1OP Communications with SSL/TLS’ on
page 114.

Target configuration

Securing Two-Tier CORBA Systemswith CSI

6. This configuration setting specifies that the client supports sending
username/password authentication data to a server.

7. Thenext threelines specify that the client usesthe CSI principal sponsor to
obtain the user’ s authentication data. With the configuration as shown, the
user would be prompted to enter the username and password when the
client application starts up.

The CORBA target server from Figure 15 on page 120 can be configured as
shown in Example 22.

Example 22: Configuration of a Second-Tier Target Server in the Artix
Security Framework

Artix Configuration File
General configuration at root scope.

my_secure_apps {
Common SSL/TLS configuration settings.

Common Artix security framework configuration settings.
orb plugins = [..., "iiop_tls", "gsp", ... 1;
binding:client_binding list = [... 1;
binding:server_binding list = [...];

my_two_tier target {
Specific SSL/TLS configuration settings.

Specific Artix security framework settings.

policies:csi:auth_over transport:target_supports =
["EstablishTrustInClient"];

policies:csi:auth_over transport:target_requires =

["EstablishTrustInClient"];

policies:csi:auth_over transport:server domain_name =
"CSIDomainName" ;

plugins:gsp:authorization realm = "AuthzRealm";

plugins:is2_authorization:action_role mapping =
"ActionRoleURL" ;

123

CHAPTER 5| Security for CORBA Bindings

124

Example 22: Configuration of a Second-Tier Target Server in the Artix
Security Framework

Artix security framework client configuration settings.
policies:csi:auth_over transport:client_supports =
["EstablishTrustInClient"];

principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:auth _method id = "GSSUPMech";
principal_sponsor:csi:auth_method _data = [];
e
17

The preceding target server configuration can be explained as follows:

1. TheSSL/TLS configuration variables specific to the CORBA target server
can be placed here—see “ Securing [1OP Communications with SSL/TLS”
on page 114.

2. Thisconfiguration setting specifies that the target server supports
receiving username/password authentication data from the client.

3. Thisconfiguration setting specifies that the target server requiresthe client
to send username/password authentication data.

4. Theserver domain_name configuration variable sets the server’'s CSlv2
authentication domain name, csrpomainName. The domain name
embedded in areceived CSIv2 credential must match the value of the
server_domain_name variable on the server side.

5. Thisconfiguration setting specifies the Artix authorization realm,
AuthzRealm, to which this server belongs. For more details about Artix
authorization realms, see “ Artix Authorization Realms’ on page 307.

6. Theaction_role_mapping configuration variable specifiesthelocation of
an action-role mapping that controls accessto the IDL interfaces
implemented by the server. Thefilelocation is specified in an URL format,
for example: file:///security_admin/action_role mapping.xml
(UNIX) or file:///c:/security_admin/action_role_mapping.xml
(Windows).

For more details about the action-role mapping file, see “ACL File
Format” on page 321.

Securing Two-Tier CORBA Systemswith CSI

7. You should also set secure client configuration variables in the server
configuration scope, because a secure server application usually behavesas
a secure client of the core CORBA services. For example, almost all
CORBA servers need to contact both the locator service and the CORBA
naming service.

Related administration tasks After securing your CORBA applications with the Artix security framework,
you might need to perform related administration tasks, for example:

® See“Managing Users, Roles and Domains’ on page 303.
® See“ACL File Format” on page 321.

125

CHAPTER 5| Security for CORBA Bindings

Securing Three-Tier CORBA Systemswith
C3l

Overview This section describes how to secure athree-tier CORBA system using CSIv2.
In this scenario thereis aclient, an intermediate server, and atarget server. The
intermediate server is configured to propagate the client identity when it invokes
on the target server in the third tier. The following configurations are described
in detail:

° Intermediate configuration.
® Target configuration.

Three-tier CORBA system Figure 16 shows a basic three-tier CORBA system using CSlv2, featuring a
client, an intermediate server and atarget server.

Figure 16: Three-Tier CORBA System Using CSIv2

@ Set own identity @ @ Obtain user's
> -y realms and roles
4 \‘V Propagate identity

u/pld ’
Client | Reauest+ [u/p/d Intermediate | Request+ | Target

»
»

‘ Server \ "l Server
A
Client

@ Apply access
authentication Identity token control
token v

Artix Security
Service

126

Scenario description

Client configuration

I nter mediate configuration

Securing Three-Tier CORBA Systemswith CSl

The second stage of the scenario shown in Figure 16 (intermediate server
invokes an operation on the target server) can be described as follows:

Stage Description

1 | Theintermediate server setsits own identity by extracting the user
identity from the received username/password CSI credentials.
Hence, the intermediate server assumes the same identity as the
client.

2 | When the intermediate server makes a remote invocation on the
target server, CSl identity assertion is used to transmit the user
identity datato the target.

3 | Thetarget server then obtains the user’s realms and roles.

4 | The GSP security layer controls access to the target’s IDL
interfaces by consulting an action-role mapping file to determine
what the user is alowed to do.

The client configuration for the three-tier scenario isidentical to that of the
two-tier scenario, as shown in “Client configuration” on page 121.

The CORBA intermediate server from Figure 16 on page 126 can be configured
as shown in Example 23.

Example 23: Configuration of a Second-Tier Intermediate Server in the Artix
Security Framework

Artix Configuration File

General configuration at root scope.

my_secure_apps {
Common SSL/TLS configuration settings.

Common Artix security framework configuration settings.
orb plugins = [..., "iiop_tls", "gsp", ... 1;
binding:client_binding list = [...];
binding:server_binding list = [... 1;

127

CHAPTER 5| Security for CORBA Bindings

128

Example 23: Configuration of a Second-Tier Intermediate Server in the Artix
Security Framework

my_three_tier_intermediate {
Specific SSL/TLS configuration settings.

Specific Artix security framework settings.
policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

policies:csi:auth_over transport:target_supports =
["EstablishTrustInClient"];

policies:csi:auth_over_ transport:target_requires =
["EstablishTrustInClient"];

policies:csi:auth_over transport:server_domain_name =

"CSIDomainName" ;
plugins:gsp:authorization_realm = "AuthzRealm";
plugins:is2_authorization:action_role_mapping =
"ActionRoleURL" ;

Artix security framework client configuration settings.
policies:csi:auth_over transport:client_supports =
["EstablishTrustInClient"];

principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:auth _method id = "GSSUPMech";
principal_sponsor:csi:auth_method _data = [];
e
17

The preceding intermediate server configuration can be explained as follows:

1. TheSSL/TLSconfiguration variables specific to the CORBA intermediate
server can be placed here—see “ Securing 11OP Communications with
SSL/TLS’ on page 114.

2. Thisconfiguration setting specifies that the intermediate server is capable
of propagating the identity it receives from a client. In other words, the
server is able to assume the identity of the client when invoking operations
on third-tier servers.

3. Thisconfiguration setting specifies that the intermediate server supports
receiving username/password authentication data from the client.

4. Thisconfiguration setting specifies that the intermediate server requires
the client to send username/password authentication data.

Target configuration

Securing Three-Tier CORBA Systemswith CSl

5. Theserver_domain_name configuration variable sets the server’'s CSlv2
authentication domain name, csIpomainName. The domain name
embedded in areceived CSIv2 credential must match the value of the
server_domain_name Variable on the server side.

6. This configuration setting specifies the Artix authorization realm,
AuthzRealm, to which this server belongs. For more details about Artix
authorization realms, see “ Artix Authorization Realms’ on page 307.

7. This configuration setting specifies the location of an action-role mapping
that controls access to the IDL interfaces implemented by the server. The
filelocation is specified in an URL format, for example:
file:///security_admin/action_role_mapping.xml (UNIX) or
file:///c:/security_admin/action_role mapping.xml (\Windows)
For more details about the action-role mapping file, see“ACL File
Format” on page 321.

8. You should also set Artix security framework client configuration
variablesin the intermediate server configuration scope, because a secure
server application usually behaves as a secure client of the core CORBA
services. For example, amost all CORBA servers need to contact both the
locator service and the CORBA naming service.

The CORBA target server from Figure 16 on page 126 can be configured as
shown in Example 24.

Example 24: Configuration of a Third-Tier Target Server Using CS
Artix Configuration File
General configuration at root scope.

my_secure_apps {
Common SSL/TLS configuration settings.

Common Artix security framework configuration settings.
orb plugins = [..., "iiop_tls", "gsp", ... 1;
binding:client_binding list = [...];
binding:server_binding list = [... 1;

129

CHAPTER 5| Security for CORBA Bindings

Example 24: Configuration of a Third-Tier Target Server Using CS

my_three tier_ target {
Specific SSL/TLS configuration settings.

[

2 policies:iiop_tls:target_secure_invocation policy:requires
= ["Confidentiality", "DetectMisordering", "DetectReplay",
"Integrity", "EstablishTrustInClient"];

3 policies:iiop_tls:certificate constraints_policy =
[ConstraintStringl, ConstraintString2, ...1;

Specific Artix security framework settings.

4 policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

5 plugins:gsp:authorization_realm = "AuthzRealm";

6 plugins:is2_authorization:action_role mapping =
"ActionRoleURL";

7 # Artix security framework client configuration settings.

policies:csi:auth_over transport:client_supports =
["EstablishTrustInClient"];

principal_sponsor:csi:use_principal_sponsor = "true";
principal_sponsor:csi:auth_method_id = "GSSUPMech";
principal_sponsor:csi:auth_method data = [];
g
};

The preceding target server configuration can be explained as follows:

1. TheSSL/TLS configuration variables specific to the CORBA target server
can be placed here—see “ Securing [1OP Communications with SSL/TLS”
on page 114.

2. Itisrecommended that the target server require its clients to authenticate
themselves using an X.509 certificate. For example, the intermediate
server (acting as aclient of the target) would then be required to send an
X.509 certificate to the target during the SSL/TLS handshake.

Y ou can specify this option by including the EstablishTrustInClient
association option in the target secure invocation policy, as shown here
(thereby overriding the policy value set in the outer configuration scope).

130

Related administration tasks

Securing Three-Tier CORBA Systemswith CSl

In addition to the preceding step, it is also advisable to restrict accessto the
target server by setting a certificate constraints policy, which allows access
only to those clients whose X.509 certificates match one of the specified
constraints—see “Applying Constraints to Certificates’ on page 202.

Note: The motivation for limiting access to the target server is that
clients of the target server obtain a special type of privilege: propagated
identities are granted access to the target server without the target server
performing authentication on the propagated identities. Hence, the target
server trusts the intermediate server to do the authentication on its behalf.

This configuration setting specifies that the target server supportsreceiving
propagated user identities from the client.

This configuration setting specifies the Artix authorization realm,
AuthzRealm, to which this server belongs. For more details about Artix
authorization realms, see “Artix Authorization Realms’ on page 307.

This configuration setting specifies the location of an action-role mapping
that controls access to the IDL interfaces implemented by the server. The
filelocation is specified in an URL format, for example:
file:///security_admin/action_role mapping.xml.

For more details about the action-role mapping file, see“ACL File
Format” on page 321.

Y ou should also set secure client configuration variablesin the target
server configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and the
CORBA naming service.

After securing your CORBA applications with the Artix security framework,
you might need to perform related administration tasks, for example:

See “Managing Users, Roles and Domains’ on page 303.
See“ACL File Format” on page 321.

131

CHAPTER 5| Security for CORBA Bindings

X.509 Certificate-Based Authentication for
CORBA Bindings

Overview

132

This section describes how to enable X.509 certificate authentication for

CORBA bindings, based on a simple two-tier client/server scenario. In this

scenario, the Artix security service authenticates the client’ s certificate and

retrieves roles and realms based on the identity of the certificate subject. When

certificate-based authentication is enabled, the X.509 certificate is effectively

authenticated twice, asfollows:

¢ S /TLSlevel authentication—this authentication step occurs during the
SSL/TLS handshake and is governed by Artix configuration settings and
programmable SSL/TLS policies.

® GSP security-level authentication and authorization—this authentication
step occurs after the SSL/TL S handshake and is performed by the Artix
security service working in tandem with the gsp plug-in.

X.509 Certificate-Based Authentication for CORBA Bindings

Certificate-based authentication Figure 17 shows an example of atwo-tier system, where authentication of the
scenario client’s X.509 certificate is integrated with the Artix security service.

Figure 17: Overview of Certificate-Based Authentication

L)

User login

@ SSL/TLS-level @ Apply access

- authentication control
Client Target
g

C Retrieve user's
realms and roles

@ authenticate ()

A 4

Artix Security Service

®

Check certificate

Scenario description The scenario shown in Figure 17 can be described as follows:

Stage Description

1 | When the client opens a connection to the server, the client sends

its X.509 certificate as part of the SSL/TL S handshake. The server

then performs SSL/TL S-level authentication, checking the

certificate asfollows:

® Thecertificateis checked against the server’s trusted CA list
to ensure that it is signed by atrusted certification authority.

* |f acertificate constraints policy is set, the certificateis
checked to make sure it satisfies the specified constraints.

* |f acertificate validator policy is set (by programming), the
certificate is also checked by this palicy.

133

CHAPTER 5| Security for CORBA Bindings

Stage Description

2 | The server then performs security layer authentication by calling
authenticate () onthe Artix security service, passing theclient's
X.509 certificate as the argument.

3 | TheArtix security service authenticates the client’s X.509
certificate by checking it against a cached copy of the certificate.
The type of checking performed depends on the particular
third-party enterprise security service that is plugged into the
Artix security service.

4 | If authentication is successful, the Artix security servicereturnsthe
user’'s realms and roles.

5 | The security layer controls access to the target’s IDL interfaces by
consulting an action-role mapping file to determine what the user
is allowed to do.

Client configuration Example 25 shows a sample client configuration that you can use for the
security-level certificate-based authentication scenario (Figure 17 on page 133).

Example 25: Client Configuration for Security-Level Certificate-Based
Authentication

Artix Configuration File
corba_cert_auth
{
orb_plugins = ["local_ log_stream", "iiop_profile", "giop",
"iiop_tls", "gsp"l;

event_log:filters = ["IT_GSP=*", "IT CSI=*", "IT TLS=*"
"IT _IIOP_TLS=*", "IT ATLI2_TLS=*"];

binding:client_binding list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA Coloc", "OTS+TLS_Coloc+POA Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

134

Target configuration

X.509 Certificate-Based Authentication for CORBA Bindings

Example 25: Client Configuration for Security-Level Certificate-Based
Authentication

client_x509
{

policies:iiop_tls:client_secure_invocation_policy:supports
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:client_secure_invocation policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

principal sponsor:iiop tls:use principal sponsor =
"true";
principal_ sponsor:iiop tls:auth method id =
"pkcsl2 file";
principal_ sponsor:iiop tls:auth method data =
["filename=W: \certs\bob.pl2",
"password_ file=W:\certs\bob_password.txt"];
b
137

The preceding client configuration isatypical SSL/TLS configuration. The only
noteworthy feature is that the client must have an associated X.509 certificate.
Hence, the principal_sponsor Settings are initialized with the location of an
X.509 certificate (provided in the form of a PKCS#12 file).

For adiscussion of these client SSL/TL S settings, see “ Sample client
configuration” on page 114 and “ Specifying an Application’s Own Certificate”
on page 190.

Example 26 shows a sample server configuration that you can use for the
security-level certificate-based authentication scenario (Figure 17 on page 133).

Example 26: Server Configuration for Security-Level Certificate-Based
Authentication

Artix Configuration File
corba_cert_auth
{
orb_plugins = ["local_log_stream", "iiop_profile", "giop",
"iiop_tls", "gsp"l;

135

CHAPTER 5| Security for CORBA Bindings

136

Example 26: Server Configuration for Security-Level Certificate-Based
Authentication

event_log:filters = ["IT GSP=*", "IT CSI=*", "IT TLS=*",
"IT ITOP _TLS=*", "IT ATLI2 TLS=*"];

binding:client_binding list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA_Coloc", "OTS+TLS_Coloc+POA_Coloc",
"TLS_Coloc+POA_Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP", "GIOP+IIOP_TLS"];

server
{
principal_sponsor:iiop_tls:use principal_sponsor =
"true";
principal_sponsor:iiop_ tls:auth _method_ id =
"pkcsl2_file";
principal_sponsor:iiop_tls:auth _method _data =
["filename=CertDir\target_cert.pl2",
"password_file=CertDir\target_ cert_password.txt"];

binding:server binding list = ["CSI+GSP", "CSI",
"GSP"],’

plugins:is2_authorization:action_ role_mapping =
"file:///PathToARMFile" ;

auth_x509
{

plugins:gsp:enable security service cert_authentication =
n tme n ;

policies:iiop_tls:target_secure_invocation_policy:supports
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop_tls:target_secure_invocation policy:requires
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];
1
g

Related administration tasks

X.509 Certificate-Based Authentication for CORBA Bindings

The preceding server configuration can be explained as follows:

1

Asisnormal for an SSL/TLS server, you must provide the server with its
own certificate, target_cert.p12. The simplest way to do thisisto
specify the location of a PK CS#12 file using the principal sponsor.

This configuration setting specifies the location of an action-role mapping
file, which controls access to the server’ s interfaces and operations. See
“ACL File Format” on page 321 for more details.

The plugins:gsp:enable_security_service_cert_authentication
variable is the key to enabling security-level certificate-based
authentication. By setting this variable to true, you cause the server to
perform certificate authentication in the GSP security layer.

The IIOP/TLStarget secure invocation policy must require
EstablishTrustInClient. Evidently, if the client doesnot provide a
certificate during the SSL/TLS handshake, there will be no certificate
available to perform the security layer authentication.

When using X.509 certificate-based authentication for CORBA bindings, itis
necessary to add the appropriate user data to your enterprise security system
(which isintegrated with the Artix security service through an iSF adapter), as
follows:

File adapter—see “ Certificate-based authentication for the file adapter” on
page 314.

LDAP adapter—see “ Certificate-based authentication for the LDAP
adapter” on page 317.

137

CHAPTER 5| Security for CORBA Bindings

138

In thispart

Part ||
TLS Security Layer

This part contains the following chapters:

Managing Certificates page 141
Configuring HTTPS and IIOP/TLS page 169
Configuring Secure Associations page 205

139

140

In this chapter

Managing
Certificates

CHAPTER 6

TLSauthentication uses X.509 certificates—a common, secureand
reliable method of authenticating your application objects. This
chapter explainshow you can create X.509 certificatesthat identify

your Artix applications.

This chapter contains the following sections:

What are X.509 Certificates? page 142
Certification Authorities page 144
Certificate Chaining page 147
PKCSH12 Files page 149
Specia Requirements on HTTPS Certificates page 151
Creating Y our Own Certificates page 154
Generating a Certificate Revocation List page 166

141

CHAPTER 6 | Managing Certificates

What are X.509 Certificates?

Role of certificates An X.509 certificate binds a name to a public key value. The role of the
certificate isto associate a public key with the identity contained in the X.509
certificate.

Integrity of the public key Authentication of a secure application depends on the integrity of the public key

value in the application’s certificate. If an impostor replaced the public key with
its own public key, it could impersonate the true application and gain access to
secure data.

To prevent this form of attack, all certificates must be signed by a certification
authority (CA). A CA isatrusted node that confirms the integrity of the public
key value in a certificate.

Digital signatures A CA signs acertificate by adding its digital signature to the certificate. A
digital signatureis a message encoded with the CA’s private key. The CA’s
public key is made available to applications by distributing a certificate for the
CA. Applications verify that certificates are validly signed by decoding the CA’s
digital signature with the CA’s public key.

WARNING: Most of the demonstration certificates supplied with Artix are
signed by the CA cacert.pem. This CA iscompletely insecure because anyone
can access its private key. To secure your system, you must create new
certificates signed by atrusted CA. This chapter describesthe set of certificates
required by an Artix application and shows you how to replace the default
certificates.

142

The contents of an X.509
certificate

Distinguished names

What are X.509 Certificates?

An X.509 certificate contains information about the certificate subject and the
certificate issuer (the CA that issued the certificate). A certificate is encoded in
Abstract Syntax Notation One (ASN.1), a standard syntax for describing
messages that can be sent or received on a network.

The role of acertificate is to associate an identity with apublic key value. In
more detail, a certificate includes:

X.509 version information.

A serial number that uniquely identifies the certificate.

A subject DN that identifies the certificate owner.

The public key associated with the subject.

Anissuer DN that identifies the CA that issued the certificate.

The digital signature of the issuer.

Information about the algorithm used to sign the certificate.

Some optional X.509 v.3 extensions. For example, an extension exists that
distinguishes between CA certificates and end-entity certificates.

A distinguished name (DN) isageneral purpose X.500 identifier that is often
used in the context of security.

See“ASN.1 and Distinguished Names’ on page 643 for more details about DNs.

143

CHAPTER 6 | Managing Certificates

Certification Authorities

Choiceof CAs

In this section

144

A CA must be trusted to keep its private key secure. When setting up an Artix
system, it isimportant to choose a suitable CA, make the CA certificate
availableto all applications, and then use the CA to sign certificates for your
applications.

There are two types of CA you can use:

* A commercial CAisacompany that signs certificates for many systems.

* A private CAisatrusted node that you set up and use to sign certificates
for your system only.

This section contains the following subsections:

Commercia Certification Authorities page 145

Private Certification Authorities page 146

Certification Authorities

Commercial Certification Authorities

Signing certificates There are several commercial CAs available. The mechanism for signing a
certificate using a commercial CA depends on which CA you choose.

Advantages of commercial CAs An advantage of commercial CAsisthat they are often trusted by alarge number
of people. If your applications are designed to be available to systems external to
your organization, use acommercial CA to sign your certificates. If your
applications are for use within an internal network, a private CA might be
appropriate.

Criteriafor choosing a CA Before choosing a CA, you should consider the following criteria:
* What arethe certificate-signing policies of the commercial CAs?
® Areyour applications designed to be available on an internal network
only?
®* What arethe potential costs of setting up a private CA compared with the
costs of subscribing to acommercial CA?

145

CHAPTER 6 | Managing Certificates

Private Certification Authorities

Choosing a CA softwar e package

OpenSSL softwar e package

Setting up a private CA using
OpenSSL

Choosing a host for a private
certification authority

Security precautions

146

If you wish to take responsibility for signing certificates for your system, set up
aprivate CA. To set up aprivate CA, you require access to a software package
that provides utilities for creating and signing certificates. Several packages of
thistype are available.

One software package that allows you to set up a private CA is OpenSSL,
http: //www.openssl.org. OpenSSL isderived from SSLeay, an
implementation of SSL developed by Eric Y oung (eay @cryptsoft.com).
Complete license information can be found in “License Issues’ on page 677.
The OpenSSL package includes basic command line utilities for generating and
signing certificates and these utilities are available with every installation of
Artix. Complete documentation for the OpenSSL command line utilitiesis
available from nttp: / /www. openssl.org/docs.

For instructions on how to set up a private CA, see “Creating Y our Own
Certificates’ on page 154.

Choosing a host is an important step in setting up a private CA. The level of
security associated with the CA host determinesthe level of trust associated with
certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Artix
applications, use any host that the application devel opers can access. However,
when you create the CA certificate and private key, do not make the CA private
key available on hosts where security-critical applications run.

If you are setting up a CA to sign certificates for applications that you are going
to deploy, make the CA host as secure as possible. For example, take the
following precautions to secure your CA:

4 Do not connect the CA to a network.
4 Restrict all accessto the CA to alimited set of trusted users.
® Protect the CA from radio-frequency surveillance using an RF-shield.

Certificate Chaining

Certificate Chaining

Certificate chain A certificate chain is a sequence of certificates, where each certificate in the

chain is signed by the subsequent certificate.

Self-signed certificate Thelast certificate in the chain isnormally aself-signed certificate—a certificate

that signsitself.

Example Figure 18 shows an example of a simple certificate chain.

Figure 18: A Certificate Chain of Depth 2

Peer | Signs CA | signs
Certificate | Certificate |
Chain of trust The purpose of a certificate chain isto establish a chain of trust from a peer

certificateto atrusted CA certificate. The CA vouchesfor the identity in the peer
certificate by signing it. If the CA isone that you trust (indicated by the presence
of acopy of the CA certificatein your root certificate directory), thisimpliesyou
can trust the signed peer certificate as well.

147

CHAPTER 6 | Managing Certificates

Certificates signed by multiple
CAs

Trusted CAs

Maximum chain length policy

148

A CA certificate can be signed by another CA. For example, an application
certificate may be signed by the CA for the finance department of Progress
Software, which in turn is signed by a self-signed commercial CA. Figure 19
shows what this certificate chain looks like.

Figure19: A Certificate Chain of Depth 3

Peer signs Finance signs Commercial signs
Certificate « CA “ CA “
Certificate Certificate

I

An application can accept asigned certificate if the CA certificate for any CA in
the signing chain is available in the certificate file in the local root certificate
directory.

See “ Specifying Trusted CA Certificates’ on page 182.

C++ runtime only—Y ou can limit the length of certificate chains accepted by
your CORBA applications, with the maximum chain length policy. Y ou can set
avalue for the maximum length of a certificate chain with the
policies:iiop_tls:max_chain_length policy configuration variable for
IIOP/TLSand thepolicies:max chain_length policy configuration variable
for HTTPS respectively.

PKCS#12 Files

PKCS#12 Files

Overview

Contentsof a PK CS#12 file

Figure 20 showsthe typical elementsin a PKCS#12 file.

Figure20: Elementsina PKCS#12 File

PKCS#12 File
X.509 T
A
— Certificate Chain
X.509
CA
O—m < Private Key

A PKCS#12 file contains the following:

® AnX.509 peer certificate (first in achain).

® All the CA certificatesin the certificate chain.
®* A privatekey.

The fileis encrypted with a pass phrase.

PKCS#12 is an industry-standard format and is used by browsers such as
Netscape and Internet Explorer.

Note: The same pass phraseis used both for the encryption of the private key
within the PK CS#12 file and for the encryption of the PK CS#12 file overall.
This condition (same pass phrase) is not officialy part of the PKCS#12
standard, but it is enforced by most Web browsers and by Artix.

149

CHAPTER 6 | Managing Certificates

Creating a PKCS#12 file

Viewing a PKCS#12 file

Importing and exporting
PKCS#12 files

150

To create a PKCS#12 file, see “Use the CA to Create Signed Certificatesin a
Java Keystore” on page 163.

Toview aPKCS#12 file, certName.pl2:

openssl pkcsl2 -in CertName.pl2

The generated PK CS#12 files generated by OpenSSL can be imported into
browsers such as |E or Netscape. Exported PK CS#12 files from these browsers
can be used in Artix.

Note: Use OpenSSL v0.9.2 or later; Internet Explorer 5.0 or later; Netscape
4.7 or |ater.

Special Requirementson HTTPS Certificates

Special Requirementson HTTPS Certificates

Overview

Specifying alist of trusted CAs

HTTPSURL integrity check

The HTTPS specification mandates that HTTPS clients should be capable of
verifying theidentity of the server and this can potentially affect how you
generate your X.509 certificates. In particular, the most common generic
mechanism isthe HTTPS URL integrity check. The identity verification
mechanisms supported by various types of client are, asfollows:

* Artixclient, C++ runtime—thefollowing identity verification mechanisms

are supported:
¢+ Specify alist of trusted CAs, one of which must have signed the
certificate.

+ Define certificate constraints (see “ Applying Constraints to
Certificates’ on page 202).

® Non-Artix clients—most commonly, third-party clients use a combination
of checking the certificate signature against alist of trusted CAsand
checking the server certificate’s Common Name (a particular example of
an URL integrity check).

In order to use thelist of trusted CAs as an identity verification mechanism, itis
essential to specify an exclusive list of trusted CAs. For example, you might
specify atrusted list containing just asingle CA certificate, which representsthe
private CA that you use to generate all of your certificates. If a certificate then
passes the signature verification test, you know that it must be one of your
privately generated certificates.

The basic idea of the URL integrity check is that the server certificate' s identity
must match the server host name. This integrity check has an important impact
on how you generate X.509 certificates for HTTPS: the certificate identity
(usually the certificate subject DN's common name) must match the host name
on which the HTTPS server is to be deployed.

The URL integrity check is designed to prevent man-in-the-middle attacks.

Note: Artix does not implement the HTTPS URL integrity check. Y ou can
use a mechanism such as certificate constraints instead.

151

CHAPTER 6 | Managing Certificates

Reference

How to specify the certificate
identity

Using commonName

Using subjectAltName
(multi-homed hosts)

152

The HTTPS URL integrity check is specified by RFC 2818, published by the
Internet Engineering Task Force (IETF):

http://www.ietf.org/rfc/rfc2818.txt

The certificate identity used in the URL integrity check can be specified in one
of the following ways:

® Using commonName.
® Using subjectAltName (multi-homed hosts).

The usual way to specify the certificate identity (for the purpose of the URL
integrity check) is to set the Common Name (CN) in the subject DN of the
certificate.

For example, if clients are meant to connect to the following secure URL :
https://www.iona.com/secure
The server certificate could have a subject DN like the following:

C=IE,ST=Co. Dublin,L=Dublin, O=IONA Technologies PLC,
OU=System, CN=www . 1iona.com

Where the CN has been set to the host name, www. iona. com. For details of how
to set the subject DN in anew certificate, see “Use the CA to Create Signed
PKCS#12 Certificates’ on page 158 and “Use the CA to Create Signed
Certificatesin a Java Keystore” on page 163.

Using the subject DN's Common Name for the certificate identity suffers from
the disadvantage that only one host name can be specified at atime. If you
deploy a certificate on a multi-homed host, however, you might find it is
practical to allow the certificate to be used with any of the multi-homed host
names. In this case, it is necessary to define a certificate with multiple,
aternative identities and thisis only possible using the subjectal tName
certificate extension.

http://www.ietf.org/rfc/rfc2818.txt

Special Requirementson HTTPS Certificates

For example, if you have amulti-homed host that supports connections to either
of the following host names:

https://www.iona.com/secure
https://open.iona.com/internal

Y ou could define a subjectal tName that explicitly lists both of these DNS host
names. If you generate your certificates using the openss1 utility, you would
need to edit the relevant line of your openssi .cnf configuration file to specify
the value of the subjectaltName extension, as follows:

subjectAl tName=DNS :www. iona.com, DNS: open.iona.com

Where the HTTPS protocol will match either of the DNS host names listed inthe
subjectAltName (the subjectaltName takes precedence over the Common
Name).

The HTTPS protocol also supports the wildcard character, *, in host names. For
example, if you define the subjectal tName as follows:

subjectAltName=DNS: * . iona.com

This certificate identity would match any three-component host name in the
domain iona.com. For example, the wildcarded host name would match either

www . 1ona . com OF open.iona.com, but Not www.open. iona.com.

WARNING: You must never use the wildcard character in the domain name
(and you must take care never to do this accidentally by forgetting to type the
dot, ., delimiter in front of the domain name). For example, if you specified
*iona.com, your certificate could be used on any domain that ends in the
|etters iona.

For details of how to set up the openss1.cnf configuration file to generate

certificates with the subjectaltName certificate extension, see “Use the CA to
Create Signed PKCS#12 Certificates’ on page 158.

153

CHAPTER 6 | Managing Certificates

Creating Your Own Certificates

Overview This section describes the steps involved in setting up a CA and signing
certificates.
OpenSSL utilities The steps described in this section are based on the OpenSSL command-line

utilities from the OpenSSL project, http: //www.openssl.org—see “ OpenSSL
Utilities’” on page 655. Further documentation of the OpenSSL command-line
utilities can be obtained from http: / /www. openssl.org/docs.

Sample CA directory structure For the purposes of illustration, the CA database is assumed to have the
following directory structure:
X509CA/ca
X509CA/certs

X509CA/newcerts

X509CA/crl

Where x509ca is the parent directory of the CA database.

In this section This section contains the following subsections:
Set Up Your Own CA page 155
Use the CA to Create Signed PKCS#12 Certificates page 158

Use the CA to Cresate Signed Certificatesin aJavaKeystore page 163

154

Creating Your Own Certificates

Set Up Your Own CA

Substepsto perform

Step 1—Add the bin directory to
your PATH

Step 2—Create the CA directory
hierarchy

Step 3—Copy and edit the
openss.cnf file

This section describes how to set up your own private CA. Before setting up a
CA for areal deployment, read the additional notesin “Choosing a host for a
private certification authority” on page 146.

To set up your own CA, perform the following substeps:

® Step 1—Add the bin directory to your PATH

® Step 2—Create the CA directory hierarchy

® Step 3—Copy and edit the openssl.cnf file

®* Step4—Initiaize the CA database

® Step 5—Create aself-signed CA certificate and private key

On the secure CA host, add the OpenSSL bin directory to your path:
Windows

> set PATH=OpenSSLDir\bin;%PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openss1 utility available from the command line.

Create anew directory, x509ca, to hold the new CA. Thisdirectory will be used
to hold al of thefiles associated with the CA. Under the x509ca directory, create
the following hierarchy of directories:

X509CA/ca

X509CA/certs

X509CA/newcerts

X509CA/crl

Copy the sample openss1.cnf from your OpenSSL installation to the x509ca
directory.

Edit the openss1. cnf to reflect the directory structure of the x509ca directory
and to identify the files used by the new CA.

155

CHAPTER 6 | Managing Certificates

Step 4—Initializethe CA database

156

Edit the [cA_default] section of the openssl.cnf fileto make it look like the
following:

B 8 8885 o
[CA_default]

dir = X509CA # Where CA files are kept

certs = $dir/certs # Where issued certs are kept

crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # Database index file

new_certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new_ca.pem # The CA certificate

serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = Sdir/ca/new_ca_pk.pem # The private key
RANDFILE = $dir/ca/.rand # Private random number file

x509_extensions = usr_cert # The extensions to add to the cert

Y ou might like to edit other details of the OpenSSL configuration at this point—
for more details, see “ The OpenSSL Configuration File” on page 670.

In the x509ca directory, initialize two files, serial and index. txt.

Windows

> echo 01 > serial

To create an empty file, index. txt, in Windows start a Windows Notepad at the
command line in the x509ca directory, as follows:

> notepad index.txt

In response to the dialog box with thetext, cannot find the text.txt file.
Do you want to create a new file?, click Yes, and close Notepad.

UNIX

% echo "01" > serial
% touch index.txt

These files are used by the CA to maintain its database of certificate files.

Note: The index.txt file must initially be completely empty, not even
containing white space.

Step 5—Create a self-signed CA
certificate and private key

Creating Your Own Certificates

Create anew self-signed CA certificate and private key:

openssl req -x509 -new -config
X509CA/openssl.cnf -days 365 -out X509CA/ca/new_ca.pem
-keyout X509CA/ca/new_ca_pk.pem

The command prompts you for a pass phrase for the CA private key and details
of the CA distinguished name:

Using configuration from X509CA/openssl.cnf

Generating a 512 bit RSA private key

c et

O o o o e o

writing new private key to 'new_ca_pk.pem'

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) []:IE

State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin

Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Finance
Common Name (eg, YOUR name) []:Gordon Brown

Email Address []:gbrown@iona.com

Note: The security of the CA depends on the security of the private key file
and private key pass phrase used in this step.

Y ou should ensure that the file names and location of the CA certificate and
private key, new_ca.pem and new_ca_pk.pem, are the same as the values
specified in openssl . cnf (See the preceding step).

You are now ready to sign certificates with your CA.

157

CHAPTER 6 | Managing Certificates

Usethe CA to Create Signed PK CS#12 Certificates

Substepsto perform

Step 1—Add the bin directory to
your PATH

Step 2—(Optional) Configurethe
subjectAltName extension

158

If you have set up aprivate CA, as described in “ Set Up Y our Own CA” on
page 155, you are now ready to create and sign your own certificates.

To create and sign a certificate in PK CS#12 format, certName.p12, perform the
following substeps:

® Step 1—Add the bin directory to your PATH.

¢ Step 2—(Optional) Configure the subjectAltName extension.

® Step 3—Create a certificate signing request.

® Step 4—Signthe CSR.

¢ Step 5—Concatenate the files.

® Step 6—Create a PKCSH12 file.

® Step 7—Repeat steps as required.

® Step 8—(Optional) Clear the subjectAltName extension.

If you have not already done so, add the OpenSSL bin directory to your path:
Windows

> set PATH=OpenSSLDir\bin;%PATHS®

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openss1 utility available from the command line.

Perform this step, if the certificateis intended for aHTTPS server whose clients
enforce an URL integrity check and you plan to deploy the server on a
multi-homed host or a host with several DNS name aliases (for example, if you
are deploying the certificate on a multi-homed Web server). In this case, the
certificate identity must match multiple host names and this can be done only by
adding a subjectaltName certificate extension (see “ Special Requirements on
HTTPS Certificates” on page 151).

Creating Your Own Certificates

To configure the subjectal tName extension, edit your CA’s openssl.cnf file
asfollows:

1. If not already present in your openssl.cnf file, add the following
req_extensions Setting to the [req] section:

openssl Configuration File

[req]
reqg_extensions=v3_req

2. If not aready present, add the [v3_req] section header. Under the
[v3_req] section, add or modify the subjectaltName Setting, setting it to
the list of your DNS host names. For example, if the server host supports
the alternative DNS names, www . iona . com and open. iona. com, you
would set the subjectaltName as follows:

openssl Configuration File

[v3_req]
subjectAl tName=DNS :www. iona.com, DNS: open. iona.com

3. Addacopy_extensions Setting to the appropriate CA configuration
section. The CA configuration section used for signing certificatesis
either:
¢+ The section specified by the -name command-line option of the

openssl ca command, or

s Thesection specified by the default_ca setting under the [ca]
section (usually [ca_default]).

For example, if the appropriate CA configuration sectionis [CA_default],
set the copy_extensions property asfollows:

openssl Configuration File

[CA_default]
copy_extensions=copy

This setting ensures that certificate extensions present in the certificate
signing request are copied into the signed certificate.

159

CHAPTER 6 | Managing Certificates

Step 3—Create a certificate
signing request

160

Create a new certificate signing request (CSR) for the certname.p12 certificate:

openssl req -new -config X509CA/openssl.cnf
-days 365 -out X509CA/certs/CertName csr.pem -keyout
X509CA/certs/CertName_pk.pem
This command prompts you for apass phrase for the certificate' s private key and
information about the certificate’ s distinguished name.

Some of the entriesin the CSR distinguished name must match the valuesin the
CA certificate (specified in the CA Policy section of the openss1.enf file). The
default openss1 . cenf file requires the following entries to match:

o Country Name
® Stateor Province Name
® Qrganization Name

The certificate subject DN’s Common Name is the field that is most often used
to represent the certificate owner’ s identity. The Common Name must obey the
following conditions:

* The Common Name must be distinct for every certificate generated by the
OpenSSL certificate authority.

. If your HTTPS clients implement the URL integrity check, you must
ensure that the Common Name is identical to the DNS name of the host
where the certificate is to be deployed—see “ Special Requirements on
HTTPS Certificates” on page 151.

Note: For the purpose of the HTTPS URL integrity check, the
subjectAl tName extension takes precedence over the Common Name.

Using configuration from X509CA/openssl.cnf

Generating a 512 bit RSA private key

LAt

PO o ot o o

writing new private key to 'X509CA/certs/CertName pk.pem'
Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

What you are about to enter is what is called a Distinguished
Name or a DN. There are quite a few fields but you can leave
some blank. For some fields there will be a default value,
If you enter '.', the field will be left blank.

Step 4—Sign the CSR

Creating Your Own Certificates

Country Name (2 letter code) []:IE

State or Province Name (full name) []:Co. Dublin
Locality Name (eg, city) []:Dublin

Organization Name (eg, company) []:IONA Technologies PLC
Organizational Unit Name (eg, section) []:Systems
Common Name (eg, YOUR name) []:Artix

Email Address []:info@iona.com

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:password
An optional company name []:IONA
Sign the CSR using your CA:

openssl ca -config X509CA/openssl.cnf -days 365 -in
X509CA/certs/CertName_csr.pem -out X509CA/certs/CertName.pem

This command requires the pass phrase for the private key associated with the
new_ca.pem CA certificate:

Using configuration from X509CA/openssl.cnf
Enter PEM pass phrase:

Check that the request matches the signature
Signature ok

The Subjects Distinguished Name is as follows

countryName : PRINTABLE: ' IE'

stateOrProvinceName :PRINTABLE: 'Co. Dublin'

localityName :PRINTABLE: 'Dublin’

organizationName :PRINTABLE: ' IONA Technologies PLC'

organizationalUnitName: PRINTABLE: 'Systems'

commonName :PRINTABLE: 'Bank Server Certificate'

emailAddress :TAS5STRING: 'info@iona.com'

Certificate is to be certified until May 24 13:06:57 2000 GMT (365
days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/nly
Write out database with 1 new entries

Data Base Updated

To sign the certificate successfully, you must enter the CA private key pass
phrase—see “ Set Up Y our Own CA” on page 155.

Note: If you have not set copy_extensions=copy under the [CA_default]
section in the openss1 . enf file, the signed certificate will not include any of
the certificate extensions that were in the original CSR.

161

CHAPTER 6 | Managing Certificates

Step 5—Concatenate the files Concatenate the CA certificate file, certname.pem certificate file, and
CertName_pk.pem private key file asfollows:

Windows

copy X509CA\ca\new_ca.pem +
X509CA\certs\CertName.pem +
X509CA\certs\CertName_pk.pem
X509CA\certs\CertName_list.pem

UNIX

cat X509CA/ca/new_ca.pem
X509CA/certs/CertName.pem
X509CA/certs/CertName _pk.pem >
X509CA/certs/CertName_list.pem

Step 6—Create a PK CS#12 file Create a PKCS#12 file from the certName_list.pen file asfollows:
openssl pkcsl2 -export -in X509CA/certs/CertName_list.pem -out
X509CA/certs/CertName.pl2 -name "New cert"
Y ou will be prompted to enter a password to encrypt the PK CS#12 certificate.
Normally this password should be the same as the CSR password (thisis
required by many certificate repositories).

Step 7—Repeat stepsasrequired Repeat steps 3 to 6, creating a complete set of certificates for your system. A
minimum set of Artix certificates must include a set of certificates for the secure
Artix services.

Step 8—(Optional) Clear the After you have finished generating certificates for a particular host machine, you
subjectAltName extension should probably clear the subjectal tName Setting in the openssl . cenf fileto
avoid accidentally assigning the wrong DNS names to another set of certificates.

In the openss1.cnf file, comment out the subjectal tName setting (by adding a
character at the start of the line) and comment out the copy_extensions
Setting.

162

Creating Your Own Certificates

Usethe CA to Create Signed Certificatesin a Java Keystore

Substepsto perform

Step 1—Add the Java bin
directory toyour PATH

Step 2—Gener ateacertificateand
private key pair

To create and sign acertificate in aJavakeystore (JKS), certName. ks, perform
the following substeps:

® Step 1—Add the Java bin directory to your PATH

* Step 2—Generate a certificate and private key pair

®* Step 3—Create a certificate signing request

® Step4—Signthe CSR

. Step 5—Convert to PEM format

®* Step 6—Concatenate the files

® Step 7—Update keystore with the full certificate chain

® Step 8—Repeat steps asrequired

If you have not already done so, add the Javabin directory to your path:
Windows

> set PATH=JAVA HOME\bin;%$PATH%

UNIX

% PATH=JAVA HOME/bin:$PATH; export PATH

This step makes the keytool utility available from the command line.

Open acommand prompt and change directory to KeystoreDir. Enter the
following command:

keytool -genkey -dname "CN=Alice, OU=Engineering, O=IONA
Technologies PLC, ST=Co. Dublin, C=IE" -validity 365 -alias
CertAlias -keypass CertPassword -keystore CertName.jks
-storepass CertPassword

Thiskeytool command, invoked with the -genkey option, generates an X.509
certificate and a matching private key. The certificate and key are both placed in
akey entry in anewly created keystore, certname. jks. Because the specified
keystore, certName. jks, did not exist before issuing the command, keytool
implicitly creates anew keystore.

163

CHAPTER 6 | Managing Certificates

Step 3—Create a certificate
signing request

Step 4—Sign the CSR

Step 5—Convert to PEM format

164

The -dname and -validity flags define the contents of the newly created X.509
certificate, specifying the subject DN and days before expiration respectively.
For more details about DN format, see “ASN.1 and Distinguished Names' on
page 643.

Some parts of the subject DN must match the valuesin the CA certificate
(specified in the CA Policy section of the openss1 . cenf file). The default
openssl.cnf file requires the following entries to match:

® Country Name (C)

® Stateor Province Name (ST)

® QOrganization Name (O)

Note: If you do not observe these constraints, the OpenSSL CA will refuseto
sign the certificate (see “ Step 4—Sign the CSR” on page 164).

Create anew certificate signing request (CSR) for the certname. jks certificate

keytool -certreq -alias CertAlias -file CertName_csr.pem
-keypass CertPassword -keystore CertName.jks -storepass
CertPassword

This command exports a CSR to thefile, certName csr.pem.

Sign the CSR using your CA:

openssl ca -config X509CA/openssl.cnf -days 365 -in
CertName_csr.pem -out CertName.pem

To sign the certificate successfully, you must enter the CA private key pass

phrase—see “ Set Up Y our Own CA” on page 155.

Note: If you want to sign the CSR using a CA certificate other than the
default CA, usethe -cert and -keyfile optionsto specify the CA certificate
and its private key file, respectively.

Convert the signed certificate, certName.pem, to PEM only format:

openssl x509 -in CertName.pem -out CertName.pem -outform PEM

Step 6—Concatenate the files

Step 7—Update keystorewith the
full certificate chain

Step 8—Repeat stepsasrequired

Creating Your Own Certificates

Concatenate the CA certificate file and certname. pem certificate file, asfollows:
Windows

copy CertName.pem + X509CA\ca\new_ca.pem CertName.chain
UNIX

cat CertName.pem X509CA/ca/new_ca.pem > CertName.chain

Update the keystore, certname. ks, by importing the full certificate chain for
the certificate:

keytool -import -file CertName.chain
-keypass CertPassword -keystore CertName.jks -storepass
CertPassword

Repeat steps 2 to 7, creating a compl ete set of certificates for your system.

165

CHAPTER 6 | Managing Certificates

Generating a Certificate Revocation List

Overview

Relationship between a CA and a
CRL

Stepstorevoke certificates

Step 1—Add the OpenSSL bin
directory to your path

166

This section describes how to use an OpenSSL CA to generate a certificate
revocation list (CRL). A CRL isalist of X.509 certificates that are no longer
considered to be valid. Y ou can deploy aCRL fileto a secure application, so that
the application automatically rejects certificates that appear in the list.

For details about how to deploy a CRL file, see “ Specifying a Certificate
Revocation List” on page 198.

In order to generate a certificate revocation list, it is not sufficient simply to
assemble alist of certificates that you would like to revoke. The CA, just asitis
responsible for creating and signing certificates, is also responsible for revoking
certificates. When you decide to revoke a certificate, you must inform the CA,
which records this fact in its database.

After revoking certificates, you can ask the CA to generate a signed certificate
revocation list.

To generate a certificate revocation list, perform the following steps:
® Step 1—Add the OpenSSL bin directory to your path.

® Step 2—Revoke certificates.

® Step 3—Generate the CRL file.

® Step 4—Check the CRL file.

On the secure CA host, add the OpenSSL bin directory to your path:
Windows

> set PATH=OpenSSLDir\bin;$PATH%

UNIX

% PATH=OpenSSLDir/bin:$PATH; export PATH

This step makes the openss1 utility available from the command line.

Generating a Certificate Revocation List

Step 2—Revoke certificates To add a certificate, certname.pem, to the revocation list, enter the following
command:

openssl ca -config X509CA/openssl.cnf -revoke
X509CA/certs/CertName.pem

The command prompts you for the CA pass phrase and then revokes the
certificate:

Using configuration from openssl.cnf

Loading 'screen' into random state - done

Enter pass phrase for C:/temp/artix 40/X509CA/ca/new ca_pk.pem:

DEBUG[load_index]: unique_subject = "yes"

Adding Entry with serial number 02 to DB for
/C=IE/ST=Dublin/0=IONA/CN=bad_guy

Revoking Certificate 02.

Data Base Updated

Repeat this step as many times as necessary to add certificatesto the CA's
revocation list.

Note: If you get the following error while attempting to revoke a certificate:

unable to rename C:/temp/artix_40/X509CA/index.txt to
C:/temp/artix_40/X509CA/index.txt.old
reason: File exists

Simply delete index. txt .old and then try the command again.

Step 3—Generatethe CRL file To generate a PEM file, crl.pem, containing the CA’s complete certificate
revocation list, enter the following command:
openssl ca -config X509CA/openssl.cnf -gencrl -out crl/crl.pem
The command prompts you for the CA pass phrase and then generates the
crl.pemfile
Using configuration from openssl.cnf
Loading 'screen' into random state - done

Enter pass phrase for C:/temp/artix 40/X509CA/ca/new_ca_pk.pem:
DEBUG[load_index]: unique_subject = "yes"

Step 4—Check the CRL file Check the contents of the CRL file by converting it to plain text format, using
the following command:

openssl crl -in crl/crl.pem -text

167

CHAPTER 6 | Managing Certificates

For asingle revoked certificate with serial number 02 (that is, the second
certificate in the OpenSSL CA'’s database), the output of this command would
look something like the following:

Certificate Revocation List (CRL):
Version 1 (0x0)
Signature Algorithm: md5WithRSAEncryption
Issuer: /C=IE/ST=Dublin/O=IONA/CN=CA_for_ CRL
Last Update: Feb 15 10:47:40 2006 GMT
Next Update: Mar 15 10:47:40 2006 GMT
Revoked Certificates:
Serial Number: 02
Revocation Date: Feb 15 10:45:05 2006 GMT
Signature Algorithm: md5WithRSAEncryption
69:3e:55:8a:20:a0:57:d2:36:79:£0:34:bb:73:65:1e:1c:a9:
40:35:8d:cd:e6:09:77:£d:2b:1f:a8:26:0c:7a:fb:30:67:7f:
6a:13:74:58:09:e2:88:e7:ad:c5:d2:62:48:6b:1e:£6:10:0d:
45:cc:11:cb:6b:48:28:e2:78:ad:f0:cf:£d:d6:57:78:f2:aa:
19:8b:bc:62:79:9b:90:£7:18:ba:96:dc:7b:a5:b4:d5:bf: 0f:
e8:5e:71:89:4b:38:8c:£8:75:17:dd:ba:74:£1:01:e0:48:d0:
ed:f4:dd:ea:47:32:8b:70:5e:1d:9a:4a:88:41:ba:bf:02:39:
ce:32
————— BEGIN X509 CRL-----
MIIBHTCBhzANBgkghkiGI9wOBAQQFADBCMQsSwCQYDVQQGEWJIJRTEPMAOGA1UECBMG
RHVibG1uMQOwCwYDVQQKEWRJIT05BMRMWEQYDVQQDFAPDQVIMb3J £Q1IMFwOwNj Ay
MTUxMDQ3NDBaFw0wN] AzMTUXMDQ3NDBaMBOwEg TBAhcNMDYwMj E1MTAONTALWS AN
BgkghkiG9w0BAQOFAAOBgOBpP1WKIKBX07 Z58DS7c2UeHK1ANY3ESr13 /SsEqCYM
evswZ39gE3RYueKI563F0mJIax72EAl1FzBHLa0go4nit8M/911d48gozi7xieZuQ
9x161tx7pbTVvw/0XnGJSziM+HUX3bp08QHgSNDkIN3gRzKLcF4dmkgIQbg/sjn0O
Mg==

168

CHAPTER 7

Configuring
HTTPS and
IHOP/TLS

This chapter describes how to configure HTTPS and [1OP/TLS
endpoints for Artix applications.

In this chapter This chapter discusses the following topics:
Authentication Alternatives page 170
Specifying Trusted CA Certificates page 182
Specifying an Application’s Own Certificate page 190
Specifying a Certificate Revocation List page 198
Advanced Configuration Options page 200

169

CHAPTER 7 | ConfiguringHTTPSand I 1OP/TLS

Authentication Alternatives

Overview This section discusses how to specify the kind of authentication required,
whether mutual, target-only, or none (anonymous Diffie-Hellman).

In this section This section contains the following subsections:
Target-Only Authentication page 171
Mutual Authentication page 174
No Authentication page 178

170

Authentication Alternatives

Target-Only Authentication

Overview

Security handshake

When an application is configured for target-only authentication, the target
authenticates itself to the client but the client is not authentic to the target
object—see Figure 21.

Figure21: Target Authentication Only

A Secure Association A
Client > Server
Trusted CA Lists
Authenticate -
CA Cert List 1 i Certificate Cert file
CA Cert List 2

Prior to running the application, the client and server should be set up asfollows:

* Acertificate chain is associated with the server—the certificate chainis
provided in the form of a PKCS#12 file. See“ Specifying an Application’s
Own Certificate” on page 190.

®* Oneor morelists of trusted certification authorities (CA) are made
available to the client—see “ Specifying Trusted CA Certificates’ on
page 182.

During the security handshake, the server sends its certificate chain to the

client—see Figure 21. The client then searchesits trusted CA liststo find a CA

certificate that matches one of the CA certificates in the server’'s certificate
chain.

171

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

HTTPS example The following extract from an artix.cfg configuration file shows the
target-only configuration of an Artix client application, bank_client, and an
Artix server application, bank_server, Where the transport type is HTTPS and
the application is built using the C++ runtime.

Artix Configuration File

policies:https:mechanism policy:protocol_version = "SSL_V3";
policies:https:mechanism policy:ciphersuites =
["RSA WITH_RC4_128 SHA", "RSA WITH RC4_128 MD5"];

bank_server {

// Specify server invocation policies

policies:https:target_secure_invocation_policy:requires
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"] ;

policies:https:target_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

// Specify server’s own certificate (not shown)
g

bank_client {
// Specify client invocation policies
policies:https:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];
policies:https:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

// Specify client’s trusted CA certs (not shown)

be

172

Authentication Alternatives

[IOP/TLS example Thefollowing extract from an artix.cfg configuration file shows the
target-only configuration of an Artix client application, bank_client, and an
Artix server application, bank_server, Where the transport type is IOP/TLS.

Artix Configuration File

policies:iiop_tls:mechanism policy:protocol_version = "SSL_V3";

policies:iiop_tls:mechanism policy:ciphersuites =
["RSA WITH RC4_128 SHA", "RSA WITH RC4_128 MD5"];

bank_server {

// Specify server invocation policies

policies:iiop_tls:target_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"] ;

policies:iiop_tls:target_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

// Specify server’s own certificate (not shown)

e

bank_client {
// Specify client invocation policies
policies:iiop_tls:client_secure_invocation policy:requires =
["Confidentiality", "EstablishTrustInTarget"];
policies:iiop_tls:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

// Specify client’s trusted CA certs (not shown)

e

173

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

Mutual Authentication

Overview When an application is configured for mutual authentication, the target
authenticates itself to the client and the client authenticates itself to the target.
Thisscenarioisillustrated in Figure 22. In this case, the server and the client
each require an X.509 certificate for the security handshake.

Figure 22: Mutual Authentication

Trusted CA Lists

B CACertList1
Authenticate
Client
CA Cert List 2
Cert file
Secure Association
o A
Client N Server n
Trusted CA Lists
Authenticate
CA Cert List 1 P Target Cert file
CA Cert List 2

174

Security handshake

HTTPS example

Authentication Alternatives

Prior to running the application, the client and server should be set up asfollows:

® Both client and server have an associated certificate chain (PK CS#12
file)—see “ Specifying an Application’s Own Certificate” on page 190.

® Both client and server are configured with lists of trusted certification
authorities (CA)—see “ Specifying Trusted CA Certificates’ on page 182.

During the security handshake, the server sends its certificate chain to the client,
and the client sends its certificate chain to the server—see Figure 21.

The following sample extract from an artix.cfg configuration file shows the
configuration for mutual authentication of a client application,
secure_client with cert, and aserver application,
secure_server_enforce_client_auth, Wherethetransport typeisHTTPS and
the application uses the C++ runtime.

Artix Configuration File

policies:https:mechanism policy:protocol_version = "SSIL,_V3";
policies:https:mechanism policy:ciphersuites =
["RSA WITH RC4_128 SHA", "RSA WITH RC4_128 MD5"];

secure_server_enforce_client_auth
{
// Specify server invocation policies
policies:https:target_secure_invocation policy:requires =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering"];
policies:https:target_secure_invocation policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"] ;

// Specify server’s own certificate (not shown)
// Specify server’s trusted CA certs (not shown)
197
secure_client_with_cert
{
// Specify client invocation policies

policies:https:client_secure_invocation policy:requires =
["Confidentiality", "EstablishTrustInTarget"];

175

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

policies:https:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

// Specify client’s own certificate (not shown)

// Specify client’s trusted CA certs (not shown)

be

I1OP/TLS example The following sample extract from an artix.cfg configuration file shows the

configuration for mutual authentication of aclient application,
secure_client with cert, and aserver application,
secure_server_enforce_client_auth, where the transport typeis [IOP/TLS.

Artix Configuration File

policies:iiop_tls:mechanism policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism policy:ciphersuites =
["RSA_WITH_RC4_128 SHA", "RSA WITH _RC4_128 MD5"];

secure_server_enforce_client_auth
{
// Specify server invocation policies
policies:iiop_tls:target_secure_invocation policy:requires =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering"];
policies:iiop_tls:target_secure_invocation policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

// Specify server’s own certificate (not shown)
// Specify server'’s trusted CA certs (not shown)
iy

secure_client_with_cert
{
// Specify client invocation policies
policies:iiop_tls:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustInTarget"];

176

Authentication Alternatives

policies:iiop_tls:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"] ;

// Specify client’s own certificate (not shown)

// Specify client’s trusted CA certs (not shown)

177

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

No Authentication

Overview

Anonymous Diffie-Hellman
cipher suites

Reference

178

It is possible to configure your application such that no authentication is
performed during the TLS handshake: that is, the client does not authenticate the
server, nor does the server authenticate the client. In this special case, you do not
need any X.509 certificates at all to configure the connection.

WARNING: This configuration is unsuitable for the vast majority of
applications. It does not protect against man-in-the-middle attacks. Hence, it is
possible for an undetected entity, who has the capability to intercept and
control TCP communications between the two peers, to set up arelay with
separate SSL connections to the two parties and monitor their communications
by interposing itself in the middle of their communications stream.

To configure a TLS connection that skips the authentication step inthe TLS
handshake, it is necessary to load the anonymous Diffie-Hellman cipher suites
on the client side and on the server side. The Diffie-Hellman cipher suites are
distinguished by the fact that they lack an authentication step in their
key-exchange algorithm. Therefore, both client and server remain anonymous.
Artix C++ runtime supports the following Diffie-Hellman cipher suites:

® DH_ANON_EXPORT WITH_RC4_40_MD5

b DH_ANON_WITH_RC4_128_MD5

® DH_ANON_EXPORT_WITH_DES40_CBC_SHA

® DH_ANON_WITH_DES_CBC_SHA

4 DH_ANON_WITH_3DES_EDE_CBC_SHA

Note: The Diffie-Hellman cipher suites are disabled by default. In Artix, itis
not possible to mix anonymous cipher suites and non-anonymous cipher suites
on the same endpoint.

The Diffie-Hellman key exchange algorithm is specified by RFC 2631,
http://tools.ietf.org/html/rfc2631. See aso the Wikipedia article on
Diffie-Hellman key exchange.

http://tools.ietf.org/html/rfc2631
http://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

Security handshake

HTTPS example

Authentication Alternatives

The client and server should be set up asfollows:

®* Neither client nor server require X.509 certificates.

® Neither client nor server require alist of trusted certification authorities.

i TheEstablishTrustInClient and EstablishTrustInServer association
options must not be included in any of the secure invocation policies.

® Oneor more Diffie-Hellman cipher suites (and only Diffie-Hellman suites)
must be explicitly configured in the list of cipher suites.

The following sample extract from an artix.cfg configuration file shows the
configuration for a HTTPS connection with no authentication, between a client,
secure_client_anonymous, and a server , Secure_server_anonymous.

Artix Configuration File

policies:https:mechanism policy:protocol_version = "SSIL,_V3";
policies:https:mechanism policy:ciphersuites =

["DH_ANON_EXPORT WITH_RC4_40_MD5",

"DH_ANON_WITH_RC4_128 MD5",

"DH_ANON_EXPORT WITH_DES40_CBC_SHA",

"DH_ANON_WITH DES_CBC_SHA", "DH_ANON_WITH 3DES_EDE_CBC_SHA"];

secure_server_anonymous
{
// Specify server invocation policies
policies:https:target_secure_invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];
policies:https:target_secure_invocation_policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

// Disable server'’s principal sponsor
principal_sponsor:https:use_principal_sponsor="false";

// Disable trusted CA certs list
policies:https:trusted ca_list_policy = "";

179

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

I1OP/TLS example

180

secure_client_ anonymous
{
// Specify client invocation policies
policies:https:client_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];
policies:https:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

// Disable client’s principal sponsor
principal_sponsor:https:use_principal_sponsor="false";

// Disable trusted CA certs list
policies:https:trusted_ca_list policy = "";

The following sample extract from an artix.cfg configuration file showsthe
configuration for an I1OP/TLS connection with no authentication, between a
client application, secure_client_anonymous, and a server application,

secure_server_anonymous.
Artix Configuration File

policies:iiop_tls:mechanism policy:protocol_version = "SSL_V3";
policies:iiop_tls:mechanism policy:ciphersuites =
["DH_ANON_EXPORT WITH_RC4_40_MD5",
"DH_ANON_WITH RC4_128 MD5",
"DH_ANON_EXPORT WITH_DES40_CBC_SHA",
"DH_ANON_WITH DES_CBC_SHA", "DH_ANON_WITH 3DES_EDE CBC_SHA"];

Secure_server_anonymous
{
// Specify server invocation policies
policies:iiop_tls:target_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"] ;
policies:iiop_tls:target_secure_invocation_policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"] ;

Authentication Alternatives

// Disable server'’s principal sponsor
principal_sponsor:iiop_tls:use principal_sponsor="false";

// Disable trusted CA certs list
policies:iiop_tls:trusted_ca_list_policy = "";

137

secure_client anonymous
{
// Specify client invocation policies
policies:iiop_tls:client_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];
policies:iiop_tls:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

// Disable client’s principal sponsor
principal_sponsor:iiop_tls:use principal_sponsor="false";

// Disable trusted CA certs list
policies:iiop_tls:trusted_ca_list_policy = "";

137

181

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

Specifying Trusted CA Certificates

Overview

Which applicationsneed to specify
trusted CA certificates?

In thissection

182

When an application receives an X.509 certificate during an SSL/TLS
handshake, the application decides whether or not to trust the received certificate
by checking whether theissuer CA is one of a pre-defined set of trusted CA
certificates. If the received X.509 certificate is validly signed by one of the
application’s trusted CA certificates, the certificate is deemed trustworthy;
otherwise, it is rejected.

Any application that islikely to receive an X.500 certificate as part of an HTTPS
or IIOP/TL S handshake must specify alist of trusted CA certificates. For
example, thisincludes the following types of application:

® Al IOP/TLSor HTTPSclients.

® AnyIlIOP/TLS or HTTPS servers that support mutual authentication.

This section contains the following subsections:

Specifying Trusted CA Certificates for HTTPS page 183

Specifying Trusted CA Certificates for [IOP/TLS page 188

Specifying Trusted CA Certificates

Specifying Trusted CA Certificatesfor HTTPS

CA certificate for mat

CA certificate deployment in the
Artix configuration file

CA certificates must be provided in Privacy Enhanced Mail (PEM) format.

The PEM format isaproprietary format. Y ou can use the Openssl command-line
toolsto convert certificates to and from the PEM format. For example, to
convert aCA file, ca.der, from DER format to PEM format, use the following
openssl command:

openssl x509 -inform DER -outform PEM -in ca.der -out ca.pem

Where ca.pemisthe converted PEM format file.

To deploy one or moretrusted root CAsfor the HTTPS transport (C++ runtime),
perform the following steps (the procedure for client and server applicationsis
the same):

1

Assemble the collection of trusted CA certificates that you want to deploy.
The trusted CA certificates could be obtained from public CAsor private
CAs (for details of how to generate your own CA certificates, see“ Set Up
Your Own CA” on page 155). Thetrusted CA certificates should bein
PEM format. All you need are the certificates themsel ves—the private
keys and passwords are not reguired.

Organize the CA certificatesinto acollection of CA list files. For example,
you might create three CA list files as follows:

X509Deploy/trusted_ca_lists/ca_list0l.pem
X509Deploy/trusted_ca_lists/ca_list02.pem
X509Deploy/trusted_ca_lists/ca_list03.pem

Each CA list file consists of a concatenated list of CA certificatesin PEM
format. A CA list file can be created using a simple file concatenation
operation. For example, if you have two CA certificate files,
ca_cert01.pem and ca_cert02.pem, you could combine theminto a
single CA list file, ca_1ist01.pem, with the following command:

Windows

copy X509CA\ca\ca_cert0l.pem +
X509CA\ca\ca_cert02.pem
X509Deploy\trusted_ca_lists\ca_list01l.pem

183

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

184

UNIX

cat X509CA/ca/ca_cert0l.pem X509CA/ca/ca_cert02.pem >>
X509Deploy/trusted_ca_lists/ca_list0l.pem

The CA certificates are organized aslists as a convenient way of grouping
related CA certificates together.

Edit your Artix configuration file to specify the locations of the CA list
files to be used by your application. To specify the CA list files, go to the
relevant configuration scope in the Artix configuration file and edit the
value of thepolicies:https:trusted ca_list_policy configuration
variable for the HTTPS transport.

For example, if your application picks up its configuration from the
SecureAppScope configuration scope and you want to include the CA
certificates from the ca_1ist01.pemand ca_1ist02.pem files, edit the
Artix configuration file as follows:

Artix configuration file.
SecureAppScope {
policies:https:trusted ca_ list_policy =

["X509Deploy/trusted_ca_lists/ca_list0l.pem",
"X509Deploy/trusted_ca_lists/ca_list02.pem"];

7

The directory containing the trusted CA certificate lists (for example,
X509Deploy/trusted_ca_lists/) should be a secure directory.

Note: If an application supports authentication of a peer, that isaclient
SuUppoOrts EstablishTrustInTarget, then afile containing trusted CA
certificates must be provided. If not, aNo_RESOURCES exception is raised.

Alternative CA certificate
deployment in the Artix
configuration file

Alternative CA certificate
deployment by configuring the
WSDL contract

Specifying Trusted CA Certificates

Alternatively, the at_http plug-in supports configuration variables that let you
specify the CA certificate list separately for the client role and the server role.

Edit the Artix configuration file by adding (or modifying) the
plugins:at_http:client:trusted_root_certificates and
plugins:at_http:server:trusted root_certificates configuration
variables, asfollows:

secure_app {
plugins:at_http:client:use_secure_sockets="true";
plugins:at_http:client:trusted root_certificates =
"X509Deploy/trusted_ca_lists/ca_list01.pem";

plugins:at_http:server:trusted root_certificates =
"X509Deploy/trusted_ca_lists/ca_list02.pem";

g

Note: These settings take precedence over the
policies:https:trusted ca_list_policy variable.

Alternatively, the HTTPS transport (C++ runtime) lets you specify the location
of aCA list file by configuring the WSDL contract. An advantage of this
approach isthat it allows you to specify trusted CA lists independently for each
port.

Note: The settingsin the WSDL contract take precedence over the settingsin
the Artix configuration file.

Edit the WSDL contract to specify the location of the CA list file. The details of

this step depend on whether you are deploying atrusted CA list ontheclient side
or on the server side.

185

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

186

Client side

Edit the client’s copy of the WSDL contract by adding (or modifying) the
TrustedRootCertificates atributein the <http-conf:client> tag. For
example, to specify x509ca/ca/ca_list01.pem asthe client’s trusted CA
certificate list, modify the client’s WSDL contract as follows:

<definitions

xmlns:http="http://schemas.iona.com/transports/http"

xmlns:http-conf="http://schemas.iona.com/transports/http/configu
ration" ... >

<service name="...">
<port binding="...">
<http-conf:client ...
TrustedRootCertificates="X509CA/ca/ca_list0l.pem"
. />

</p0££;
</service>
WARNING: If you include security settingsin the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you configure

the WSDL publishing service to be secure. See “Publishing WSDL Securely”
on page 353.

Server side

Edit the server’s copy of the WSDL contract by adding (or modifying) the
TrustedRootCertificates attribute in the <http-conf:server> tag. For
example, to specify x509ca/ca/ca_1ist01.pem as the server’strusted CA
certificate list, modify the server’sWSDL contract as follows:

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configu

ration" ... >
<service name="...">
<port binding="...">

<http-conf:server ...
TrustedRootCertificates="X509CA/ca/ca_list01l.pem"
. />
</port>
</service>

Specifying Trusted CA Certificates

WARNING: If you include security settingsin the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you configure
the WSDL publishing service to be secure. See “Publishing WSDL Securely”
on page 353.

187

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

Specifying Trusted CA Certificatesfor [IOP/TLS

CA certificate format CA certificates must be provided in Privacy Enhanced Mail (PEM) format.

CA certificatedeployment inthe To deploy one or more trusted root CAs for the [|OP/TL S transport, perform the
Artix configuration file following steps (the procedure for client and server applications is the same):

1

188

Assemble the collection of trusted CA certificates that you want to deploy.
The trusted CA certificates could be obtained from public CAs or private
CAs (for details of how to generate your own CA certificates, see “ Set Up
Your Own CA” on page 155). The trusted CA certificates should bein
PEM format. All you need are the certificates themsel ves—the private
keys and passwords are not required.

Organize the CA certificatesinto acollection of CA list files. For example,
you might create three CA list files as follows:

X509Deploy/trusted_ca_lists/ca_list0l.pem
X509Deploy/trusted_ca_lists/ca_list02.pem
X509Deploy/trusted_ca_lists/ca_list03.pem

Each CA list file consists of a concatenated list of CA certificatesin PEM
format. A CA list file can be created using a simple file concatenation
operation. For example, if you have two CA certificate files,
ca_cert01l.pemand ca_cert02.pem, you could combine them into a
single CA list file, ca_1ist01.pem, with the following command:

Windows

copy X509CA\ca\ca_cert0l.pem +
X509CA\ca\ca_cert02.pem
X509Deploy\trusted_ca_lists\ca_list0l.pem

UNIX

cat X509CA/ca/ca_cert0l.pem X509CA/ca/ca_cert02.pem >>
X509Deploy/trusted_ca_lists/ca_list0l.pem
The CA certificates are organized as lists as a convenient way of grouping

related CA certificates together.

Specifying Trusted CA Certificates

3. Edit the Artix configuration file to specify the locations of the CA list files
to be used by your application. For example, the default Artix
configuration file is located in the following directory:
ArtixInstallDir/etc/domains
To specify the CA list files, go to your application’s configuration scopein
the Artix configuration file and edit the value of the
policies:iiop_tls:trusted_ca_list_policy configuration variable
for the IOP/TL S transport.

For example, if your application picks up its configuration from the
SecureAppScope configuration scope and you want to include the CA
certificatesfromthe ca_1ist01.pemand ca_1ist02.pem files, edit the
Artix configuration file as follows:

Artix configuration file.

SecureAppScope {
policies:iiop_tls:trusted ca_list policy =
["X509Deploy/trusted_ca_lists/ca_list01.pem",
"X509Deploy/trusted _ca_lists/ca_list02.pem"];

7

The directory containing the trusted CA certificate lists (for example,
X509Deploy/trusted_ca_lists/) should be a secure directory.

Note: If an application supports authentication of a peer, that isaclient
supports EstablishTrustInTarget, then afile containing trusted CA
certificates must be provided. If not, a NO_RESOURCES exception is raised.

189

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

Specifying an Application’s Own Certificate

Overview To enable an Artix application to identify itself, it must be associated with an
X.509 certificate. The X.509 certificate is needed during an SSL/TLS
handshake, where it is used to authenticate the application to its peers.

Converting legacy certificates For applications built using the Artix C++ runtime, certificates must be supplied
in PKCS#12 format. If you have any legacy certificatesin PEM format, you can
convert them to PK CS#12 format using the openss1 command-line utility, as
follows:

Windows

Given the CA signing certificate, cacert.pem, the application certificate,
cert.pem, and its private key, privkey.pem, enter the following at a Windows
command prompt:

> copy CACert.pem + Cert.pem + PrivKey.pem CertList.pem
> openssl pkcsl2 -export -in CertList.pem -out Cert.pl2

UNIX

Given the CA signing certificate, cacert.pem, the application certificate,
cert.pem, and its private key, pPrivkey.pem, enter the following at a UNIX
command prompt:

> cat CACert.pem Cert.pem PrivKey.pem > CertList.pem
> openssl pkcsl2 -export -in CertList.pem -out Cert.pl2

In thissection This section contains the following subsection:
Deploying Own Certificate for HTTPS page 191
Deploying Own Certificate for IOP/TLS page 196

190

Specifying an Application’s Own Certificate

Deploying Own Certificatefor HTTPS

Own certificatedeploymentinthe To deploy an Artix application’s own certificate, certName.p12, for the HTTPS
Artix configuration file transport using the C++ runtime, perform the following steps:

1

Copy the application certificate, certname.p12, to the certificates
directory—for example, x509Deploy/certs/applications—on the
deployment host.

The certificates directory should be a secure directory that is accessible
only to administrators and other privileged users.

Note: The HTTPS protocol mandates an URL integrity check, which
reguires a certificate’ s identity to match the hostname on which the
server is deployed. See “ Special Requirements on HTTPS Certificates”
on page 151 for details.

Edit the Artix configuration file (for example,
ArtixInstallDir/etc/domains/artix.cfg). Given that your application
picks up its configuration from the secureappscope scope, change the
principal sponsor configuration to specify the certname.pl2 certificate, as
follows:

Artix configuration file

SecureAppScope {
principal_sponsor:https:use principal_ sponsor = "true";
principal_ sponsor:https:auth method id = "pkcsl2_file";
principal_sponsor:https:auth_method_data =

["filename=X509Deploy/certs/applications/CertName.pl2"];
}i

191

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

3. By default, the application will prompt the user for the certificate pass
phrase as it starts up. Other aternatives for supplying the certificate pass
phrase are, as follows:

+ Inapassword file—you can specify the location of a password file
that contains the certificate pass phrase by setting the password_file
optioninthe principal_sponsor:https:auth method data
configuration setting. For example:

principal_sponsor:https:auth_method_data =
["filename=X509Deploy/certs/applications/CertName.pl2",
"password _file=X509Deploy/certs/CertName.pwt"];

WARNING: Because the password file stores the pass phrase in plain
text, the password file should not be readable or writable by anyone
except the administrator.

+ Directlyin configuration—you can specify the certificate pass phrase
directly in configuration by setting the password option in the
principal_sponsor:https:auth_method_data configuration
setting. For example:

principal_sponsor:https:auth_method_data =
["filename=X509Deploy/certs/applications/CertName.pl2",
"password=CertNamePass"] ;

WARNING: If the pass phrase is stored directly in configuration, the

Artix configuration file should not be readable or writable by anyone
except the administrator.

192

Specifying an Application’s Own Certificate

Alternative own certificate Alternatively, the at_http plug-in supports configuration variables that let you

deployment in the Artix specify the location of an application’s PK CS#12 separately for the client role
configuration file and the server role.

Edit the Artix configuration file by adding (or modifying) the following
highlighted configuration variables, as follows:

secure_app {
plugins:at_http:client:use_secure_sockets="true";
// Client certificate settings.
plugins:at_http:client:client certificate =
"X509Deploy/certs/applications/CertName.pl2" ;
plugins:at_http:client:client_private key password =
"MyKeyPassword" ;

// Server certificate settings.
plugins:at_http:server:server certificate =
"X509Deploy/certs/applications/CertName.pl2" ;
plugins:at_http:server:server private key password =
"MyKeyPassword" ;

g

Note: These settings take precedence over the principal_sponsor:https
settings.

Alternative own certificate Alternatively, the HTTPS transport (C++ runtime) lets you specify the location

deployment by configuring the of an application’s PKCS#12 file by configuring the WSDL contract.
WSDL contract

Note: Thesettingsin the WSDL contract take precedence over the settingsin
your Artix configuration file.

193

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

194

Edit the WSDL contract to specify the location of the application’s PK CS#12
file. The details of this step depend on whether you are deploying certificates on
the client side or on the server side:

Client side

Edit the client’s copy of the WSDL contract by adding (or modifying) the
following highlighted attributesin the <http-conf:client> tag:

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration" ... >

<service name="...">
<port binding="...">
<soap:address ...>
<http-conf:client UseSecureSockets="true"
ClientCertificate="X509Deploy/certs/applications/CertName.pl2"
ClientPrivateKeyPassword="MyKeyPassword"
TrustedRootCertificates="RootCertPath"
. />
</port>
</service>

WARNING: If you include security settingsin the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you configure
the WSDL publishing service to be secure. See “Publishing WSDL Securely”
on page 353.

Specifying an Application’s Own Certificate

Server side

Edit the server’s copy of the WSDL contract by adding (or modifying) the
following highlighted attributesin the <http-conf : server> tag:

<definitions
xmlns:http="http://schemas.iona.com/transports/http"
xmlns:http-conf="http://schemas.iona.com/transports/http/configuration" ... >

<service name="...">
<port binding="...">
<soap:address ...>
<http-conf:server UseSecureSockets="true"
ServerCertificate="X509Deploy/certs/applications/CertName.pl2"
ServerPrivateKeyPassword="VMyKeyPassword"
TrustedRootCertificates="RootCertPath"
. />
</port>
</service>

Note: Because the private key passwords in the WSDL contracts appear in
plaintext form, you must ensure that the WSDL contract files themselves are
not readable/writable by every user. Use the operating system to restrict
read/write access to trusted users only.

Additionally, to avoid revealing the server’s security configuration to clients,
you should remove the <ht tp-conf : server> tag from the client copy of the
WSDL contract.

WARNING: If you include security settings in the WSDL contract and you
have loaded the WSDL publish plug-in, it is recommended that you configure
the WSDL publishing service to be secure. See “Publishing WSDL Securely”
on page 353.

195

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

Deploying Own Certificatefor [IOP/TLS

Own certificatedeploymentinthe To deploy an Artix application’s own certificate, certname.p12, for the
Artix configuration file IIOP/TLS trangport, perform the following steps:

1.

196

Copy the application certificate, certname.p12, to the certificates
directory—for example, x509Deploy/certs/applications—on the
deployment host.

The certificates directory should be a secure directory that is accessible
only to administrators and other privileged users.

Edit the Artix configuration file.

Given that your application picks up its configuration from the
SecureAppScope Scope, change the principal sponsor configuration to
specify the certname.p12 certificate, asfollows:

Artix configuration file
SecureAppScope {

principal_sponsor:iiop_tls:use_principal_sponsor = "true";
principal_sponsor:iiop_ tls:auth method_id = "pkcsl2_file";
principal_sponsor:iiop_tls:auth _method_data =
["filename=X509Deploy/certs/applications/CertName.pl2"] ;
iy

By default, the application will prompt the user for the certificate pass
phrase as it starts up. Other alternatives for supplying the certificate pass
phrase are, as follows:

+ Inapassword file—you can specify the location of a password file
that contains the certificate pass phrase by setting the password _file
optionintheprincipal_sponsor:auth_method_data configuration
setting. For example:

principal_sponsor:auth _method _data =
["filename=X509Deploy/certs/applications/CertName.pl2",
"password_file=X509Deploy/certs/CertName.pwt"] ;

Specifying an Application’s Own Certificate

WARNING: Because the password file stores the pass phrase in plain text,
the password file should not be readable by anyone except the
administrator.

Directly in configuration—you can specify the certificate pass phrase
directly in configuration by setting the password option in the
principal_sponsor:auth_method data configuration setting. For

example:

principal_ sponsor:auth_method data =
["filename=X509Deploy/certs/applications/CertName.pl2",

"password=CertNamePass"] ;

WARNING: If the pass phrase is stored directly in configuration, the Artix
configuration file should not be readable by anyone except the administrator.

197

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

Specifying a Certificate Revocation List

Overview

Revoking CA certificates

Configuring certificate revocation

Format of the CRL file

198

Occasionally, it can happen that the security of an X.509 certificateis
compromised or you might want to invalidate a certificate, because the owner of
the certificate no longer enjoys the same security privileges as before. In either
of these cases, it is useful to generate and deploy a certificate revocation list
(CRL). A CRL isalist of X.509 certificates that are no longer valid. When you
deploy a CRL file to a secure application, the application automatically rejects
the certificates that appear in the list.

Y ou can a'so revoke a CA certificate, in which case all of the certificates signed
by the CA areimplicitly revoked as well.

Example 27 shows how to configure a C++ runtime application to use a CRL
file. For an application that uses the secure_artix.my_secure_app
configuration scope, add cert_validator tothelist of ORB plug-insand set the
plugins:cert_validator:crl_file_path variable to the location of the CRL
file.

Example 27: Configuration of a CRL—C++ Runtime

Artix Configuration File
secure_artix {

my_secure_app {
orb _plugins = [... , "cert validator"];
plugins:cert_validator:crl_file path = "CRLDir/crl.pem";
e
iy

Note: The specified CRL file can be empty, but it must exist. Otherwise,
every certificate would be rejected.

The CRL file must bein a PEM format.

Sources of CRL files

Commercial CAs

OpenSSL CA

Creating an aggregate CRL file

Specifying a Certificate Revocation List

Y ou can obtain a CRL file from one of the following sources:
®* Commercial CAs.
° OpenSSL CA.

If you use acommercial CA to manage your certificates, simply ask the CA to
generate the CRL file for you.

Itisunlikely, however, that the CA will provide the CRL filein the requisite
PEM format (the PEM format is proprietary to the OpenSSL product). To
convert aCRL file, crl.der, from DER format to PEM format, use the
following openss1 command:

openssl crl -inform DER -outform PEM -in crl.der -out crl.pem

Where crl.pemisthe converted PEM format file.

If you use the OpenSSL product to manage a custom CA, you can generate a
CRL file by following the instructionsin “ Generating a Certificate Revocation
List” on page 166.

If you need to revoke certificates from more than one CA, you can create an
aggregate CRL file simply by concatenating the CRL files from each CA.

For example, if you have a CRL file generated by a commercial CA,
commercial crl.pem, and another CRL file generated by a home-grown
OpenSSL CA, openssl_crl.pem, you can combine these into asingle CRL file
asfollows:

Windows

copy commercial_crl.pem + openssl_crl.pem crl.pem

UNIX

cat commercial_crl.pem openssl_crl.pem > crl.pem

199

CHAPTER 7 | ConfiguringHTTPSand I 1OP/TLS

Advanced Configuration Options

Overview For added security, the HTTPS and [IOP/TL S transports (C++ runtime) allow
you to apply extra conditions on certificates. Before reading this section you
might find it helpful to consult “Managing Certificates’ on page 141, which
provides some background information on the structure of certificates.

In this section This section discusses the following advanced ||OP/TLS configuration options:
Setting a Maximum Certificate Chain Length page 201
Applying Constraints to Certificates page 202

200

Advanced Configuration Options

Setting a Maximum Certificate Chain Length

Max chain length policy

Example

Configuration variable

Default value

Y ou can use the maximum chain length policy to enforce the maximum length
of certificate chains presented by a peer during handshaking.

A certificate chain is made up of aroot CA at the top, an application certificate
at the bottom and any number of CA intermediaries in between. The length that
this policy appliesto isthe (inclusive) length of the chain from the application
certificate presented to the first signer in the chain that appearsin thelist of
trusted CA's (as specified in the TrustedcaListPolicy).

For example, achain length of 2 mandates that the certificate of the immediate
signer of the peer application certificate presented must appear in the list of
trusted CA certificates.

Y ou can specify the maximum length of certificate chains used in maximum
chain length policy with thepolicies:iiop_tls:max_chain_length_policy
and policies:max_chain_length_policy configuration variable. For example:

policies:iiop_tls:max_chain_length_policy = "4";

Thedefault valueis 2 (that is, the application certificate and its signer, where the
signer must appear in thelist of trusted CA’s.

201

CHAPTER 7 | Configuring HTTPS and I1OP/TLS

Applying Constraintsto Certificates

Certificate constraints policy

Configuration variable

Constraint language

202

Y ou can use the certificate constraints policy to apply constraints to peer X.509
certificates. These conditions are applied to the owner’s distinguished name
(DN) on the first certificate (peer certificate) of the received certificate chain.
Distinguished names are made up of a number of distinct fields, the most
common being Organization Unit (OU) and Common Name (CN).

Y ou can specify alist of constraints to be used by the certificate constraints
policy through thepolicies:iiop_tls:certificate constraints_policy Of
policies:certificate_constraints_policy configuration variable. For
example:
policies:iiop_tls:certificate_constraints_policy =
["CN=Johnny*, OU=[unitl | IT SSL],0=IONA,C=Ireland, ST=Dublin,L=Ea
rth", "CN=Paul * , OU=SSLTEAM, O=IONA, C=Ireland, ST=Dublin, L=Earth",
"CN=TheOmnipotentOne"] ;

These are the specia characters and their meanings in the constraint list:

* Matches any text. For example:
an* matches ant and anger, but not aunt
[1 Grouping symbols.
| Choice symbol. For example:

oU=[unitl|IT_ssL] signifiesthat if theouisunitl or
IT_Sst, the certificate is acceptable.

=, I= Signify equality and inequality respectively.

Example

Distinguished names

Advanced Configuration Options

Thisisan examplelist of constraints:

policies:iiop_tls:certificate_constraints_policy = [

"OU=[unitl|IT_SSL],CN=Steve*,L=Dublin",
"OU=IT_ART*,0U!=IT ARTtesters,CN=[Jan | Donall, ST=
Boston" 1;

This constraint list specifiesthat a certificate is deemed acceptable if and only if
it satisfies one or more of the constraint patterns:

If
The OU is unitl or IT SSL
And
The CN begins with the text Steve
And
The location is Dublin
Then the certificate is acceptable
Else (moving on to the second constraint)
If
The OU begins with the text IT ART but isn't IT_ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston
Then the certificate is acceptable
Otherwise the certificate is unacceptable.

The language is like aboolean OR, trying the constraints defined in each line
until the certificate satisfies one of the constraints. Only if the certificate fails all
congtraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "cN =" might not be recognized, where "cn=" is recognized.

For more information on distinguished names, see “ASN.1 and Distinguished
Names’ on page 643.

203

CHAPTER 7 | ConfiguringHTTPSand I1OP/TLS

204

In this chapter

CHAPTER 8

Configuring Secure
Associations

The Artix HTTPS and I1OP/TLStransport layers offer additional
functionality that enables you to customize client-server
connections by specifying secure invocation policies and security
mechanism policies.

This chapter discusses the following topics:

Overview of Secure Associations page 206
Setting Association Options page 208
Specifying Cipher Suites page 221
Caching Sessions page 232

205

CHAPTER 8 | Configuring Secur e Associations

Overview of Secure Associations

Secur e association

TL S session

Colocation

Configuration overview

206

A secure association is aterm that hasits originsin the CORBA Security
Service and refersto any link between a client and a server that enables
invocations to be transmitted securely. In the present context, a secure
association isaHTTPS connection or an IIOP/TL S connection augmented by a
collection of security policies that govern the behavior of the connection.

A TLSsession isthe TLS implementation of a secure client-server association.
The TLS session is accompanied by a session state that stores the security
characteristics of the association.

A TLS session underlies each secure association in Artix.

For colocated invocations, that is where the calling code and called code share
the same address space, Artix supports the establishment of colocated secure
associations. A special interceptor, TLS_Coloc, is provided by the security
plug-in to optimize the transmission of secure, colocated invocations.

The security characteristics of an association can be configured through the

following CORBA policy types:

® Client secure invocation policy—enables you to specify the security
requirements on the client side by setting association options. See
“Choosing Client Behavior” on page 213 for details.

®* Target secureinvocation policy—enables you to specify the security
requirements on the server side by setting association options. See
“Choosing Target Behavior” on page 215 for details.

® Mechanism policy—enables you to specify the security mechanism used
by secure associations. In the case of TLS, you are required to specify alist
of cipher suites for your application. See “ Specifying Cipher Suites’ on
page 221 for details.

Overview of Secure Associations

Figure 23 illustrates all of the elements that configure a secure association. The
security characteristics of the client and the server can be configured
independently of each cther.

Figure 23: Configuration of a Secure Association

Y
Client

Secure Association

Client Invocation
Policy

Mechanism Policy —

Client Configuration

Specified Cipher Suites

A
Server

Server Configuration

Target Invocation
9 N Association Options
Policy

Mechanism Policy —

Specified Cipher Suites

207

CHAPTER 8 | Configuring Secur e Associations

Setting Association Options

Overview This section explains the meaning of the various association options and
describes how you can use the association options to set client and server secure
invocation policies for HTTPS and |1 OP/TL S connections.

In this section The following subsections discuss the meaning of the settings and flags:
Secure Invocation Policies page 209
Association Options page 211
Choosing Client Behavior page 213
Choosing Target Behavior page 215
Hints for Setting Association Options page 217

208

Setting Association Options

Secur e Il nvocation Policies

Secur e invocation policies Y ou can set the minimum security requirements for the applicationsin your
system with two types of security policy:
® Client secure invocation policy—specifies the client association options.
®* Target secureinvocation policy—specifies the association options on a
target object.

These policies can only be set through configuration; they cannot be specified
programmatically by security-aware applications.

IIOP/TL S configuration example For example, to specify that client authentication is required for [IOP/TLS
connections, you can set the following target secure invocation policy for your
server:

Artix Configuration File

secure_server_enforce_client_auth

{
IIOP/TLS Association Options
policies:iiop_tls:target_secure_invocation policy:requires =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering"];

policies:iiop_tls:target_secure_invocation policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

Other settings (not shown)...
g

209

CHAPTER 8 | Configuring Secur e Associations

HTTPS configuration example For example, to specify that client authentication is required for HTTPS
connections, you can set the following target secure invocation policy for your

server:

Artix Configuration File

secure_server_enforce_client_auth

{
HTTPS Association Options
policies:https:target_secure_invocation policy:requires =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering"];

policies:https:target_secure_invocation policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

Other settings (not shown)...
by

210

Setting Association Options

Association Options

Available options

NoPr otection

Integrity

Confidentiality

DetectReplay

DetectMisordering

Y ou can use association options to configure IlOP/TLS secure associations.
They can be set for clients or servers where appropriate. These are the available
options:

b NoProtection

b Integrity

b Confidentiality

i DetectReplay

b DetectMisordering

b EstablishTrustInTarget

b EstablishTrustInClient

Use the NoProtection flag to set minimal protection.This means that insecure
bindings are supported, and (if the application supports something other than
NoProtection) the target can accept secure and insecure invocations.

Use the Integrity flag to indicate that your application supports
integrity-protected invocations. Setting this flag impliesthat your TLS cipher
suites support message digests (such as MD5, SHAL).

Usethe confidentiality flagif your application requires or supports at |east
confidentiality-protected invocations. The object can support this feature if the
cipher suites specified by the Mechani smpPolicy support
confidentiality-protected invocations.

Usethe pbetectreplay flag to indicate that your application supports or requires
replay detection on invocation messages. Thisis determined by characteristics of
the supported TL S cipher suites.

Use the DetectMisordering flag to indicate that your application supports or
requires error detection on fragments of invocation messages. Thisis determined
by characteristics of the supported TLS cipher suites.

211

CHAPTER 8 | Configuring Secur e Associations

EstablishTrustinTarget

EstablishTrustInClient

212

The EstablishTrustInTarget flagisset for client policiesonly. Usethe flag to
indicate that your client supports or requires that the target authenticate its
identity to the client. Thisis determined by characteristics of the supported TLS
cipher suites. Thisis normally set for both client supports and requires unless
anonymous cipher suites are supported.

Use the EstablishTrustInClient flag to indicate that your target object
requires the client to authenticate its privileges to the target. This option cannot
be required as a client policy.

If this option is supported on aclient’ s policy, it means that the client is prepared
to authenticate its privileges to the target. On atarget policy, the target supports
having the client authenticate its privileges to the target.

Setting Association Options

Choosing Client Behavior

Client secureinvocation policy

ITOP/TL S configuration

HTTPS configuration

Association options

Default value

The client secure invocation policy type determines how aclient handles
security issues.

Y ou can set this policy for [TOP/TLS connections through the following

configuration variables:

policies:iiop_tls:client_secure_ invocation_policy:requires
Specifies the minimum security features that the client requires to establish
an IIOP/TLS connection.

policies:iiop_tls:client_secure_invocation_policy:supports
Specifies the security features that the client is able to support on
IIOP/TLS connections.

Y ou can set this policy for HTTPS connections (C++ runtime) through the
following generic configuration variables:
policies:https:client_secure_invocation_policy:requires
Specifies the minimum security features that the client requiresto establish
aHTTPS connection or an [IOP/TLS connection.
policies:https:client_secure_invocation_policy:supports
Specifies the security features that the client is able to support on HTTPS
connections and I lOP/TLS connections.

In both cases, you provide the details of the security levelsin the form of
AssociationOption flags—see“ Association Options’ on page 211.

The default value for the client secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget

213

CHAPTER 8 | Configuring Secur e Associations

Example

214

The following example shows some sample settings for the client secure
invocation policy:

Artix Configuration File
bank_client {

policies:iiop_tls:client_secure_invocation policy:requires
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:iiop_tls:client_secure_invocation policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

Setting Association Options

Choosing Tar get Behavior

Target secureinvocation policy

IIOP/TL S configuration

HTTPS configuration

Association options

Default valuefor I1OP/TLS

The target secure invocation policy type operatesin asimilar way to the client
secureinvocation policy type. It determines how atarget handles security issues.

Y ou can set the target secure invocation policy for IIOP/TLS connections

through the following configuration variables:

policies:iiop_tls:target_secure_ invocation_policy:requires
Specifies the minimum security features that your targets require, before
they accept an I|OP/TLS connection.

policies:iiop_tls:target_secure_invocation_policy:supports
Specifies the security features that your targets are able to support on
IIOP/TLS connections.

Y ou can set the target secure invocation policy for HTTPS connections (C++
runtime) through the following configuration variables:
policies:https:target_secure_invocation_policy:requires
Specifies the minimum security features that your targets require, before
they accept a HTTPS connection.
policies:https:target_secure_invocation_policy:supports
Specifies the security features that your targets are able to support on
HTTPS connections.

In both cases, you can provide the details of the security levelsin the form of
AssociationOption flags—see“ Association Options’ on page 211.

The default value for the IIOP/TL S target secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget

requires Integrity, Confidentiality, DetectReplay,
DetectMisordering

215

CHAPTER 8 | Configuring Secur e Associations

Default valuefor HTTPS

Example

216

The default value for the HTTPS target secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInTarget,
EstablishTrustInClient

requires Integrity, Confidentiality, DetectReplay,
DetectMisordering, EstablishTrustInClient

In contrast to the IOP/TLS policy, the HTTPS policy additionally requires
EstablishTrustInClient by default.

The following exampl e shows some sample settings for the target secure
invocation policy:

Artix Configuration File
bank_server {
policies:iiop_tls:target_secure_invocation policy:requires
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];
policies:iiop_tls:target_secure_invocation policy:supports

["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

Setting Association Options

Hintsfor Setting Association Options

Overview

Rules of thumb

Types of association option

This section gives an overview of how association options can be used in real
applications.

The following rules of thumb should be kept in mind:

If an association option is required by a particular invocation policy, it
must also be supported by that invocation policy. It makes no sense to
require an association option without supporting it.

It isimportant to be aware that the secure invocation policies and the
security mechanism policy mutually interact with each other. That is, the
association options effective for a particular secure association depend on
the available cipher suites (see “ Constraints Imposed on Cipher Suites’ on
page 229).

The NoProtection option must appear alonein alist of required options.

It does not make sense to require other security options in addition to

NoProtection.

Association options can be categorized into the following different types, as
shownin Table 1.

Tablel: Description of Different Types of Association Option

Description Relevant Association Options
Request or require TL S peer EstablishTrustinTarget and
authentication. EstablishTrustInClient.
Quiality of protection. Confidentiality, Integrity,

DetectReplay, and
DetectMisordering.

Allow or require insecure NoProtection.
connections.

217

CHAPTER 8 | Configuring Secur e Associations

EstablishTrustinTarget and These association options are used as follows:

EstablishTrustInClient ® EstablishTrustInTarget—determines whether a server sendsits own

X.509 certificate to a client during the SSL/TL S handshake. Normally,
both clients and servers would support and require
EstablishTrustInTarget. Theonly exception isif you configure your
application to use anonymous Diffie-Hellman cipher suites—see “No
Authentication” on page 178.
The EstablishTrustInTarget association option normally appearsin all
of the secure invocation policy variables shown in the relevant row of
Table 2.

® EstablishTrustInClient—determineswhether aclient sendsits own
X.509 certificate to a server during the SSL/TL S handshake. The
EstablishTrustInClient featureisoptional and various combinations of
settings are possible involving this assocation option.
The EstablishTrustInClient association option can appear in any of the
secure invocation policy variables shown in the relevant row of Table 2.

Table2: Setting EstablishTrustinTarget and EstablishTrustInClient
Association Options

Association Option Client side—can appear in... Server side—can appear in...

EstablishTrustInTarget policies:client_secure_ invocation_pol policies:target_secure_invoca
icy:supports tion_policy:supports

policies:client_secure_invocation_pol
icy:requires

EstablishTrustInClient policies:client_secure_ invocation_pol policies:target_secure_invoca
icy:supports tion_policy:supports

policies:target_secure_invoca
tion_policy:requires

Note: The SSL/TLS client authentication step can also be affected by the
policies:allow unauthenticated clients_policy configuration variable.
See “policies’ on page 557.

218

Confidentiality, I ntegrity,
DetectReplay, and
DetectMisordering

Setting Association Options

These association options can be considered together, because normally you
would require either all or none of these options. Most of the cipher suites
supported by Orbix support all of these association options, although there are a
couple of integrity-only ciphersthat do not support confidentiality (See
Table 6 on page 230). Asarule of thumb, if you want security you generally
would want all of these association options.

Table3: Setting Quality of Protection Association Options

Association Options

Client sde—can appear in... Server side—can appear in...

Confidentiality,
Integrity,
DetectReplay, and
DetectMisordering

policies:client_secure_ invocation_pol policies:target_secure_ invoca
icy:supports tion_policy:supports

policies:client_secure_ invocation_pol policies:target_secure_invoca

icy:requires tion_policy:requires

NoProtection

A typical secure application would list all of these association optionsin all of
the configuration variables shown in Table 3.

Note: Some of the sample configurations appearing in the generated
configuration file require confidentiality, but not the other qualities of
protection. In practice, however, the list of required association optionsis
implicitly extended to include the other qualities of protection, because the
cipher suites that support confidentiality aso support the other qualities of
protection. Thisis an example of where the security mechanism policy
interacts with the secure invocation policies.

The NoProtection association option is used for two distinct purposes:

¢ Disabling security selectively—security is disabled, either in the client role
or in the server role, if NoProtection appears as the sole required
association option and as the sole supported association option in a secure
invocation policy. This mechanism is selective in the sense that the client
role and the server role can be independently configured as either secure or
insecure.

Note: In thiscase, the orb_plugins configuration variable should
include the iiop plug-in to enable insecure 11OP communication.

219

CHAPTER 8 | Configuring Secur e Associations

®* Making an application semi-secure—an application is semi-secure, either
in the client role or in the server role, if NorProtection appears as the sole
required association option and as a supported association option along
with other secure association options. The meaning of semi-securein this
context is, asfollows:

¢ Semi-secureclient—the client will open either a secure or an insecure
connection, depending on the disposition of the server (that is,
depending on whether the server accepts only secure connections or
only insecure connections). If the server is semi-secure, the type of
connection opened depends on the order of the bindingsin the
binding:client_binding_ list.

+ Semi-secure server—the server accepts connections either from a
secure or an insecure client.

Note: In the case of a semi-secure CORBA server, the orb_plugins
configuration variable should include both the 1iop_t1s plug-in and the
iiop plug-in.

Table 4 shows the configuration variables in which the Noprotection
association option can appear.

Table4: Setting the NoProtection Association Option

Association Option

Client side—can appear in... Server side—can appear in...

NoProtection

policies:client_secure_ invocation_pol policies:target_secure_invoca
icy:supports tion_policy:supports

policies:client_secure_ invocation_pol policies:target_secure_invoca
icy:requires tion_policy:requires

220

Specifying Cipher Suites

Specifying Cipher Suites

Overview

In thissection

This section explains how to specify the list of cipher suites that are made
available to an application (client or server) for the purpose of establishing
ITOP/TLS and HTTPS secure associations. During a security handshake, the
client chooses a cipher suite that matches one of the cipher suites availableto the
server. The cipher suite then determines the security algorithmsthat are used for
the secure association.

This section contains the following subsections:

Supported Cipher Suites page 222
Setting the Mechanism Policy page 226
Constraints Imposed on Cipher Suites page 229

221

CHAPTER 8 | Configuring Secur e Associations

Supported Cipher Suites

Full-strength cipher suites Thefollowing full-strength cipher suites are supported by IOP/TLSand HTTPS
(C++ runtime):

® Standard ciphers:

RSA WITH_RC4_128_MD5
RSA WITH RC4_128_ SHA
RSA_WITH_DES_CBC_SHA
RSA_WITH_3DES_EDE_CBC_SHA

L ow-strength cipher suites The following cipher-suites suffer from serious security limitations and should
only be used in specia cases, where you have some way of compensating for
their limitations:

® Standard ciphers (export strength):
RSA_EXPORT_WITH_RC4_40_MD5
RSA_EXPORT_WITH_DES40_CBC_SHA

® Null encryption, integrity-only ciphers:
RSA_WITH_NULL_MD5
RSA_WITH NULL_SHA

® Anonymous Diffie-Hellman ciphers:
DH_ANON_EXPORT_WITH_RC4_40_MD5
DH_ANON_WITH_RC4_128_MD5
DH_ANON_EXPORT WITH_DES40_CBC_SHA
DH_ANON_WITH _DES_CBC_SHA
DH_ANON_WITH_3DES_EDE CBC_SHA

WARNING: Anonymous Diffie-Hellman cipher suites do not protect against
man-in-the-middle attacks. As aresult they are not suitable for the
overwhelming majority of applications. These Ciphersuites are disabled by
default and need to be explicitly enabled, as described elsewhere in this guide.
Their use should be restricted to only those applications that have a specific
requirement for these ciphersuites.

222

Security algorithms

Key exchange algorithms

Encryption algorithms

Specifying Cipher Suites

Each cipher suite specifies a set of three security algorithms, which are used at
various stages during the lifetime of a secure association:

® Key exchange algorithm—used during the security handshake to enable
authentication and the exchange of a symmetric key for subsequent
communication. Must be a public key algorithm.

® Encryption algorithm—used for the encryption of messages after the
secure association has been established. Must be a symmetric (private key)
encryption agorithm.

® Secure hash algorithm—used for generating digital signatures. This
algorithm is needed to guarantee message integrity.

The following key exchange algorithms are supported:

RSA

RSA_EXPORT

Rivest Shamir Adleman (RSA) public key encryption using
X.509v3 certificates. No restriction on the key size.

RSA public key encryption using X.509v3 certificates. Key
sizerestricted to 512 bits.

The following anonymous key-exchange algorithms are supported:

DH_ANON

DH_ANON_EXPORT

Anonymous Diffie-Hellman (no authentication). No
restriction on the key size.

Anonymous Diffie-Hellman. Key size restricted to 512 bits.

The following encryption algorithms are supported:

RC4_40

RC4_128

DES40_CBC

DES_CBC

3DES_EDE_CBC

A symmetric encryption algorithm developed by RSA data
security. Key sizerestricted to 40 hits.

RC4 with a 128-hit key.

Data encryption standard (DES) symmetric encryption. Key
sizerestricted to 40 bits.

DES with a 56-bit key.

Triple DES (encrypt, decrypt, encrypt) with an effective key
size of 168 bits.

223

CHAPTER 8 | Configuring Secur e Associations

Secure hash algorithms The following secure hash algorithms are supported:

MD5 Message Digest 5 (MD5) hash algorithm. This algorithm
produces a 128-bit digest.
SHA Secure hash algorithm (SHA). This algorithm produces a

160-bit digest. From a security viewpoint, this algorithm is
currently considered preferable to MD5.

Cipher suite definitions Table 5 shows the cipher suites used by the Artix C++ runtime.

Table5: Cipher Suite Definitions
Cipher Suite Key Exchange Encryption Secure Exportable
Algorithm Algorithm Hash ?
Algorithm

RSA_WITH_NULL_MD5 RSA NULL MD5 yes
RSA_WITH_NULL_SHA RSA NULL SHA yes
RSA_EXPORT_WITH_RC4_40_MD5 RSA_EXPORT RC4_40 MD5 yes
RSA_WITH RC4_128_ MD5 RSA RC4_128 MD5 no
RSA_WITH RC4_128 SHA RSA RC4_128 SHA no
RSA_EXPORT WITH_DES40_CBC_SHA RSA_EXPORT DES40_CBC SHA yes
RSA _WITH_DES_CBC_SHA RSA DES_CBC SHA no
RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA no
DH_ANON_EXPORT _WITH_RC4_40_MD5 DH_ANON_EXPORT RC4_40 MD5 yes
DH_ANON_WITH_RC4_128_MD5 DH_ANON RC4_128 MD5 no
DH_ANON_EXPORT WITH DES40_CBC_SHA DH_ANON_EXPORT DES40_CBC SHA yes
DH_ANON_WITH DES_CBC_SHA DH_ANON DES_CBC SHA no
DH_ANON_WITH_3DES_EDE CBC_SHA DH_ANON 3DES_EDE_CBC SHA no

224

Specifying Cipher Suites

Reference For further details about cipher suitesin the context of TLS, seerrc 2246 from
the Internet Engineering Task Force (IETF). Thisdocument is available from the
IETF Web site: http://www.ietf.org.

225

http://www.ietf.org

CHAPTER 8 | Configuring Secur e Associations

Setting the M echanism Policy

M echanism policy

The protocol_version
configuration variable

Inter operating with CORBA
applications on OS/390

226

To specify [IOP/TLS cipher suites, use the mechanism policy. The mechanism
policy isaclient and server side security policy that determines

o Whether SSL or TLSisused, and
® Which specific cipher suites are to be used.

Y ou can specify whether SSL, TL'S or both are used with atransport protocol by
assigning alist of protocol versions to the
policies:iiop_tls:mechanism_policy:protocol_versionConﬁgurﬁjon
variable for IOP/TLS and the
policies:https:mechanism_policy:protocol_versior1Conﬁguraﬁon
variable for HTTPS. For example:

Artix Configuration File
policies:iiop_tls:mechanism policy:protocol_version = ["TLS_V1",
"SSI,_V3"];

Y ou can set the protocol_version configuration variable to include one or
more of the following protocols:

TLS_V1

SSI,_V3

The order of the entriesinthe protocol_version listisunimportant. During the
SSL/TLS handshake, the highest common protocol will be negotiated.

There are some implementations of SSL/TLS on the OS/390 platform that
erroneously send SSL V2 client hellos at the start of an SSL V3 or TLSV1
handshake. If you need to interoperate with a CORBA application running on
0S/390, you can configure Artix to accept SSL V2 client hellos using the
policies:iiop_tls:mechanism policy:accept_v2_hellos configuration
variable for IIOP/TLS. For example:

Artix Configuration File
policies:iiop_tls:mechanism policy:accept_v2_hellos = "true";

Thedefault is false.

The cipher suites configuration
variable

Cipher suiteorder

Valid cipher suites

Cipher suiteincompatibilities

Specifying Cipher Suites

Y ou can specify the cipher suites available to a transport protocol by setting the
policies:iiop_tls:mechanism policy:ciphersuites configurationvariable
for IOP/TLS and the policies:https:mechanism policy:ciphersuites
configuration variable for HTTPS. For example:

Artix Configuration File
policies:iiop_tls:mechanism policy:ciphersuites =
["RSA_WITH_NULL_MD5",
"RSA_WITH NULL_ SHA",
"RSA_EXPORT WITH RC4_40_MD5",
"RSA_WITH RC4_128_MD5"];

The order of the entries in the mechanism policy’s cipher suiteslist isimportant.

During a security handshake, the client sends alist of acceptable cipher suitesto
the server. The server then chooses the first of these cipher suites that it finds
acceptable. The secure association is, therefore, more likely to use those cipher
suites that are near the beginning of the ciphersuites list.

Y ou can specify any of the following cipher suites:

® Standard ciphers:

RSA_EXPORT_WITH_RC4_40_MD5
RSA_WITH RC4_128_MD5
RSA_WITH RC4_128_ SHA
RSA_EXPORT_WITH_DES40_CBC_SHA
RSA_WITH DES_CBC_SHA
RSA_WITH 3DES_EDE CBC_SHA
® Null encryption, integrity-only ciphers:
RSA_WITH NULL_MD5
RSA_WITH NULL_SHA
* Anonymous Diffie-Hellman ciphers (cannot be combined with the other
cipher suites):
DH_ANON_EXPORT_WITH RC4_40_MD5
DH_ANON_WITH_RC4_128_MD5
DH_ANON_EXPORT WITH_DES40_CBC_SHA
DH_ANON_WITH DES_CBC_SHA
DH_ANON_WITH_3DES_EDE_CBC_SHA

Artix does not allow you to specify anonymous (that is, Diffie-Hellman) cipher
suites together with non-anonymous cipher suites on a single endpoint.

227

CHAPTER 8 | Configuring Secur e Associations

Default values If no cipher suites are specified through configuration or application code, the
following apply:

RSA_WITH RC4_128_SHA,

RSA WITH_RC4_128_MD5,

RSA WITH_3DES_EDE_CBC_SHA,

RSA_WITH_DES_CBC_SHA

Only full-strength cipher suites areincluded in thislist. That is, by default all of
the null encryption, export, and Diffie-Hellman cipher suites are disabled.

228

Specifying Cipher Suites

Constraints Imposed on Cipher Suites

Effective cipher suites

Required and supported
association options

Figure 24 shows that cipher suitesinitially specified in the configuration are not
necessarily made available to the application. Artix checks each cipher suite for
compatibility with the specified association options and, if necessary, reduces
the size of the list to produce alist of effective cipher suites.

Figure 24: Constraining the List of Cipher Suites

Association constrain Specified
Options Cipher Suites
yields ‘ ‘
Effective

Cipher Suites

For example, in the context of the IIOP/TLS protocol the list of cipher suitesis

affected by the following configuration options:

®* Required association options—as listed in
policies:iiop_tls:client_secure_ invocation_policy:requires ON
the client side, or
policies:iiop_tls:target_secure_invocation_policy:requires ON
the server side.

® Supported association options—as listed in
policies:iiop_tls:client_secure_ invocation_policy:supports ON
the client side, or
policies:iiop_tls:target_secure_invocation_policy:supports ON

the server side.

229

CHAPTER 8 | Configuring Secur e Associations

Cipher suite compatibility table

Use Table 6 to determine whether or not a particular cipher suite is compatible

with your association options.

Table6:

Association Options Supported by Cipher Suites

Cipher Suite

Supported Association Options

RSA_WITH_NULL_MD5

Integrity, DetectReplay, DetectMisordering,
EstablishTrustInClient, EstablishTrustInTarget

RSA_WITH_NULL_SHA

Integrity, DetectReplay, DetectMisordering
EstablishTrustInClient, EstablishTrustInTarget

RSA_EXPORT _WITH_RC4_40_MD5

Integrity, DetectReplay, DetectMisordering, Confidentiality
EstablishTrustInClient, EstablishTrustInTarget

RSA_WITH RC4_128 MD5

Integrity, DetectReplay, DetectMisordering, Confidentiality
EstablishTrustInClient, EstablishTrustInTarget

RSA_WITH RC4_128_ SHA

Integrity, DetectReplay, DetectMisordering, Confidentiality
EstablishTrustInClient, EstablishTrustInTarget

RSA_EXPORT _WITH_DES40_CBC_SHA

Integrity, DetectReplay, DetectMisordering, Confidentiality
EstablishTrustInClient, EstablishTrustInTarget

RSA_WITH_DES_CBC_SHA

Integrity, DetectReplay, DetectMisordering, Confidentiality
EstablishTrustInClient, EstablishTrustInTarget

RSA_WITH 3DES_EDE CBC_SHA

Integrity, DetectReplay, DetectMisordering, Confidentiality
EstablishTrustInClient, EstablishTrustInTarget

DH_ANON_EXPORT WITH_RC4_40_MD5

Integrity, DetectReplay, DetectMisordering, Confidentiality

DH_ANON_WITH_RC4_128_MD5

Integrity, DetectReplay, DetectMisordering, Confidentiality

DH_ANON_EXPORT WITH_DES40_CBC_SHA

Integrity, DetectReplay, DetectMisordering, Confidentiality

DH_ANON_WITH_DES_CBC_SHA

Integrity, DetectReplay, DetectMisordering, Confidentiality

DH_ANON_WITH 3DES_EDE_CBC_SHA

Integrity, DetectReplay, DetectMisordering, Confidentiality

230

Specifying Cipher Suites

Deter mining compatibility Thefollowing agorithm is applied to the initial list of cipher suites:

1. Fromtheinitia list, remove any cipher suite whose supported association
options (see Table 6) do not satisfy the configured required association
options.

2. Fromtheremaining list, remove any cipher suite that supports an option
(see Table 6) not included in the configured supported association options.

No suitable cipher suitesavailable If no suitable cipher suites are available as aresult of incorrect configuration, no
communications will be possible and an exception will be raised. Logging also
provides more details on what went wrong.

Example For example, specifying a cipher suite such asrsa_wiTH Rc4_128_MD5 that
supports Confidentiality, Integrity, DetectReplay, DetectMisordering,
EstablishTrustInTarget (and optionaly EstablishTrustInClient) but
specifying a secure_invocation policy that supportsonly asubset of those
features results in that cipher suite being ignored.

231

CHAPTER 8 | Configuring Secur e Associations

Caching Sessions

Session caching policy

Configuration variable

Valid values

Default value

Configuration variable

Valid values

Default value

Configuration variable

Default value

232

You can usethe llIOP/TLS and HTTPS session caching policies to control TLS
session caching and reuse for both the client side and the server side.

Y ou can set the session caching policy with the
policies:iiop_tls:session_caching_policy OF
policies:session_caching policy configuration variables. For example:

policies:iiop tls:session_caching policy = "CACHE_CLIENT";

Y ou can apply the following values to the session caching policy:

CACHE_NONE,
CACHE_CLIENT,
CACHE_SERVER,
CACHE_SERVER_AND_CLIENT

The default value is CACHE_NONE.

plugins:atli_tls_tcp:session_cache_validity period
This allows control over the period of time that SSL/TL S session caches
arevalid for.

session_cache validity period is specified in seconds.

The default valueis 1 day.

plugins:atli_tls_tcp:session_cache_size
session_cache_size iSthe maximum number of SSL/TL S sessions that
are cached before sessions are flushed from the cache.

This defaults to no limit specified for C++.

Part |11
The Artix Security Service

In thispart This part contains the following chapters:
Configuring the Artix Security Service page 235
Managing Users, Roles and Domains page 303
Managing Access Control Lists page 319
Configuring the Artix Security Plug-In page 329

233

234

In this chapter

CHAPTER 9

Configuring the
Artix Security
Service

Thischapter describes how to configure the properties of the Artix
security service and, in particular, how to configure a variety of
adaptersthat can integrate the Artix security service with
third-party enterprise security back-ends (for example, LDAP).

This chapter discusses the following topics:

Configuring the Security Service page 236
Configuring the File Adapter page 257
Configuring the LDAP Adapter page 259
Configuring the Kerberos Adapter page 265
Clustering and Federation page 282
Additional Security Configuration page 298

235

CHAPTER 9 | Configuring the Artix Security Service

Configuring the Security Service

Overview

In this section

236

To configure the basic properties of the Artix security service, you must edit the
appropriate settings in the Artix configuration file. In particular, the settings in
the Artix configuration file enable you to specify the manner in which the
security service communicates with other Artix programs.

Two major variants of security service communications are supported:
IIOP/TLS-based and HTTPS-based.

This section contains the following subsections:

Security Service Accessible through IIOP/TLS page 237
Security Service Accessible through HTTPS page 246

Configuring the Security Service

Security Service Accessiblethrough I1OP/TLS

Overview

Setting the security service' shost
and port

This section describes how to configure a security service that is made
accessible through the IIOP/TLS protocol. This approach to configuring the
security service has been used by all versions of Artix that include security, up to
and including 4.0.

To change the security service' s host and port, edit the configuration as follows:

Configuration of the security service—in the security service's
configuration scope, specify the host and port as follows:

Artix Configuration File
plugins:security:iiop_tls:host = "SecurityHost";
plugins:security:iiop_tls:port = "SecurityPort";

Where securityHost and SecurityPort specify the host and IP port
where the security service listensfor [IOP/TLS connections.

Alternatively, you can specify the host and port as follows:

Artix Configuration File
plugins:security:iiop_tls:addr_list =
["SecurityHost:SecurityPort"];

This configuration setting has the advantage that you can, when necessary,
expand the list of 1P addresses to support the failover and clustering
features—see “ Clustering and Federation” on page 282.
Configuration of clients of the security service—for any programs that
need to contact the security service, add the following line to their
configuration scopes (or enclosing scopes):
Artix Configuration File
corbaloc:it_iiops:1.2@SecurityHost:SecurityPort/IT_Security

Service

Where you must replace the securi tyHost and SecurityPort Settingsin
the it_iiops address.

237

CHAPTER 9 | Configuring the Artix Security Service

Replacing X.509 certificates

Setting client certificate
constraints

238

The security serviceis provided with demonstration X.509 certificates by

default. Whilst thisis convenient for running demonstrations and tests, it is

fundamentally insecure, because Artix providesidentical demonstration

certificates for every installation.

Before deploying the security service in alive system, therefore, you must

replace the default X.509 certificates with your own custom-generated

certificates. Specifically, for the security service you must replace the following

certificates:

®* Trusted CAlist—thisisalist of trusted Certification Authority (CA)
certificates, which is used to vet certificates presented by clients. Only
certificates signed by one of the CAs on the trusted list will be allowed to
connect to the security service.

To update the trusted CA ligt, edit the
policies:trusted _ca_list_policy Variablein the security service's
configuration scope (or enclosing scope). For more details, see“ Specifying
Trusted CA Certificates’ on page 182.

® Security service' s own certificate—the security service usesits own X.509
certificate to identify itself to peers during SSL/TL S handshakes.

To replace the security service's own certificate, edit the principal sponsor
settings in the security service' s configuration scope (or enclosing scope).
For more details, see “ Specifying an Application’s Own Certificate” on
page 190.

To provide abasic level of access control, the security service enables you to set
client certificate constraints, which prevents clients from opening a connection
to the security service unless they present a certificate that matches the specified
constraints.

Minimum level of security

Relocating files

Configuring the Security Service

To specify the security sevice's client certificate constraints, assign the
constraints to the

policies:security server:client_certificate constraints
configuration variable (for details of how to specify constraints, see “ Applying
Constraints to Certificates’ on page 515).

Note: Y ou should specify the security service's constraints using the
policies:security server:client_certificate constraints constraints
variable rather than the generic
policies:certificate_constraints_policy constraints variable. This
approach allows you to differentiate between the constraints on the security
service and the constraints on other servicesthat might run in the same process
(for example, the login service).

The security service always requires clients to present an X.509 certificate to
identify themselves, irrespective of the secure invocation policy specified in
configuration. Hence, the actual level of security that appliesto SSL/TLS
communications is obtained by implicitly adding EstablishTrustInClient tO
thelist of required association options in the target secure invocation policy (the
security service does this automatically).

The security service depends on several directories and files, which might need
to be relocated when it comes to deployment time. Some directories and files
that might be relocated are, as follows:

® Artixinstall directory—if you manually move the core filesin the Artix
installation, this would affect the location of certain library directories that
the security service depends on. The following configuration settings
would be affected:
¢ SECURITY_CLASSPATH—a Substitution variable that specifiesthe

location of the JAR file containing the security service code.
. plugins:java_server:system_properties—amongst thislist of
properties, the java.endorsed.dirs property would be affected.

* i propertiesfile—thisisan important file that provides additional
security service configuration through Java properties. Y ou can alter the
location of thisfile by editing the is2.properties property in the list of
properties specified by plugins:java_server:system properties.

239

CHAPTER 9 | Configuring the Artix Security Service

Sample configuration

240

Security log file—if you have enabled local logging for the security
service, you can specify the location of the security log file by editing the
plugins:local_log_stream: filename configuration variable.

Example 28 shows a sample configuration for a security service that supports
connections over the IIOP/TL S transport protocoal. In this example, the security
service' s configuration scope (which would be passed to the -Busname
parameter of the command that launches the security service) is

secure_artix.your_application.security_ service

Example 28: Configuration of the Artix Security Service with [IOP/TLS

Artix Configuration File
secure_artix

{

Generic security settings

policies:trusted ca_list_policy =
"C:\artix_40/artix/4.0/demos/security/certificates/tls/x509/t
rusted ca_lists/ca_listl.pem";

SECURITY_ CLASSPATH =
"C:\artix_40\lib\artix\security service\4.0\security service-
rt.jar";

your application
{

initial_references:IT SecurityService:reference =
"corbaloc:it_iiops:1.2@localhost:55020/IT SecurityService";

security service

{

password_retrieval_mechanism:inherit_from parent =
"true";

principal_sponsor:use_principal_sponsor = "true";

principal_sponsor:auth _method id = "pkcsl2_file";

principal_sponsor:auth _method data =
["filename=C:\artix 40/artix/4.0/demos/security/certificates/
tls/x509/certs/services/administrator.pl2",
"password_file=C:\artix_40/artix/4.0/demos/security/certifica
tes/tls/x509/certs/services/administrator.pwf"];

10

12

Configuring the Security Service

Example 28: Configuration of the Artix Security Service with IIOP/TLS

binding:client_binding list = ["GIOP+EGMIOP",
"OTS+TLS_Coloc+POA_Coloc", "TLS_Coloc+POA _Coloc",
"OTS+POA_Coloc", "POA_Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+ITOP_TLS", "OTS+GIOP+IIOP_TLS",
"CSI+GIOP+IIOP_TLS", "GIOP+IIOP_TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];

policies:target_secure_invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"] ;

policies:target_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

policies:client_secure invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"];

policies:client_secure invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

orb_plugins = ["local_log stream", "iiop_profile",
"giop", "iiop_tls"];

generic_server_plugin = "java_server";
plugins:java_server:shlib name = "it_java_server";
plugins:java_server:class =

"com. iona.corba.security.services.SecurityServer";
plugins:java_server:classpath = "%{SECURITY_CLASSPATH}";
plugins:java_server:jni_verbose = "false";
plugins:java_server:X options = ["rs"];

#event_log:filters = ["IT SECURITY=WARN+ERROR+FATAL",
"IT JAVA SERVER="];
plugins:security:direct_persistence = "true";

plugins:java_server:system properties =
["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=C:\artix_40/artix/4.0/demos/security/full_sec
urity/cxx/security_service/is2.properties.FILE",
"java.endorsed.dirs=C:\artix_40/artix/4.0/1lib/endorsed"];

241

CHAPTER 9 | Configuring the Artix Security Service

242

13

14

15

16

Example 28: Configuration of the Artix Security Service with IOP/TLS

17

plugins:local_log_stream:filename =
"C:\artix_40/artix/4.0/demos/security/full_security/cxx/secur
ity _service/isf.log";

plugins:security:iiop_tls:port = "55020";
plugins:security:iiop_tls:host = "localhost";

policies:security_server:client_certificate_constraints
= ["CN=*"];

policies:external_token_issuer:client_certificate constraints
= [1;
b g
};

The preceding configuration can be explained as follows:

1

Most of the settings appearing in the secure_artix scope are entirely
generic and never need to be edited.

By default, the trusted CA list points at a demonstration CA certificate.
Before deploying the Artix security service, you must replace this
demonstration CA list by alist of CA certificates that are genuinely
trustworthy.

WARNING: The default trusted CA list is provided for demonstration
purposes only. It is not secure, because every installation of Artix usesthe
same demonstration certificates. Y ou must replace the CA certificate list
when you deploy the Artix security serviceto alive system.

The SECURITY_CLASSPATH substitution variable specifies the location of
the JAR file containing the implementation of the Artix security service. If
you move the Artix JAR files to a non-standard |ocation, you would have
to update thisfile location.

The IT_securityService initia reference setting provides the endpoint
details for connecting to the security service through the IIOP/TLS
protocol. Y ou should ensure that this setting isavailable in the scope of any
Artix application that needs to connect to the security service.

Configuring the Security Service

Theinitial referenceis specified as a corbaloc URL, in the following
format:

corbaloc:it_iiops:1.2@SecurityHost:SecurityPort/IT_Security
Service

Where securityHost and SecurityPort are the host and port for the
Ssecurity service.

Setting the password retrieval mechanism to obtain the private key
password from a parent processis atechnicality, which isrequired because
the security service implementation forks a new process.

The principal sponsor settings are used to set the security service's own
X.509 certificate. The security service usesthis certificate during SSL/TLS
handshakes to identify itself to other programs.

Before deploying the security serviceto alive system, you must replace the
demonstration certificate with a secure custom certificate. For details of
how to configure the principal sponsor, see “Deploying Own Certificate
for IOP/TLS’ on page 196.

WARNING: The security service' s default own certificateis provided for
demonstration purposes only. It is not secure, because every installation
of Artix uses the same demonstration certificates. Y ou must replace the
own certificate when you deploy the Artix security serviceto alive
system.

The following lines set the minimum requirements for the target secure
invocation policy and the client secure invocation policy. The security
service implicitly augments these security policies by requiring the
EstablishTrustInClient assoCiation option for the target secure
invocation policy. In other words, the security service always expects a
client to present an X.509 certificate, irrespective of what appearsin the
configuration.

The orb_plugins list loads plug-ins to support the local 1og stream and the
ITOP/TLS transport protocol.

Thefollowing lines configure the Artix generic server.

243

CHAPTER 9 | Configuring the Artix Security Service

244

10.

11.
12.

13.

14.

The core of the Artix security service isimplemented as a pure Java
program. To make the security service accessible through the IIOP/TLS
protocol, the Java code is hosted inside an Artix generic server.

Theplugins:java_server:class Setting specifies the entry point for the
Javaimplementation of the security service. Currently, there are two
possible entry points:

. com.iona.corba.security.services.SecurityServer—thisentry
point is suitable for a security service that supportsthe IIOP/TLS
transport protocol.

. com.iona.jbus.security.services.SecurityServer—this entry
point is suitable for a security service that supports other Artix
protocols, such as HTTPS. See*“ Security Service Accessible through
HTTPS’ on page 246 for more details.

To enable an error log for the security service, uncomment thisline.

This line sets the system properties for the Javaimplementation of the
security service. In particular, the is2.properties property specifiesthe
location of apropertiesfile, which contains further property settingsfor the
Artix security service.

Sample property filesfor the LDAP and KERBEROS security adaptersare
available at the following locations:

ArtixInstallDir/etc/is2.properties.LDAP
ArtixInstallDir/etc/is2.properties.KERBEROS

Y ou need to customize these property files before using them in an
application—see “ Configuring the LDAP Adapter” on page 259 and
“Configuring the Kerberos Adapter” on page 265.

Theplugins:local_log_stream: filename Specifiesthe location of the
security service'slog file.

These two variables, plugins:security:iiop_tls:port and
plugins:security:iiop_tls:host, specify the host and |P port where
the security service listens for incoming connections. Therefore, if you
want to change the security service's listening address, you should edit
these settings.

15.

16.

Configuring the Security Service

The security service requires that any clients attempting to open a
connection must present an X.509 certificate to identify themselves. In
addition, the security service supports a primitive form of access control:
client certificates will be rejected unless they conform to the constraints
specifiedin
policies:security_server:client_certificate_constraints

For details of how to specify certificate constraints, see “ Applying
Congtraints to Certificates’ on page 515.

Note: The
policies:security_server:client_certificate_constraints
setting must be present in the security service's configuration scope,
otherwise the security service will not start.

The security service supports a special kind of access, where aclient can
obtain security tokens without providing a password, based on a username
alone. Thistype of accessis needed to support interoperability with the
mainframe platform. Normally, however, this feature should be disabled to
avoid opening a security hole.

To disable the token issuer, set the token issuer’ s certificate constraints to
be an empty list (as shown here). This causes the token issuer to reject all
clients, effectively disabling this feature.

Note: The

policies:external_token_issuer:client_certificate constrain
ts setting must be present in the security service's configuration scope,
otherwise the security service will not start.

245

CHAPTER 9 | Configuring the Artix Security Service

Security Service Accessiblethrough HTTPS

Overview

L ocation of the demonstrations

Artix-enabled security service

Configuring security service
clients

246

This section describes how to configure a security service that is made
accessible through the HTTPS protocol. A key difference between the
HTTPS-based security service and the || OP/TL S-based security serviceis that
the HTTPS-based variant uses an Artix enabled security service. The
HTTPS-based variant also requires you to configure clients differently (that is,
clients of the security service).

The demonstration code is located in the following directory:

ArtixInstallDir/samples/security/authorization

In versions of Artix prior to 4.0, the Artix security serviceis available only asa
pure CORBA service. The architecture for this security serviceisbased on a
pure Java core (the core implementation of the security service) which isloaded
into an Artix generic server. The generic server provides an OMG IDL wrapper
interface, which enables the core service to be accessed through the IIOP/TLS
protocol.

From Artix 4.0 onwards, a more flexible type of architecture is provided that
makes the security service accessible through any Artix transport—that is, the
security service is Artix enabled. Using this approach, the security serviceis
deployed as aregular Artix service with its own WSDL contract. Just aswith
any other Artix service, you can select the transport and modify the endpoint
attributes by editing the security service' s WSDL contract.

If you configure the security serviceto be Artix enabled, you must also

configure the clients of the security service appropriately (in this context, client

means any program that communicates with the security service—for example,

the client could be an Artix server).

To configure an Artix program to communicate with the Artix enabled security

service, make the following modifications to the program’ s configuration:

® Load the Artix security plug-in—thisis a basic prerequisite for
communication with the Artix security service. See“The Artix Security
Plug-In” on page 330.

Configuring the Security Service

®* Enable Artix proxiesin the security plug-in—set the
policies:asp:use_artix proxies configuration variable to true.

* Specify the location of the security service WSDL contract—set the
bus:initial_contract:url:isf_service configuration variable to the
location of the contract.

Note: Thisisnot the only way of specifying the location of aWSDL
contract. See the Finding Contracts and References chapter of the
Configuring and Deploying Artix Solutions guide for more details.

For example, the following configuration sample, your_artix_server,
highlights the settings that need to be modified in order to access an Artix
enabed security service:

Artix Configuration File
your_artix_server

{
orb_plugins = [..., "artix security", ...]1;

policies:asp:use_artix proxies = "true";
bus:initial contract:url:isf service =
"../../etc/isf_service.wsdl";

¥

A sample copy of the security service WSDL contract, isf service.wsdl, iS
provided in the following directory:

ArtixInstallDir/samples/security/full_security/etc

Instantiation of an Artix Businthe In order to expose the security service asan Artix service, you need to configure
security service the generic server to create an Artix Bus in which the Artix enabled security
service can run.

To configure the generic server to instantiate an Artix Bus, perform the

following steps:

1. Inthesecurity service configuration scope, edit the
plugins:java_server:class Setting and set it equal to
com.iona.jbus.security.services.SecurityServer.

2. Add abus sub-scope to the security_service configuration scope. The
bus sub-scope is used to configure the Artix enabled security service.

247

CHAPTER 9 | Configuring the Artix Security Service

In outline, the modified configuration would look as follows:

Artix Configuration File
security_service
{

Security Service Configuration Settings

plugins:java server:class =
"com.iona.jbus.security.services.SecurityServer";
bus
{
HTTPS-Based Security Service Configuration Settings

}:

Customising the security service To configure the HTTPS-based security service, see the following topics:
configuration ® Setting the HTTPS-based security service's host and port.

® Location of the security service WSDL contract.

® Replacing X.509 certificates.

® Setting client certificate constraints.

® Minimum level of security.

®* Dependency on secure WSDL publishing service.

®* Relocating files.

® Sample configuration.

Settingthe HTTPS-based security The HTTPS-based security service's address details are specified in the security
service' s host and port service’' sWSDL contract. If you want to change the security service' s address,
edit the relevant Location attribute in the security service endpoint.

Example 29 shows a security service endpoint with alocation attribute equal to
https://localhost:59075/services/security/ServiceManager.

Example29: Address Details in the Security Service WSDL Contract

<definitions name="isf_ service"
targetNamespace="http://schemas.iona.com/idl/isf service.idl"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:addressing="http://schemas.iona.com/references"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

248

Configuring the Security Service

Example29: Address Detailsin the Security Service WSDL Contract

xmlns:http-conf="http://schemas.iona.com/transports/http/conf
iguration"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://schemas.iona.com/idl/isf_service.idl"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmlns:xsdl="http://schemas.iona.com/idltypes/isf_service.idl"
>

<service name="IT ISF.ServiceManagerSOAPService">
<port binding="tns:IT_ISF.ServiceManagerSOAPBinding"
name="IT ISF.ServiceManagerSOAPPort">
<http:address location =
"https://localhost:59075/services/security/ServiceManager"
/>
</port>
</service>
</definitions>

L ocation of the security service The location of the security service WSDL contract is specified by the value of
WSDL contract thebus:initial contract:url:isf service Variablein thebus sub-scope of
the security service's configuration scope.

A sample copy of the security service WSDL contract, isf_service.wsdl, iS
provided in the following directory:

ArtixInstallDir/samples/security/full_security/etc

Replacing X.509 certificates The security serviceis provided with demonstration X.509 certificates by
default. Whilst thisis convenient for running demonstrations and tests, it is
fundamentally insecure, because Artix provides identical demonstration
certificates for every installation.

249

CHAPTER 9 | Configuring the Artix Security Service

Setting client certificate
constraints

250

Before deploying the security service in alive system, therefore, you must

replace the default X.509 certificates with your own custom-generated

certificates. Specificaly, for the security service you must replace the following

certificates:

® Trusted CA list—thisisalist of trusted Certification Authority (CA)
certificates, which is used to vet certificates presented by clients. Only
certificates signed by one of the CAs on the trusted list will be allowed to
connect to the security service.

To update the trusted CA list, edit the
plugins:at_http:server:trusted_root_certificates variableinthe
bus sub-scope of the the security service's configuration scope. For more
details, see “ Specifying Trusted CA Certificates for HTTPS’ on page 183.
® Security service' s own certificate—the security service uses its own X.509
certificate to identify itself to peers during SSL/TL S handshakes.
To replace the security service's own certificate, edit the
plugins:at_http:server:server_ certificate and the
plugins:at_http:server:server private_key password Settingsin
the bus sub-scope of the security service's configuration scope. For more
details, see “Deploying Own Certificate for HTTPS’ on page 191.

To provide abasic level of access control, the security service enables you to set
client certificate constraints, which prevents clients from opening a connection
to the security service unless they present an certificate that matches the
specified constraints.

To specify the HTTPS-based security service's client certificate constraints,
assign the constraints to the policies:certificate_constraints_policy
configuration variable in the bus configuration sub-scope (for details of how to
specify constraints, see “ Applying Constraints to Certificates’ on page 515).

Note: The HTTPS-based security service sets certificate constraints using a
different variable, policies:certificate constraints_policy, from the
one used by the 11OP/TLS-based security service,

policies:security server:client_certificate constraints.

Minimum level of security

Dependency on secure WSDL
publishing service

Relocating files

Configuring the Security Service

In the case of the HTTPS-based security service, the minimum security
reguirements for SSL/TLS communications are specified explicitly by the
effective target secure invocation policy (which can be specified using the
policies:target_secure_ invocation policy:requires variable).
Becauseit is an important security requirement for clients of the security service
to present an X.509 certificate, you should take care that the target secure
invocation policy in the bus configuration sub-scope always includes the
EstablishTrustInClient assocCiation option.

The HTTPS-based security service requires that the secure WSDL publishing
serviceisloaded and enabled. The WSDL publishing service enables clients of
the security service to download WSDL contracts containing particular security
service interfaces at runtime.

For more details about the secure WSDL publishing service, see “Publishing
WSDL Securely” on page 353.

The security service depends on several directories and files, which might need
to be relocated when it comes to deployment time. Some directories and files
that might be relocated are, as follows:

® Artixinstall directory—if you manually move the core filesin the Artix
installation, this would affect the location of certain library directories that
the security service depends on. The following configuration settings
would be affected:
¢ SECURITY_CLASSPATH—a Substitution variable that specifiesthe

location of the JAR file containing the security service code.
. plugins:java_server:system_properties—amongst thislist of
properties, the java.endorsed.dirs property would be affected.

* i propertiesfile—thisisan important file that provides additional
security service configuration through Java properties. Y ou can alter the
location of thisfile by editing the is2.properties property inthelist of
properties specified by plugins: java_server:system properties.

® Security log file—if you have enabled local logging for the security
service, you can specify the location of the security log file by editing the
plugins:local_log_stream: filename configurati on variable.

251

CHAPTER 9 | Configuring the Artix Security Service

Sample configuration

252

® iSF servicefile—you can change the location of the WSDL contract file
for the HTTPS-based security service by editing the
bus:initial_contract:url:isf service configuration variable.

Example 30 shows a sample configuration for a security service that supports
connections over the HTTPS transport protocol. In this example, the security
service' s configuration scope (which would be passed to the -Busname
parameter of the command that launches the security service) is

secure_artix.your_application.security_ service
Example 30: Configuration of the Artix Security Service with HTTPS

include "../../../../etc/domains/artix.cfg";

secure_artix
{

Generic security settings

your_application
{

security service

{

generic_server_plugin = "java_server";
plugins:java_server:shlib name = "it_java_server";
plugins:java_server:class =
"com.iona.jbus.security.services.SecurityServer";
plugins:java_server:classpath = "% {SECURITY_ CLASSPATH}";
plugins:java_server:jni_verbose = "false";

plugins:java_server:X_ options = ["rs"];

#event_log:filters = ["IT SECURITY=WARN+ERROR+FATAL",
"IT JAVA_SERVER="];

plugins:security:direct_persistence = "true";

plugins:java_server:system properties =
["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com. iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=%{INSTALL DIR}/%{PRODUCT NAME}/%{PRODUCT VERS
ION} /demos/security/full_security/etc/is2.properties.FILE",
"java.endorsed.dirs=%{INSTALL DIR}/%{PRODUCT NAME} /% {PRODUCT
VERSION}/lib/endorsed"];

10

12

13

14

15

Configuring the Security Service

Example 30: Configuration of the Artix Security Service with HTTPS

plugins:local_log_stream:filename =
"% {INSTALL_DIR}/%{PRODUCT NAME} /% {PRODUCT VERSION}/demos/secu
rity/full security/etc/isf.log";

bus

{
orb_plugins = ["local_log_stream", "java",
"wsdl_publish"];
java_plugins= ["isf"];
plugins:isf:classname="com.iona.jbus.security.services.ISFBusPlu
ginFactory";

bus:initial_contract:url:isf_service =
"% {INSTALL_DIR}/%{PRODUCT NAME}/%{PRODUCT VERSION}/demos/secu
rity/full_security/etc/isf_service.wsdl";

plugins:wsdl_publish:enable_secure_wsdl_publish="true";

plugins:at_http:server:use_secure_sockets="true";
plugins:at_http:server:trusted root_certificates =
"%{ROOT_TRUSTED_ CA_LIST POLICY 1}";
plugins:at_http:server:server_certificate =
"%{PRIVATE_CERT 1}";
plugins:at_http:server:server private key password =
"% {PRIVATE_CERT PASSWORD_1}";
policies:target_secure invocation policy:requires
["Confidentiality", "Integrity", "DetectMisordering",
"DetectReplay", "EstablishTrustInClient"];
policies:certificate_constraints_policy =
["${CERT CONSTRAINT 1}"];
};
}i

g

253

CHAPTER 9 | Configuring the Artix Security Service

254

The preceding configuration can be described as follows:

1

Theincluded artix.cfg configuration file contains some generic
configuration and settings to initialize the security substitution variables.

Note: Substitution variables provide asimple way of defining constants
in an Artix configuration file. If you define a substitution variable,
VARTABLE_NAME, YOU can substitute its value into a configuration setting
using the syntax %{ VARTABLE, NAME}.

The following lines configure the Artix generic server.

The core of the Artix security service isimplemented as a pure Java
program, which gets loaded into the Artix generic server.
Theplugins:java_server:class Setting specifies the entry point for the
Javaimplementation of the security service. Currently, there are two
possible entry points:

. com.iona.jbus.security.services.SecurityServer—this entry
point is suitable for running a HT TPS-based security service. The
detailed configuration of the HTTPS transport appears inside the bus
configuration sub-scope.

3 com.iona.corba.security.services. SecurityServer—thisentry
point is suitable for running an I1OP/TL S-based security service. See
“Security Service Accessible through IIOP/TLS’ on page 237 for
details.

To enable an error log for the security service, uncomment thisline.

This line sets the system properties for the Javaimplementation of the

security service. In particular, the is2.properties property specifies the

location of apropertiesfile, which containsfurther property settings for the

Artix security service.

Theplugins:local_log_stream:filename Specifiesthe location of the

security service'slog file.

The orb_plugins list in the bus scope must include the following plug-ins:

¢+ java plug-in—enables the Artix Java plug-in mechanism, which can
then be loaded using the java_plugins list.

10.

11.

12.

13.

14.

15.

Configuring the Security Service

¢+ wsdl_publish plugin—loadsthe WSDL publishing service, which
enables clients of the security service to download WSDL contracts.
In order to access some of the security service's interfaces, the client
must download the relevant WSDL contracts through the publishing
service.

The java_plugins list lets you load Artix Java plug-ins (see the JAX-RPC
Programmer’s Guide for more details) and in this case a single plug-in,
isf, isloaded. The isf plug-inisresponsible for exposing the security
service core as an Artix service.

Theplugins:isf:classname Variable specifies the entry point for the
implementation of the is£ plug-in.

This setting specifies the location of the security service'sWSDL contract.
Y ou will generally need to edit this WSDL contract, to specify the security
service' s host and port.

This setting enables HTTPS-related security features for the WSDL
publishing service. For more details about securing the WSDL publishing
service, see “Enabling SSL/TLS for WSDL Publish Plug-In” on page 362.
This setting ensures that the security service and the WSDL publishing
service accept incoming connections only over HTTPS, instead of insecure
HTTP, and implicitly causes the https plug-in to load.

If the client presents a certificate to the security service, Artix checksto
make sure that the client certificate is signed by one of the CAsin the
trusted CA list specified here.

This line specifies the X.509 certificate that the security server presentsto
incoming HTTPS connections during an SSL/TL S handshake.

The specified target secure invocation policy includes the
EstablishTrustInClient association option, which ensuresthat the
security service accepts connections only from clients that present an
X.509 certificate.

The HTTPS-based security service supports a primitive form of access
control, whereby client certificates are rejected unless they conform to the
congtraints specified inpolicies:certificate_constraints_policy.
For details of how to specify certificate constraints, see “ Applying
Constraints to Certificates’ on page 515.

255

CHAPTER 9 | Configuring the Artix Security Service

Note: Thepolicies:certificate constraints_policy Settingis
fundamentally important for securing the security service. Thisisthe
only mechanism (apart from checking the certificate’ s signature) that the
security service can use to restrict accessto itself.

256

Configuring the File Adapter

Configuring the File Adapter

Overview

Filelocations

The i SF file adapter enables you to store information about users, roles, and
realmsin aflat file, a security information file. The file adapter is easy to set up
and configure, but is appropriate mainly for demonstration purposes and small
deployments. This section describes how to set up and configure the iSF file
adapter.

Note: Thefile adapter is a simple adapter that does not scale well for large
enterprise applications. Progress supports the use of the file adapter in a
production environment, but the number of usersis limited to 200.

The following files configure the i SF file adapter:

is2.properties file—sample isf.properties filesfor the FILE, LDAP,
and Kerberos adapters are available at the following locations:

ArtixInstallDir/samples/security/full_security/etc/is2.prop
erties.FILE

ArtixInstallDir/etc/is2.properties.LDAP

ArtixInstallDir/etc/is2.properties.KERBEROS

See “iSF Properties File” on page 611 for details of how to customize the
default iS2 properties file location.

Security information file—this file'slocation is specified by the
com.iona.isp.adapter.file.param. filename property inthe

is2.properties file.

257

CHAPTER 9 | Configuring the Artix Security Service

File adapter properties Example 31 shows the properties to set for afile adapter.
Example 31: Sample File Adapter Properties

1 com.iona.isp.adapters=file

B 88885 o
##
Demo File Adapter Properties
##
F
2 com.iona.isp.adapter.file.class=com.iona.security.is2adapter.fil
e.FileAuthAdapter
3 com.iona.isp.adapter.file.param.filename=ArtixInstallDir/cxx_jav
a/samples/security/full_security/etc/is2_user password_file.t
xt

A

General Artix security service Properties

B 6885
4 # ... Generic properties not shown here ...

The necessary properties for afile adapter are described as follows:

1. Setcom.iona.isp.adapters=file toinstruct the Artix security serviceto
load the file adapter.

2. Thecom.iona.isp.adapter.file.class property specifiesthe classthat
implements the i SF file adapter.

3. Thecom.iona.isp.adapter.file.param.filename property specifies
the location of the security information file, which contains information
about users and roles.

4. (Optionally) You might also want to edit the general Artix security service
properties.

See “Additional Security Configuration” on page 298 for details.

258

Configuring the LDAP Adapter

Configuring the LDAP Adapter

Overview The Artix security platform integrates with the Lightweight Directory Access
Protocol (LDAP) enterprise security infrastructure by using an LDAP adapter.
The LDAP adapter is configured in an is2.properties file, This section
discusses the following topics:

Prerequisites

File location.

Minimal LDAP configuration.
Basic LDAP properties.
LDAP.param properties.
LDAP server replicas.

Logging on to an LDAP server.

Prerequisites Before configuring the LDAP adapter, you must have an LDAP security system
installed and running on your system. LDAP is not a standard part of Artix, but
you can use the Artix security service's LDAP adapter with any LDAPv.3
compatible system.

Filelocation The following file configures the LDAP adapter:

is2.properties file—the default location of the iS2 propertiesfileis as
follows:

ArtixInstallDir/etc/is2.properties.LDAP

See “iSF Properties File” on page 611 for details of how to customize the
default iS2 properties file location.

259

CHAPTER 9 | Configuring the Artix Security Service

Minimal LDAP configuration

260

Example 32 shows the minimum set of iS2 properties that can be used to
configure an LDAP adapter.

Example 32: A Sample LDAP Adapter Configuration File

com. iona.isp.adapters=LDAP
R R

##

LDAP Adapter Properties

##

A
com. iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.lda

com.
com.

com.

com.

com.

com.

com.
com.

com.
com.

com.

com.

iona.
iona.

iona.
iona.
iona.
rson

iona.

iona.
iona.

iona.
iona.
mes
com.
com.

iona.
iona.
iona.

iona.

isp.
isp.

isp.
isp.
.adapter.

isp

isp

isp.
isp.

isp.
isp.

isp.
.adapter.
isp.

isp

isp.

p.LdapAdapter

adapter.
adapter.

adapter.
adapter.

.adapter.

adapter.
adapter.

adapter.
adapter.

adapter.

adapter.

adapter.

LDAP
LDAP

LDAP

LDAP

LDAP

LDAP

LDAP
LDAP

LDAP
LDAP

LDAP
LDAP
LDAP

LDAP

.param.
.param.

.param.

.param.

.param.

.param.

.param.
.param.

.param.
.param.

.param.
.param.

.param.

.param.

host.1=10.81.1.400
port.1=389

UserNameAttr=uid
UserBaseDN=dc=iona, dc=com
UserObjectClass=organizationalPe

UserSearchScope=SUB

UserRoleDNAttr=nsroledn
RoleNameAttr=cn

GroupNameAttr=cn
GroupObjectClass=groupofuniquena

GroupSearchScope=SUB
GroupBaseDN=dc=1iona, dc=com

MemberDNAt tr=unigqueMember

version=3

The necessary properties for an LDAP adapter are described as follows:

1

Set com. iona. isp.adapters=LDAP t0 instruct the Artix Security Platform

to load the LDAP adapter.

The com.iona.isp.adapter.LDAP.class property specifies the class that
implements the LDAP adapter.

Configuring the LDAP Adapter

3. For each LDAP server replica, you must specify the host and port where
the LDAP server can be contacted. In this example, the host and port
parameters for the primary LDAP server, host .1 and port.1, are
specified.

4. These properties specify how the LDAP adapter finds a user name within
the LDAP directory schema. The properties are interpreted as follows:

UserNameAttr The attribute type whose corresponding value
uniquely identifies the user.

UserBaseDN The base DN of the tree in the LDAP directory
that stores user object class instances.

UserObjectClass The attribute type for the object class that stores
USErs.

UserSearchScope The user search scope specifies the search depth

relative to the user base DN in the LDAP
directory tree. Possible values are: BASE, ONE, Or
SUB.

See “iSF Properties File” on page 611 for more details.

5. Thefollowing properties specify how the adapter extracts a user’ srole
from the LDAP directory schema:

UserRoleDNAttr The attribute type that stores auser’srole DN.

RoleNameAttr The attribute type that the LDAP server usesto
store the role name.

261

CHAPTER 9 | Configuring the Artix Security Service

6. These properties specify how the LDAP adapter finds agroup namewithin
the LDAP directory schema. The properties are interpreted as follows:

GroupNameAttr The attribute type whose corresponding attribute
value gives the name of the user group.
GroupBaseDN The base DN of the tree in the LDAP directory

that stores user groups.
GroupObjectClass The object class that appliesto user group
entriesin the LDAP directory structure.

GroupSearchScope The group search scope specifies the search
depth relative to the group base DN inthe LDAP
directory tree. Possible values are: BASE, ONE, Of
SUB.

MemberDNAttr The attribute type that is used to retrieve LDAP
group members.

See “iSF Properties File” on page 611 for more details.

7. TheLDAP version number can be either 2 or 3, corresponding to
LDAP V.2 or LDAP v.3 respectively.

Basic LDAP properties The following properties must always be set as part of the LDAP adapter
configuration:

com. iona.isp.adapters=LDAP
com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.lda

p.LdapAdapter

In addition to these basic properties, you must also set a number of LDAP
parameters, which are prefixed by com.iona.isp.adapter.LDAP.param.

262

LDAP.param properties

LDAP server replicas

Configuring the LDAP Adapter

Table 7 shows all of the LDAP adapter properties from the
com.iona.isp.adapter.LDAP.param SCOpe. Required properties are shown in
bold:

Table 7: LDAP Propertiesin the com.iona.isp.adapter.LDAP.param Scope

LDAP Server Properties LDAP User/Role Configuration
Properties

host . <Index> UserNameAttr
port.<Index> UserBaseDN
SSLEnabled. <Index> UserObjectClass
SSLCACertDir.<Index> UserSearchScope
SSLClientCertFile.<Index> UserSearchFilter
SSLClientCertPassword. <Index> UserRoleDNAttr
PrincipalUserDN. <Index> RoleNameAttr
PrincipalUserPassword. <Index> UserCertAttrName

ConnectTimeout . <Index>

L DAP Group/Member Other LDAP Properties
Configuration Properties
GroupNameAttr MaxConnectionPoolSize
GroupObjectClass MinConnectionPoolSize
GroupSearchScope version
GroupBaseDN UseGroupAsRole
MemberDNAttr RetrieveAuthInfo
MemberFilter CacheSize
CacheTimeToLive

The LDAP adapter is capable of failing over to one or more backup replicas of
the LDAP server. Hence, properties such ashost . <Index> and port . <Index>
include areplicaindex as part of the parameter name.

For example, host .1 and port . 1 refer to the host and port of the primary LDAP
server, while host . 2 and port . 2 would refer to the host and port of an LDAP
backup server.

263

CHAPTER 9 | Configuring the Artix Security Service

Logging on to an LDAP server

Secur e connection to an LDAP
server

iS2 propertiesreference

264

The following properties can be used to configure login parameters for the
<Index> LDAP server replica

PrincipalUserDN. <Index>

PrincipalUserPassword. <Index>

The properties need only be set if the LDAP server is configured to require
username/password authentication.

The following properties can be used to configure SSL/TL S security for the

connection between the Artix security service and the <tndex> LDAP server
replica

SSLEnabled. <Index>

SSLCACertDir.<Index>

SSLClientCertFile. <Index>

SSLClientCertPassword. <Index>

The properties need only be set if the LDAP server requires SSL/TLS mutual
authentication.

For more details about the Artix security service properties, see “iSF Properties
File” on page 611.

Configuring the Kerber os Adapter

Configuring the Kerberos Adapter

Overview The Kerberos adapter enables you to use the Kerberos Authentication Service.
By configuring the Kerberos adapter, you ensure that any authentication requests
within the Artix Security Framework are delegated to Kerberos. This section
describes how to set up and configure the Kerberos adapter.

In this section This section contains the following subsections:
Overview of Kerberos Configuration page 266
Configuring the Adapter Properties page 268
Configuring the KDC Connection page 272
Configuring JAAS Login Properties page 275
Configuring the LDAP Connection page 279

265

CHAPTER 9 | Configuring the Artix Security Service

Overview of Kerberos Configuration

Kerberos adapter

KerberosDistribution Center
(KDC)

JAAS login module

LDAP directory

266

The Kerberos adapter integrates Kerberos into the Artix security framework by
treating the Artix security service as a Kerberized server. The Artix system of
role-based access control can also optionally be integrated with an LDAP
directory service (for example, Active Directory) that stores the user and role
information.

The Kerberos Distribution Centre (KDC) server is responsible for managing
authentication in a Kerberos system. When a client authenticates with the KDC
server, the client receives aticket that allowsit to talk to the Artix security
service. The client then sends the ticket to an Artix server (through a
WS-Security SOAP header) and the server del egates authentication by sending
the ticket to the Artix security service. The Artix security service authenticates
the ticket using the JAAS Kerberos login module.

To perform the login step, the Kerberos adapter uses the Java A uthentication and
Authorization Service (JAAS). The JAAS APl isageneral purpose wrapper that
enables Java programs to perform authentication and authorization in a

technology-neutral way. Specific security technol ogies are supported by |oading
the relevant plug-in modules—see http://java.sun.com/products/jaas/ for details.

To perform aKerberos login, JAAS loads the Kerberos |ogin modul e and

obtains login credentias by reading the jaas . conf configuration file. See
“JAAS login properties’ on page 273 for more details.

The LDAP directory stores user and role information. The Kerberos adapter can
optionally access the directory to obtain role information, which can then be
used to perform authorization in the context of the Artix security framework.

LDAP directory is a database whose entries are organized in a hierarchical
scheme based on the X.500 standard. For details of the system for naming
entriesin an LDAP directory, see “ASN.1 and Distinguished Names’ on
page 643.

http://java.sun.com/products/jaas/

Active Directory service

Kerberosrealm

Kerberos principal

KerberoskeyTab file

Configuring the Kerberos Adapter

Active Directory is the Microsoft implementation of Kerberos, which is
integrated into Windows 2000 and other Windows operating systems. Because
Active Directory includes aKDC server and an LDAP directory, you can
integrate the Kerberos adapter with Active Directory.

For more details about Active Directory, see the Microsoft Active Directory
Web pages.

A Kerberosrealmis an administrative domain with its own Kerberos database
that stores data on users and services belonging to that domain. Conventionally,
aKerberosream is spelt al uppercase—for example, ToNa. com.

A Kerberos principal identifies auser or service within a particular Kerberos

domain. The following naming conventions are used for Kerberos principals:

® Client principal—follows the convention Useriame@KerberosRealm. For
example:

Jonathon.Doe@IONA.COM

® Server principal—follows the convention
ServiceName/HostName@KerberosRealm. For example, the service,
WebServer, running on host, web01 . iona. com, in realm, ToNA. coM, would
have the following principal:

WebServer /web01 . iona.com@IONA.COM

Formally, webserver isthe primary and web01 . iona.com is the instance
part of the principal. This two-part name acknowledges the fact that a
single service could be replicated on different hosts. The Kerberos naming
convention enables each replicato have a unique principal.

A Kerberos keyTab file (short for key table file) stores the Kerberos
cryptographic key associated with a server. It isimportant to protect thisfile by
setting file permissions to restrict ordinary users from reading from or writing to
thefile.

267

http://www.microsoft.com/windowsserver2003/technologies/directory/activedirectory/default.mspx

CHAPTER 9 | Configuring the Artix Security Service

Configuring the Adapter Properties

Overview

Specifying theis2.propertiesfile
location

L ocation of is2.properties sample

268

To enable the Kerberos adapter, you must configure the is2 . properties fileas
described in this subsection.

To specify the location of your propertiesfile, edit the Artix configuration file,
setting the is2.properties property in the

plugins:java_server:system properties list to the location of the Kerberos
adapter propertiesfile, KkerberosPropertiesFile, as shown in Example 33.

Example 33: Specifying the Location of the Kerberos Properties File

Artix Configuration File
secure_artix
{
your_application
{
security_service

{

plugins:java_server:system properties =
["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl .ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton", "is2.properties=KerberosPropertiesFile",
"java.endorsed.dirs=C:\artix 40/artix/4.2/1lib/endorsed"] ;

b8
e
7

A sample is2.properties file for configuring Kerberosis provided at the
following location:

ArtixInstallDir/etc/is2.properties.KERBEROS

To define properties for the Kerberos adapter, make a copy of thisfile and
customize it for your particular deployment.

Configuring the Kerberos Adapter

Kerberosis2.propertiesfile Example 34 shows asample is2.properties file that could be used to
configure the Kerberos adapter. These properties are explained in greater detail
in the subsections that follow.

Example 34: Sample Kerberosis2.properties File

is2.properties File

Select the Kerberos adapter

com. iona.isp.adapters=krb5

com.iona.isp.adapter.krb5.class=com.iona.security.is2adapter.krb
5.IS2KerberosAdapter

A
##

Kerberos Adapter Properties

##

B 8 8858 o

Configure connection to KDC server

com.iona.isp.adapter.krb5.param. java.security.krbb5.realm=YOUR RE
ALM

com.iona.isp.adapter.krb5.param. java.security.krb5.kdc=YOUR _KDC
SERVER

Specify location of the JAAS login configuration file.

com.iona.isp.adapter.krb5.param. java.security.auth.login.config=
jaas.conf

This property MUST always be false.

com.iona.isp.adapter.krb5.param. javax.security.auth.useSubjectCr
edsOnly=false

Uncomment the following line to enable debugging
#com. iona.isp.adapter.krb5.param. sun.security.krb5.debug=true

To retrieve group info from active directory,
change the following setting to true.
com. iona.isp.adapter.krb5.param.RetrieveAuthInfo=false

Basic LDAP confguration

com.iona.isp.adapter.krb5.param.host.1=YOUR ACTIVE DIRECTORY SER
VER

com. iona.isp.adapter.krb5.param.port.1=389

#com. iona.isp.adapter.krb5.param.SSLEnabled. 1=no

#com. iona.isp.adapter.krb5.param.SSLCACertDir.1=

269

CHAPTER 9 | Configuring the Artix Security Service

270

Example 34: Sample Kerberosis2.properties File

#com.iona.isp.adapter.krb5.param.SSLClientCertFile. 1=
#com.iona.isp.adapter.krb5.param.SSLClientCertPassword. 1=

com.iona.isp.adapter.
_USER_DN

com. iona.isp.adapter.
NCIPAL, PASSWORD

com.iona.isp.adapter.

com.iona.isp.adapter.
com.iona.isp.adapter.
iona,dc=com
com.iona.isp.adapter.
com.iona.isp.adapter.
com. iona.isp.adapter.
com.iona.isp.adapter.
com.iona.isp.adapter.
=iona, dc=com
com.iona.isp.adapter.
com.iona.isp.adapter.

krbs.

krb5.

krb5s

krb5
krb5

krb5
krb5
krb5
krb5
krb5

krb5
krb5s

param.

param.

.param.

.param.
.param.

.param.
.param
.param.
.param.
.param.

.param.
.param.

PrincipalUserDN.1=YOUR PRINCIPAL
PrincipalUserPassword.1=YOUR_ PRI
ConnectTimeout.1=15

UserNameAttr=CN
UserBaseDN=dc=boston, dc=amer, dc=

version=3

.UserObjectClass=Person

GroupObjectClass=group
GroupSearchScope=SUB
GroupBaseDN=dc=boston, dc=amer, dc

GroupNameAt tr=CN
MemberDNAt tr=memberOf

#com.iona.isp.adapter.krb5.param.UseGroupAsRole=yes
com. iona.isp.adapter.krb5.param.MaxConnectionPoolSize=1

com. iona.isp.adapter.krb5.param.MinConnectionPoolSize=1

#com.iona.isp.adapter
#com.iona.isp.adapter
#com.iona.isp.adapter
#com.iona.isp.adapter

e

.krb5.param.UserRoleDNAt tr=nsroledn
.krb5.param.RoleNameAt tr=CN
.krb5.param.UserSearchFilter=
.krb5.param.UserCertAttrName=userCertificat

R

##

Single Sign On Session Info

##

B 8 88858
i1s2.ss0.session. timeout=600
is2.sso.session.idle.timeout=60

is2.sso.cache.size=200

FHHEHEEHEHEE R

##

Log4j configuration

##

S
#log4dj.configuration=1log4j.properties

Configuring the Kerber os Adapter

271

CHAPTER 9 | Configuring the Artix Security Service

Configuring the KDC Connection

Overview

Enabling the Ker ber os adapter

272

This subsection explains how to configure the K erberos adapter to connect to the
Kerberos Distribution Center (KDC) server. The following topics are described
in this subsection:

® Enabling the Kerberos adapter.

® KDC connection properties.

* JAASIogin properties.

® Eager validation of the KDC connection.

* Kerberoslogging support.

® Other KDC configuration options.

Thefirst thing you need to do isto instruct the Artix Security Serviceto load the
Kerberos adapter. The following two linesin the is2 . properties file select the
Kerberos adapter:

is2.properties File

com. iona.isp.adapters=krb5

com. iona.isp.adapter.krb5.class=com.iona.security.is2adapter.krb
5.IS2KerberosAdapter

Where the com. iona. isp.adapters Setting tells the security service to use the
Kerberos adapter, krbs, and the com. iona.isp.adapter.krb5.class Setting
specifies the class that implements the K erberos adapter.

K DC connection properties

JAAS login properties

Eager validation of the KDC
connection

Configuring the Kerberos Adapter

The following settings specify the connection details for the KDC server:

com.iona.isp.adapter.krb5.param. java.security.krb5.realm=Kerbero
SRealm

com.iona.isp.adapter.krb5.param. java.security.krb5 .kdc=KDCHostNa
me

Where kerberosRealmisthe Kerberos realm name and xpcHostName is the host
name or | P address of the KDC host. This is the minimum amount of
information required for connecting to a KDC server. If you need to specify
more connection details, use akrbs . conf file instead and do not set the
preceding properties—see
“com.iona.isp.adapter.krb5.param.java.security.krb5.conf” on page 616 for
more details.

In addition to specifying the KDC connection properties, you also need to
specify the JAAS login properties, which define how the Kerberos adapter
authenticates tickets. Specify the location of the jaas. conf file as follows:

com.iona.isp.adapter.krb5.param. java.security.auth.login.config=
C:/iona/artix/etc/jaas.conf

For details of how to set up the jaas . conf file, see “ Configuring JAAS Login
Properties’ on page 275.

Y ou can set two additional properties to check whether avalid KerberosKDC is
running when the Artix security service starts up. Example 35 shows how to
configure the relevant properties:

Example 35: Configuration to Enable Connection Validation

is2.properties File

com. iona.isp.adapter.krb5.param.check.kdc.running=true

com. iona.isp.adapter.krb5.param.check.kdc.principal=DummyPrincip
al

The bummyPrincipal isaprincipal that isused for connecting to the KDC server
to check whether it isrunning. If the KDC server is not running, the Artix
security service writes awarning to itslog.

273

CHAPTER 9 | Configuring the Artix Security Service

Kerberoslogging support

Other KDC configuration options

274

For the purpose of debugging, you can enable full logging in the Artix security
service by adding (or modifying) the following setting in the security service's
main configuration file (.c£g file):

Artix Configuration File
event_log:filters = ["*=*"];

To turn on additional logging in the Kerberos adapter, set the debug property in
the is2.properties file, as shown in Example 36.

Example 36: Configuration to Enable Logging Support

is2.properties File
com. iona.isp.adapter.krb5.param. sun.security.krb5.debug=true

For details of how to configure log4j logging, see “ Configuring the Log4J
Logging” on page 301.

The following property must always be set to false:

com. iona.isp.adapter.krb5.param. javax.security.auth.useSubjectCr
edsOnly=false

Essentially, this is an implementation detail of the Kerberos adapter. If the
property is true, it signalsto the Java security API that the Kerberos credentials
must be stored in a javax.security.auth. Subject object. If the property is
false, it sSignasthat the Kerberos credentials can be stored in an
implementation-dependent manner (required for the K erberos adapter).

Configuring the Kerberos Adapter

Configuring JAAS Login Properties

JAAS login configuration The JAAS login configuration file, jaas . conf, hasthe general format shown in
Example 37.

Example 37: JAASLogin Configuration File Format
/* JAAS Login Configuration */

LoginEntry {
ModuleClass Flag Option="Value" Option="Value" ... ;
ModuleClass Flag Option="Value" Option="Value" ... ;

137

LoginEntry {
ModuleClass Flag Option="Value" Option="Value" ... ;
ModuleClass Flag Option="Value" Option="Value" ... ;

Where the preceding file format can be explained as follows:
®* roginEntrylabelsasingle entry inthelogin configuration. In general, a
LoginEntry label isimplicitly defined by writing application code that
searches for itslogin configuration in aparticular LoginEntry entry. Each
login entry contains alist of login modules that are invoked in order.
® ModuleClass isthe fully-qualified class name of a JAAS login module.
For exampl €, com.sun.security.auth.module.Krb5LoginModule iSthe
class name of the Kerberos login module.
®* Flagdetermines how to react when the current login module reports an
authentication failure. The F1ag can have one of the following values:
¢+ required—authentication must succeed. Always proceed to the next
login module in this entry, irrespective of success or failure.
. requisite—authentication must succeed. If success, proceed to the
next login module; if failure, return immediately without processing
the remaining login modules.

275

CHAPTER 9 | Configuring the Artix Security Service

Kerberoslogin entries

Kerberoslogin module

276

¢ sufficient—authentication isnot required to succeed. If success,
return immediately without processing the remaining login modules;
if failure, proceed to the next login module.

s+ optional—authenticationis not required to succeed. Always
proceed to the next login modulein this entry, irrespective of success
or failure.

® Option="Value"—dfter the Flag, you can pass zero or more option
settings to the login module. The options are specified in the form of a
space-separated list, where each option hastheform option="value". The
login module line isterminated by a semicolon, ;.

For Kerberos, the following JAAS login entry names are defined:

o com.sun.security.jgss.initiate—invoke thislogin entry for a
Kerberos client (initiator of a secure Kerberos connection).

° com. sun.security.jgss.accept—invoke thislogin entry for a secure
server (acceptor of a Kerberosticket).

These login entries are defined in Sun’s implementation of the Kerberos
provider for JGSS (Java Generic Security Service).

Note: In Java 6, you can use the alternative login entries:

com. sun.security.jgss.krb5.initiate and

com. sun.security.jgss.krb5.accept. See
http://java.sun.com/javase/6/docs/technotes/guides/security/jgss/jgss-features.
html for more details.

The Kerberos login module isimplemented by the following class:
com.sun.security.auth.module.Krb5LoginModule

The most useful module options in the context of using the Artix security
Kerberos adapter are as follows:

® principal—the Kerberos principal that identifies the program.

® storeKey—if true, storethe principal’s key in the Subject’s private
credentials.

® useKeyTab—if true, get the principal’ s key from the keytab.

®* keyTab—gpecifiesthelocation of the keytab file.

http://java.sun.com/javase/6/docs/technotes/guides/security/jgss/jgss-features.html
http://java.sun.com/javase/6/docs/technotes/guides/security/jgss/jgss-features.html

Kerberosadapter login module

Sample JAAS configuration file

Configuring the Kerberos Adapter

(Deprecated) The Kerberos adapter provides an alternative login module, which
isimplemented by the following class:

com. iona.security.is2adapter.krbb5.IS2ServerKrb5LoginModule
It supports the same modul e options as the Kerberos login module.

Note: This proprietary login module is deprecated, because it is not
compatible with the more recent versions of Sun’s Java platform (J2SE/JDK
1.5 and up). It was originally provided in order to fix abug in Sun’s Kerberos
login module (the login module makes an unnecessary call to the KDC when
accepting an ap_REQ token).

Example 38 shows a sample jaas. conf file that demonstrates how to configure
the JAAS Kerberos login module.

Example 38: Sample jaas.conf File for the Kerberos Login Module
/* JAAS Login Configuration */

com.sun.security.jgss.initiate {
com.sun.security.auth.module.Krb5LoginModule required
principal="gss_server@BOSTON.AMER.IONA.COM"
useKeyTab="true" keyTab="krb5.keytab" ;
g

com.sun.security.jgss.accept {
com.sun.security.auth.module.Krb5LoginModule required
storeKey="true" principal="gss_server@BOSTON.AMER.IONA.COM"
useKeyTab="true" keyTab="krb5.keytab" ;
g

The com. sun.security.jgss.accept scope defines the server-side login
behavior. There are two essential properties that you need to specify:

®* principal—Kerberosidentity of the Artix security server. See “Kerberos
principal” on page 267 for more details.

277

CHAPTER 9 | Configuring the Artix Security Service

®* keyTab—thelocation of afile that contains the password for the principal.
Thisisthe usual method for storing a server-side password in a Kerberos
system. See “Kerberos keyTab file” on page 267 for more details.

Note: Ontheserver side, the com. sun.security.jgss.initiatelogin entry
would only be needed, if you set the
com.iona.isp.adapter.krb5.param.check.kdc.running parameter to
true.

References The format of a JAAS login configuration fileis specified in detail by the
following page from the Java security reference guide:

http://java.sun.com/javase/6/docs/api/javax/security/auth/login/Configuration.ht
mi

The Sun Kerberos login module (krb5LoginModule) is specified in detail by the
following page from the Java security reference guide:

http://java.sun.com/javase/6/docs/jre/api/security/jaas/spec/com/sun/security/aut
h/module/Krb5L oginM odule.html

278

http://java.sun.com/javase/6/docs/api/javax/security/auth/login/Configuration.html
http://java.sun.com/javase/6/docs/api/javax/security/auth/login/Configuration.html
http://java.sun.com/javase/6/docs/jre/api/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html
http://java.sun.com/javase/6/docs/jre/api/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html

Configuring the Kerberos Adapter

Configuring the LDAP Connection

Overview

LDAP server replicas

LDAP host and port

This subsection explains how to configure the K erberos adapter to connect to the
LDAP server. The properties described here are analogous to properties that
configure the LDAP adapter (see “ Configuring the LDAP Adapter” on

page 259). The following topics are described in this subsection:

* LDAPserver replicas.

®* LDAPhost and port.

®* Logging ontoan LDAP server.

° Secure connection to an LDAP server.

® Connection timeout.

®* Specifying the LDAP version.

® Enabling retrieval of group information.

® Configuring the user schema.

® Configuring the group schema.

® Setting the connection pool size.

The LDAP adapter is capable of failing over to one or more backup replicas of
the LDAP server. Hence, properties such as host . <Index> and port . <Index>
include areplicaindex as part of the parameter name.

To specify the host and I P port of the LDAP adapter, set the following properties
inth6com.iona.isp.adapter.krbS.paranSCOpE

host . <Index>
port . <Index>

Where <Index> refersto aparticular failover replica. For example, host .1 and
port. 1 refer to the host and port of the primary LDAP server, while host .2 and
port. 2 would refer to the host and port of an LDAP backup server.

279

CHAPTER 9 | Configuring the Artix Security Service

Logging on to an LDAP server

Secur e connection to an LDAP
server

Connection timeout

Specifying the LDAP version

Enabling retrieval of group
information

280

Thefollowing propertiesin the com. iona.isp.adapter.krb5 . param SCOpPe can
be used to configure login parameters for the <tndex> LDAP server replica

PrincipalUserDN. <Index>
PrincipalUserPassword. <Index>

The properties need only be set if the LDAP server is configured to require
username/password authentication.

The following propertiesin the com. iona. isp.adapter . krb5.param SCOPe can
be used to configure SSL/TL S security for the connection between the Artix
security service and the <Index> LDAP server replica:

SSLEnabled. <Index>
SSLCACertDir.<Index>
SSLClientCertFile. <Index>
SSLClientCertPassword. <Index>

The properties need only be set if the LDAP server requires SSL/TLS mutual
authentication.

The following property in the com. iona. isp.adapter.krbS . param SCOpe can
be used to configure a connection timeout for the <Tndex> LDAP server replica

ConnectTimeout . <Index>

The following property inthe com. iona.isp.adapter.krb5.param SCOpe IS
used to specify the version of the LDAP server:

version

The LDAP version can be either 2 or 3.

To enableretrieval of group information from the LDAP server, set the
following property in the com.iona.isp.adapter.krb5.param SCOPELO true:

RetrieveAuthInfo

Configuring the Kerberos Adapter

Configuring the user schema The following propertiesin the com. iona. isp.adapter . krbS.param SCOpe are
used to configure details of the user schemain the LDAP repository:

UserNameAttr
UserBaseDN
UserObjectClass
UserSearchFilter
UserRoleDNAttr
RoleNameAttr
UserCertAttrName

Configuring the group schema The following propertiesin the com. iona. isp.adapter. krb5.param SCOpe are
used to configure details of the group schemain the LDAP repository:

GroupNameAttr
GroupObjectClass
GroupSearchScope
GroupBaseDN
MemberDNAttr

Setting the connection pool size The following propertiesin the com. iona. isp.adapter . krb5.param SCOPE can
be used to set the LDAP connection pool size:

MaxConnectionPoolSize
MinConnectionPoolSize

281

CHAPTER 9 | Configuring the Artix Security Service

Clustering and Federation

Overview Clustering and federation are two distinct, but related, features of the Artix

security service. Briefly, these features can be described as follows:

®* Federation (C++ runtime and Java runtime)—enables SSO tokens to be
recognized across multiple security domains. Each security domainis
served by adistinct security service instance and each security serviceis
integrated with a different database back-end.

® Clustering (C++ runtime)—involves running several instances of the
Artix security service to provide what is effectively asingle service. By
running multiple security service instances as a cluster, Artix enables you
to support fault tolerance features. Typically, in this case all of the security
servicesin acluster are integrated with a single authentication database

back-end.
In this section This section contains the following subsections:
Federating the Artix Security Service page 283
Failover page 288
Client Load Balancing page 295

282

Clustering and Federation

Federating the Artix Security Service

Overview

Federation isnot clustering

Example federation scenario

Federation is meant to be used in deployment scenarios where thereis more than
oneinstance of an Artix security service. By configuring the Artix security
service instances as a federation, the security services can talk to each other and
access each other’ s session caches. Federation frequently becomes necessary
when single sign-on (SSO) is used, because an SSO token can be verified only
by the security service instance that originally generated it.

Federation is not the same thing as clustering. In afederated system, user datais
not replicated across different security service instances and there are no fault
tolerance features provided.

Consider asimple federation scenario consisting of two security domains, each

with their own Artix security service instances, as follows:

® LDAP security domain—consists of an Artix security service (with
is2.current.server.id property equal to 1) configured to store user data
in an LDAP database. The domain includes any Artix applications that use
this Artix security service (ID=1) to verify credentials.
In this domain, alogin server is deployed which enables clients to use
single sign-on.

® Kerberos security domain—consists of an Artix security service (with
is2.current.server.id property equal to 2) configured to store user data
in a Kerberos database. The domain includes any Artix applications that
use this Artix security service (ID=2) to verify credentials.

The two Artix security service instances are federated, using the configuration

described later in this section. With federation enabled, it is possible for single
sign-on clients to make invocations that cross security domain boundaries.

283

CHAPTER 9 | Configuring the Artix Security Service

Federation scenario Figure 25 shows atypical scenario that illustrates how iSF federation might be
used in the context of an Artix system.

Figure 25: AniSF Federation Scenario

LDAP Security Domain ® Kerberos Security Domain

Client Target A Target B

®

Authenticate
SSO token

Authenticate
SSO token

A

Login .)
Service Secur:g_slemce

©

Security Service
ID=2

Kerberos

i
|
A\ Fy
LDAP

User data store User data store

284

Clustering and Federation

Federation scenario steps The federation scenario in Figure 25 on page 284 can be described as follows:

Stage Description

1 | Withsingle sign-on (SSO) enabled, the client calls out to the login
service, passing in the client’s GSSUP credentials, u/p/d, in order
to obtain an SSO token, t.

2 | Thelogin service delegates authentication to the Artix security
server (ID=1), which retrieves the user’ s account data from the
LDAP backend.

3 | Theclient invokes an operation on the Target A, belonging to the
LDAP security domain. The SSO token, t, isincluded in the

message.

4 | Target A passes the SSO token to the Artix security server (ID=1)
to be authenticated. If authentication is successful, the operation is
allowed to proceed.

5 | Subsequently, the client invokes an operation on the Target B,
belonging to the Kerberos security domain. The SSO token, t,
obtained in step 1 isincluded in the message.

6 | Target B passes the SSO token to the second Artix security server
(ID=2) to be authenticated.

7 | Thesecond Artix security server examinesthe SSO token. Because
the SSO token is tagged with the first Artix security server's 1D
(ID=1), verification of the token is delegated to the first Artix
security server. The second Artix security server opens an
ITOP/TLS connection to the first Artix security service to verify

the token.
Configuring theis2.properties Each instance of the Artix security service should haveitsown is2.properties
files file. Within each is2.properties file, you should set the following:

° is2.current.server.id—aunique ID for this Artix security service
instance,

b is2.cluster.properties. filename—ashared cluster file.

. is2.sso.remote. token.cached—a boolean property enables caching of
remote token credentials in afederated system.

285

CHAPTER 9 | Configuring the Artix Security Service

Configuringthecluster properties
file

286

With caching enabled, the call from one federated security service to
another (step 7 of Figure 25 on page 284) is only necessary to authenticate
atoken for the first time. For subsequent authentications, the security
service (with ID=2) can obtain the token’s security datafrom its own token
cache.

For example, the first Artix security server instance from Figure 25 on page 284
could be configured as follows:

iS2 Properties File, for Server ID=1

#H#H R R

1iSF federation related properties

B 8 88858
is2.current.server.id=1
is2.cluster.properties.filename=C:/is2_config/cluster.properties
is2.sso.remote. token.cached=true

And the second Artix security server instance from Figure 25 on page 284 could
be configured as follows:

1S2 Properties File, for Server ID=2

R

1SF federation related properties

A
is2.current.server.id=2
is2.cluster.properties.filename=C:/is2_config/cluster.properties
is2.sso.remote. token.cached=true

All the Artix security server instances within a federation should share a cluster
propertiesfile. For example, the following extract from the
cluster.properties file shows how to configure the pair of embedded Artix
security servers shown in Figure 25 on page 284.

Advertise the locations of the security services in the cluster.

com. iona.security.common.securityInstanceURL.1l=corbaloc:it_iiops:
1.2@security 1dapl:5001/IT SecurityService

com. iona.security.common.securityInstanceURL.2=corbaloc:it_iiops:
1.2@security 1dap2:5002/IT_SecurityService

Clustering and Federation

This assumesthat the first security service (ID=1) runson host security_ldapl
and | P port 5001; the second security service (ID=2) runs on host
security_ldap2 and IP port 5002. To discover the appropriate host and port
settings for the security services, check the plugins:security:iiop_tls
settings in the relevant configuration scope in the relevant Artix configuration
file for each federated security service.

The securityInstanceURL. ServerID Variable advertises the location of a
security service in the cluster. Normally, the most convenient way to set these
valuesisto use the corbaloc URL format.

287

CHAPTER 9 | Configuring the Artix Security Service

Failover

Overview

288

To support high availability of the Artix security service, Artix implements the

following features:

® Failover—the security serviceis contacted using an IOR that contains the
address of every security servicein acluster. Hence, if one of the services
in the cluster crashes, or otherwise becomes unavailable, an application
can automatically try one of the alternative addresses listed in the IOR.

This subsection describes how to configure failover.

Failover scenario

Clustering and Federation

Example 26 shows a scenario for a highly available Artix security service that
consists of acluster of three security services. The security services run on
separate hosts, security01, security02, and security03 respectively, and all
of the services rely on the same third-party LDAP database to store their user
data.

Figure 26: Failover Scenario for a Cluster of Three Security Services

Initial Reference for Security Service

TOR: [security01:5001] [security02:5002] [security03:5003]

Client Target A

p

Authenticate
credentials

v® Security Service
security01 Host Cluster

1 1
Security Service | | Security Service
1 :

In this scenario, it is assumed that both the client and the target application are
configured to perform random load balancing over the security servicesin the
cluster (see “Client Load Balancing” on page 295 for details). Each of the
security servicesin the cluster are configured for failover.

289

CHAPTER 9 | Configuring the Artix Security Service

Failover scenario steps

Configuring the failover cluster

Configuring theis2.propertiesfile

290

The interaction of the client and target with the security service cluster shownin
Example 26 on page 289 can be described as follows:

Stage Description

1 | Theclient invokes an operation on the target, sending the
username and password (u/p) credentials supplied by the user.

2 | Thetarget server checksthe u/p credentials received from the
client by sending an invocation to the security service cluster. If
the target server already has an existing connection with a service
in the cluster, it re-uses that connection. Otherwise, the target
randomly picks an address from the list of addressesin the

IT SecurityService [OR.

To configure a cluster of security services that support failover, you need to edit
avariety of configuration files, as follows:

® Configuring the is2.propertiesfile.

® Configuring the cluster propertiesfile.

® Artix configuration for the first security service.

® Artix configuration for the second and third security services.

Each instance of the Artix security service should haveitsown is2.properties

file. Within each is2.properties file, you should set the following:

® is2.current.server.id—aunique ID for this Artix security service
instance,

. is2.cluster.properties.filename—a shared cluster file.

For example, the first Artix security server instance from Figure 26 on page 289
could be configured as follows:

1S2 Properties File, for Server ID=1

A

iSF federation related properties

FHE R
is2.current.server.id=1
is2.cluster.properties.filename=C:/is2_config/cluster.properties

Configuringthecluster properties
file

Artix configuration for thefirst
security service

1

Clustering and Federation

The second and third Artix security services from Figure 26 on page 289 should
be configured similarly, except that the is2.current.server.id property
should be set to 2 and 3 respectively.

For the three-service cluster shown in Figure 26 on page 289, you could
configure the cluster.properties file asfollows:

Advertise the locations of the security services in the cluster.

com. iona.security.common.securityInstanceURL.1l=corbaloc:it_iiops:
1.2@security01:5001/IT SecurityService

com. iona.security.common.securityInstanceURL.2=corbaloc:it_iiops:
1.2@security02:5002/IT_SecurityService

com. iona.security.common.securityInstanceURL.3=corbaloc:it_iiops:
1.2@security03:5003/IT_SecurityService

Thisfile defines the following settings:

® securityInstanceURL.ServerID—advertises the location of asecurity
servicein the cluster. Normally, the most convenient way to set these
valuesisto usethe corbaloc URL format.

Example 39 shows the details of the Artix configuration for the first Artix
security service in the cluster. To configure this security service to support
failover, you must ensure that the security service'sIOR contains alist addresses
for all of the servicesin the cluster.

Example 39: Artix Security Service Configuration for Failover

Artix Configuration File

initial references:IT SecurityService:reference =
"corbaloc:it_iiops:1l.2@security01:5001,it_iiops:1.2@security0
2:5002,it_iiops:1.2@security03:5003/IT SecurityService";

artix_services {

principal_sponsor:use_principal_sponsor = "true";

principal_sponsor:auth method id = "pkcsl2_file";
principal_ sponsor:auth _method data = ["filename=PKCSI2File",

"password_file=CertPasswordFile"];
policies:client_secure_ invocation policy:requires =

["Confidentiality", "EstablishTrustInTarget",
"DetectMisordering", "DetectReplay", "Integrity"];

291

CHAPTER 9 | Configuring the Artix Security Service

292

Example 39: Artix Security Service Configuration for Failover

policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInClient",
"EstablishTrustInTarget", "DetectMisordering",
"DetectReplay", "Integrity"];

security {

plugins:security cluster:iiop tls:addr list =
["+security01:5001", "+security02:5002", "+security03:5003"];

plugins:security:iiop_tls:host = "security0l";

plugins:security:iiop_tls:port = "5001";

plugins:java_server:system properties =

["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl .ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com. iona.corba.art.artimpl.O
RBSingleton", "is2.properties=SecurityPropertiesDir/security0l
.is2.properties", "java.endorsed.dirs=ArtixInstallDir/1lib/endo
rsed"];

policies:iiop_tls:target_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

policies:iiop_tls:target_secure_invocation_ policy:supports
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

g

Clustering and Federation

The preceding Artix configuration can be explained as follows:

1

The IT_securityService initial referenceisread by Artix applicationsto
locate the cluster of Artix security services. Theinitia referenceis
provided in the form of a corbaloc URL, which contains the addresses of
all of the security servicesin the cluster. The corbaloc URL for the security
service cluster has the following general form:

corbaloc: ListOfAddresses/IT SecurityService

Where Listofaddresses is acomma-separated list of protocol/address
combinations. For each security servicein the cluster, you need to make an
entry in the comma-separated address list, as follows:

it_iiops:1.2@Hostname: Port

Where Hostname iS the host where the security serviceisrunning and port
isthe IP port where the security service listens for connections.

The Artix security service picks up most of its SSL/TLS security settings
fromthe artix_services scope. In particular, the default configuration of
the security service uses the X.509 certificate specified by the
principal_sponsor Settingsin this scope.

Theplugins:security cluster:iiop_tls:addr_list variableliststhe
addresses for al of the security servicesin the cluster. Each address in the
list is preceded by a + sign, which indicates that the service embeds the
address in its generated |ORs.

Theplugins:security:iiop_tls:host and
plugins:security:iiop_tls:port Settingsspecify the addresswherethe
security service listens for incoming [1OP/TL S request messages.

Edit the is2.properties entry in the
plugins:java_server:system_properties list to specify the location of
the properties file used by this security service instance (see “ Configuring
theis2.propertiesfiles’ on page 285). In this example, the propertiesfileis
caled security01.is2.properties.

293

CHAPTER 9 | Configuring the Artix Security Service

Artix configuration for the second
and third security services

294

The Artix configurations for the second and third security servicesin the cluster
are similar to the configuration for the first one, except that the address details
and the location of the is2.properties file must be modified appropriately.

For example, the second security service's configuration would be modified as
highlighted in the following example:

Artix Configuration File
artix services

{
security 02 {

plugins:security:iiop_tls:addr list = ["security02:5002",
"+security03:5003", "+security01:5001"];
plugins:security:iiop_tls:host = "security02";
plugins:security:iiop_ tls:port = "5002";

plugins:java_server:system properties =
["org.omg.CORBA.ORBClass=com. iona.corba.art.artimpl .ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com. iona.corba.art.artimpl.O
RBSingleton", "is2.properties=SecurityPropertiesDir/security02
.is2.properties", "java.endorsed.dirs=ArtixInstallDir/lib/endo
rsed"];

g
be

Where the name of the configuration scope for the second security serviceis
artix_services.security 02. The
plugins:security:iiop_tls:addr_list,
plugins:security:iiop_tls:host, and plugins:security:iiop tls:port
configuration variables are modified so that the listening host and port are
configured as security02 and 5002 respectively. The is2 . properties property
is modified to point at the second security service's property file,

security02.is2.properties.

Clustering and Federation

Client Load Balancing

Overview

Configuration for load balancing

Security service corbaloc URL

When you use a clustered security service, it isimportant to configure al of the
secure applications in the system (clients and servers) to perform client load
balancing (in this context, client means a client of the Artix security service and
thusincludes ordinary Artix servers aswell). This ensures that the client load is
evenly spread over all of the security servicesin the cluster.

Client load balancing is disabled by default.

Example 40 shows an outline of the configuration for a client of a security
service cluster. Such clients must be configured to use random load balancing to
ensure that the load is spread evenly over the serversin the cluster. The settings
highlighted in bold should be added to the application’s configuration scope.

Example40: Configuration for Client of a Security Service Cluster

Artix Configuration File

load balanced app {
initial references:IT SecurityService:reference =
"corbaloc:it_iiops:1.2@security01:5001,it_iiops:1.2@security0
2:5002,it_iiops:1.2@security03:5003/IT SecurityService";
plugins:asp:enable security service load balancing = "true";
policies:iiop tls:load balancing mechanism = "random";

policies:asp:load balancing policy = "per-server";
197

The IT_securityService initial referenceis specified as a corbaloc URL. The
corbaloc URL includes the addresses for all of the security servicesin the
cluster—see “ Artix configuration for the first security service” on page 291 for
details of how to construct this corbaloc URL.

295

CHAPTER 9 | Configuring the Artix Security Service

Client load balancing mechanism

Client load balancing policy

296

The client load balancing mechanism is selected by setting the
policies:iiop_tls:load_balancing mechanism variable. Two mechanisms
are supported, as follows:

random—Cchoose one of the addresses embedded in the |IOR at random (this
isthe default).

Note: Thisisthe only mechanism suitable for use in a deployed system.

sequential—choose thefirst address embedded in the IOR, moving on to
the next addressin the list only if the previous address could not be
reached.

In general, this mechanism is not recommended for deployed systems,
because it usually resultsin all of the client applications connecting to the
first cluster member. This mechanism can sometimes be useful for running
tests (because the order in which addresses are chosen is deterministic).

The client load balancing policy is selected by setting the
policies:asp:load_balancing_policy variable. Two policies are supported,
asfollows:

per-server—(the default) after selecting a particular security service
from the cluster, the client remains connected to that security service
instance.

per-request—Tfor each new request, the Artix security plug-in selects and
connects to a new security service node (in accordance with the algorithm
specified by policies:iiop_tls:load balancing mechanism).

Note: The process of re-establishing a secure connection with every
new reguest imposes a significant performance overhead. Therefore, the
per-request policy vaueis not recommended for most deployments.

Note on the use of a corbaloc URL
for theinitial reference

Clustering and Federation

Specifying the security service IOR as a corbaloc URL has a subtle impact on

the semantics of connection establishment, as detailed here.

Internally, Artix convertsthe corbaloc URL into amulti-profile |OR, where each

profile contains asingle |OR component with the address details for one security

service. This contrasts with the structure of an IOR created directly by a security

service, which consists of a single profile containing multiple IOR components.

These IORs are treated dlightly differently by Artix.

When an Artix program attempts to establish a connection to the security service

using a corbaloc URL, the connection establishment is a two-step process:

1. Initialy, Artix attempts to send a message to the first address appearing in
the corbaloc URL. If that connection attempt fails, Artix moveson to the
next address in the corbaloc URL, trying each address in sequence until a
connection attempt succeeds.

Note: Inthisinitial step, Artix always starts by attempting to contact the
first address in the corbaloc URL. That is, Artix does not |oad-balance
over multiple profilesin an IOR.

2. Inreply to the message sent in step 1, the contacted security service sends
back a multi-component IOR, containing the addresses of all the security
servicesin the cluster (this exploits afeature of the GIOP protocol that
allows CORBA serversto redirect incoming connections). When the Artix
program receives the multi-component 10R, it makes a renewed attempt to
contact a security service using the IOR it has just received.

Because Artix supports load balancing over the addressesin a
multi-component 10R, the Artix security plug-in can now randomly pick
one of the IOR components (assuming that the random load balancing
mechanism is selected) and connect to the address contained therein.

297

CHAPTER 9 | Configuring the Artix Security Service

Additional Security Configuration

Overview This section describes how to configure optional features of the Artix security
server, such as single sign-on and the authorization manager. These features can
be combined with any i SF adapter type.

In this section This section contains the following subsections:
Configuring Single Sign-On Properties page 299
Configuring the Log4J Logging page 301

298

Additional Security Configuration

Configuring Single Sign-On Properties

Overview

SSO tokens

SSO properties

A wWN PR

The Artix security framework provides an optional single sign-on (SSO) feature.

If you want to use SSO with your applications, you must configure the Artix

security service as described in this section. SSO offers the following

advantages:

® User credentials can easily be propagated between applicationsin the form
of an SSO token.

* Performanceis optimized, because the authentication step only needsto be
performed once within a distributed system.

® Becausethe user's session istracked centrally by the Artix security
service, it is possible to impose timeouts on the user sessions and these
timeouts are effective throughout the distributed system.

The Artix security service generates an SSO token in response to an
authenti cation operation. The SSO token is acompact key that the Artix security
service uses to access a user’ s session details, which are stored in a cache.

Example 41 shows the iS2 properties needed for SSO:
Example41: Sngle Sgn-On Properties
1S2 Properties File

B 8888 oo o
Single Sign On Session Info
A
is2.sso.enabled=yes

i1s2.ss0.session. timeout=6000
is2.sso.session.idle.timeout=300
is2.sso.cache.size=10000

The SSO properties are described as follows:

1. Setting this property to yes enables single sign-on.

2. The SSO session timeout sets the lifesaving of SSO tokens, in units of
seconds. Once the specified time interval elapses, the token expires.

299

CHAPTER 9 | Configuring the Artix Security Service

300

The SSO session idle timeout sets the maximum length of time for which
an SSO session can remain idle, in units of seconds. If the Artix security
service registers no activity against a particular session for this amount of
time, the session and its token expire.

The size of the SSO cache, in units of number of sessions.

Additional Security Configuration

Configuring the Log4J L ogging

Overview

log4j documentation

Enabling log4j logging

Configuring thelog4j properties
file

log4j is athird-party toolkit from the Jakarta project,
http://jakarta.apache.org/logdj, that provides aflexible and efficient system for
capturing logging messages from an application. Because the Artix security
service' slogging is based on log4j, it is possible to configure the output of iSF
logging using a standard log4j propertiesfile.

For complete log4j documentation, see the following Web page:
http://jakarta.apache.org/l ogdj/docs/documentation.html

To enable log4j logging, specify the location of the log4j propertiesfile in the
is2.properties file asfollows:

1S2 Properties File, for Server ID=1

B 8888 oo o

log4j Logging
S
log4j.configuration=C:/is2_config/log4j.properties

The following example shows how to configure the log4j properties to perform
basic logging. In this example, the lowest level of logging is switched on
(pEBUG) and the output is sent to the console screen.

log4j Properties File
log4j.rootCategory=DEBUG, Al

Al is set to be a ConsoleAppender.
log4j.appender.Al=org.apache.log4j.ConsoleAppender

Al uses PatternLayout.

log4j.appender.Al.layout=org.apache.log4j.PatternLayout

log4j .appender.Al.layout.ConversionPattern=%-4r [%t] %-5p %C %X
- %m%n

301

http://jakarta.apache.org/log4j/docs/documentation.html
http://jakarta.apache.org/log4j

CHAPTER 9 | Configuring the Artix Security Service

Redirecting log4j toan Artix local
log stream

302

Y ou can optionally redirect the log4j |og stream to the Artix local log stream. To
enable this feature, set plugins:security:logdj_to_local_log_stream tO
true in the Artix configuration file.

For example, you can configure the Artix security service to send log4j logging
tothelocal log stream, asfollows:

Artix Configuration File
security service

{

orb_plugins = ["local_log stream", "iiop_profile", "giop",
"iiop_tls"1;
plugins:security:log4j_to_local_log stream = "true";

Log all log4j messages at level WARN and above
event_log:filters = ["IT SECURITY=WARN+ERROR+FATAL"];

e

Y ou must ensure that the 1ocal _log stream plug-inispresent in the
orb_plugins list and the log4j logging level can be set using the Artix event log
filters mechanism. The event_log: filters setting in the preceding exampleis
equivalent to setting 1og43j . rootCategory=WARN in the log4j propertiesfile.

In this chapter

CHAPTER 10

Managing Users,
Roles and Domains

TheArtix security serviceprovidesavariety of adapter sthat enable
you to integrate the Artix Security Framework with third-party
enterprise security products. This allows you to manage usersand
roles using a third-party enterprise security product.

This chapter discusses the following topics:

Introduction to Domains and Realms page 304
Managing a File Security Domain page 312
Managing an LDAP Security Domain page 317

303

CHAPTER 10 | Managing User s, Rolesand Domains

| ntroduction to Domains and Realms

Overview This section introduces the concepts of an Artix security domain and an Artix
authorization realm, which are fundamental to the administration of the Artix
Security Framework. Within an Artix security domain, you can create user
accounts and within an Artix authorization realm you can assign roles to users.

In this section This section contains the following subsections:
Artix security domains page 305
Artix Authorization Realms page 307

304

Introduction to Domains and Realms

Artix security domains

Overview This subsection introduces the concept of an Artix security domain.

Domain architecture Figure 27 shows the architecture of an Artix security domain. The Artix security
domain isidentified with an enterprise security service that plugs into the Artix
security service through an i SF adapter. User data needed for authentication,
such as username and password, are stored within the enterprise security service.
The Artix security service provides a central access point to enable
authentication within the Artix security domain.

Figure 27: Architecture of an Artix security domain

Artix Artix Artix

Server o Server Server
|
|
| |

! ! I
authenticate authenticate authenticate
I I
| | |
| | |
I | v

Artix Security Service

iSF Security Domain

Enterprise Security Service
(3

I
! R '

v

User Data Store

305

CHAPTER 10 | Managing User s, Roles and Domains

Artix security domain

Creatingan Artix security domain

Creating a user account

306

An Artix security domain is a particular security system, or namespace within a
security system, designated to authenticate a user.

Here are some specific examples of Artix security domains:

® LDAP security domain—authentication provided by an LDAP security
backend, accessed through the Artix security service.

Effectively, you create an Artix security domain by configuring the Artix
security service to link to an enterprise security service through an i SF adapter
(such as an LDAP adapter). The enterprise security serviceisthe
implementation of the Artix security domain.

User account datais stored in a third-party enterprise security service. Hence,
you should use the standard tool s from the third-party enterprise security product
to create a user account.

For asimple example, see “Managing a File Security Domain” on page 312.

Introduction to Domains and Realms

Artix Authorization Realms

Overview

Artix authorization realm

Role-based access control

This subsection introduces the concept of an Artix authorization realm and
role-based access control, explaining how users, roles, realms, and servers are
interrelated.

An Artix authorization realmis a collection of secured resources that share a
common interpretation of role names. An authenticated user can have different
rolesin different realms. When using aresource in realm g, only the user'sroles
inrealm r are applied to authorization decisions.

The Artix Security Framework supports arole-based access control (RBAC)
authorization scheme. Under RBAC, authorization is a two step process, as
follows:

1

User-to-role mapping—every user is associated with a set of rolesin each
realm (for example, guest, administrator, and S0 on, in arealm,
Engineering). A user can belong to many different realms, having a
different set of rolesin each realm.

The user-to-role assignments are managed centrally by the Artix security
service, which returns the set of realms and roles assigned to a user when
required.

Role-to-permission mapping (or action-role mapping)—in the RBAC
model, permissions are granted to roles, rather than directly to users. The
role-to-permission mapping is performed locally by a server, using data
stored in local access control list (ACL) files. For example, Artix serversin
the Artix security framework use an XML action-role mapping file to
control access to WSDL port types and operations.

307

CHAPTER 10 | Managing User s, Roles and Domains

Serversand realms From a server’s perspective, an Artix authorization realm is away of grouping
servers with similar authorization requirements. Figure 28 shows two Artix
authorization realms, Engineering and Finance, each containing a collection of
server applications.

Figure 28: Server View of Artix authorization realms

IONAGIobalRealm

Adding aserver toarealm To add an Artix server to arealm, where the server isimplemented using the
C++ runtime, add or modify the plugins:asp:authorization_realm
configuration variable within the server’s configuration scope (in your Artix
configuration file).

For example, if your server’s configuration is defined in themy_server_scope
scope, you can set the Artix authorization realm to Engineering as follows:

Artix configuration file

my_server_scope {
plugins:asp:authorization _realm = "Engineering";

308

Introduction to Domains and Realms

Rolesand realms From the perspective of role-based authorization, an Artix authorization realm
acts as a namespace for roles. For example, Figure 29 shows two Artix
authorization realms, Engineering and Finance, each associated with a set of
roles.

Figure 29: Role View of Artix authorization realms

IONAGIobalRealm
[TTTTTTTTTTTTTTTTTTTTTToomomoomoomooooooooooooooooooooooooooooos !
E Engineering Finance i
N il e iiiic.
| ! 1 | 1 |
I ' ! I ! |
L L L
1 1 1
| | ! | ! |
E E admin E E admin E E
o . n
L L L
1 1
) i i ! | i
! ! i ' [cro i |
1 1 1
| | | | 1 |
I ' ! I ! |
| e e H
O :
Creating realmsand roles Realms and roles are usually administered from within the enterprise security

system that is plugged into the Artix security service through an adapter. Not
every enterprise security system supports realms and roles, however.

For example, in the case of a security file connected to afile adapter (a
demonstration adapter provided by Progress), arealm or roleisimplicitly
created whenever it islisted amongst auser’s realms or roles.

309

CHAPTER 10 | Managing User s, Rolesand Domains

Assigning realms and rolesto The assignment of realms and roles to users is administered from within the
users enterprise security system that is plugged into the Artix security service. For
example, Figure 30 shows how two users, Janet and John, are assigned roles
within the Engineering and Finance reams.
* Janet worksin the engineering department as a devel oper, but occasionally
logs on to the Finance realm with guest permissions.
® Johnworks as an accountant in finance, but also has guest permissions
with the Engineering realm.

Figure 30: Assignment of Realms and Roles to Users Janet and John

iSF Security Domain (users)

__

IONAGIlobalRealm

Engineering Finance

310

Introduction to Domains and Realms

Special realms and roles The following special realms and roles are supported by the Artix Security

Framework:

® IONAGlobalRealm realm—aspecial realm that encompasses every Artix
authorization realm. Roles defined within the ToNAGlobalRealm are valid
within every Artix authorization realm.

® UnauthenticatedUserRole—a specia role that can be used to specify
actions accessible to an unauthenticated user (in an action-role mapping
file). An unauthenticated user is aremote user without credentials (that is,
where the client is not configured to send GSSUP credentials).
Actions mapped to the UnauthenticatedUserRole role are also accessible
to authenticated users.
The UnauthenticatedUserRole can be used only in action-role mapping
files.

311

CHAPTER 10 | Managing User s, Roles and Domains

Managing a File Security Domain

Overview

L ocation of file

Example

312

N

The file security domain is active if the Artix security service has been
configured to use the i SF file adapter (see“ Configuring the File Adapter” on
page 257). The main purpose of the i SF file adapter is to provide a lightweight
security domain for demonstration purposes and small deployments. A large
deployed system, however, should use one of the other adapters (LDAP or
custom) instead.

Note: Thefile adapter is a simple adapter that does not scale well for large
enterprise applications. Progress supports the use of the file adapter in a
production environment, but the number of usersis limited to 200.

The location of the security information fileis specified by the
com.iona.isp.adapter.file.param. filename property in the Artix security
Service's is2.properties file.

Example 42 is an extract from a sample security information file that shows you
how to define users, realms, and rolesin afile security domain.

Example 42: Sample Security Information File for an iSF File Domain
<?xml version="1.0" encoding="utf-8" ?>

<ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
<users>
<user name="IONAAdmin" password="admin"
description="Default IONA admin user">
<realm name="IONA" description="All IONA applications"/>
</user>
<user name="admin" password="admin" description="0ld admin
user; will not have the same default privileges as
TONAAdmin. ">
<realm name="Corporate">
<role name="Administrator"/>
</realm>
</user>
<user name="alice" password="dostl1234">

Managing a File Security Domain

Example42: Sample Security Information File for an iSF File Domain

<realm name="Financials"
description="Financial Department">
<role name="Manager" description="Department Manager" />
<role name="Clerk"/>
</realm>
</user>
<user name="bob" password="dost1234">
<realm name="Financials">
<role name="Clerk"/>
</realm>
</user>
</users>
</ns:securityInfo>

The <ns:securityInfo> tag can contain a nested <users> tag.

The <users> tag contains a sequence of <user> tags.

Each <user> tag defines asingle user. The <user> tag’' Sname and
password attributes specify the user’ s username and password. Instead of
specifying the password in plaintext, you also have the option of specifying
apassword hash using the password_hash attribute—see “ Password
hashing” on page 315 for details.

Within the scope of the <user> tag, you can list the realms and roles with
which the user is associated.

4. When a<realm> tag appears within the scope of a<user> tag, it implicitly
defines arealm and specifiesthat the user belongsto thisrealm. A <realm>
must have aname and can optionally have adescription attribute.

5. A ream can optionally be associated with one or more roles by including
role elements within the <realm> scope.

313

CHAPTER 10 | Managing User s, Roles and Domains

Certificate-based authentication
for thefile adapter

314

When performing certificate-based authentication for the CORBA binding, the
file adapter compares the certificate to be authenticated with a cached copy of
the user’s certificate.

To configure the file adapter to support X.509 certificate-based authentication
for the CORBA binding, perform the following steps:

1

Cache acopy of each user’s certificate, certFile.pem, inalocation that is
accessible to the file adapter. The certificate must bein PEM format.

Specify which one of the fields from the certificate's subject DN should
contain the user’ s name (user ID) by setting the
com.iona.isp.adapter.file.param.userIDInCert property inthe Artix
security server's is2.properties file.

For example, to use the Common Name (CN) from the certificate' s subject
DN as the user name, add the following setting to the is2 . properties
file:

Artix Security Server Properties File
com.iona.isp.adapter.file.param.userIDInCert=CN

In the security information file, make the following type of entry for each
user with a certificate:

Example 43: File Adapter Entry for Certificate-Based Authentication

<user name="FieldFromSubjectDN" certificate="CertFile.pem"
description="User certificate">
<realm name="RealmName">

</realm>

</user>
The user name, FieldFromSubjectDn, isderived from the user’ s certificate
by extracting the relevant field from the subject DN of the X.509 certificate
(for DN terminology, see “ASN.1 and Distinguished Names” on
page 643). The field to extract from the subject DN is specified as
described in the preceding step.
The certificate attribute specifies the location of this user’s X.509
certificate, certrFile.pem.

Password hashing

it_pw_hash utility

Managing a File Security Domain

Storing passwords in plaintext format in the security information fileisnot ideal,
from a security perspective. In particular, it islikely that several different users
would need to update the security information file. Hence, using operating
system permissions to block read/write access to thisfileis not a practical
solution.

The problem of plaintext passwords can be solved using password hashing.
Instead of storing passwords in plaintext, you can generate a secure hash key
based on the original password. In the security information file, replace the
password attribute with the password_hash attribute to store the password
hash—for example:

<ns:securityInfo xmlns:ns="urn:www-xmlbus-com:simple-security">
<us er name="alice" password_ hash="HashKey">
</ usé;r;

</ns ;écuri tyInfo>

Where Hashkey is generated from the original password using the Artix
it_pw_hash Uutility.

The Artix it_pw_hash utility is acommand-line utility for converting plaintext

passwords to password hashes. The hashing algorithm used is SHA-1. There are

three different ways of using the utility, asfollows:

® Convert all passwords to hashes—to convert all of the passwordsin a
security information file to password hashes (replacing every password
attribute by a corresponding password_hash attribute), enter the following
at acommand prompt:

it_pw_hash -update_all -password file SecurityFile
[-out_file NewSecurityFile] [-V]

Where securityFileisthe path to the security information file containing
password datain plaintext. By default, the original securityFileis
overwritten with a version that uses password_hash attributes. However,
you can optionally usethe -out_file flag to specify an aternative file for
the output, in which casethe origina fileisleft unchanged. The optiona —v
flag switches on verbose logging.

315

CHAPTER 10 | Managing User s, Roles and Domains

316

Convert a single password to a hash—to convert asingle password in a
security information file to apassword hash (replacing the user’ s password
attribute by a corresponding password_hash attribute), enter the following
at acommand prompt:

it_pw_hash -update_password -user Username -password_file
SecurityFile [-out_file NewSecurityFile] [-v]

Where Username specifies the name of the user (matching the name
attribute in one of the user elements) whose password is to be changed
into hash format.

Reset a password hash—to reset the password hash value for asingle user,
enter the following at a command prompt:

it_pw_hash -set_password -user Username -password_file
SecurityFile [-out_file NewSecurityFile]l [-v]

In this case, the command prompts you to enter a new password for the
user and generates a corresponding password hash, which is then assigned
to the password_hash attribute.

Managing an LDAP Security Domain

Managing an LDAP Security Domain

Overview

Configuring the LDAP adapter

Certificate-based authentication
for the LDAP adapter

The Lightweight Directory Access Protocol (LDAP) can serve asthe basis of a
database that stores users, groups, and roles. There are many implementations of
LDAP and the Artix security service's LDAP adapter can integrate with any
LDAP v.3 implementation.

Please consult documentation from your third-party LDAP
implementation for detailed instructions on how to administer

users and roles within LDAP.

A prerequisite for using LDAP within the Artix Security Framework is that the
Artix security service be configured to use the LDAP adapter.

See “ Configuring the LDAP Adapter” on page 259.

When performing certificate-based authentication, the LDAP adapter compares
the certificate to be authenticated with a cached copy of the user’s certificate.

To configure the LDAP adapter to support X.509 certificate-based

authentication, perform the following steps:

1. Cacheacopy of each user’scertificate, certrFile.pem, inalocationthatis
accessible to the LDAP adapter. The certificate must be in PEM format.

2. Theuser'sname, cnfromsubjectDn, is derived from the certificate by
taking the Common Name (CN) from the subject DN of the X.509
certificate (for DN terminology, see“ASN.1 and Distinguished Names” on
page 643).

3. Make (or modify) an entry in your LDAP database with the username,
CcNfromSubjectpn, and specify the location of the cached certificate.

317

CHAPTER 10 | Managing User s, Rolesand Domains

318

In this chapter

CHAPTER 11

Managing
Access Control
Lists

The Artix Security Framework defines access control lists (ACLS)
for mapping rolesto resources.

This chapter discusses the following topics:

Overview of Artix ACL Files page 320
ACL File Format page 321
Generating ACL Files page 324
Deploying ACL Files page 327

319

CHAPTER 11 | Managing Access Control Lists

Overview of Artix ACL Files

Action-role mapping file The action-role mapping fileis an XML file that specifies which user roles have
permission to perform specific actions on the server (that is, invoking specific
WSDL operations).

Deployment scenarios Artix supports the following deployment scenario for ACL files:
° Local ACL file.

Local ACL file Inthelocal ACL file scenario, the action-role mapping fileis stored on the same
host as the server application (see Figure 31). The application obtains the
action-role mapping data by reading the local ACL file.

Figure 31: Locally Deployed Action-Role Mapping ACL File

Application

authentication

Security Layer

L

Artix Security Service

|

authorization
. ARM
Action-role
mapping file |=—0F=
User Data
b e e e e e —————————— - 1 b e e e e e ———————— - 1

In this case, the location of the ACL fileis specified by a setting in the
application’s artix.cfgfile.

320

ACL File Format

ACL File Format

Overview This subsection explains how to configure the action-role mapping ACL file for
Artix applications. Using an action-role mapping file, you can specify that
accessto WSDL operationsis restricted to specific roles.

Example WSDL For example, consider how to set the operation permissions for the WSDL port
type shown in Example 44.

Example44: Sample WSDL for the ACL Example

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld" ... >

<portType name="HelloWorldPortType">
<operation name="greetMe">
<input message="tns:greetMe" name="greetMe"/>
<output message="tns:greetMeResponse"
name="greetMeResponse" />
</operation>
<operation name="sayHi">
<input message="tns:sayHi" name="sayHi"/>
<output message="tns:sayHiResponse"
name="sayHiResponse" />
</operation>
</portType>

</definitions>

Example action-role mapping Example 45 shows how you might configure an action-role mapping file for the
HelloWorldPortType POrt type given in the preceding Example 44 on page 321.

Example 45: Artix Action-Role Mapping Example
<?xml version="1.0" encoding="UTF-8"?>

1 <!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>

2 <action-role-mapping>
3 <server-name>secure_artix.demos.hello_world</server-name>
4 <interface>

321

CHAPTER 11 | Managing Access Control Lists

322

Example 45: Artix Action-Role Mapping Example

<name>http://xmlbus.com/HelloWorld:HelloWorldPortType</name>
<action-role>
<action-name>sayHi</action-name>
<role-name>IONAUserRole</role-name>
</action-role>
<action-role>
<action-name>greetMe</action-name>
<role-name>IONAUserRole</role-name>
</action-role>
</interface>
</action-role-mapping>
</secure-system>

The preceding action-role mapping example can be explained as follows:

1. Thepreamblein this exampleis suitable for a C++ runtime application
(where the XML document format is specified by aDTD).

2. The<action-role-mapping> tag contains all of the permissions that
apply to a particular server application.

3. The<server-name> tag is used to identify the current
action-role-mapping €ement (you can have more than one
action-role-mapping elementinan ACL file). The server name specifies
the BUS name that is used by the server in question. The value of thistag
must match the BUS name exactly. The BUS name is usually passed to an
Artix server as the value of the -Busname command-line parameter.

Note: The BUS name also determines which configuration scopes are
read by the server.

4. The<interface> tag contains al of the access permissions for one
particular WSDL port type.

5. The <name> tag identifiesa WSDL port type in the format
NamespaceURI: PortTypeName. That is, the PortTypeName comes from a
tag, <portType name="PortTypeName">, defined in the NamespaceURT
namespace.
For example, in Example 44 on page 321 the <definitions> tag specifies
the NamespaceURI aShttp: / /xmlbus . com/HelloWorld and the

ACL File Format

PortTypeName iS HelloWorldPortType. Hence, the port type nameis
identified as:
<name>http://xmlbus.com/HelloWorld:HelloWorldPortType</name>

6. ThesayHi action name correspondsto the sayti WSDL operation namein
the HelloworldPortType port type (from the <operation name="sayHi">
tag).

Wildcard character Artix supports awildcard mechanism for the server-name, interface name, and
action-name elementsin an ACL file. The wildcard character, *, can be used to
match any humber of contiguous charactersin a server name, interface name, or
action name. For example, the access control list shown in Example 46 assigns
the ToNAUserRole role to every action in every interface in every Businstance.

Example 46: Wildcard Mechanismin an Access Control List

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>
<action-role-mapping>
<server-name>*</server-name>
<interface>
<name> *</name>
<action-role>
<action-name>*</action-name>
<role-name>IONAUserRole</role-name>
</action-role>
</interface>
</action-role-mapping>
</secure-system>

Action-role mapping DTD The syntax of the action-role mapping fileis defined by the action-role mapping
DTD. See “Action-Role Mapping DTD” on page 649 for details.

323

CHAPTER 11 | Managing Access Control Lists

Generating ACL Files

Overview

WSDL -to-ACL utility

324

Artix provides acommand-line tool, artix wsdl2acl, that enables you to
generate the prototype of an ACL file directly from aWSDL contract. Y ou can
use the wsd12ac1 subcommand to assign a default role to al of the operationsin
WSDL contract. Alternatively, if you require more fine-grained control over the
role assignments, you can define arole-properties file, which assigns roles to
individual operations.

The artix wsdl2acl command-line utility has the following syntax:

artix wsdl2acl { -s server-name } WSDL-URL
[-1 interface-name] [-r default-role-name]
[-d output-directory] [-o output-file]
[-props role-props-file]l [-v] [-?]

Required arguments:

-s server-name The server’s configuration scope from the Artix
domain configuration file (the same value as specified
to the -BUSname argument when the Artix server is
started from the command line).

For example, the basic/hello_world_soap_http
demonstration uses the
demos.hello_world_soap_http SErVer name.

WSDL~-URL URL location of the WSDL file from which an ACL
is generated.

Optiona arguments:

-i interface-name Generates output for a specific WSDL port type,
interface-name. If this option is omitted, output is
generated for al of the port typesin the WSDL file.

-r default-role-name Specify therole name that will be assigned to all
operations by default. Default is ToNAUserRole.

The default role-nameis not used for operations listed
in arole-properties file (see -props).

Exampleof generatingan ACL file

Samplerole-propertiesfile

Sample generation command

Generating ACL Files

-d output-directory Specify an output directory for the generated ACL
file.

-0 output-file Specify the name of the generated ACL file. Default
IS WSDLFileRoot-acl .xml, Where wspLFileRoot IS
the root name of the WSDL file.

-props Specifies afile containing alist of role-properties,

role-props-file where arole-property associates an operation name
with alist of roles. Each line of the role-propertiesfile
has the following format:

OperationName = Rolel, Role2,

-v Display version information for the utility.
-2 Display usage summary for the wsd12ac1
subcommand.

As example of how to generate an ACL file from WSDL, consider the
hello_world.wsdl WSDL filefor the basic/hello_world soap_http
demonstration, which islocated in the following directory:
ArtixInstallDir/samples/basic/hello_world_soap_http/etc

The HelloWorld WSDL contract defines asingle port type, Greeter, and two
operations. greetMe and sayHi. The server name (that is, configuration scope)
used by the HelloWorld server is demos .hello_world_soap_http.

For the Helloworld WSDL contract, you can define arole-propertiesfile,
role_properties.txt, that assignsthe FooUser role to the greetMe operation
and the FooUser and BarUser rolesto the sayHi operation, asfollows:

greetMe = FooUser
sayHi = FooUser, BarUser

To generate an ACL file from the Helloworld WSDL contract, using the
role_properties.txt role-propertiesfile, enter thefollowing at a
command-line prompt:

artix wsdl2acl -s demos.hello_world soap_http hello_world.wsdl
-props role_properties.txt

325

CHAPTER 11 | Managing Access Control Lists

Sample ACL output The preceding artix wsdl2acl command generates an ACL file,
hello_world-acl.xml, whose contents are shown in Example 47.

Example 47: ACL File Generated from Helloworld WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE secure-system SYSTEM "actionrolemapping.dtd">
<secure-system>
<action-role-mapping>
<server-name>demos .hello_world_soap_http</server-name>
<interface>
<name>http://www.iona.com/hello_world_soap_http:Greeter</name>
<action-role>
<action-name>greetMe</action-name>
<role-name>FooUser</role-name>
</action-role>
<action-role>
<action-name>sayHi</action-name>
<role-name>FooUser</role-name>
<role-name>BarUser</role-name>
</action-role>
</interface>
</action-role-mapping>
</secure-system>

326

Deploying ACL Files

Deploying ACL Files

Configuring alocal ACL file To configure an application to load action-role mapping datafrom alocal file, do
the following:
1. Savethe ACL filetogether with the Artix action-role mapping DTD filein

aconvenient location. Y ou can copy the DTD file,
actionrolemapping.dtd, from the
ArtixInstallDir/samples/security/full_security/etc directory.
Edit the Artix configuration file, initializing the
plugins:is2_authorization:action_role_mapping configuration
variable with the ACL file location.

For example, aprogram can beinitialized to load aloca ACL file,
security admin/action_role_mapping.xml, usi ng the followi ng
configuration:

Artix Configuration File

orb_plugins = ["xmlfile_log stream", "iiop_profile", "giop",
"iiop_tls", "soap", "http", "artix security"];

my_server_scope {

plugins:is2_authorization:action role_mapping =
"file:///security admin/action role_mapping.xml";

327

CHAPTER 11 | Managing Access Control Lists

328

In this chapter

CHAPTER 12

Configuring the
Artix Security
Plug-In

Artix allowsyou to configurea number of security featuresdirectly
from the Artix contract describing your system.

This chapter discusses the following topics:

The Artix Security Plug-In page 330
Configuring an Artix Configuration File page 331
Configuring aWSDL Contract page 333

329

CHAPTER 12 | Configuring the Artix Security Plug-In

The Artix Security Plug-In

Overview

Load the artix_security plug-in

Enable the artix_security plug-in

330

This section describes how to initialize the Artix security plug-in, whichis
responsible for performing authentication and authorization for non-CORBA
bindings (CORBA bindings use the gsp plug-in) and is also responsible for
inserting and extracting credentials to and from SOAP 1.2 message headers.
The Artix security plug-in implements only apart of Artix security. Specifically,

it is not responsible for transmitting credentials, nor does it implement any
cryptographic algorithms.

To load the Artix security plug-in, you must include artix_security inthe
orb_plugins list in your application’s configuration scope.

Edit your application’ s configuration scope in the Artix configuration file so that
it includes the following configuration settings:

Artix Configuration File

orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",
"iiop_tls", "soap", "at_http", "artix security", "https"];
plugins:artix security:shlib name = "it_security plugin";

binding:artix:server request_interceptor list =
"principal context+security";

binding:artix:client_request_interceptor list =
"security+principal context";

The orb_plugins list for your application might differ from the one shown here,
but it should include the artix_security entry.

The artix_security plug-inisenabled by default, onceit isloaded into your
application. Y ou might like to check, however, that the plug-in is not
accidentally disabled, as follows:

. If thepolicies:asp:enable_security variableis present in your
application’s configuration (or an enclosing configuration scope), it should
be set to true.

® If the enablesecuri ty attribute appearsin <bus-security:security>in
your WSDL contract, it should be set to true.

Configuring an Artix Configuration File

Configuring an Artix Configuration File

Overview

Y ou can tailor the behavior of the Artix security plug-in by setting configuration

variablesin the Artix configuration file, artix.cfg, as described here. The
settings in the configuration file are applied, by default, to all the services and
portsinyour WSDL contract.

Prerequisites

Before configuring the Artix security plug-in, you must ensurethat the plug-inis

loaded into your application. See “Load the artix_security plug-in" on page 330.

Artix security plug-in
configuration variables

The complete set of Artix security plug-in variables, which are all optional, are
listed and described in Table 8. These settings are applied by default to all

services and portsin the WSDL contract.

Table 8:

The Artix Security Plug-In Configuration Variables

Configuration Variable

Description

policies:asp:enable security

A boolean variable that enablesthe artix_security
plug-in. When true, the plug-in is enabled; when false,
the plug-inis disabled. Default is true.

Note: You can override this setting in the WSDL
contract. See “ Configuring aWSDL Contract” on
page 333.

plugins:is2_authorization:action_role_mapping

A variable that specifies the action-role mapping file
URL.

policies:asp:enable_authorization

A boolean variable that specifies whether Artix should
enable authorization using the Artix Security Framework.
Default is false.

plugins:asp:authentication_cache_size

The maximum number of credentials stored in the
authentication cache. If exceeded, the oldest credential in
the cache is removed.

A value of -1 (the default) means unlimited size. A value
of 0 means disable the cache.

331

CHAPTER 12 | Configuring the Artix Security Plug-In

Table 8:

The Artix Security Plug-In Configuration Variables

Configuration Variable

Description

plugins:asp:authentication_cache_timeout

Thetime (in seconds) after which a credentid is
considered stale. Stale credentials are removed from the
cache and the server must re-authenticate with the Artix
security service on the next call from that user.

A value of -1 means an infinite time-out. A value of 0
means disable the cache. The value must lie within the
range -1 to 2~31-1.

Default is 600 seconds.

plugins:asp:security_level

This variable specifies the level from which security
credentials are picked up. For adetailed description of the
alowed values, see plugins:asp:security._level.

plugins:asp:authorization_realm

This variable specifies the Artix authorization realm to
which an Artix server belongs. The value of thisvariable
determines which of a user’s roles are considered when
making an access control decision.

plugins:asp:default_password

This variable specifies the password to use on the server
side when the securityType atribute is set to either
PRINCIPAL O CERT_SUBJECT.

plugins:asp:enable_security_ service_load bala
ncing

This boolean variable enables load balancing over a
cluster of Artix security services. For details of how to
enable security service clustering, see“ Clustering and
Federation” on page 282.

plugins:asp:enable_security. service_cert_auth
entication

This boolean variable enables authentication based on the
client certificate extracted from the TL S security layer.
For details of how to enable this kind of authentication,
see “X.509 Certificate-Based Authentication” on

page 96.

332

Configuringa WSDL Contract

Configuringa WSDL Contract

Overview Occasionally you will need finer grained control of your system’s security than
isprovided through the standard Artix and security configuration. Artix provides
the ability to control security on a per-port basis by describing the service's
security settingsin the Artix contract that describesit. Thisis done by using the
<bus-security:security> extension in the port element describing the
service' s address and transport details.

Namespace The XML namespace defining <bus-security:security> is
http://schemas.iona.com/bus. You need to add the following line to the
definitions element of any contracts that use the bus-security:security
element:

xmlns:bus-security="http://schemas.iona.com/bus/security"

<bus-security:security> attributes The complete set of <bus-security:security> attributes, which are all
optional, are listed Table 9. Each attribute maps to an equivalent configuration
variable, as shown in the table. The attributes specified in the WSDL contract
override settings specified in the Artix configuration file.

Table9: <bus-security:security> Attributes

<bus-security:security> Attribute Equivalent Configuration Variable Default
authenticationCacheSize plugins:asp:authentication_cache_size -1
authenticationCacheTimeout plugins:asp:authentication_cache_timeout 600
authorizationRealm plugins:asp:authorization_realm TONAGlobalRealm
defaultPassword plugins:asp:default_password default_password
enableAuthorization plugins:asp:enable_authorization true
enableRemoteAuthorization policies:asp:enable remote authorization false
enableSecurity policies:asp:enable security true
enableSSO policies:asp:enable_sso false

333

CHAPTER 12 | Configuring the Artix Security Plug-In

Table9: <bus-security:security> Attributes

<bus-security:security> Attribute

Equivalent Configuration Variable

Default

is2AuthorizationActionRoleMapping

plugins:is2_authorization:action_role ma
pping

isfSecurityServiceName

plugins:asp:isf_security service_name

IT_BUS_SERVICE

_balancing

loadBalancingPolicy policies:asp:load_balancing policy per-server
securityLevel plugins:asp:security_level MESSAGE_LEVEL
securityType plugins:asp:security_type (Obsolete)
transportX509CertAuth plugins:asp:enable_security_service_cert false
_authentication
useArtixProxies policies:asp:use_artix proxies false
useExternalTokenIssuer policies:asp:enable_issue_external_token false
uselLegacyIsfInterfaces policies:asp:use_legacy isf interfaces true
useSecurityServiceLoadBalancing plugins:asp:enable_security_service_load true

334

Configuringa WSDL Contract

Enabling security for a service Example 48 shows how to enable security for the service

personalInfoService.
Example 48: Enabling Security in an Artix Contract

<definitions

xmlns:bus-security="http://schemas.iona.com/bus/security"
. o>

<service name="personalInfoService">
<port name="personalInfoServicePort" binding="tns:infoSOAPBinding">
<soap:address location="http://localhost:8080"/>
<bus-security:security enableSecurity="true"
is2AuthorizationActionRoleMapping="file://c:/iona/artix/2.0/bin/action_role.xml"

enableAuthorization="true"
securityLevel="REQUEST LEVEL"
authenticationCacheSize="5"
authenticationCacheTimeout="10" />

</port>

</service>

</definitions>
The bus-security:security element in Example 48 configures
personalInfoService to use WS Security compliant username/password
authentication.

Disabling security for a service Example 49 shows how to selectively disable security for the service

widgetService.
Example 49: Disabling Security in an Artix Contract

<definitions

xmlns:bus-security="http://schemas.iona.com/bus/security"
. e>

<service name="widgetService">
<port name="widgetServicePort" binding="tns:widgetSOAPBinding">
<soap:address location="http://localhost:8080"/>
<bus-security:security enableSecurity="false" />
</port>
</service>
</definitions>

335

CHAPTER 12 | Configuring the Artix Security Plug-In

336

Part |V

Artix Security Features

In thispart This part contains the following chapters:
Single Sign-On page 339
Publishing WSDL Securely page 353
Partial Message Protection page 367
Principal Propagation page 419
Bridging between SOAP and CORBA page 433

337

338

In this chapter

CHAPTER 13

Single Sign-On

Snglesign-on (SSO) isan Artix security framework feature which
is used to minimize the exposure of usernames and passwords to
snooping. After initially signing on, a client communicates with
other applications by passing an SSO token in place of theoriginal
username and password.

Note: The SSO featureisunavailablein some editions of Artix. Please check
the conditions of your Artix license to see whether your installation supports
SSO.

This chapter discusses the following topics:

SSO and the Login Service page 340

Username/Password-Based SSO for SOAP Bindings page 342

339

CHAPTER 13| Single Sign-On

SSO and the Login Service

Overview There are two different implementations of the login service, depending on the
type of bindings you usein your application:
® SOAPbinding.

SOAP binding For SOAP bindings, SSO isimplemented by the following elements of the Artix

security framework:

Artix login service—a central service that authenticates
username/password combinations and returns SSO tokens. Clients connect
to this service using the HTTP/S protocol.

login_client plug-in—the login_client plug-in, whichisloaded by
SOAP clients, isresponsiblefor contacting the Artix login serviceto obtain
an SSO token.

artix_security plug-in—on the server side, the artix_security plug-inis
responsible for parsing the received SSO credentials and authenticating the
SSO token with the Artix security service.

Advantages of SSO SSO greatly increases the security of an Artix security framework system,
offering the following advantages:

340

Password visibility is restricted to the login service.

Clients use SSO tokens to communicate with servers.

Clients can be configured to use SSO with no code changes.

SSO tokens are configured to expire after a specified length of time.
When an SSO token expires, the Artix client automatically requests a new
token from the login service. No additional user code is required.

Login service

SSO token

SSO token expiry

Automatic token refresh

SSO and the Login Service

Figure 32 shows an overview of alogin service. The client Bus automatically
reguests an SSO token by sending a username and a password to the login
service. If the username and password are successfully authenticated, the login
service returns an SSO token.

Figure 32: Client Requesting an SSO Token from the Login Service

<token>
/
/ -
Client —Lk Login [« Artix
o oo Security
,/'] d Service

/
login (<username>, <password>)

The SSO token is acompact key that the Artix security service uses to access a
user’ s session details, which are stored in a cache.

The Artix security serviceis configured to impose the following kinds of

timeout on an SSO token:

® SSO session timeout—this timeout places an absolute limit on the lifetime
of an SSO token. When the timeout is exceeded, the token expires.

® SO sessionidle timeout—this timeout places alimit on the amount of
timethat el apses between authentication requests involving the SSO token.
If the central Artix security service receives no authentication requestsin
this time, the token expires.

For more details, see “ Configuring Single Sign-On Properties’ on page 299.

In theory, the expiry of SSO tokens could prove anuisanceto client applications,
because servers will raise a security exception whenever an SSO token expires.
In practice, however, when SSO is enabled, the relevant plug-in
(1login_service for SOAP and gsp for CORBA) catches the exception on the
client side and contacts the login service again to refresh the SSO token
automatically. The plug-in then automatically retries the failed operation
invocation.

341

CHAPTER 13| Single Sign-On

User name/Passwor d-Based SSO for SOAP
Bindings

Overview When using SOAP bindings in the C++ runtime, usernames and passwords can
be transmitted using one of the following mechanisms:

4 WSS UsernameT oken.
L HTTP Basic Authentication.
® CORBA Principal (username only).

This section describes how to configure aclient so that it transmits an SSO token
in place of ausername and a password.

Username/password Figure 33 gives an overview of ordinary username/password-based

authentication without SSO authentication without SSO. In this case, the username, <username>, and
password, <password>, are passed directly to the target server, which then
contacts the Artix security service to authenticate the username/password
combination.

Figure 33: Overview of Username/Password Authentication without SSO

username = <username>
User login password = <password>

\‘“ - Target
|

A

Client

Authenticate username Retrieve user's
and password realms and roles

A 4

Artix Security
Service

342

Username/Passwor d-Based SSO for SOAP Bindings

Username/password Figure 34 gives an overview of username/password-based authentication when
authentication with SSO SSO is enabled.

Figure 34: Overview of Username/Password Authentication with SSO

User login WSSE BinarySecurityToken

Client y - Target
A
<token> Retrieve user's
realms and roles
v
login (<username>, <password>) < P Artix
\ Login [« -
: Security
Service » X
Service

Prior to contacting the target server for the first time, the client Bus sends the
username, <username>, and password, <password>, to the login server, getting
an SSO token, <token>, in return. The client Bus then includes an
Progress-proprietary SOAP header (extension of WSS BinarySecurityToken) in
the next request to the target server. The target server’s Bus contacts the Artix
security service to validate the SSO token passed in the WSS Binary

Security Token.

Client configuration Example 50 shows atypical domain configuration for an SSO SOAP client that
employs username/password authentication.

Example 50: SOAP Client Configuration for Username/Password-Based SSO
Artix Configuration File

1 bus:initial_contract:url:login_service="../../wsdl/login_service

.wsdl";
plugins:login_client:shlib name = "it_login_ client";

sso_soap_client {
2 orb_plugins = ["xmlfile log_stream", "iiop_profile", "giop",
"iiop", "soap", "http", "login client", "artix security"];

343

CHAPTER 13| Single Sign-On

Example 50: SOAP Client Configuration for Username/Password-Based SSO

3 binding:artix:client_request_interceptor_ list=
"login_client+security+principal_context";

iy

The preceding Artix configuration can be described as follows:

1. Thebus:initial_contract:url:login_service variable specifiesthe
location of the Artix login service WSDL contract. Y ou must edit this
setting, if you store this contract at a different location.

2. Theorb_plugins list must include the 1ogin_client plug-in.

If the client uses a SOAP 1.2 binding, it is also necessary to include the
artix_security plug-ininthe orb_plugins list.

3. TheArtix client request interceptor list must include the 1ogin_client
interceptor.

If the client uses a SOAP 1.2 binding, it is also necessary to include the
security and principal_context interceptorsin the order shown.

Target configuration Example 51 shows atypical domain configuration for an SSO SOAP target
server that accepts connections from clients that authenticate themselves using
username/password authentication.

Example 51: SOAP Target Configuration for Username/Password-Based
SO

Artix Configuration File

Sso_soap_target {

plugins:artix_security:shlib name = "it_security plugin";

1 binding:artix:server_request_interceptor list=
"principal_ context+security";
binding:client_binding list = ["OTS+POA_Coloc", "POA_Coloc",
"OTS+GIOP+IIOP", "GIOP+IIOP", "GIOP+IIOP_TLS"];

2 orb _plugins = ["xmlfile log stream", "iiop_profile", "giop",
"iiop_tls", "soap", "http", "artix security"];

3 policies:asp:enable authorization = "true";

plugins:asp:authentication_cache _size = "5";
plugins:asp:authentication cache timeout = "10";

344

Artix login service configuration

1

Username/Passwor d-Based SSO for SOAP Bindings

Example51: SOAP Target Configuration for Username/Passwor d-Based
SO

plugins:is2_authorization:action_role_mapping =
"file://C:\artix_20/artix/2.0/demos/security/single_signon/et
c/helloworld_action_role mapping.xml";
plugins:asp:security_level = "REQUEST LEVEL";
principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth _method id = "pkcsl2_file";
principal_ sponsor:auth_method data =
["filename=%{PRIVATE_CERT 1}",
"password_file=%{PRIVATE_CERT PASSWORD_FILE 1}"];
};

The preceding Artix configuration can be described as follows:

1. Thesecurity interceptor must appear in the Artix server interceptor list to
enablethe artix_security plug-in functionality.

N

The orb_plugins list must include the artix_security plug-in.
3. You can enable SSO with or without authentication. In this example, the
authentication feature is enabled.

4. Thesecurity level isset to REQUEST LEVEL, implying that the username and
password are extracted from the SOAP header.

Example 52 shows the domain configuration for an Artix login servicethat is

integrated with the Artix security service (that is, both services run in the same

process).

The configuration shown in Example 52 can be characterised as follows:

®* TheArtix security serviceis accessible through the IITOP/TL S protocol,
where the service is available on the host, 1ocalhost, and | P address,
55020.

®* TheArtixlogin serviceis accessible through the SOAP/HTTPS protocol,
wherethe service' saddressis specified in thelogin service WSDL contract
(see“Login service WSDL configuration” on page 351).

Example52: Artix Login Service Domain Configuration

Artix Configuration File
include "../../../../etc/domains/artix.cfg";

secure_artix

345

CHAPTER 13| Single Sign-On

Example 52: Artix Login Service Domain Configuration

single_signon
{
2 initial_ references:IT SecurityService:reference =
"corbaloc:it_iiops:1.2@localhost:55020/IT_ SecurityService";

security service
{
orb_plugins = ["local_log_stream", "iiop profile", "giop",
"iiop_tls"]1;
#event_log:filters = ["IT_SECURITY=WARN+ERROR+FATAL",
"IT JAVA_SERVER="];

password_retrieval_mechanism:inherit_from parent = "true";

3 principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth_method _id = "pkcsl2_file";
principal_sponsor:auth_method data =
["filename=ArtixInstallDir/samples/security/certificates/tls/
x509/certs/services/administrator.pl2",
"password_file=ArtixInstallDir/samples/security/certificates/
tls/x509/certs/services/administrator.pwf"];

policies:trusted_ca_list_policy =
"ArtixInstallDir/samples/security/certificates/tls/x509/trust
ed _ca_lists/ca_listl.pem";

4 policies:target_secure_ invocation policy:requires =

["Confidentiality"];

policies:target_secure_ invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

policies:client_secure_ invocation policy:requires =
["Confidentiality"];

policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

5 generic_server_plugin = "java_server";
plugins:java_server:shlib_name = "it_java_server";
6 plugins:java_server:class =
"com.iona.jbus.security.services.SecurityServer";

346

10

12

13

14

15
16

17

Username/Passwor d-Based SSO for SOAP Bindings

Example52: Artix Login Service Domain Configuration

plugins:java_server:classpath =
"ArtixInstallDir\lib\artix\security_ service\5.0\security serv
ice-rt.jar";

plugins:java_server:jni_verbose = "false";
plugins:java_server:X options = ["rs"];
plugins:security:direct_persistence = "true";

plugins:java_server:system properties =
["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=ArtixInstallDir/samples/security/single_signo
n/etc/is2.properties.FILE",
"java.endorsed.dirs=ArtixInstallDir/lib/endorsed"] ;

plugins:local_log_stream:filename =
"ArtixInstallDir/samples/security/single_signon/etc/isf.log";

policies:iiop:server_address_mode policy:local_hostname =
"localhost";
plugins:security:iiop_tls:addr_list = ["localhost:55020"];

policies:security_server:client_certificate_constraints=["CN=0Orb
ix2000 IONA Services (demo cert)"];
policies:external_token_ issuer:client_certificate constraints=[]

7

bus
{
orb_plugins = ["local_log_stream", "iiop_profile",
"giop", "iiop_tls", "artix security", "login service"];
binding:artix:server_request_interceptor_ list=
"security";

bus:initial_contract:url:login_service =
"./login service.wsdl";

plugins:asp:security level = "REQUEST LEVEL";

policies:asp:enable authorization="false";

secure HTTPS server -> secure HITPS client settings

plugins:at_http:server:use_ secure_ sockets="true";

plugins:at_http:server:trusted _root_certificates =
"ArtixInstallDir/samples/security/certificates/openssl/x509/c
a/cacert.pem";

347

CHAPTER 13| Single Sign-On

348

Example 52: Artix Login Service Domain Configuration

plugins:at_http:server:server certificate =
"ArtixInstallDir/samples/security/certificates/openssl/x509/c
erts/testaspen.pl2";

plugins:at_http:server:server private key password =
"testaspen";

policies:target_secure invocation policy:requires =
["Confidentiality"];

policies:target_secure_ invocation policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];
}:

The preceding Artix configuration can be described as follows:

1. Theincluded artix.cfg configuration file contains some generic
configuration and settings required by all Artix programs.

2. TheIT securityserviceinitial reference setting provides the endpoint
details for connecting to the security service through the IIOP/TLS
protocoal. Y ou should ensure that this setting is avail able in the scope of any
CORBA application that needs to connect to the security service.

If you want to change the address of the Artix security service, you must
edit the IP address in thisinitial reference and also the address specified in
the plugins:security:iiop_tls:addr_list Setting (sees8).

3. Thefollowing principal_sponsor configuration settings are used to
specify the Artix security service's own X.509 certificate. The
policies:trusted_ca_list_policy Setting isused to specify alist of
trusted CA certificates.

These settings are required in order to support the TLS protocol—see
“Configuring HTTPS and IIOP/TLS’ on page 169 for more details.

4. The secure invocation policies specified in the following linees require
both incoming and outgoing I1OP/TL S connections to be secure. For more
details about SSL/TL S secureinvocation policies, see“ Configuring Secure
Associations’ on page 205.

Username/Passwor d-Based SSO for SOAP Bindings

The core of the Artix security service isimplemented as a pure Java
program. To make the security service accessible through the IIOP/TLS
protocol, the Java code is hosted inside an Artix generic server.
Theplugins:java_server:class Setting specifies the entry point for the
Javaimplementation of the security service. The implementation defined
by com.iona.jbus.security.services.SecurityServer effectively

acts asadouble container. That is, it hosts two different kinds of service:

+ CORBA-based security service—the generic server wraps the
security service in a CORBA wrapper layer, effectively making the
security service accessible through the IIOP/TLS protocol. The
configuration settings for this service are taken from the current
configuration scope.

+ Any Artix-based service—the generic server instantiates an Artix
Bus, which can be used to host any Artix-based service. The
configuration settings for the Artix-based services are taken from the
bus sub-scope of the current configuration scope.

This line sets the system properties for the Java implementation of the
security service. In particular, the is2.properties property specifiesthe
location of apropertiesfile, which contains further property settings for the
Artix security service.

Theplugins:security:iiop_tls:addr list Seftingisused to specify
the IP address where the Artix security service listens for requests.

If you want to change the address of the Artix security service, you must
edit the IP addressin this address|list and also theinitial reference specified
inthe initial_references:IT_SecurityService:reference Setting
(see 2).

The security service requires that any clients attempting to open a
connection must present an X.509 certificate to identify themselves. In
addition, the security service supports a primitive form of access control:
client certificates will be rejected unless they conform to the constraints
specified in

policies:security_server:client_certificate_constraints.

349

CHAPTER 13| Single Sign-On

350

10.

11.

12.

13.

14.

15.

For details of how to specify certificate constraints, see “Applying
Constraints to Certificates’ on page 515.

Note: The

policies:security. server:client_certificate constraints
setting must be present in the security service's configuration scope,
otherwise the security service will not start.

The security service supports a specia kind of access, where a client can
obtain security tokens without providing a password, based on a username
alone. Thistype of accessis needed to support interoperability with the
mainframe platform. Normally, however, thisfeature should be disabled to
avoid opening a security hole.

To disable the token issuer, set the token issuer’s certificate constraints to
be an empty list (as shown here). This causes the token issuer to reject all
clients, effectively disabling this feature.

Note: The

policies:external_token issuer:client_ certificate_constrain
ts setting must be present in the security service's configuration scope,
otherwise the security service will not start.

This line defines the start of the special bus sub-scope, which is used to
configure Artix-based services that run inside the generic server’s Bus
instance.

The orb_plugins list must include the artix_security plug-in and the
login_service plug-in.

The security interceptor must appear in the Artix server interceptor list to
enable the artix_security plug-in functionality.

Thebus:initial contract:url:login_service variable specifies the
location of the Artix login service WSDL contract. Y ou must edit this
setting, if you store this contract at a different location.

The security type setting selected here, REQUEST LEVEL, implies that the
login service preferentially reads the WSS UsernameToken and
PasswordToken credentials from the incoming client request messages.

Login service WSDL
configuration

Related administration tasks

Username/Passwor d-Based SSO for SOAP Bindings

16. You must disable authorization inthelogin service. It isnot appropriate for
the login service to perform authorization checks on incoming requests
(the login service does perform authentication, however).

17. Theremaining settingsin the Bus scope are the standard sort of settings
you need for a service that uses the secure HTTPS protocol. For more
details, see“ Configuring HTTPS and IIOP/TLS’ on page 169.

Example 53 shows an extract from the login service WSDL contract (in the
directory, samples/security/single_signon/etc) showing details of the
WSDL port settings.

Example53: Extract from the Login Service WSDL Configuration
<definitions ... >

<service name="LoginService">

<port binding="tns:LoginServiceBinding"
name="LoginServicePort">
<soap:address
location="https://localhost:49675" />

</port>

</service>

</definitions>

Note the following points about the WSDL port settings:

®* Thelogin service listens on afixed host and port,
https://localhost:49675. You will probably need to edit this setting
before deploying the login servicein areal system.
However, you should not choose dynamic IP port allocation (for example,
using https: / /HostName: 0), because clientswould not be able to discover
the value of the dynamically allocated port.

® The address specified here uses the secure HTTPS protocol. Further
security details are configured in the Artix configuration file.

For details of how to configure SSO token timeouts, see “ Configuring Single
Sign-On Properties’ on page 299.

351

CHAPTER 13| Single Sign-On

352

In this chapter

CHAPTER 14

Publisning WSDL

Securely

The WSDL publishing service enables clients to download WSDL
contracts that are constructed from a server’s in-memory WSDL
model. In order to ensure the integrity of the WSDL contracts

downloaded in this manner, Artix supports a number of special

security features.

This chapter discusses the following topics:

Introduction to the WSDL Publish Plug-In page 354
Deploying WSDL Publish in a Container page 357
Preprocessing Published WSDL Contracts page 361
Enabling SSL/TLS for WSDL Publish Plug-In page 362

353

CHAPTER 14 | Publishing WSDL Securely

Introduction to the WSDL Publish Plug-In

Overview

Reference

Publishing WSDL

354

The Artix WSDL publishing serviceis packaged as a plug-in and can be loaded
by any Artix server that needs to make its WSDL contracts available to remote
clients. In particular, the WSDL publish plug-in provides away of publishing
endpoint information for services that have dynamically allocated | P ports.

Figure 35 provides an overview of the endpoints that can be used to access the
WSDL publishing service. Because published WSDL contracts are constructed
from the server’sin-memory WSDL model, they also include volatile
information, such as dynamically-allocated | P ports.

Figure 35: Endpoints Used by the WSDL Publishing Service

Artix Server

Service port
O—_ _______

Read and parse

WSDL pbnsh port W////////

For a detailed introduction to the Artix WSDL publishing service, seethe
relevant chapter in the Deploying and Managing Artix Solutions guide.

As shown in Figure 35, the WSDL publishing service publishes WSDL

contracts through two different kinds of endpoint, as follows:

® Service-specific WSDL publish endpoints—if the WSDL publish plug-inis
enabled, the WSDL publishing service is automatically made available
through any existing HTTP or HTTPS endpoints. In other words, the
WSDL publishing service doubles up on existing service endpoints.

Security features

L oading the wsdl_publish plug-in

Enabling the dedicated WSDL
publish endpoint

Introduction to the WSDL Publish Plug-In

®* Dedicated WSDL publish endpoint—in addition to the service-specific
endpoints, the WSDL publish plug-in opens its own dedicated | P port for
publishing WSDL.

The WSDL publishing service has the following security features that provide
protection for clients and servers:

® Protection for clients—there are two waysin which clients are protected:

¢ Secure connections to WSDL publish—you can configure the WSDL
publishing endpoints to be secured by SSL/TLS. This ensures that
published WSDL contracts cannot be tampered with when they are
retrieved by clients.

+ Clientsignore downloaded client configuration—some WSDL
extensions allow you to configure client properties (for example, the
location of aclient’s own X.509 certificate). Artix is designed to
ignore client properties from downloaded WSDL contracts. Only
local contracts can be used to configure the client.

®* Protection for servers—some WSDL extensions might contain sensitive
details about server configuration (for example, a server’s private key
password). To avoid exposing these details to clients, the WSDL
publishing service automatically strips out server configuration details
from the published WSDL contract.

To load the wsdl_publish plug-in, add wsdl_publish to your orb plugins list
in the application’ s configuration scope. For example, if your server's
configuration scopeis secure_server, you might use the following
orb_plugins list:

Artix Configuration file
secure_server
{
orb plugins = [... , "wsdl _publish"];

To specify the IP port for the dedicated WSDL publish endpoint, set the
plugins:wsdl_publish:publish_port variablein the application’s
configuration scope.

355

CHAPTER 14 | Publishing WSDL Securely

For example, use the following configuration to specify that a server opens a
dedicated WSDL publish endpoint on the IP port, 2222:

Artix Configuration file

secure_server

{
orb plugins = [... , "wsdl_publish"];
plugins:wsdl publish:publish port = "2222";

356

Deploying WSDL Publish in a Container

Deploying WSDL Publish in a Container

Overview

Limitationsof WSDL publishin a
container

Figure 36 shows the outline of a container with a secure WSDL publish plug-in
deployed inside it. There are three kinds of endpointsin this example: the
container endpoint (which is used to administer the container), Artix service
endpoints, and a dedicated endpoint for the WSDL publishing service.

Figure 36: WSDL Publish Plug-In Deployed in a Secure Container

Container Service

! Container Port i Container
i ° ;

WSDL Publishing

[0

(e

The WSDL publish plug-inis currently not compatible with running a container

in mixed mode—that is, where some services are secure and other services

insecure. When the WSDL publish plug-in is deployed in a container, every

endpoint in the container must be secure. Specifically, the following endpoints

must be secure:

® WSDL publishing endpoint—the dedicated WSDL publishing endpoint
must be made secure by setting
plugins:wsdl_publish:enable_secure wsdl_publish tO true and by
Setting plugins:at_http:server:use_secure_sockets 10 true (See
“Configuring SSL/TLS for the WSDL publish endpoint” on page 363).

357

CHAPTER 14 | Publishing WSDL Securely

® Container endpoint—must be made secure by adding the appropriate
settings to the Artix configuration file (see “ Configuring the secure
container” on page 56).

* Artix service endpoints—must be made secure, either by adding security
settings to the Artix configuration file or to the service's WSDL contract.

How to deploy the WSDL To deploy the WSDL publishing service into a secure container, modify the
publishing service secure container configuration, as shown in the following example:

Artix Configuration File
include "../../../../../etc/domains/artix.cfg";

secure_artix
{
initial_references:IT SecurityService:reference =
"corbaloc:it_iiops:1.2@localhost:%${ISF_SECURE_PORT}/IT Securi
tyService";

secure_container
{
orb plugins = [... , "wsdl publish"];

plugins:wsdl_publish:enable secure wsdl publish = "true";
plugins:at_http:server:use_secure_sockets = "true";
plugins:wsdl_publish:publish port = "2222";

e
7

Where wsdl_publish is added to the orb_plugins list to load the WSDL
publish plug-in. The plugins:wsdl_publish:enable_secure_wsdl_publish
variableis set to true to make the WSDL publishing port secure. The
plugins:at_http:server:use_secure_sockets variable enablesHTTPS on
the WSDL publishing port (thisis required, because the WSDL publishing
service uses HTTP by default). The plugins:wsdl_publish:publish port
variable specifies the WSDL publish dedicated port.

Note: In Artix versions 4.0 and earlier, the
plugins:wsdl_publish:publish_port Setting would be ignored and the
container port value used instead.

358

Deploying WSDL Publish in a Container

it_container_admin utility To connect to asecure container using the it_container admin utility, perform
the following steps:

1

The it_container admin utility should be configured to support security.
See “Configuring the secure it_container_admin utility” on page 57 for an
example of asuitable configuration.

Add bus_entity_resolver tothelist of ORB plug-insin the
configuration scope used by the it_container_admin utility. For
example:

ContainerAdmin

{
orb plugins = ["xmlfile log_stream", "https",
"bus_entity resolver"];

17

This ensuresthat the it_container_admin utility is ableto parse the
HTTPS URL published by it_container.

Run the container with the command-line options shown in the following
example:

it_container -BUSname Container -port 1234 -publish
—-deploy DeployDescriptor.xml

Where container isthe name of the configuration scope for
it_container. The -port option ensures that the container service listens
on afixed IP port. The -publish option causes the container to write an
endpoint referenceto the file, containerservice.url, in the current
directory (you can optionally usethe -file option to specify the file name
explicitly). The -deploy option is used to deploy an Artix service plug-in
whose deployment descriptor iS DeployDescriptor.xml.

359

CHAPTER 14 | Publishing WSDL Securely

4. You can use one of the following approaches to running the

it_container admin utility:
s+ Specify the address of the WSDL publish service—run the

it_container_admin utility, using the -host and -port optionsto
specify the address of the WSDL publish service, asfollows:

it_container_admin -BUSname ContainerAdmin -host
ContainerHost -port WSDLPublishPort CommandOption

Where containeradmin isthe name of the configuration scope for
it_container admin. The ContainerHost isthe host where the
container process is running and wspLPublishPort isthe WSDL
publish IP port value.

¢+ Specify the URL published by the container—run the

it_container_admin utility, using the -container option to specify
the location of the containerservice.url file from the previous
step, asfollows:

it_container_ admin -BUSname ContainerAdmin -container
ContainerService.url CommandOption

The containerservice.url file can be copied from the directory
whereit was generated by the container and commandoptionisone of
the container administration commands (see Configuring and
Deploying Artix Solutions for details of available commands).

360

Preprocessing Published WSDL Contracts

Preprocessing Published WSDL Contracts

Overview

Specifying WSDL preprocessing

Example configuration

If you configure aserver’s security through the WSDL contract (for example, by
setting security attributes on the bus-security: security element), you could
potentially expose sensitive information to clients through the WSDL publishing
mechanism.

To avoid opening apotential security hole, the wsdl_publish plug-in providesa
preprocessing option to strip out server settings before publishing the WSDL
contract. This option is enabled by default.

You can use the plugins:wsdl_publish:processor variable to specify the
kind of preprocessing done before publishing aWSDL contract.

Because published contracts are intended for client consumption, by default, all
server-side WSDL artifacts are removed from the published contract. Y ou can
also require Progress-specific extensors to be removed. This variable has the
following possible values:

artix Remove server-side artifacts. Thisis the default setting.
standard Remove server-side artifacts and Progress proprietary extensors.
none Disable preprocessing

Example 54 shows a sample configuration for a secure server that selects the
standard processing option for publishing WSDL contracts. This option
ensures that all server related configuration and Artix specific tags are stripped
from the WSDL contracts before publishing.

Example54: Configuration for Preprocessing Published WSDL Contracts

Artix Configuration file
secure_server

{
orb plugins = [... , "wsdl_publish"];

plugins:wsdl_publish:publish port = "2222";
plugins:wsdl_publish:processor = "standard";

361

CHAPTER 14 | Publishing WSDL Securely

Enabling SSL/TLSfor WSDL Publish Plug-In

Overview

Securing import statements

This section describes how to make the WSDL publishing service secure, by
requiring clients to connect using the SSL/TL S protocol. The purpose of this
feature isto protect clients from downloading WSDL contracts that have been
tampered with. Without this security, a malicious user could intercept and
modify the WSDL contract asit is being downloaded to the client.

If you are about to enable SSL/TLS for the WSDL publishing service, you
should ensure that wsd1 : import statementsin your WSDL contracts locate
imported contracts using ahttps URL instead of ahttp URL.

For example, if your contract includes a statement that imports the
WS-Addressing schema, as follows:

<import namespace="http://www.w3.org/2005/08/addressing"
schemalocation="http: //www.w3.0rg/2005/08/addressing/ws-addr.xsd" />

Y ou would modify thisimport statement, changing the schemal.ocation
attribute to use ahttps URL, asfollows:

<import namespace="http://www.w3.o0rg/2005/08/addressing"
schemaLocation="https://www.w3.0rg/2005/08/addressing/ws-addr.xsd" />

Configuring SSL/TLSfor a
service-specific endpoint

362

In addition, if any of the imported WSDL contracts themselves contain import
statements, these recursive import statements must also be modified to use a
https URL.

If you configure an Artix service to use HTTPS, the wsdl_publish plug-in
automatically makes the publishing service available through the same HTTPS
endpoint. Because the publishing service is exposed through the same IP port as
your Artix service, any security policies and settings that apply to the service
endpoint automatically apply to connections made for the purpose of
downloading WSDL contracts. Hence, you can make this publishing mechanism
secure simply by configuring your service endpoints to be secure.

Enabling SSL/TLSfor WSDL Publish Plug-In

For details of how to secure service endpointswith HTTPS, see“ Securing HTTP
Communications with TLS” on page 81.

Note: Publishing WSDL through a service-specific endpoint isonly possible,
if the service runs over the HTTPS transport. Other transports are not

supported.
Configuring SSL/TL Sfor the The WSDL publish plug-in also provides adedicated HTTP port for publishing
WSDL publish endpoint WSDL contracts. To make this port secure, you must explicitly enable security

by setting the plugins:wsdl_publish:enable_secure_wsdl_publish
configuration variable to true and the
plugins:at_http:server:use_secure_sockets Val iableto true. To associate
an X.509 certificate with this port, you can use the same configuration options as
you would for aregular Artix endpoint (see “Deploying Own Certificate for
HTTPS’ on page 191).

Example 55 shows a sample configuration of a secure WSDL publish endpoint
that uses the HTTPS principal sponsor to specify an own certificate,
CertName.pl2

Example55: Configuration for Secure WSDL Publish Endpoint

Artix Configuration File
secure_server

{
orb plugins = [... , "wsdl_publish", "at_http", "https"];

plugins:wsdl_publish:publish_port = "2222";
plugins:wsdl_publish:enable secure wsdl publish = "true";
plugins:at_http:server:use_secure_sockets = "true";

policies:https:target_secure_invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"] ;
policies:https:target_secure_invocation policy:supports =
["Confidentiality", "EstablishTrustInTarget",
"EstablishTrustInClient", "DetectMisordering",
"DetectReplay", "Integrity"];

policies:https:trusted ca_list policy
="X509Deploy/ca/CACert.pem" ;

principal_sponsor:https:use principal_ sponsor = "true";

363

CHAPTER 14 | Publishing WSDL Securely

Example 55: Configuration for Secure WSDL Publish Endpoint

principal_sponsor:https:auth method id = "pkcsl2_file";
principal_ sponsor:https:auth method data =
["filename=X509Deploy/certs/applications/CertName.pl2"];

Testing secure WSDL publishing To test the secure WSDL publishing service, you can try to connect to the

service using an ordinary Web browser, as follows:

1. Configureyour Artix server to enable secure WSDL publishing, as shown
in Example 55 on page 363. In this example, the server will open a
dedicated WSDL publishing port at | P port 2222.

2. If your server requires mutual authentication (that is, requiring clients to
send an X.509 certificate to the server), you must add a personal X.509
certificate to the Web browser’ s certificate store. The certificate must be
signed by a CA that the server trusts.

For example, to install a personal X.509 certificate into Internet Explorer,

do the following:

i. Select Tools|lnternet Optionsto open the I nternet Options dialog.

ii. Click the Content tab and then click the Certificates button. The
Certificates dialog opens.

iii. Click the Personal tab and then click the Import button to bring up
the Certificate Import Wizard.

iv. Follow theinstructionsinthe Certificate Import Wizard toimport a
PKCS#12 format certificate (or other supported format) into the
Internet Explorer certificate store.

Note: At the end of the import process, if the PKCS#12 certificate
includes a CA certificate in its certificate chain, the import wizard will
ask you whether you want to install that CA certificate as atrusted CA
certificate.

3. Optiondly, install the CA certificate that signed the server’s certificates
into the Web browser’s certificate store.

364

Enabling SSL/TLSfor WSDL Publish Plug-In

If you do not install the CA certificate, you can still run the test. However,
in this case, when you attempt to connect to the server, your Web browser
will warn you that the server’s certificate is not trusted.

Start the Artix server.

5. Connect to the server’s WSDL publish port using the Web browser. In the
Web browser, enter the following secure URL address:

https://ServerHost:2222/get_wsdl?

Where serverHost isthe name of the host where the server is running (or
localhost, if thisis the same host where you are running the Web
browser). After connecting to the WSDL publish port, you should see a
page like the following:

Figure37: HTML Page Served Up by the WSDL Publishing Service

3 https:/ /localhost:2222 /get_wsdl? - Microsoft Internet Explorer ¥on T-Dnline

File Edit Wiew Favorites Tools Help

GBack ~ = - D) at | Qhsearch [GelFavorites GMedia &4 | -5

Address I@ https: fflocalhost: 2222 get_wsdl?

WSDL Services available

SOAP Servicelhttp/fwww.iona comfill securty)
SOAP Servicelhttp/fwww.iona comfill securty)

6. You can also try anegative test—entering the URL address,
http://ServerHost:2222/get_wsdl? into the browser—to verify that the
WSDL publish port rejectsinsecure HTTP connections.

365

CHAPTER 14 | Publishing WSDL Securely

366

In this chapter

CHAPTER 15

Partial Message

Protection

Partial message protection refersto arange of features defined by
the WS-Security specification that enable you to apply
cryptographic operations at the level of the SOAP binding. The
“partial” in partial message protection refers to the fact that
cryptographic operations can be applied to parts of the message,

instead of to the whole message.

This chapter discusses the following topics:

Introduction to SOAP PMP page 368
Setting Up a Java Keystore page 372
Artix Configuration page 378
Policy Configuration page 382
Example of WSS Signing and Encryption page 403
Exception Handling page 416

367

CHAPTER 15 | Partial M essage Protection

| ntroduction to SOAP PMP

Overview

Features

Limitations

368

Artix partial message protection (PMP) is a suite of cryptographic capabilities
that can be applied at the SOAP binding layer. The feature is based on the
following WS-Security specification:

WS-Security Core Specification 1.0

In many respects, the capabilities offered by SOAP PMP parallel the capabilities
offered by socket layer security, such as SSL/TLS. Like socket layer security,
PMP provides confidentiality and integrity guarantees, based on X.509
certificates and asymmetric key technology. The key difference, however, isthat
PMP applies cryptographic operations at a higher level in the binding stack.
Consequently, asmaller portion of the message is subjected to encryption
operations. In particular, by leaving message headers unencrypted, PMP enables
routers to process messages efficiently, while the message body itself remains
safely encrypted.

Partial message protection offers the following features:

® Security at the level of a SOAP 1.1 binding.

® Confidentiality and integrity support.

® Secure SOAP messages independently of the transport layer.

* Ability to send encrypted messages through plain HTTP firewall ports.
* Ability to avoid the restrictions of point-to-point security.

* Apply security policiesto individual endpoints.

Partial message protection is currently subject to the following limitations:

® Currently, cannot specify which part of message to protect (default isto
protect the SOAP body of message).

® Supported only for the SOAP 1.1 binding.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Architecture

Basic client-server scenario

Client Message Handlers

Introduction to SOAP PMP

The current implementation of PMP has the following architectural

characteristics:

* PMPisimplemented by the WSS plug-in.

® The WSS plug-in isimplemented as an Artix Java plug-in, but can also be
used in Artix C++ applications.

®* TheWSSplug-in caninstall two Java handlers, aWSSclient handler and a
WSS server handler, which are responsible for modifying incoming and
outgoing messages on the client and server.

The basic behaviour of PMP at run time can beillustrated by the client-server
scenario shown in Figure 38, which shows handlersinstalled on the client side
and on the server side. In this example, messages are encrypted asthey pass back
and forth between the client and the server

Figure 38: Basic Client-Server Scenario

Server Message Handlers

Request

PMP
Client
Message
Handler

Encrypted
Request

Encrypted
Request

Server
Message

Encrypted Handler

Reply

Encrypted

Reply Reply

PMP

On the client side, the outgoing request passes along the chain of handlersuntil it
reaches the PMP SOAP message handler, which encrypts the message’s SOAP
body.

On the server side, the incoming request message encounters the PMP SOAP
message handler, which decrypts the SOAP message. The plaintext message
then passes along the rest of the Java handler chain until it reaches the servant
object.

The reply message is treated in a similar manner, except that the message
progresses in the opposite direction, back to the client.

Note: Currently, SOAP headers are not protected; just the message body.

369

CHAPTER 15 | Partial M essage Protection

Key distribution

Cryptographic operations

Granularity of protection policies

370

Artix employs a Java keystore repository to store the certificates and private
keys for PMP—see “ Setting Up a Java Keystore” on page 372.

Artix does not provide any tools for managing the distribution of keys and
certificatesin alarge secure network, however. For managing certificates and
keysin alarge system, it is recommended that you install a public key
infrastructure (PK1) tool from athird-party software vendor.

Artix PMP currently supports the following basic cryptographic operations:

Encrypt Encrypt the SOAP body of amessage (that is,
excluding the SOAP header).

Son Sign the SOAP body of a message (that is, excluding
the SOAP header).

Verify Verify the signature on the SOAP body of a message.

Decrypt Decrypt the SOAP body of a message.

These basic cryptographic operations can be combined, to give the following
composite cryptographic operations:

Encrypt and Sign Encrypt and then sign the SOAP body.

Sgn and Encrypt Sign and then encrypt the SOAP body.

Verify and Decrypt Verify signature and then decrypt the SOAP body.
Decrypt and Verify Decrypt the SOAP body and then verify the signature.

The order of the constituent operations is important. Thus, a producer that
performs encrypt and sign on an outgoing message must be complemented by a
consumer that performs verify and decrypt. Likewise, the sign and encrypt
operation is complemented by the decrypt and verify operation.

Artix PMP provides flexible options for specifying the granularity at which
protection policies are applied. For example, you can apply policies at any of the
following levels of granularity:

* All incoming and outgoing messages.
* All endpoints from a particular service.
®* A singleendpoint only.

® QOutgoing messages only.

Introduction to SOAP PMP

° Incoming messages only.

® Client or server role only.

Moreover, PMP lets you specify the granularity using a flexible system of rules
and conditions. In particular, PMP supports afeature that lets you select service
QNames and port names using regular expression matching. See “ Conditions”
on page 400 for more details.

371

CHAPTER 15 | Partial M essage Protection

Setting Up a Java Keystore

Overview

Prerequisites

Default keystore provider

Customizingthekeystoreprovider

Keystore password

372

The Artix PMP feature uses Java keystores as arepository for storing X.509
certificates and private keys. Before enabling PMP for your application, you
need to understand how to create and manage Java keystores, as described in this
section.

The Java keystore is a feature of the Java platform Standard Edition (SE) from
Sun. To perform the tasks described in this section, you will need to install a
recent version of the Java Development Kit (JDK) and ensure that the JDK bin
directory ison your path. See http://java.sun.com/javase/.

Sun’s JDK provides a standard file-based implementation of the keystore. The
instructions in this section presume you are using the standard keystore. If there
is any doubt about the kind of keystore you are configured to use, check the
following linein your java.security file (located either in
JavalnstallDir/lib/security OF JavaInstallDir/jre/ lib/security):
keystore. type=jks

The jks (or Jks) keystore type represents the standard keystore.

Java also allows you provide a custom implementation of the keystore, by
implementing the java.security.KeystoresSpi class. For details of how to do
this see the following references:

* http://java.sun.com/j2se/1.5.0/docs/tool docs/windows/keytool .html

* http://java.sun.conm/j2se/1.5.0/docs/guide/security/HowTol mpl AProvider.html
If you use a custom keystore provider, you should consult the third-party

provider documentation for details of how to manage certificates and private
keys with this provider.

The keystore repository is protected by a keystore password, which is defined at
the same time the keystore is created. Every time you attempt to access or
modify the keystore, you must provide the keystore password.

http://java.sun.com/javase/
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/keytool.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/HowToImplAProvider.html

Keystoreentries

How PMP uses keystore entries

Setting Up a Java Keystore

The keystore provides two distinct kinds of entry for storing certificates and
private keys, as follows:

Key entries—each key entry contains the following components:

+ A privatekey,

¢+ AnX.509 certificate (can be v1, v2, or v3) containing the public key
that matches this entry’ s private key.

+ Optionally, one or more CA certificates that belong to the preceding
certificate' strust chain.

Note: The CA certificates belonging to a certificate’ s trust chain can be
stored either in its key entry or in trusted certificate entries.

In addition, each key entry istagged by an alias and protected by a key
password. To access aparticular key entry in the keystore, you must
provide both the alias and the key password.

Trusted certificate entries—each trusted certificate entry containsjust a
single X.509 certificate.

Each trusted certificate entry istagged by an alias. Thereis no need to
protect the entry with a password, however, because the X.509 certificate
contains only a public key.

The way in which Artix PMP uses Java keystoresis slightly unconventional.
Thisis because Java keystores were originally developed to support SSL/TLS
protocols, which have dlightly different requirements from PMP. In particular,
PMP does not attempt to perform any authentication based on X.509 certificates
(in contrast to the SSL/TLS family of protocols). Hence, PM P does not need to
store trusted CA certificates, which is what the keystore’ s trusted certificate
entrieswere originally devised for. PMP uses trusted certificate entries to store
the X.509 certificates belonging to its peers.

373

CHAPTER 15 | Partial M essage Protection

To illustrate the way in which PMP uses keystores, consider the example shown
in Figure 39, which shows two keystores used in a client-server application.

Figure 39: Overview of Keystores for a Client-Server Application

Client Keystore Server Keystore
:’:1I_iz_>1§_:_a_llicze_,_p_els_s_v!o_rg_:_ . alias = bob, password = ...
i H [H
i X509 | ! i X509 | |
1 1
E Private Key =1 E Private Key =1
P — 1 — 1
» : — : » : — :
g\ : S| :
*GEJ' b h 'g b i
> . > .
%]
2
S
©
@
(8]
°
2
4]
2
o

In this example, the keystores are set up as follows:
¢ Client keystore—stores the following entries:

+ A key entry, containing the X.509 certificate identified asalice and
its matching private key. This private key is used to sign outgoing
reguests and to decrypt incoming replies.

s A trusted certificate entry, containing the X.509 certificate identified
as bob. This public key is used to verify incoming replies and to
encrypt outgoing requests.

® Server keystore—storesthe following entries:

¢ A key entry, containing the X.509 certificate identified as bob and its
matching private key. This private key is used to sign outgoing
replies and to decrypt incoming requests.

s A trusted certificate entry, containing the X.509 certificate identified
aSalice. Thispublic key isused to verify incoming requests and to
encrypt outgoing replies.

374

Keystore utilities

Generating certificates and keys
using keytool

Setting Up a Java Keystore

The Java platform SE provides two keystore utilities: keytool and jarsigner.
Only the keytool utility is needed here.

To generate the sample certificates and keys shown in Figure 39 on page 374
using the keytool utility, perform the following steps:

1

In this example, you create two keystores: aclient keystore and a server
keystore. Create a directory, KeystoreDir, to hold the keystores you are
about to create.

Open acommand prompt and change directory to xkeystorepir. Enter the
following command:

keytool -genkey -dname "CN=Alice, OU=Engineering, O=IONA
Technologies, C=IE" -validity 365 -alias alice -keypass
password -keystore client.jks -storepass password

Thiskeytool command, invoked with the -genkey option, generates an

X.509 certificate and a matching private key for the client. The certificate

and key are both placed in akey entry in anewly created keystore,

client.jks. Because the specified keystore, client. jks, did not exist

before issuing the command, keytool implicitly creates a new keystore.

The options specified to the preceding keytool command have the

following meaning:

¢+ -genkey Option—selects the command to generate a self-signed
X.509 certificate and its associated private key, placing both of these
itemsin asingle key entry in the keystore.

¢ -dname and -validity options—specify the minimum amount of
information needed for an X.509 certificate. The -dname specifiesthe
distinguished name (DN) of the certificate owner (see “ASN.1 and
Distinguished Names’ on page 643 for a detailed explanation). The
-validity option specifies the number of days before the certificate
expires.

Note: Thekeytool command also supports -keyalg, -keysize, and
-sigalg optionsfor selecting the algorithms to generate keys and to sign
the certificate.

375

CHAPTER 15 | Partial M essage Protection

376

¢ -alias and -keypass options—control accessto the newly created
key entry. The -alias option specifies atag that is used to accessthe
key entry. The -keypass option specifies a corresponding password
that protects access to the private key in the key entry.

. -keystore and -storepass Options—you must always specify these
options to access the keystore. The -keystore option specifiesthe
location of the keystore file. If the option references a non-existent
file, keytool creates a new keystore with the given file name (if
appropriate). The -storepass specifies the password that protects
access to the keystore.

To generate an X.509 certificate and a matching private key for the server,

enter the following command:

keytool -genkey -dname "CN=Bob, OU=Engineering, O=IONA
Technologies, C=IE" -validity 365 -alias bob -keypass
password -keystore server.jks -storepass password

To export the client certificateto afile, alice.cert, enter the following
command:

keytool -export -alias alice -file alice.cert -keystore
client.jks -storepass password

Thefile, alice.cert, will contain the client’s exported X.509 certificatein
abinary format (just the certificate, not the private key). It is not necessary
to specify the key password (-keypass option), because the private key is
not accessed.

To export the server certificate to afile, bob. cert, enter the following
command:

keytool -export -alias bob -file bob.cert -keystore
server.jks -storepass password

To import the server certificate file, bob. cert, into the client keystore,
enter the following command:

keytool -import -alias bob -file bob.cert -keystore
client.jks -storepass password

Setting Up a Java Keystore

Before importing the certificate into the keystore, the keytool prompts you
whether to accept the new certificate or not, as follows:

Owner: CN=Bob, OU=Engineering, O=IONA Technologies, C=IE
Issuer: CN=Bob, OU=Engineering, O=IONA Technologies, C=IE
Serial number: 45261b85
Valid from: Fri Oct 06 10:01:57 BST 2006 until: Sat Oct 06
10:01:57 BST 2007
Certificate fingerprints:
MD5: B6:52:53:54:1E:DD:A6:6A:86:58:B5:61:90:9C:B8:A3
SHAL:
56:F3:88:11:FB:33:19:DA:1A:AB:0A:56:EC:91:3E:AD:CE:5B:D1
:6F
Trust this certificate? [no]:

Enter y to accept the certificate.

The keytool then imports the server certificate (alias bob) into atrusted
certificate entry in the client’ s keystore, as shown in Figure 39 on

page 374.

Note: Whenever you import a certificate using anew alias, the keytool
automatically presumes you want to import the certificate into a trusted
certificate entry.

To import the client certificate file, alice.cert, into the server keystore,
enter the following command:

keytool -import -alias alice -file alice.cert -keystore
server.jks -storepass password

The keytool then imports the client certificate (alias alice) into atrusted
certificate entry in the server’ s keystore, as shown in Figure 39 on
page 374.

377

CHAPTER 15 | Partial M essage Protection

Artix Configuration

Overview

L oading the WSS plug-in

Enabling client-side functionality

378

To enable the partial message protection feature, you need to add some settings
to the Artix configuration file, as described here. This section discusses the
following topics:

®* Loading the WSS plug-in.

® Enabling client-side functionality.

® Enabling server-side functionality.

®* Specifying akeystore.

® Specifying apolicy configuration file.

* Logging.

® Customizing the keystore.

To load the WSS plug-in, your bus configuration should include settings similar
to those shown in Example 56.

Example56: Configuration to Load the WSS Plug-In

Artix Configuration File

orb plugins = [... , "java"];

java_plugins = ["wss"];

plugins:wss:classname =
"com.iona.jbus.security.wss.plugin.BusPlugInFactory";

The WSS plug-in isimplemented as a Java Artix plug-in. To enable Java
plug-ins, you must include the java plug-in inthe orb_plugins list. The wss
plug-inisthen listed in the java_plugins list. The plugins:wss:classname
variable specifies the Java class that implements the WSS plug-in.

The client-side functionality is enabled by adding thewss handler to the client
handler chain, as shown in Example 57.

Example 57: Configuration to Enable Client-Sde Functionality

Artix Configuration File
binding:artix:client_message_interceptor_ list= "wss";

Enabling server-side functionality

Specifying a keystore

Artix Configuration

If more than one client interceptor isinstalled, thewss handler should bethelast
oneinthelist (closest to the transport layer).

The server-side functionality is enabled by adding thewss handler to the server
handler chain, as shown in Example 58.

Example58: Configuration to Enable Server-Sde Functionality

Artix Configuration File
binding:artix:server_message_interceptor list= "wss";

If more than one server interceptor isinstalled, the wss handler should be the
first oneinthelist (closest to the transport layer).

Y ou must associate the WSS plug-in with a Java keystore in order to access
X.509 certificates and keys (see “ Setting Up a Java Keystore” on page 372).
Specify the keystore using the settings shown in Example 59.

Example59: Configuration to Specify a Keystore

Artix Configuration File
plugins:wss:keyretrieval :keystore: file="KeystoreDir/Keystore.jks

plugins:wss:keyretrieval :keystore: storepass="StorePassword" ;

This configuration specifies akeystorefile, keystore.jks, which islocated in
the keystoreDir directory. The password, storepassword, specifiesthe
password needed to access the keystore.

WARNING: Because these configuration settings include a password, you
must be careful to set the file permissions appropriately on the Artix
configuration file. Y ou need to ensure that both the confidentiality and the
integrity of the password data are protected.

379

CHAPTER 15 | Partial M essage Protection

Specifying a policy configuration
file

L ogging

Customizing the keystore

380

A policy configuration file specifies policies that govern encryption and integrity
in the context of the partial message protection feature. To specify the location
of the policy configuration file, PolicyDir/PolicyFile.xml, add the
configuration setting shown in Example 60.

Example 60: Specifying a Policy Configuration File

Artix Configuration File
plugins:wss:protection _policy:location="PolicyDir/PolicyFile.xml

This configuration setting is used both on the client side and on the server side.
For details about the policy configuration file, see “Policy Configuration” on
page 382.

For diagnostic purposes, you can optionally enable logging for the WSS plug-in
by modifying your configuration as follows:

Artix Configuration File
orb_plugins = ["xmlfile_log_stream", ... 1;
event_log:filters=["MESSAGE SNOOP=*",

"IT BUS.SERVICE.SECURITY.WSS=*"];

Thexmlfile log stream plug-inwriteslogging datato alocal XML file. For
more details about Artix logging, see the Artix Configuration Reference.

Note: Y ou should only enable this logging for testing purposes, because it
can have a significant impact on performance.

Note: In Artix 4.2, the logging subsystem ID has changed to
IT_BUS.SERVICE.SECURITY.WSS. Previously, in Artix 4.1, the logging
subsystem ID was IT.SECURITY . WSS.

The Java keystore system allows you to provide a custom implementation of the
keystore (see “ Customizing the keystore provider” on page 372). If you want to
take advantage of this feature, you need to tell the WSS plug-in what type of
keystore to use by setting the

plugins:wss:keyretrieval :keystore:provider and

plugins:wss:keyretrieval :keystore: storetype variables.

Artix Configuration

For example, to specify that you are using the standard JKS keystore
implementation from Sun, you can specify the following settings:

Artix Configuration File
plugins:wss:keyretrieval :keystore:provider="SunJCE" ;

plugins:wss:keyretrieval :keystore:storetype="jks";

Thereis no need to set these configuration variables, however, if you are using
the standard JK'S store type, as shown here.

381

CHAPTER 15 | Partial M essage Protection

Policy Configuration

Overview This section describes how to configure the settings in a policy configuration
file, which isresponsible for defining the cryptographic operations performed on
incoming and outgoing SOAP messages in the context of partial message

protection.
In this section This section contains the following subsections:
Introduction to Policy Configuration page 383
Action Definitions page 385
Action Properties page 392
Protection Policy Definitions page 396
Conditions page 400

382

Policy Configuration

Introduction to Policy Configuration

Overview

Protection policy schema

Structure of policy configuration
file

The policies that govern Artix partial message protection are specified in an
XML file, the policy configuration file. By specifying protection policiesin this
file, you can decide which security guarantees are applied and when they should
be applied. For example, you could use a protection policy to specify that all
SOAP messages sent to a specific endpoint must be encrypted.

A complete XML schema for the policy configuration file is available at the
following location:

ArtixInstallDir/schemas/protection-policy.xsd

A typical policy configuration file would have the overall structure shown in
Example 61.

Example61: Sructure of a Policy Configuration File

<?xml version='1.0' encoding='utf-8'?>

<itsp:ProtectionPolicyType
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:itsp="http://www.iona.com/security/wss/policy">

<ActionDef name="...">

<NameValuePair name="..."> ... </NameValuePair>
</ActionDef>
<ActionDef name="...">

<NameValuePair name="..."> ... </NameValuePair>
</ActionDef>

<MessageProductionPolicy>

<Rule>
<ConditionSet> ... </ConditionSet>
<ActionRef ref="..."></ActionRef>
</Rule>

</MessageProductionPolicy>

383

CHAPTER 15 | Partial M essage Protection

Confidentiality and integrity

384

Example61: Structure of a Policy Configuration File

<MessageConsumptionPolicy>

<Rule>
<ConditionSet> ... </ConditionSet>
<ActionRef ref="..."></ActionRef>
</Rule>

</MessageConsumptionPolicy>
</itsp:ProtectionPolicyType>

Where the policy configuration file consists of a sequence of action definitions,
which define specific cryptographic operations, followed by a message
production policy, which defines rules that apply to outgoing messages, and a
message consumption policy, which defines rules that apply to incoming

messages.

Currently, the following cryptographic operations or combinations of
cryptographic operations are supported by partial message protection:

Sogn Sign the SOAP body of the message (that is, ignoring
SOAP header content) using a private key.

Encrypt Encrypt the SOAP body of the message using apublic
key.

Encrypt and Sign A combination of cryptographic operations, where

encryption precedes signing.

Sgn and Encrypt A combination of cryptographic operations, where
signing precedes encryption.

Details of how to configure the cryptographic combinations are given in the
following subsections.

Policy Configuration

Action Definitions

Overview

Producersand consumers

Action definitionsfor a message
producer

An action definition describes one atomic cryptographic operation (for example,
sign the message using a particular key). The action definition on its own does
not result in the specified behavior. When the action is referenced within a
policy, however, the action can be triggered by the Artix runtime, provided that
the appropriate conditions are fulfilled.

Structurally, action definitions are named sequences of name-value pairs, where
the action name is a simple mnemonic that uniquely identifies the action
definition for later reference in a policy.

Instead of using the notions of a client role and a server role, action definitions

and protection policies are defined with respect to a producer role and a

consumer role, asfollows:

®* Message producer—the role describing an application program that emits
amessage. For example, amessage producer could be aclient program that
sends arequest, or a server program that sends areply.

®* Message consumer—the role describing an application program that
absorbs amessage. For example, a message consumer could be aclient
program that receives areply, or a server program that receives arequest.

On the message producer side, action definitions can be used to describe actions
that protect messages—that is, encrypting and signing messages.

For example, the sequence of action definitions shown in Example 62 describes
how to encrypt a SOAP message body using the public key embedded in Bob's
X.509 certificate and how to sign a SOAP message body using Alice's private
key:

Example 62: Message Producer Action Definitions

<itsp:ProtectionPolicyType
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns:itsp="http://www.iona.com/security/wss/policy">

<ActionDef name="encrypt_to_bob">
<NameValuePair name="protection">

385

CHAPTER 15 | Partial M essage Protection

Example 62: Message Producer Action Definitions

<Value xsi:type="xs:string">confidentiality</Value>
</NameValuePair>
<NameValuePair name="cert_info">
<Value xsi:type="itsp:CertAliasType"
alias="bob" />
</NameValuePair>
</ActionDef>

<ActionDef name="sign by alice">
<NameValuePair name="protection">
<Value xsi:type="xs:string">integrity</Value>
</NameValuePair>
<NameValuePair name="key info">
<Value xsi:type="itsp:KeyAliasType"
alias="alice" password="password"/>
</NameValuePair>
</ActionDef>

</itsp:ProtectionPolicyType>

In the context of a message producer, the confidentiality value of the
protection property isinterpreted as an instruction to encrypt the outgoing
message and the integrity value of the protection property isinterpreted as
an instruction to sign the outgoing message.

Action definitionsfor a message On the message consumer side, action definitions can be used to describe actions
consumer that unprotect messages—that is, decrypting and verifying messages.

For example, the sequence of action definitions shown in Example 63 describes
how to verify a SOAP message body using the public key embedded in Alice's
X.509 certificate and how to decrypt a SOAP message body using Bob's private

key:
Example 63: Message Consumer Action Defintions

<itsp:ProtectionPolicyType
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:itsp="http://www.iona.com/security/wss/policy">

<ActionDef name="verify from alice">

<NameValuePair name="protection">
<Value xsi:type="xs:string">integrity</Value>

386

Policy Configuration

Example 63: Message Consumer Action Defintions

</NameValuePair>
<NameValuePair name="cert_info">
<Value xsi:type="itsp:CertAliasType"
alias="alice"/>
</NameValuePair>
</ActionDef>

<ActionDef name="decrypt_to_bob">
<NameValuePair name="protection">
<Value xsi:type="xXs:string">confidentiality</Value>
</NameValuePair>
<NameValuePair name="key info">
<Value xsi:type="itsp:KeyAliasType"
alias="bob" password="password"/>
</NameValuePair>
</ActionDef>

</itsp:ProtectionPolicyType>

In the context of a message consumer, the integrity value of the protection
property isinterpreted as an instruction to verify the incoming message and the
confidentiality vValue of the protection property isinterpreted as an
instruction to decrypt the incoming message.

Signature validation Y ou can configure a message consumer to verify the signature on areceived
SOAP message in one of the following ways:

* Referencing the producer’s X.509 certificate.
* Referencing alist of producer X.509 certificates.
* Referencing atrusted CA.

Referencingthe producer’s X.509 If the signed messages al originate from the same message producer, you can
certificate configure the message consumer to verify the signature by setting a cert_info
property that references the producer’s X.509 certificate.

The prerequisites for this approach are as follows:

®* Theproducer's X.509 certificate is cached in the local Java keystore,

®* Themessage producer is configured to use theissuer serial signing option
(see“Issuer serid” on page 390).

387

CHAPTER 15 | Partial M essage Protection

Referencing a list of producer
X.509 certificates

388

For example, to specify that signature validation is performed using Bob's
public key, you can configure the action definition element as shown in
Example 64.

Example 64: Sgnature Validation Using the cert_info Property

<ActionDef name="verify from bob">
<NameValuePair name="protection">
<Value xsi:type="xs:string">integrity</Value>
</NameValuePair>
<NameValuePair name="cert_info">
<Value xsi:type="itsp:CertAliasType" alias="bob"/>
</Value>
</NameValuePair>
</ActionDef>

Whereit is assumed that Bob's X.509 certificate is cached under the aliasbob in
the Java keystore on the message consumer side.

If the signed messages originate from multiple message producers, you can
configure the message consumer to verify signatures by setting a
cert_info_list property that referencesalist of producer X.509 certificates.

The prerequisites for this approach are as follows:
® The producer X.509 certificates are all cached in the local Java keystore,

®* Message producers are configured to use theissuer serial signing option
(see“Issuer serial” on page 390).

Referencing atrusted CA

Policy Configuration

For example, to specify that signature validation is performed using either Bob
or Alice's public key, you can configure the action definition element as shown
in Example 65.

Example 65: Sgnature Validation Using the cert_info_list Property

<ActionDef name="verify from bob_or_alice">
<NameValuePair name="protection">
<Value xsi:type="xs:string">integrity</Value>
</NameValuePair>
<NameValuePair name="cert_info_list">
<Value xsi:type="itsp:CertAliasListType">
<CertAlias alias="bob"/>
<CertAlias alias="alice"/>
</Value>
</NameValuePair>
</ActionDef>

Wherethe cert_info_1list property consists of a sequence of zero or more
certAlias elements, each of which reference an X.509 certificate. It is assumed
that Bob's X.509 certificate is cached under the alias bob and Alice's X.509
certificateis cached under the dlias alice. The appropriate certificate is selected
at runtime, based on the value of the issuer serial number transmitted by the
message producer.

The approach described in “Referencing alist of producer X.509 certificates” is

appropriate only for afairly small number of message producers. If the number

of message producersislarge, it becomesimpractical to cache the producer

certificates on the consumer side. In this case, you can configure the message

consumer to verify signatures by setting a ca_info property that references a

trusted certificate authority (CA) certificate.

The prerequisites for this approach are asfollows:

®* Thetrusted CA certificateis cached in the local Java keystore,

* Every producer X.509 certificateis signed by the trusted CA certificate,

®* Message producers are configured to use the direct reference signing
option (see “Direct reference” on page 391).

In this scenario, the producer’ s X.509 certificate is transmitted directly to the
consumer in a SOAP header. The consumer verifies the X.509 certificate (by
checking that is validly signed by the trusted CA certificate) and then uses the
X.509 certificate to verify the SOAP message signature.

389

CHAPTER 15 | Partial M essage Protection

Signing options

Issuer serial

390

For example, to specify that signature validation can be performed using X.509
certificates signed by the trusted CA certificate, trent, configure the action
definition element as shown in Example 65.

Example 66: Sgnature Validation Using the ca_info Property

<ActionDef name="verify issued by trent">
<NameValuePair name="protection">
<Value xsi:type="xs:string">integrity</Value>
</NameValuePair>
<NameValuePair name="ca_info">
<Value xsi:type="itsp:CertAliasType"
alias="trent"/>
</NameValuePair>
</ActionDef>

Where the ca_info property hasavalue of itsp:CertaliasType type, whose
alias attribute references the trusted CA certificate in the local Java keystore.

Y ou can configure a message producer to transmit the identity of the public key
required to verify asigned message, in one of the following ways:

4 | ssuer serial.
4 Direct reference.

When you specify the issuer serial signing option, the message producer
transmits the serial number of the its X.509 certificate in a SOAP header. The
message consumer then uses the serial number to identify which X.509
certificate to use when verifying the message signature. No special configuration
isreguired to select this option—it is the default.

Note: Theissuer seria signing option is compatible with either the
cert_info OF cert_info_list validation options on the consumer side.

Direct reference

Policy Configuration

When you specify the direct reference signing option, the message producer
transmits its X.509 certificate in a SOAP header. The consumer checks, first of
al, whether the producer’s X.509 certificate is validly signed by atrusted CA
certificate. If the certificate is validly signed, the consumer then usesit to verify
the signature on the received SOAP message.

Note: Thedirect reference signing option is compatible only with the
ca_info validation option on the consumer side.

To enable the direct reference signing option, add the key_identifier property
to an action definition that defines message signing, as shown in Example 67.

Example 67: Enabling the Direct Reference Signing Option

<ActionDef name="sign by alice.direct_reference">
<NameValuePair name="protection">
<Value xsi:type="xXs:string">integrity</Value>
</NameValuePair>
<NameValuePair name="key info">
<Value xsi:type="itsp:KeyAliasType"
alias="alice" password="password"/>
</NameValuePair>
<NameValuePair name="key identifier">
<Value =xsi:type="xs:string">direct_ reference</Value>
</NameValuePair>
</ActionDef>

Where the key_identifier property isconfigured with the value,
direct_reference. The key_identifier property must beusedin
combination with the protection and key_info propertiesin order to produce a
well-defined action definition.

391

CHAPTER 15 | Partial M essage Protection

Action Properties

Overview An action property is a property setting defined using itsp:NamevaluePair
elements inside an action definition. Table 10 shows the set of action properties
currently supported by the Artix partial message protection feature.

Table10: Properties of an Action Definition

Property Name Property Type Allowed Values and Attributes
protection xs:string Value string can be confidentiality OF integrity.
key_info itsp:KeyAliasType Attribute alias specifiesthe alias of akey entry in the
keystore.
Attribute password specifies the corresponding key
password.

cert_info itsp:CertAliasType Attribute alias specifiesthe aias of atrusted

certificate entry in the keystore.

cert_info_list itsp:CertAliasListType | A sequence of zero or more certalias elements.

ca_info itsp:CertAliasType Attribute alias specifiesthe alias of atrusted CA
certificate, which is stored in atrusted certificate entry
in the keystore.

key_identifier xs:string Value string can be direct_reference.

target xs:string Value string is a SOAP actor.

must_understand xs:string Value string can be true or false.

392

Setting a Value element

protection

key_info

Policy Configuration

The property name, type, value, and attributes (if any) are all specified in
anitsp:Vvalue element. Because the value element is defined to be of

xs :anyType, the pattern for setting a value element depends on the particular
type that it instantiates (as specified by the type attribute).

For example, consider avalue element that is specified to be of
itsp:KeyAliasType. You would define such avalue element asfollows:

<NameValuePair name="key_ info">
<Value xsi:type="itsp:KeyAliasType"
alias="AliasValue" password="PassValue"/>
</NameValuePair>

The alias and password attributes belong to the definition of the
itsp:KeyAliasType type.

Theprotection property describesthe cryptographic operation to perform. The

alowable operations are, as follows:

® confidentiality—interpreted asencrypt on the producer side and
decrypt on the consumer side, or

° integrity—interpreted as sign on the producer side and verify on the
consumer side.

Within the enclosing itsp:ActionDef element, the protection property must
be accompanied either by akey._info property (to gain access to a private key)
or acert_info property (to gain access to a public key).

Thekey_info property references a private key stored in akey entry in the Java
keystore (see “ Setting Up a Java Keystore” on page 372). To access the private
key, you must provide akey alias and a key password. The value element that
definesthe key_info property isaninstance of itsp:KeyAliasType type, which
is defined by the following fragment of XML schema:

<complexType name="KeyAliasType">
<sequence/>
<attribute name="alias" type="string" use="required"/>
<attribute name="password" type="string" use="required"/>
</complexType>

393

CHAPTER 15 | Partial M essage Protection

cert_info

cert_info_list

ca info

394

The cert_info property references an X.509 certificate stored in a trusted
certificate entry in the Java keystore. Y ou must provide a certificate alias for the
referenced certificate. The value element that definesthe cert_info property is
aninstance of itsp:CertAliasType type, which isdefined by the following
fragment of XML schema:

<complexType name="CertAliasType">

<sequence/>

<attribute name="alias" type="string" use="required"/>
</complexType>

The cert_info_list property references zero or more X.509 certificates stored
in trusted certificate entriesin the Java keystore. Each referenced certificate is
represented by acertalias element, which has an alias attribute to identify
the certificate in the Java keystore. The value element that definesthe
cert_info_alias property isaninstance of itsp:CertAliasListType, Which
is defined by the following fragment of XML schema:

<complexType name="CertAliasListType">
<sequence>
<element
name="CertAlias"
type="tns:CertAliasType"
minOccurs="0"
maxOccurs="unbounded"
/>
</sequence>
</complexType>

The ca_info property references atrusted CA certificate stored in atrusted
certificate entry in the Java keystore. The value element that defines the
ca_info property isan instance of itsp:CertaliasType type (see“cert_info”
on page 39%4).

key_identifier

target

must_under stand

Policy Configuration

The key_identifier property specifies how a message producer transmits the

identity of the public key required to verify signed messages. The following

options are supported:

® direct_reference—the message producer sends the X.509 certificate,
which contains the key, directly in the message.

Thekey identifier property isused in combination with the protection and
key_info properties.

The target property describes the SOAP actor or role to whom the message
protection is targeted. The value of this property can be any string (where an
empty string is semantically equivalent to not specifying the property at all.)

If an action is used to cryptographically protect (sign or encrypt) a message, and
the action contains this property, the resulting message will contain a
WS-Security SOAP header with an actor attribute containing the designated
value. This property alows applicationsto target cryptographic operations for
specific SOAP entities (such as arouter or other intermediary, for example).

If an action is used to cryptographically unprotect (verify or decrypt) amessage,
and the action contains this property, the unprotection operation will apply only
to WS-Security SOAP headers that contain the specified target in the actor
attribute. This property allows receiving applications (for example, arouter) to
process only those headers to whom it has targeted cryptographic operations.

This property specifies the value of the mustunderstand attributein
WS-Security SOAP headers, when SOAP headers are inserted into SOAP
messages as aresult of signing or encryption operations.

The allowed values for this property are true Or false.

Specifying false issemantically equivalent to not specifying any value, and
results in no specification of the mustunderstand attribute.

395

CHAPTER 15 | Partial M essage Protection

Protection Policy Definitions

Overview

Protection policy

396

Protection policies are evaluated at run time to determine which actions to
perform, based on information available from the current execution context
(such asthe currently operational service QName and port name, as defined in
WSDL). When the WSS plug-in intercepts a message, the information from the
current execution context is combined with the protection policies to determine
which cryptographic operations to perform.

Logically, aprotection policy consists of a sequence of rules, which are
evaluated in order, to determine which cryptographic operations to perform.
When arulefires, the referenced actions are performed in the defined order and
the remaining rules are then skipped.

Two different types of element define protection policies, as follows:

b itsp:MessageProductionPolicy—defines policiesthat apply to outgoing
messages.

N itsp:MessageConsumptionPolicy—defines policiesthat apply to
incoming messages.

Within a policy configuration file, amessage production policy and a message

consumption policy would be defined as shown in Example 68.

Policy Configuration

Example 68: Syntax of Protection Policy Elements

<itsp:ProtectionPolicyType
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"
xmlns:itsp="http://www.iona.com/security/wss/policy">

<MessageProductionPolicy>
<Rule> ... </Rule>
<Rule> ... </Rule>

</MessageProductionPolicy>

<MessageConsumptionPolicy>
<Rule> ... </Rule>
<Rule> ... </Rule>

</MessageConsumptionPolicy>
</itsp:ProtectionPolicyType>

Where the MessageProductionPolicy element can appear at most once, the
MessageConsumptionPolicy €lement can appear at most once, and the elements
must appearsin the order shown. Each of the policy elements can contain zero or
more Rule €lements, as discussed next.

Rules A rule consists of aset of conditions and alist of action references. If all of the
conditions are satisfied by the current execution context or if no conditions are
specified, the listed actions are performed in the order in which they appear in
therule.

A policy ruleisdefined using an itsp:Rule element of the genera form shown
in Example 69:

Example 69: Syntax of a Rule Element

<Rule>
<ConditionSet> ... </ConditionSet>
<ActionRef ref="..."/>
<ActionRef ref="..."/>

</Rule>

397

CHAPTER 15 | Partial M essage Protection

The rule consists of an optiona conditionset element followed by zero or
more ActionRef elements. The conditionset element must precede the
ActionRef elements and the order of the actionref elementsis significant.

Rule example The following example illustrates a simple rule definition with one condition
and two action references:

<Rule>
<ConditionSet>
<NameValuePair name="port_name">
<Value xsi:type="xs:string">SoapPort</Value>
</NameValuePair>
</ConditionSet>

<ActionRef ref="encrypt_to_bob"></ActionRef>
<ActionRef ref="sign by alice"></ActionRef>
</Rule>

If the current port name (from the current WSDL contract) is soapport, the rule
performs the following actions:

1. The SOAP message body is encrypted using Bob's public key, and
2. The encrypted SOAP message body isthen signed using Alice's private
key.

Conditions A conditionisalist of properties (represented as name-value pairs), whose
values are compared with settings in the current execution context. The
condition is satisified when all of its properties match the current execution
context. An absent condition evaluatesto true by default.

A condition is defined using an itsp:Conditionset element of the general
form shown in Example 70.

Example 70: Syntax of a ConditionSet Element

<ConditionSet>
<NameValuePair name="..."> ... </NameValuePair>
<NameValuePair name="..."> ... </NameValuePair>
</ConditionSet>

The conditionSet element can contain zero or more NamevaluePair €lements.
Conditions are described in detail in “Conditions’ on page 400

398

Action references

Rule evaluation algorithm

Policy Configuration

An action reference is areference to an action definition that appears within the
same enclosing ProtectionPolicyType €ement. If no corresponding action
definition is found, however, aruntime error occurs.

An action reference is defined using an itsp:ActionRef element of the genera
form shown in Example 71.

Example 71: Syntax of an ActionRef Element
<ActionRef ref="ActionName"/>

Where ActionName matches the name attribute from a previously defined
ActionDef element.

Itispossiblefor aprotection policy to contain multiple rules, but only one of the
rulesis ever executed. Rules are evaluated at runtime by the WSS plug-in, using
the following agorithm (in pseudo-code):

For each rule, R, in the protection policy {
If all of the conditions in R are satisfied
by the current execution context
{
Apply each action in R, in the order specified,
to the message and then exit;
}
else
{
go to the next rule;
}
}

Effectively, in a protection policy with multiple rules, Artix executes the first
matching rule.

399

CHAPTER 15 | Partial M essage Protection

Conditions
Overview Within apolicy rule, each condition is represented by an itsp:ConditionSet
element containing zero or more properties, where the properties are expressed
as hame-value pairs.
The supported condition properties are listed in Table 11.
Table11: Condition Properties
Property Name Property Type Allowed Values
service_gname xs:string QName of atarget service.
port_name xs:string Port (or endpoint) name.
mode xs:string client Or server.
bus_name xs:string Name of the current Artix bus.
service_gname The service_gname property specifies a service QName, asit appearsin a

WSDL contract. The value of this property isastring of the form
{Namespace} LocalName, Where Namespace S the service QName namespace,
and LocalName is the service QName local name. For example, consider the
following service_cname property defined as a name-value pair:

<NameValuePair name="service_ gname">
<Value
xsi:type="xs:string">{http://www.acme.com}MyService</Value>
</NameValuePair>

A condition with this property is satisified, if and only if the value of the
property matches the service QName of the current execution context.

400

port_name

mode

bus_name

Condition matching algorithm

Policy Configuration

The port_name property specifies a service port (or endpoint) name, asit
appearsin aWSDL contract. The value of this property isastring. For example,
consider the following port_name property defined as a name-value pair:

<NameValuePair name="port_name">
<Value xsi:type="xs:string">SoapPort</Value>
</NameValuePair>

A condition with this property is satisified, if and only if the value of the
property matches the service port name of the current execution context.

Themode property specifieswhether the application program is acting asaclient
or asaserver. The alowed values are client and server. For example,
consider the following mode property defined as a name-value pair:

<NameValuePair name="mode">
<Value xsi:type="xs:string">client</Value>
</NameValuePair>

A condition with this property is satisified, if and only if the value of the
property matches the current mode, client or server, of the current execution
context.

The bus_name property specifies the Artix bus name in which the condition is
evaluated. The value of this property may be any string. For example, consider
the following bus_name property defined as a name-value pair:

<NameValuePair name="bus_name">
<Value xsi:type="xs:string">my.bus.name</Value>
</NameValuePair>

A condition with this property is satisified, if and only if the value of the
property matches the bus name of the current execution context.

A condition value matches against avaluein the current execution context, using
one of the following mechanisms:

® Case-sendgitive matching.
® Regular expression matching.

401

CHAPTER 15 | Partial M essage Protection

Case-sensitive matching

Regular expression matching

402

Condition values are compared to variables in the execution context using
case-sensitive string-to-string comparison. Thisis the default.

Regular expression matching is automatically enabled whenever you use a
special syntax for the condition value.

Condition values that use regular expression syntax take the following form:
regexp{ Expr}

Where Exprisaregular expression, as described in
http://java.sun.com/j2se/1.4.2/docs/api/javalutil /regex/Pattern.html

For example, to match any port name that ends with the string secretsauce, you
would use the following property:

<NameValuePair name="port_name">
<Value xsi:type="xs:string">regexp{ .*SecretSauces}</Value>
</NameValuePair>

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

Example of WSS Signing and Encryption

Example of WSS Signing and Encryption

Overview This section describes a simple example of partial message protection that
provides a guarantee of confidentiality and integrity on all of the messages
passing back and forth between a client and a server.

In this section This section contains the following subsections:

Basic Signing and Encryption Scenario page 404
Configuring the Client page 406
Configuring the Server page 411

403

CHAPTER 15 | Partial M essage Protection

Basic Signing and Encryption Scenario

Overview

Demonstration code

Example scenario

404

The scenario described hereis aclient-server application, where partial message
protection is set up to encrypt and sign the SOAP body of messages that pass
back and forth between the client and the server. This exampleis configured to
use HTTP as the transport layer, but you could reconfigure the code to use any
other supported transport instead.

Complete demonstration code for the scenario described here is available at the
following location:

ArtixInstallDir/samples/security/wss

Figure 40 shows an overview of the basic signing and encryption scenario,
which isimplemented by the WSS demonstration.

Figure 40: Basic Sgning and Encryption Scenario

Encrypted

. . Request
Client - 'Alice’ Server - 'Bob’

Ej XML Ej XML

T Client Protection Policy T Server Protection Policy

Client Keystore Server Keystore

Example of WSS Signing and Encryption

Scenario steps When the client in Figure 40 invokes a synchronous operation on the soapport
endpoint, the request and reply message are processed as follows:

1

Asthe outgoing request message passes through the wss client handler, the
handler processes the message in accordance with the policies specified in
the client’ s protection policy file. In this example, the handler performsthe
following processing:

i. Encrypt the SOAP body of the message using Bob's public key.

ii. Signthe encrypted SOAP body using Alice's private key.

As the incoming request message passes through the wss server handler,
the handler processes the message in accordance with the policies specified
in the server’ s protection policy file. In this example, the handler performs
the following processing:

i. Verify the signature using Alice's public key.

ii. Decrypt the SOAP body using Bob's private key.

Asthe outgoing reply message passes back through the wss server handler,
the handler performs the following processing:

i. Encrypt the SOAP body of the message using Alice's public key.

ii. Signthe encrypted SOAP body using Bob's private key.

Asthe incoming reply message passes back through the wss client handler,
the handler performs the following processing:

i. Verify the signature using Bob’ s public key.

ii. Decrypt the SOAP body using Alice's private key.

405

CHAPTER 15 | Partial M essage Protection

Configuring the Client

Overview This subsection describes the configuration of the client from the WSS partial
message protection demonstration. The following topics are discussed:
® Setting up the client keystore.
® Artix configuration.
®* Policy configuration.

Setting up the client keystore The client accesses its own Java keystore, which is set up as follows:

* Key entries—contains a single entry, with the following details:
+ alias—isalice and associated key password iS password.
s private key—Alice s private key.
+ X509 certificate—containing Alice's public key.

* Trusted certificate entries—contains a single entry, with the following
details:
. alias— is bob.
s X.509 certificate—containing Bob’s public key.

For details of how to set up the client’ s keystore, see “ Setting Up a Java
Keystore” on page 372.

Artix configuration Example 72 shows the Artix configuration for a client that supports the partial
message protection feature (implemented by the WSS plug-in).

Example 72: Artix Configuration for a PMP Client

1 include "../../../../../etc/domains/artix.cfg";

secure_artix
{
WSS
{
2 orb_plugins = ["xmlfile_log_stream", "java"l;
java_plugins = ["wss"];
plugins:wss:classname =
"com.iona.jbus.security.wss.plugin.BusPlugInFactory";

406

Example of WSS Signing and Encryption

Example 72: Artix Configuration for a PMP Client

g

event_log:filters=["MESSAGE_SNOOP=*",
"IT.SECURITY.WSS=*"];

client
{

binding:artix:client_message_interceptor list= "wss";

plugins:wss:keyretrieval :keystore: file="%${INSTALL_ DIR}/%{PROD
UCT_NAME} /% {PRODUCT VERSION}/demos/security/wss/etc/keys/alic
e.jks";

plugins:wss:keyretrieval :keystore: storepass="password" ;

plugins:wss:protection_policy:location="file://%{INSTALL, DIR}
/% {PRODUCT_NAME} /% {PRODUCT VERSION}/demos/security/wss/etc/cl
ient_policy.xml";
}:
Yi

The preceding Artix configuration can be explained as follows:

1

The standard artix.cfg configuration file contains default plug-in settings
that are essential for most applications.

The client must be explicitly configured to load the wss Java plug-in. The
following three lines load the wss plug-in, as described in “Loading the
WSS plug-in” on page 378.

Y ou can optionally enable logging for the WSS plug-in, by including the
event_log: filters Setting shown here—see “Logging” on page 380 for
details.

In addition to loading the WSS plug-in, you must explicitly enable
client-side functionality by installing the wss handler in the client handler
list, as shown here. If there are multiple handlersin thelist, thewss handler
should appear last.

Theplugins:wss:keyretrieval : keystore Settings associate a Java
keystore with the application—see “ Specifying a keystore” on page 379
for details.

Theplugins:wss:protection_policy:location Setting specifiesthe
location of the policy configuration file for the client (discussed next).

407

CHAPTER 15 | Partial M essage Protection

Policy configuration Example 73 shows the policy configuration for a client that supports the partial
message protection feature.

Example 73: Policy Configuration File for a PMP Client

<?xml version='1.0' encoding='utf-8'?>
1 <itsp:ProtectionPolicyType
xmlns:xs="http://www.w3.o0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:itsp="http://www.iona.com/security/wss/policy">

Ell== ==

<!-- Action definitions -->

Zl== ===

<!-- Sign the SOAP Body using Alice's private key -->
2 <ActionDef name="sign by alice">

<NameValuePair name="protection">
<Value xsi:type="xs:string">integrity</Value>
</NameValuePair>
<NameValuePair name="key info">
<Value xsi:type="itsp:KeyAliasType"
alias="alice" password="password"/>
</NameValuePair>
</ActionDef>

<!-- Encrypt the SOAP Body using Bob's public key -->
3 <ActionDef name="encrypt_to_bob">
<NameValuePair name="protection">
<Value xsi:type="xs:string">confidentiality</Value>
</NameValuePair>
<NameValuePair name="cert_info">
<Value xsi:type="itsp:CertAliasType"
alias="bob" />
</NameValuePair>
</ActionDef>

<!-- Verify the signature on the SOAP Body using Bob's public
key -->
4 <ActionDef name="verify from bob">
<NameValuePair name="protection">
<Value xsi:type="xs:string">integrity</Value>
</NameValuePair>
<NameValuePair name="cert_info">
<Value xsi:type="itsp:CertAliasType"
alias="bob" />

408

Example of WSS Signing and Encryption

Example 73: Policy Configuration File for a PMP Client

</NameValuePair>
</ActionDef>

<!-- Decrypt the SOAP Body using Alice's private key -->
<ActionDef name="decrypt_to_alice">
<NameValuePair name="protection">
<Value xsi:type="xs:string">confidentiality</Value>
</NameValuePair>
<NameValuePair name="key info">
<Value xsi:type="itsp:KeyAliasType"
alias="alice" password="password"/>

</NameValuePair>
</ActionDef>
K== ==
<!-- Message Production Policy -->
<l-—= —-—>
<MessageProductionPolicy>

<Rule>

<ConditionSet>

<NameValuePair name="port_name">
<Value xsi:type="xs:string">SoapPort</Value>

</NameValuePair>

</ConditionSet>

<ActionRef ref="encrypt_to_bob"></ActionRef>

<ActionRef ref="sign by alice"></ActionRef>

</Rule>
</MessageProductionPolicy>

<l-- -—>
<!-- Message Consumption Policy -->
<l-—= —-—>
<MessageConsumptionPolicy>
<Rule>
<ConditionSet>
<NameValuePair name="port_name">
<Value Xxsi:type="xs:string">SoapPort</Value>
</NameValuePair>
</ConditionSet>

<ActionRef ref="verify from bob"></ActionRef>
<ActionRef ref="decrypt_to_alice"></ActionRef>
</Rule>
</MessageConsumptionPolicy>

</itsp:ProtectionPolicyType>

409

CHAPTER 15 | Partial M essage Protection

410

The preceding policy configuration can be described as follows:

1

The ProtectionPolicyType element isthe enclosing element for all of the
policy definitionsin thefile. The
http://www.iona.com/security/wss/policy hamespace identifies
Progress's proprietary XML schema that defines the format of the policy
configuration. In this example, the namespace mapsto the i tsp namespace
prefix.

The sign_by_alice action definition defines an action to sign the SOAP
body of outgoing request messages—see “Overview” on page 392 for
more details.

The encrypt_to_bob action definition defines an action to encrypt the
SOAP body of outgoing request messages.

Theverify from_bob action definition defines an action to verify the
signature appearing on incoming reply messages. The signature would
have been added to the SOAP body by the remote server endpoint.

The decrypt_to_alice action definition defines an action to decrypt the
SOAP body of incoming reply messages.

The message production policy defines asingle rule that defines the
actions to take when the client is sending messages to the server. Given
that the port name of the remote endpoint is SoapPort, the client applies
the following actions to outgoing requests:

i. Encrypt the SOAP body of the message using Bob's public key, and
ii. Signtheencrypted SOAP body using Alice's private key.

The message consumption policy defines asingle rule that defines the
actions to take when the client receives messages from the server. Given
that the port name of the remote endpoint is SoapPort, the client applies
the following actions to incoming replies:

i. Verify the SOAP body of the message using Bob's public key, and
ii. Decrypt the SOAP body using Alice's private key.

Example of WSS Signing and Encryption

Configuring the Server

Overview

Setting up the server keystore

Artix configuration

This subsection describes the configuration of the server from the WSS partial
message protection demonstration. The following topics are discussed:

® Setting up the server keystore.
® Artix configuration.
®* Policy configuration.

The server accesses its own Java keystore, which is set up asfollows:
* Keyentries—contains asingle entry, with the following details:
+ alias—isbob and associated key password iS password.
¢+ private key—Bob's private key.
+ X.509 certificate—containing Bob's public key.

®* Trusted certificate entries—contains a single entry, with the following
details:

. alias—isalice.
¢ X.509 certificate—containing Bob's public key.

For details of how to set up the server’s keystore, see “ Setting Up a Java
Keystore” on page 372.

Example 74 shows the Artix configuration for a server that supports the partial
message protection feature (implemented by the WSS plug-in).

Example 74: Artix Configuration for a PMP Server

include "../../../../../etc/domains/artix.cfg";

secure_artix
{
wsS
{
orb_plugins = ["xmlfile_log_stream", "java"l;
java_plugins = ["wss"];
plugins:wss:classname =
"com.iona.jbus.security.wss.plugin.BusPlugInFactory";
event_log:filters=["MESSAGE_SNOOP=*"];

411

CHAPTER 15 | Partial M essage Protection

[

Palicy configuration

412

Example 74: Artix Configuration for a PMP Server

b5

server
binding:artix:server_message_interceptor list= "wss";

plugins:wss:keyretrieval :keystore: file="%{INSTALL_DIR} /% {PROD
UCT_NAME} /% {PRODUCT VERSION}/demos/security/wss/etc/keys/bob.
jks";

plugins:wss:keyretrieval :keystore: storepass="password" ;

plugins:wss:protection policy:location="file://%${INSTALL_DIR}
/% {PRODUCT_NAME} /% {PRODUCT_ VERSION}/demos/security/wss/etc/se
rver_policy.xml";
}i
g

The preceding Artix configuration can be explained as follows:

1

In addition to loading the WSS plug-in, you must explicitly enable
server-side functionality by installing the wss handler in the server handler
list, as shown here. If there are multiple handlersin thislist, the wss
handler should appear first.

Theplugins:wss:keyretrieval : keystore Settings associate a Java
keystore with the application—see “ Specifying a keystore” on page 379
for details.

Theplugins:wss:protection _policy:location Setting specifiesthe
location of the policy configuration file for the server (discussed next).

Example 75 shows the policy configuration for a server that supports the partial
message protection feature.

Example 75: Policy Configuration File for a PMP Server

<?xml version='1.0' encoding='utf-8'?>
<itsp:ProtectionPolicyType

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:itsp="http://www.iona.com/security/wss/policy">

Example of WSS Signing and Encryption

Example 75: Policy Configuration File for a PMP Server

== ===
<!-- Action definitions -->
<l-- -—>

<!-- Verify the signature on the SOAP Body using Alice's
public key -->
<ActionDef name="verify from alice">
<NameValuePair name="protection">
<Value xsi:type="xXs:string">integrity</Value>
</NameValuePair>
<NameValuePair name="cert_info">
<Value xsi:type="itsp:CertAliasType"
alias="alice"/>
</NameValuePair>
</ActionDef>

<!-- Decrypt the SOAP Body using Bob's private key -->
<ActionDef name="decrypt_ to_bob">
<NameValuePair name="protection">
<Value xsi:type="xs:string">confidentiality</Value>
</NameValuePair>
<NameValuePair name="key info">
<Value xsi:type="itsp:KeyAliasType"
alias="bob" password="password"/>
</NameValuePair>
</ActionDef>

<!-- Sign the SOAP Body using Bob's private key -->
<ActionDef name="sign_by bob">
<NameValuePair name="protection">
<Value xsi:type="Xs:string">integrity</Value>
</NameValuePair>
<NameValuePair name="key info">
<Value xsi:type="itsp:KeyAliasType"
alias="bob" password="password"/>
</NameValuePair>
</ActionDef>

<!-- Encrypt the SOAP Body using Alice's public key -->
<ActionDef name="encrypt to_alice">
<NameValuePair name="protection">
<Value xsi:type="xs:string">confidentiality</Value>
</NameValuePair>
<NameValuePair name="cert_info">
<Value xsi:type="itsp:CertAliasType"

413

CHAPTER 15 | Partial M essage Protection

Example 75: Policy Configuration File for a PMP Server

alias="alice"/>

</NameValuePair>
</ActionDef>
Ell== ==
<!-- Message Production Policy -->
<l— —>

5 <MessageProductionPolicy>
<Rule>
<ConditionSet>

<NameValuePair name="port_name">
<Value xsi:type="xXs:string">SoapPort</Value>

</NameValuePair>

</ConditionSet>

<ActionRef ref="encrypt_to_alice"></ActionRef>

<ActionRef ref="sign by bob"></ActionRef>

</Rule>
</MessageProductionPolicy>

<l—= —-—>
<!-- Message Consumption Policy -->
El== ===
6 <MessageConsumptionPolicy>
<Rule>
<ConditionSet>
<NameValuePair name="port_name">
<Value xsi:type="xXs:string">SoapPort</Value>
</NameValuePair>
</ConditionSet>

<ActionRef ref="verify from alice"></ActionRef>
<ActionRef ref="decrypt_to_bob"></ActionRef>
</Rule>
</MessageConsumptionPolicy>

</itsp:ProtectionPolicyType>

The preceding policy configuration can be described as follows:

1. Theverify from alice action definition defines an action to verify the
signature appearing on incoming request messages—see “ Overview” on
page 392 for more details.

2. Thedecrypt_to_bob action definition defines an action to decrypt the
SOAP body of incoming request messages.

414

Example of WSS Signing and Encryption

The sign_by._bob action definition defines an action to sign the SOAP
body of outgoing reply messages.

The encrypt_to_alice action definition defines an action to encrypt the
SOAP body of outgoing reply messages.

The message production policy defines asingle rule that defines the
actions to take when the server is sending messages back to the client.
Given that the current endpoint has the name, soapport, the endpoint
applies the following actions to outgoing requests:

i. Encrypt the SOAP body of the message using Alice's public key, and
ii. Signthe encrypted SOAP body using Bob's private key.

The message consumption policy defines asingle rule that defines the
actions to take when the server receives messages from aclient. Given that
the current endpoint has the name, soapport, the endpoint applies the
following actions to incoming requests:

i. Verify the SOAP body of the message using Alice's public key, and
ii. Decrypt the SOAP body using Bob's private key.

415

CHAPTER 15 | Partial M essage Protection

Exception Handling

Overview

Configuration errors

Runtimeerrors

416

Security error handling represents an exception to the rule that errors should be
asinformative as possible. Y ou need to take into account that your system might
be under attack and, thus, error messages should not provide information that
would be useful to an attacker. Error handling under these circumstances
represents a compromise between security requirements and diagnostic
requirements.

There are two broad categories of failure that can affect an application secured
by WS-Security:

® Configuration errors—which can render the WSS plug-in inoperable

i Runtime errors—which result in afailed request or response

Configuration errors are typically easy to detect and report. In general, a
configuration error resultsin an immediate exception at plug-in initialization
time (typically, though not necessarily, at Businitialization time, though perhaps
delayed until an interceptor chain is instantiated).

Certain configuration errors, though, can cause an application to fail at alater

stage (for example, if the wrong keystore is accidentally configured). Such
errors are treated as runtime errors.

Runtime errors always yield a SOAP fault exception

(IT_Bus: :FaultException in C++, or

javax.xml . rpc.soap.SOAPFaul tException in Java), which are propagated
back to calling applications (or application clients). The fault codesreturned by a
SOAPFaul tException fall into the following categories:

® WS Security fault codes.
® Progress proprietary fault codes.

W S-Security fault codes

Progress proprietary fault codes

Exception Handling

Table 12 shows the standard WS-Security fault codes and fault strings.

Table 12:

Sandard WSS Fault Codes

Fault Code

Fault String

wsse

:UnsupportedSecurityToken

An unsupported token was provided.

wsse:UnsupportedAlgorithm An unsupported signature or
encryption algorithm was used.
wsse: InvalidSecurity An error was discovered processing

the <wsse: Security> header.

wsse:

InvalidSecurityToken

Aninvalid security token was
provided.

wsse

:FailedAuthentication

The security token could not be
authenticated or authorized.

wsse

:FailedCheck

The signature or decryption was
invalid.

wsse:

SecurityTokenUnavailable

Referenced security token could not
be retrieved.

Table 13 shows the Progress proprietary fault codes and fault strings.

Table 13:

Progress Proprietary Fault Codes

Fault Code

Fault String

iedProtectionRequirement

{http://schemas.iona.com/security/wss}Unsatisf

A protection requirement was not satisfied.

417

CHAPTER 15 | Partial M essage Protection

418

In this chapter

CHAPTER 16

Principal
Propagation

Principal propagation is a compatibility feature of Artix that is
designed to facilitate interoperability with legacy Orbix
applications.

This chapter discusses the following topics:

Introduction to Principal Propagation page 420
Configuring page 421
Programming page 424
Interoperating with .NET page 427

419

CHAPTER 16 | Principal Propagation

Introduction to Principal Propagation

Overview Artix principal propagation is atransport-neutral mechanism that can be used to
transmit a secure identity from aclient to a server. It is not recommended that
you use this feature in new applications. Principal propagation is provided
primarily in order to facilitate interoperability with legacy Orbix applications.

WARNING: By default, the principal is propagated across the wirein
plaintext. Hence, the principal is vulnerable to snooping. To protect against
this possibility, you should enable SSL for your application.

Supported bindings/transports Support for principal propagation is limited to the following bindings and
transports:

® CORBA hinding—the principa is sent in a GIOP service context.
® SOAPover HTTP—the principal is sent in a SOAP header.

Note: If aCORBA call iscolocated, the principal is not propagated unless
you remove the Poa_coloc interceptor from the binding listsin the artix.cfg
file. This has the effect of disabling the CORBA colocated binding
optimization.

Inter oper ability The primary purpose of Artix principa propagation isto facilitate
interoperability with legacy Orbix applications, in particular for applications
running on the mainframe.

Because Artix uses standard mechanisms to propagate the principal, this feature
ought to be compatible with third-party products as well.

420

Configuring

Configuring

Overview

CORBA

SOAP over HTTP

This section describes how to configure Artix to use principal propagation. The
following aspects of configuration are described:

. CORBA.
° SOAP over HTTP.
* Routing.

Note: Principal configuration is not supported for any other bindings, apart
from CORBA and SOAP over HTTP.

To use principal propagation witha CORBA binding, you must set the following
configuration variablesin your artix.cfg file (located in the
ArtixInstallDir/etc/domains directory):

Example 76: Configuring Principal Propagation for a CORBA Binding

policies:giop:interop_policy:send_principal = "true";
policies:giop:interop_policy:enable principal_ service_context =
"true";

Y ou can either add these settings to the global scope or to a specific sub-scope
(in which case you must specify the sub-scope to the -Busname command line
switch when running the Artix application).

By default, the Artix SOAP binding will always add a principal header. The
following cases arise:

®* Principal set explicitly—the specified principal is sent in the principal
header.

®* Principal not set—Artix reads the username from the operating system and
sends this username in the principal header.

421

CHAPTER 16 | Principal Propagation

422

If you use a SOAP 1.2 binding and you want a SOAP client to propagate a
CORBA Principal to the target server, you must add some settingsto the client’s
configuration, as shown in Example 77.

Example 77: Configuring Principal Propagation for SOAP in the Client

Artix Configuration File
orb_plugins = ["xmlfile_log_stream", "artix security", ...];

binding:artix:client_request_interceptor list =
"security+principal_context";

If you want a SOAP server to authenticate a propagated principal using the Artix
security service, you need to add some settings to the server’s configuration
scopeinyour artix.cfg file, as shown in Example 78.

Example 78: Configuring Principal Authentication for SOAP in the Server

Security Layer Settings

policies:asp:enable authorization = "true";

plugins:is2_authorization:action_role mapping =
"file://C:\artix/artix/1.2/demos/secure_hello_world/http_soap
/config/helloworld_action_role mapping.xml";

plugins:asp:authorization_realm = "IONAGlobalRealm";

plugins:asp:security level = "REQUEST LEVEL";

plugins:asp:default_password = "default_password";

binding:artix:server request_interceptor list =
"principal_ context+security";

Setting plugins:asp:security_level equal t0 REQUEST LEVEL specifies that
the received principal serves as the username for the purpose of authentication.
The plugins:asp:default_password vValue serves as the password for the
purpose of authentication. This latter setting is necessary because, although the
Artix security service requires a password, there is no password propagated with
the principal .

WARNING: The procedure of supplying a default password for the principal
enables you to integrate principals with the Artix security service. Users
identified in this way, however, do not have the same status as properly
authenticated users. For security purposes, such users should enjoy lesser
privileges and be treated in the same way as unauthenticated users.

Configuring

The server_request_interceptor_list Setting is needed for the case where
the CORBA Principal is transmitted inside a SOAP 1.2 message header.

The net effect of the configuration shown in Example 78 isthat the SOAP server
performs authentication by contacting the central Artix security service. See also
“Security Layer” on page 49 and “ Configuring the Artix Security Service” on
page 235 for more details about configuring the Artix security service.

Routing The Artix router automatically propagates the Principal from the route source to
the route destination, as long as the bindings in the route are either CORBA or
SOAP/HTTP.

423

CHAPTER 16 | Principal Propagation

Programming

Overview This section describes how to program an Artix client and server to set (client
side) and get (server side) a principal value.
The code examples are written using the contexts API. For more details about
contexts, see Developing Artix Applicationsin C++.

Client example Example 79 shows how to set the principal prior to invoking an operation,
echostring (), ON aproxy object, of MyProxy type.

Example 79: Setting a Principal on the Client Sde

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the bus-security context
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/context_constants.h>

IT_USING_NAMESPACE_STD

using namespace IT_ContextAttributes;
using namespace IT Bus;

int
main (int argc, char* argvl[])
{

try

{

IT Bus::Bus_var bus = IT Bus::init(argc, argv);

ContextRegistry* context_registry =
bus->get_context_registry() ;

// Obtain a reference to the ContextCurrent

ContextCurrent& context_current =
context_registry->get_current () ;

424

Programming

Example 79: Setting a Principal on the Client Sde

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.request_contexts() ;

// Set the principal context value

IT Bus::String principal ("artix_user") ;

context_container->set_context_as_string(
PRINCIPAIL,_CONTEXT ATTRIBUTE,
principal

) g

// Invoke the remote operation, echoString/()
MyProxy echo_proxy;
echo_proxy.echoString ("Echo me!")
}
catch (IT Bus: :Exception& e)
{
cout << endl << "Error : Unexpected error occured!"
<< endl << e.message()
<< endl;
return -1;
}

return 0;

The preceding code can be explained as follows:

1

Call IT_Bus: :ContextContainer: :set_context_as_string() tO
initialize the string value of the principal context. The

IT ContextAttributes::PRINCIPAL,_CONTEXT ATTRIBUTE constantisa
QName constant, initialized with the context name of the pre-registered
principal context.

425

CHAPTER 16 | Principal Propagation

Server example Example 80 shows how to read the principal on the server side, when the servant
isinvoked by aclient that uses principal propagation.

Example 80: Reading the Principal on the Server Sde

// C++
// in operation
void MyImpl::echoString(const IT Bus::String& inputString,
IT Bus::String& Response)

IT _THROW_DECL ((IT_Bus: :Exception))
{

Response = inputString;

try {

IT Bus::Bus_var bus = IT Bus::Bus::create reference();

ContextRegistry* context_ registry =
bus->get_context_registry() ;

// Obtain a reference to the ContextCurrent
ContextCurrent& context_current =
context_registry->get_current () ;

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.request_contexts() ;

// Obtain a reference to the context
1 IT Bus::String & principal =
context_container->get_context_as_string(
PRINCIPAL CONTEXT ATTRIBUTE,
) g

}
catch (IT Bus: :Exception& e) { ... }

The preceding server example can be explained as follows:

1. TheIT Bus::ContextContainer::get_context_as_string() function
returns the principal value that was extracted from the received request
message.

426

Interoperating with .NET

|nteroperating with .NET

Overview If your Artix applications must interoperate with other Web service products, for
example .NET, you need to modify your WSDL contract in order to make the
principal header interoperable. This section describes the changes you can make
to aWSDL contract to facilitate interoperability with other Web services

platforms.
In this section This section contains the following subsections:
Explicitly Declaring the Principal Header page 428
Modifying the SOAP Header page 430

427

CHAPTER 16 | Principal Propagation

Explicitly Declaring the Principal Header

Overview Artix applications do not require any modifications to the WSDL contract in
order to use principal headers. An Artix serviceisinherently ableto read auser's
principal from areceived SOAP header.

In contrast to this, non-Artix services, for example, .NET services, require the
principal header to be declared explicitly in the WSDL contract. Otherwise, the
non-Artix services would be unable to access the principal.

Declaring the principal header in ~ Example 81 showsthe typical modifications you must maketo aWSDL contract
WSDL in order to make the principal value accessible to non-Artix applications.

Example 81: WSDL Declaration of the Principal Header

<definitions ... >
<types>
<schema targetNamespace="TypeSchema" ... >
1 <element name="principal" type="xsd:string"/>
</schema>
</type>
2 <message targetNamespace="http://schemas.iona.com/security"
name="principal">
3 <part element="TypePrefix:principal" name="principal"/>
</message>
4 <binding ... xmlns:sec="http://schemas.iona.com/security">
5 <operation ...>
<input>
<soap:body ...>
6 <soap:header message="sec:principal”
part="principal" use="literal">
</input>
</operation>
</binding>
</definitions>

428

Interoperating with .NET

The preceding WSDL extract can be explained as follows:

1

Declare aprincipal element in the type schema, which must be declared
to be of type, xsd:string. Inthisexample, the principal element
belongs to the Typeschema namespace.

Add anew message element.

The <part> tag's element attributeis set equal to the QName of the
preceding principal element. Hence, in this example the Typerrefix
appearing in element=""TypePrefix:principal" must be a prefix
associated with the Typeschema namespace.

Edit the binding, or bindings, for which you might need to access the
principal header. Y ou should define a prefix for the
http://schemas.iona.com/security Namespace within the <binding>
tag, which in this exampleis sec.

Edit each operation for which you might need to access the principal
header.

Add a <soap:header> tag to the operation’ s input part, as shown.

429

CHAPTER 16 | Principal Propagation

Modifying the SOAP Header

Overview

Default SOAP header

Custom SOAP header

WSDL modifications

430

It is possible to change the default format of the principal header by making
appropriate modifications to the WSDL contract. It is usually not necessary to
modify the header format in this way, but in some casesit could facilitate
interoperability.

By default, when aclient uses principa propagation with SOAP over HTTP, the
input message sent over the wire includes the following form of header:

<SOAP-ENV:Header>
<sec:principal xmlns:sec="http://schemas.iona.com/security"
xsi:type="xsd:string">my principal</sec:principal>
</SOAP-ENV : Header>

Y ou can change the form of the SOAP header that is sent over the wire to have
the following custom format (replacing <sec:principal> by acustom tag,
<sec: PrincipalTag>):

<SOAP-ENV : Header>
<sec:PrincipalTag
xmlns:sec="http://schemas.iona.com/security"
xsi:type="xsd:string">my principal</sec:PrincipalTag>
</SOAP-ENV : Header>

To change the tag that is sent in the SOAP header to be principalTag, you can
modify your WSDL contract as shown in Example 82.

Example 82: Customizing the Form of the Principal Header

<definitions ... >
<types>
<schema targetNamespace="TypeSchema" ... >

<element name="PrincipalTag" type="xsd:string"/>

</schema>
</type>

Interoperating with .NET

Example 82: Customizing the Form of the Principal Header

<message targetNamespace="http://schemas.iona.com/security"
name="principal">
<part element="TypePrefix:PrincipalTag"
name="principal"/>

</message>
<binding ... xmlns:sec="http://schemas.iona.com/security">
<operation ...>
<input>
<soap:body ...>
<soap:header message="sec:principal"
part="principal" use="literal">
</input>
</operation>
</binding>
</definitions>

The preceding WSDL extract can be explained as follows:

1

Modify the principal element in the type schemato giveit an arbitrary
QName. In this example, the <pPrincipalTag> element belongsto the
TypeSchema NAaMespace.

The <part> tag's element attributeis set equal to the QName of the
preceding principal element. Hence, in this example the Typerrefix
appearing in element="TypePrefix: PrincipalTag" must be aprefix
associated with the Typeschema namespace.

The <soap:header> tag must be defined precisely as shown here. That is,
when writing or reading a principal header, Artix looks for the principal
part of the message with QName, principal, in the namespace,

http://schemas.iona.com/security.

431

CHAPTER 16 | Principal Propagation

432

In this chapter

CHAPTER 17

Bridging between
SOAP and CORBA

When a secure SOAP application interoperates with a secure
CORBA application, it is often necessary to transform credentials
between the two applications. For example, you might need to
transform WSS username/password credentials embedded in a
SOAP header into CSl username/password credential s embedded

ina GIOP header.

This chapter discusses the following topics:

SOAP-to-CORBA Scenario page 434
Single Sign-On SOAP-to-CORBA Scenario page 450
CORBA-to-SOAP Scenario page 457

433

CHAPTER 17 | Bridging between SOAP and CORBA

SOAP-to-CORBA Scenario

Overview This section describes how to integrate a secure SOAP client with a secure
CORBA server, by interposing a suitably configured SOAP-to-CORBA Artix
router. The router transforms the SOAP client’s WSS username and password
credentials into CSI/GSSUP credentials for the CORBA server.

In this section This section contains the following subsections:
Overview of the Secure SOAP-to-CORBA Scenario page 435
SOAP Client page 437
SOAP-to-CORBA Router page 441
CORBA Server page 447

434

SOAP-to-CORBA Scenario

Overview of the Secure SOAP-to-CORBA Scenario

Overview This subsection describes a secure SOAP-to-CORBA scenario, where the router
is configured to integrate SOAP security with CORBA security. The key
functionality provided by the router in this scenario is the ability to extract
SOAP credentials (provided in the form of a WSS username and password) and
propagate them as CORBA -compatible GSSUP credentials.

SOAP-to-CORBA scenario Figure 41 shows the outline of a scenario where WSS username and password
credentials, embedded in a SOAP header, are transformed into GSSUP
credentials, embedded in a GIOP service context.

Figure4l: Propagating Credentials Across a SOAP-to-CORBA Router

SOAP Client SOAP-to-CORBA Router ® CORBA Server

u/p/d| [SAML
A

Artix Security Service

435

CHAPTER 17 | Bridging between SOAP and CORBA

Steps The steps for propagating credential s across the SOA P-to-CORBA router, as
shown in Figure 41, can be described as follows:

Stage Description

1 | Theclientinitializesthe WSS username and password credentials,
u/p, and sends these credentials, embedded in a WSS SOAP
header, across to the router.

2 | Therouter extracts the received WSS username and password
credentials, u/p, and transfers them into GSSUP credentials,
consisting of username, password and domain, u/p/d. The
username and password are copied straight into the GSSUP
credentials. The domain is set to a blank string (which actsas a
wildcard that matches any domain).

3 | The GSSUP credentials, u/p/d, are sent on to the CORBA server
using the CSl authentication over transport mechanism.

4 | The CORBA server authenticates the received GSSUP credentials,
u/p/d, by calling out to the Artix security service (thisstep is
performed automatically by the gsp plug-in).

Demonstration code Demonstration code for this SOAP-to-CORBA scenario is available from the
following location:

ArtixInstallDir/samples/security/secure_soap_corba

Enabling GSSUP propagation To enable GSSUP propagation (where received username and password
credentials are inserted into the outgoing GSSUP credentials by the router), set
the following router configuration variable to true:

policies:bindings:corba:gssup_propagation = "true";

436

SOAP-to-CORBA Scenario

SOAP Client

Overview

Choice of credentials

Setting the WSS username and
password

When making an invocation, the SOAP client sends username and password
credentials in a SOAP header (formatted according to the WSS standard). This
section describes how to program and configure a SOAP client to send WSS
username and password credentials.

In this example, the SOAP client is programmed to send username/password
credentials in the SOAP header. It is aso possible, however, to send
username/password credentials in the HTTP header, using the HTTP Basic
Authentication mechanism. The propagation mechanism in the router supports
either type of credentials.

Example 83 shows how you can program a SOAP client to send username and
password credentials using the WSS standard.

Example 83: SOAP Client Setting WSS Username/Password Credentials

// C++

#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/context_constants.h>
#include <it_bus_pdk/context_attrs/bus_security xsdTypes.h>

#include "HelloWorldClient.h"
IT USING_NAMESPACE_STD

using namespace HW;
using namespace IT Bus;
using namespace IT ContextAttributes;

int
main(int argc, char* argv([])
{
try
{
IT Bus::init (argc, argv);

Bus* bus = Bus::create_reference() ;
ContextRegistry* registry = bus->get_context_registry() ;

437

CHAPTER 17 | Bridging between SOAP and CORBA

438

Example 83: SOAP Client Setting WSS Username/Password Credentials

ContextCurrent& current = registry->get_current();
ContextContainer* request_contexts =
current.request_contexts() ;

HelloWorldClient client;

BusSecurity* security attr;

String* username;

String* token;

String string_ out;

AnyType* output_attr = request_ contexts->get_context (
SECURITY_ SERVER_CONTEXT,
true

)7

security attr = dynamic_cast<BusSecurity*> (output_attr);
security attr->setWSSEUsernameToken ("user_test");
security_attr->setWSSEPasswordToken ("user_password") ;
client.sayHi (string_out) ;

}
catch (IT Bus: :Exception& e)
{
// Handle exception (not shown)
return -1;
}

return 0;

The preceding client code can be explained as follows:

1.

The following four lines contain the standard steps for obtaining a pointer
to the request context container object, request_contexts. The request
context container object contains a collection of context objects, which
contain various settings that can influence the next invocation request.
For more details about Artix contexts, see the contexts chapter from
Developing Artix Applicationsin C++.

Obtain a pointer to the BusSecurity context object from the request
context container. The BusSecurity context is selected by passing the
QName constant, IT_ContextAttributes: : SECURITY_SERVER_CONTEXT,
asthefirst parameter to get_context (). The second parameter to
get_context (), With the boolean value true, indicates that a new
BusSecurity instance should be created, if one does not already exist.

Client configuration

SOAP-to-CORBA Scenario

3. Cast thereturn value from get_context () to the
IT_ContextAttributes::BusSecurity type.

4. Cdl the setwWsSEUsernameToken () and setWSSEPasswordToken ()
functionsto specify the credentials to send with the next invocation. In this
example the username and password are sent in the SOAP header and
formatted according to the WSS standard.

5. Invoke the remote WSDL operation, sayHi. The specified username and

password are propagated in the SOAP header along with thisinvocation
request.

Example 84 shows the configuration of the SOAP client in this scenario, which
usesthe secure_artix.secure_soap_corba.client.gssup configuration
scope.

Example 84: SOAP Client Configuration

Artix Configuration File

secure_artix
{
secure_soap_corba
{
initial_references:IT SecurityService:reference =
"corbaloc:it_iiops:1.2@localhost:58482/IT SecurityService";

client
{
Secure HTTPS client-side configuration
policies:https:trusted ca_ list policy =
"C:\artix_30/artix/3.0/demos/security/certificates/tls/x509/t
rusted _ca_lists/ca_listl.pem";
policies:https:client_secure_invocation policy:requires
= ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];
policies:https:client_secure_invocation policy:supports
= ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth method id = "pkcsl2_file";

439

CHAPTER 17 | Bridging between SOAP and CORBA

440

Example 84: SOAP Client Configuration

iy

principal_sponsor:auth method data =
["filename=C:\artix_ 30/artix/3.0/demos/security/certificates/
openssl/x509/certs/testaspen.pl2", "password=testaspen"];
gssup
{
orb_plugins = ["xmlfile log_stream", "https",
"artix security"];
binding:artix:client_request_interceptor list =
"security+principal context";
B g
Y

The preceding client configuration can be explained as follows:

1

The trusted CA list policy specifies alisted of trusted CA certificates.
During the SSL handshake, the client checks that the server’s certificateis
signed by one of the CA certificates from thislist.

The client’ sSHTTPS security policies reguire that connections are secure
and the server identifiesitself by sending an X.509 certificate.

Because this client supports mutual SSL authentication, the principal
Sponsor settings are used to associate an X.509 certificate with the client
application.

Thereisno need to list al of the requisite plug-ins explicitly in the
orb_plugins list. In particular, Artix loads the at_http plug-in and the
https plug-in implicitly, because the client connects to a remote WSDL
service that requires HTTPS (the SOAP address that appears in the WSDL
contract startswith the https: // prefix).

If you use a SOAP 1.2 binding, it is also necessary to include the
artix_security plug-in and to configure the client request interceptor list
as shown.

SOAP-to-CORBA Scenario

SOAP-to-CORBA Router

Overview

Transferring credentials from
SOAP to CORBA

The SOAP-to-CORBA router receivesincoming SOAP/HTTP requests,
trandates them into 11OP requests and then forwards them on to a CORBA
server. In addition to trandating requests, the router is also configured to transfer
the incoming username/password credential s (embedded in a SOAP header) into
outgoing CSI credentials (embedded in a GIOP service context). Hence, the
SOAP-t0-CORBA router enables interoperation of SOAP/HTTP security with
CORBA security.

Thetransfera of credentials from SOAP to CORBA obeys the following
semantics:

Extracting username/password credential s—the router can extract either

WSS username/password from the SOAP header or username/password

from the HTTP header. If username/password credentials are sent in both

headers, you can influence the priority by setting the

plugins:asp:security level configuration variable to one of the

following values:

¢+ REQUEST LEVEL—(ive priority to the WSS username and password
from the SOAP header.

¢+ MESSAGE_LEVEL—(ive priority to the username and password from
the HTTP header.

The username and password credentials are inserted into GSSUP

credentials, which are transmitted using the CSl authentication over

transport mechanism.

The domain name in the GSSUP credentialsis set to an empty string

(which acts as awildcard that matches any domain).

The router does not attempt to authenticate the GSSUP credentials. Hence,

the router does not call the Artix security service.

The GSSUP credentials are used for asingle invocation only.

Note: Internaly, the GSSUP credentials are set using the

IT CSI::CSICurrent3::set_effective_own_gssup_credentials_info()

function.

441

CHAPTER 17 | Bridging between SOAP and CORBA

Router WSDL contract Example 85 shows the WSDL contract for the SOAP-to-CORBA router.

Example 85: SOAP-to-CORBA Router WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="HelloWorldService"
targetNamespace="http://xmlbus.com/HelloWorld"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:corba="http://schemas.iona.com/bindings/corba"

xmlns:soap="http: //schemas.xmlsoap.org/wsdl/soap/"
>

<types>

</types>

<portType name="HelloWorldPortType">

</portType>

<binding name="HelloWorldPortBinding"
type="tns:HelloWorldPortType">

</binding>

<binding name="CORBAHelloWorldBinding"
type="tns:HelloWorldPortType">

</binding>

1 <service name="HelloWorldService">
<port binding="tns:HelloWorldPortBinding"
name="HelloWorldPort">

2 <soap:address location="https://localhost:8085"/>
</port>
</service>
3 <service name="CORBAHelloWorldService">

<port binding="tns:CORBAHelloWorldBinding"
name="CORBAHel loWorldPort">
4 <corba:address
location="file:../../corba/server/HelloWorld.iox"/>
<corba:policy/>
</port>
</service>

442

SOAP-to-CORBA Scenario

Example 85: SOAP-to-CORBA Router WSDL Contract

<ns2:route name="rl">
<ns2:source port="HelloWorldPort"
service="tns:HelloWorldService"/>
<ns2:destination port="CORBAHelloWorldPort"
service="tns:CORBAHelloWorldService"/>
</ns2:route>

</definitions>

The preceding router WSDL contract can be explained as follows:

1

The HellowWorldservice specifiesa SOAP/HTTP endpoint for the
HelloWorldPortType port type.

The SOAP/HTTP endpoint has the address, https://localhost:8085
(you might want to change thisto specify the actual name of the host where
the router is running).

Note: The secure HTTPS protocol is used here (asindicated by the
https prefix in the URL).

The corBaHel loworldsService Specifiesa CORBA endpoint for the
HelloWorldPortType port type.

The location of the CORBA endpoint is given by a stringified
interoperable object reference (I0OR), which is stored in thefile,
HelloWorld.ior. The CORBA server is programmed to create thisfile as
it starts up.

Note: A more sophisticated aternative for specifying the CORBA
endpoint would be to use the CORBA Naming Service.

The route element sets up aroute as follows:

+ The source endpoint (which receives incoming requests) is the
SOAP/HTTP endpoint, HelloworldPort.

+ Thedestination endpoint (to which the router sends outgoing
requests) is the CORBA endpoint, CORBAHelloWorldPort.

443

CHAPTER 17 | Bridging between SOAP and CORBA

Router configuration Example 86 shows the configuration of the router in this scenario, which uses
the secure_artix.secure_soap_corba.switch.gssup configuration scope.

Example 86: SOAP-to-CORBA Router Configuration

Artix Configuration File

secure_artix
{
secure_soap_corba
{
initial_references:IT SecurityService:reference =
"corbaloc:it_iiops:1.2@localhost:58482/IT_ SecurityService";

switch

{
A
required for token propagation

iiop_tls config

1 policies:iiop_tls:trusted ca_list policy =
"C:\artix_30/artix/3.0/demos/security/certificates/tls/x509/t
rusted ca_lists/ca_listl.pem";

2 policies:iiop_tls:client_secure_invocation policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"] ;

policies:iiop_tls:client_secure_ invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

3 principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth method id = "pkcsl2_file";
principal_sponsor:auth _method _data =

["filename=router_cert.pl2", "password_file=router_ cert.pwf"];

csi auth config
4 policies:csi:auth_over transport:client_supports =
["EstablishTrustInClient"];
policies:csi:attribute _service:client_supports =
["IdentityAssertion"];

#binding/plugin list
5 orb plugins = ["xmlfile_log_stream", "iiop_ profile",
"giop", "iiop_tls", "routing", "gsp", "artix security"];
binding:artix:server_ request_interceptor_list =
"principal_context+security";

SOAP-to-CORBA Scenario

Example 86: SOAP-to-CORBA Router Configuration

policies:asp:enable security = "false";
policies:asp:enable_authorization = "false";
plugins:routing:wsdl_url="../../etc/router.wsdl";

Secure HTTPS server-side settings
policies:https:trusted ca_ list policy =
"C:\artix_30/artix/3.0/demos/security/certificates/openssl/x5
09/ca/cacert.pem";
policies:https:target_secure_invocation policy:requires
= ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];
policies:https:target_secure_invocation policy:supports
= ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

gssup
{
FHE R R R
flags to control credential propagation
policies:bindings:corba:token propagation="false";
policies:bindings:corba:gssup_propagation="true";
FHE R R

The preceding router configuration can be explained as follows:

1

Thistrusted CA list policy specifiesthe CA certificates that are used to
check certificates received from the CORBA server during the SSL/TLS
handshake.

This policy specifies that the router can only open secure I|OP/TLS
connections to CORBA servers.

The principal sponsor settings associate an X.509 certificate with the Artix
router.

CSl provides two different mechanisms for transporting credentials, both
of which are supported by the router:

445

CHAPTER 17 | Bridging between SOAP and CORBA

446

+ Authorization over transport—transfers credentialsin the form of a
username, password and domain name. This is the mechanism used
in the current scenario.

¢ ldentity assertion—transfers credentials in the form of an asserted
identity. Thisis the mechanism that is used in combination with
single sign-on—see “ Single Sign-On SOAP-to-CORBA Scenario”
on page 450.

The iiop_t1s plug-in enables secure IIOP/TLS communication. The

at_http plug-in and the https plug-in are loaded implicitly, because they

arerequired by the Helloworldservice servicein the WSDL contract.

If you use a SOAP 1.2 binding, you must include the artix_security

plug-in, as shown. In this case, you must also initialize the server request

interceptor list and disable authentication and authorization, as shown in

the following lines. The Artix security plug-in is needed only for the

purpose of extracting security credentials from the SOAP 1.2 headers. The

authentication and authorization features are not needed here.

This line specifies the location of the router WSDL contract.

The token propagation option is disabled in this scenario.

The GSSUP propagation option is enabled in this scenario. Thisisthe key

setting for enabling security interoperability. The CORBA binding extracts

the username and password credentials from incoming SOAP/HTTP

invocations and inserts them into an outgoing GSSUP credentials object, to

be transmitted using CSI authentication over transport. The domain name

in the outgoing GSSUP credentialsis set to a blank string.

SOAP-to-CORBA Scenario

CORBA Server

Overview In this scenario, the CORBA server must be configured to accept GSSUP
credentials through the CSI authentication over transport mechanism. This
subsection describes how to configure the CORBA server to authenticate the
received CSI credentials.

Server configuration Example 87 shows the configuration of the CORBA server in this scenario,
wﬂﬂChuSESthesecure_artix.secure_soap_corba.server.gssup

configuration scope.

Example 87: CORBA Server Supporting GSSUP Credentials

secure_artix
{
secure_soap_corba
{
initial_references:IT SecurityService:reference =
"corbaloc:it_iiops:1.2@localhost:58482/IT SecurityService";

server
{
binding/plugin list
orb_plugins = ["local_log_stream", "iiop_profile",
"giop", "iiop_tls", "gsp"l:
binding:server binding list = ["CSI+GSP", "CSI", "GSP"];

disable authorization

1 plugins:gsp:enable authorization="false";
2 # disable client side caching
plugins:gsp:authentication_cache_size = "-1";
plugins:gsp:authentication_cache_timeout = "0";

csi auth config
3 policies:csi:auth_over_ transport:server domain_name =
"PCGROUP" ;
policies:csi:attribute service:target_ supports =
["IdentityAssertion"];

447

CHAPTER 17 | Bridging between SOAP and CORBA

448

Example 87: CORBA Server Supporting GSSUP Credentials

iiop_tls config

policies:iiop_tls:trusted_ca_list_policy =

"C:\artix_30/artix/3.0/demos/security/certificates/tls/x509/t

rusted ca_lists/ca_listl.pem";

policies:iiop_tls:target_secure_ invocation_policy:supports =

policies:iiop_tls:target_secure_invocation policy:requires

iy

["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

["Integrity", "Confidentiality", "DetectReplay",

"DetectMisordering", "EstablishTrustInClient"];
principal_sponsor:use_principal_sponsor = "true";
principal_sponsor:auth _method id = "pkcsl2_file";
principal_ sponsor:auth_method data =

["filename=server_cert.pl2", "password_file=server_ cert.pwf"];

Configuration required for Token propagation.
plugins:gsp:accept_asserted_authorization info =
"false";

Configuration required for GSSUP propagation.
policies:csi:auth_over transport:target_requires =
["EstablishTrustInClient"];
policies:csi:auth_over transport:target_supports =
["EstablishTrustInClient"];
}i

Y

The preceding server configuration can be described as follows:

1

In this example, authorization is disabled for smplicity. Y ou can enable
authorization, however, if your application requiresit.

Y ou might want to disable client side caching for testing purposes (this
would force the server to contact the security service with every
invocation). Normally, however, you should |eave these lines commented
out, as shown here. Client caching improves performance considerably.

If needed for authorization purposes, you can set the domain name here.
These settings for the I|OP/TL S target secure invocation policy ensure that
the server accepts only secure connections. The server also requiresthe
EstablishTrustInClient association option, which impliesthat clients
must provide an X.509 certificate during the SSL/TLS handshake.

SOAP-to-CORBA Scenario

The principal sponsor settings associate an X.509 certificate (in PK CS#12
format) with the CORBA server.

If the server receives credentials in the form of an SSO token, this setting
ensures that the server re-authenticates the token, instead of relying on
SAML data propagated with the request.

These CSI authorization over transport policies require clientsto provide
GSSUP credentials, which contain a username, password and domain
name. The gsp plug-in is then responsible for contacting the Artix security
service to authenticate these credentials.

449

CHAPTER 17 | Bridging between SOAP and CORBA

Single Sign-On SOAP-to-CORBA Scenario

Overview This section describes how to integrate a single sign-on SOAP client with a
secure CORBA server, by interposing a suitably configured SOAP-to-CORBA
Artix router.
In this section This section contains the following subsections:
Overview of the Secure SSO SOAP-to-CORBA Scenario page 451
SSO SOAP Client page 453
SSO SOAP-to-CORBA Router page 455

450

Single Sign-On SOAP-to-CORBA Scenario

Overview of the Secure SSO SOAP-to-CORBA Scenario

Overview

SSO SOAP-to-CORBA scenario

This subsection describes a variation of the secure SOAP-to-CORBA scenario,
where the client is configured to use single sign-on (SSO). In this scenario, the
client authenticates the username and password with the login service prior to
sending an invocation to the router. Instead of sending username and password
credentials to the router, the client sends the SSO token it received from the
login service. The router can then be configured to propagate the SSO token to
the remote CORBA server.

Figure 42 shows the outline of a scenario where an SSO token, embedded in a
SOAP header, is transformed into a CSl identity token, embedded in a GIOP
header (GIOP service context).

Figure42: Propagating an SSO Token Across a SOAP-to-CORBA Router

SOAP Client SOAP-to-CORBA Router ®@ CORBA Server

CSl identity layer

Login . . .
Seriice IAmx Security SennceJ

451

CHAPTER 17 | Bridging between SOAP and CORBA

Steps The steps for propagating credential s across the SOA P-to-CORBA router, as
shown in Figure 41, can be described as follows:

Stage Description

1 | Whensingle sign-on is enabled, the client calls out to thelogin
service, passing in the client’s WSS credentials, u/p, in order to
obtain an SSO token.

2 | When theclient invokes an operation on the router, the SSO token,
t, is sent as the password in the WSS credentials.

3 | Therouter extractsthe username, u, and the SSO token, t, from the
received WSS credentials and then inserts the username into the
outgoing CSI identity token.

Note: Therouter should not attempt to authenticate the received
SSO token. In the current example, authentication does not occur,
because the router does not load the artix_security plug-in.

4 | Theusername, u, is sent on to the CORBA server using the CSI
identity assertion mechanism. The SSO token, t, is transmitted to
the CORBA server in a proprietary GIOP service context.

5 | The CORBA server re-authenticates the client’s SSO token, t, by
calling out to the Artix security service. The return value contains
the SAML role and realm data for the token.

Demonstration code Demonstration code for the SSO SOAP-to-CORBA scenario is available from
the following location:

ArtixInstallDir/samples/security/secure_soap_corba

Enabling token propagation To enable SSO token propagation (where received SSO tokens are inserted into
the outgoing CSlI identity token by the router), set the following router
configuration variable to true:

policies:bindings:corba:token propagation = "true";

452

Single Sign-On SOAP-to-CORBA Scenario

SSO SOAP Client

Overview

SSO client configuration

This subsection describes how to configure a SOAP client to use single sign-on.
Theinitial client credentials are aWSS username and password (programmed as
shown in “ Setting the WSS username and password” on page 437). After
contacting the login service, however, the client uses an SSO token asits
credentials for subsequent invocations.

Example 88 shows the configuration of the single sign-on SOAP client, which
uSESthesecure_artix.secure_soap_corba.client.tokenConﬁgurdjon
scope.

Example 88: Sngle Sgn-On SOAP Client Configuration
Artix Configuration File

secure_artix
{
secure_soap_corba
{
initial_references:IT SecurityService:reference =
"corbaloc:it_iiops:1.2@localhost:58482/IT SecurityService";

client
{
Secure HTTPS client-side configuration
policies:https:trusted ca_list policy =
"C:\artix_30/artix/3.0/demos/security/certificates/tls/x509/t
rusted_ca_lists/ca_listl.pem";
policies:https:client_secure_invocation_policy:requires
= ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];
policies:https:client_secure_invocation_policy:supports
= ["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

principal_sponsor:https:use_principal_sponsor = "true";

principal_sponsor:https:auth_method_id = "pkcsl2_file";

principal_sponsor:https:auth_method_data =
["filename=C:\artix 30/artix/3.0/demos/security/certificates/
openssl/x509/certs/testaspen.pl2", "password=testaspen"];

453

CHAPTER 17 | Bridging between SOAP and CORBA

Example 88: Single Sgn-On SOAP Client Configuration

token

{
1 orb_plugins = ["xmlfile log_stream",
"login client", "https", "artix security"];
2 binding:artix:client_request_interceptor_ list=
"login_client+security+principal_context";
3 bus:initial_contract:url:login_service =

../../wsdl/login_service.wsdl";
iy
¥
17

The preceding configuration can be explained as follows:

1. Toenablethesingle sign-on functionality in the client, add the
login_client plug-into thelist of ORB plug-ins.

If the client uses a SOAP 1.2 binding, it is also necessary to include the
artix_security plug-ininthe orb_plugins list.

2. Itisasonecessary to add login_client to the Artix client request
interceptor list (the single sign-on functionality isimplemented by a client
request interceptor).

If the client uses a SOAP 1.2 binding, it is also necessary to include the
security and principal_context interceptorsin the order shown.

3. Thebus:initial contract:url: login_service variable specifi esthe

location of the login service’sWSDL contract. This contract contains the
address of the login service endpoint.

454

Single Sign-On SOAP-to-CORBA Scenario

SSO SOAP-to-CORBA Router

Overview

Transferring credentials from
SOAP to CORBA

SSO router configuration

The single sign-on SOAP-to-CORBA router is configured similarly to the
normal SOAP-to-CORBA router (“ SOAP-to-CORBA Router” on page 441),
except that the CORBA binding is configured to enable token propagation
instead of GSSUP propagation.

Thetransferal of credentials from SOAP to CORBA in the single sign-on

scenario obeys the following semantics:

® The SSO token credentials are inserted into a proprietary GIOP service
context, which is transmitted in the header of the outgoing IIOP/TLS
message.

. The router does not attempt to authenticate the SSO token. Hence, the
router does not call the Artix security service.

® TheSSO tokenisused for asingleinvocation only.

Example 89 shows the configuration of the single sign-on router, which usesthe
secure_artix.secure_soap_corba.switch.token configuration scope

Example 89: Sngle Sgn-On SOAP-to-CORBA Router Configuration

Artix Configuration File
secure_artix
{
secure_soap_corba
{
initial_references:IT SecurityService:reference =
"corbaloc:it_iiops:1.2@localhost:58482/IT SecurityService";

switch
{
Common configuration

policies:csi:attribute service:client_ supports =
["IdentityAssertion"];

token

455

CHAPTER 17 | Bridging between SOAP and CORBA

456

Example 89: Single Sign-On SOAP-to-CORBA Router Configuration

{
policies:bindings:corba:token_propagation="true";
policies:bindings:corba:gssup_propagation="false";

The preceding router configuration can be explained as follows:

1

Therest of the secure_artix.secure_soap_corba.switch scopeisthe
same as the scenario without single sign-on. See “ SOAP-to-CORBA
Router” on page 441 for details.

Thislineis of particular importance for the single sign-on scenario. It
enables the CSI identity assertion mechanism, which is needed to transmit
the SSO token to the CORBA server.

The token propagation option is enabled in this scenario. Thisisthe key
setting for enabling security interoperability. The CORBA binding extracts
the SSO token from incoming SOAP/HTTP invocations and inserts the
token into an outgoing |1OP request, to be transmitted using CSl identity
assertion.

The GSSUP propagation option is disabled in this scenario.

CORBA-to-SOAP Scenario

CORBA-t0o-SOAP Scenario

Overview

In thissection

This section describes how to integrate a secure CORBA client with a secure
SOAP server, by interposing a suitably configured CORBA-to-SOAP Artix
router. The router transforms the CORBA client’s CSI/GSSUP credentials
(consisting of username, password, and domain) into WSS credentials
(consisting of username and password) for the SOAP server.

This section contains the following subsections:

Overview of the Secure CORBA-to-SOAP Scenario page 458
CORBA Client page 460
CORBA-to-SOAP Router page 462
SOAP Server page 468

457

CHAPTER 17 | Bridging between SOAP and CORBA

Overview of the Secure CORBA-t0-SOAP Scenario

Overview This subsection describes a secure CORBA-to-SOAP scenario, where the router
is configured to integrate CORBA security with SOAP security. The key
functionality provided by the router in this scenario is the ability to extract
CORBA CSl credentias (provided in the form of a GSSUP username, password,
and domain) and propagate them as SOAP-compatible WSS credentials.

SOAP-to-CORBA scenario Figure 43 shows the outline of a scenario where GSSUP credentials, embedded
in a GIOP service context, are transformed into WSS username and password
credentials, embedded in a SOAP header.

Figure 43: Propagating Credentials Across a CORBA-to-SOAP Router

CORBA Client CORBA-t0-SOAP Router (4) SOAP Server

SOAP Header

®

\ 4
Artix Security Service

Steps The steps for propagating credential s across the CORBA-to-SOAP router, as
shown in Figure 43, can be described, as follows:

Stage Description

1 | Theclientinitializesthe GSSUP username, password, and domain
credentials, u/p/d, and sends these credentials, embedded in a
GIOP service context, across to the router.

458

Demonstration code

Enabling WSS propagation

Enabling token propagation

CORBA-to-SOAP Scenario

Stage

Description

The router extracts the received GSSUP username, password, and
domain credentials, u/p/d, and transfers them into WSS
credentials, consisting of a username and a password. The domain
name is discarded.

The WSS credentials, u/p, are sent on to the SOAP server inside a
WSS SOAP header.

The SOAP server authenticates the received WSS credential s, u/p,
by calling out to the Artix security service (this step is performed
automatically by the artix_security plug-in).

Demonstration code for this CORBA-to-SOAP scenario is available from the
following location:

ArtixInstallDir/samples/security/secure_corba_soap

To enable WSS propagation (where received username and password credentials
areinserted into the outgoing GSSUP credentials by the router), set the
following router configuration variable to true:

policies:bindings:soap:gssup_propagation = "true";

Additionally, you can enable Artix security token propagation by setting the
following router configuration variable to true:

policies:bindings:soap:token_propagation = "true";

459

CHAPTER 17 | Bridging between SOAP and CORBA

CORBA Client

Overview

Client configuration

460

This section describes how to configure a CORBA client to send username and
password credentials through the CSl authentication over transport mechanism
(which puts the user’ s credential s into a GIOP service context).

When a client request arrives in the router, the propagation mechanism in the
router extracts the username and password from the incoming CSI credentials.

Example 90 shows the configuration of the SOAP client in this scenario, which
usesthe secure_artix.secure_corba_soap.client configuration scope.

Example 90: SOAP Client Configuration

Artix Configuration File

secure_artix
{
secure_soap_corba
{
client
{
iiop_tls config
policies:iiop_tls:client_secure_invocation policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"] ;

csi auth config
policies:csi:auth_over transport:authentication_ service
= "com.iona.corba.security.csi.AuthenticationService";
policies:csi:auth_over_transport:client_supports =
["EstablishTrustInClient"];
policies:csi:attribute service:client_ supports =
["IdentityAssertion"];

#binding/plugin list

orb_plugins = ["xmlfile_log_stream", "iiop_profile",
"giop" , " i:i_op_tls " , llcsill] 7
principal_sponsor:use_principal_sponsor = "true";

principal_sponsor:auth method id = "pkcsl2_file";

CORBA-to-SOAP Scenario

Example 90: SOAP Client Configuration

g

principal_sponsor:auth method data =
["filename=C:\artix 40/artix/4.0/demos/security/certificates/
tls/x509/certs/services/administrator.pl2",
"password_file=C:\artix_40/artix/4.0/demos/security/certifica
tes/tls/x509/certs/services/administrator.pwf"];

principal_sponsor:csi:use_principal_sponsor = "true";

principal_sponsor:csi:auth_method id = "GSSUPMech";

principal_sponsor:csi:auth _method data =
["username=user_test", "password=user_ password",

"domain=PCGROUP"] ;
19
g

The preceding client configuration can be explained as follows:

1

The IIOP/TLS client invocation policies specified here ensure that the
outgoing client connections are secure.

The following three lines specify the basic CSI configuration on the client
side, enabling both CSI authentication over transport and CSl identity
assertion.

To enable the client to send credentials using the CSI mechanisms, the
orb_plugins list includesthe csi plug-in. Alternatively, you can also
enable CSl by loading the gsp plug-in (which implicitly loads the csi
plug-in).

The principal sponsor settings on the following lines associate the client’s
own X.509 certificate with the SSL/TLS layer.

The CSl principal sponsor settings on the following lines are used to
specify the CSI credentialsin the form of a username, a password and a
domain name.

461

CHAPTER 17 | Bridging between SOAP and CORBA

CORBA-t0o-SOAP Router

Overview

Transferring credentialsfrom
CORBA to SOAP

Router WSDL contract

462

The CORBA-to-SOAP router receives incoming |1OP requests, trand ates them
into SOAP/HTTP requests and then forwards them on to a SOAP server. In
addition to translating requests, the router is also configured to transfer the
incoming CSI credentials (embedded in a GIOP message context) into outgoing
WSS credentials (embedded in a SOAP header). Hence, the CORBA-to-SOAP
router enables interoperation of CORBA security with SOAP/HTTP security.

The transferal of credentials from CORBA to SOAP obeys the following
semantics:

The router authenticates theincoming CS| credentials, obtaining a security
token from the Artix security service.

The router embeds the security token in the outgoing SOAP header.

The username from the incoming CSI credentialsis embedded in the
outgoing SOAP header (in the WSS credentials).

The domain name from the incoming CSI credentialsis discarded (the
WSS credentials do not include a domain name).

Example 91 shows the WSDL contract for the CORBA-to-SOAP router.

Example 91: CORBA-to-SOAP Router WSDL Contract

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloWorldService"

targetNamespace="http://xmlbus.com/HelloWorld"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:corba="http://schemas.iona.com/bindings/corba"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
L>

<types>

</types>

<portType name="HelloWorldPortType">

</portType>

CORBA-to-SOAP Scenario

Example91: CORBA-to-SOAP Router WSDL Contract

<binding name="HelloWorldPortBinding"
type="tns:HelloWorldPortType">

</binding>

<binding name="CORBAHelloWorldBinding"
type="tns:HelloWorldPortType">

</binding>

<service name="HelloWorldService">
<port binding="tns:HelloWorldPortBinding"
name="HelloWorldPort">
<soap:address location="https://localhost:8085"/>
</port>
</service>

<service name="CORBAHelloWorldService">
<port binding="tns:CORBAHelloWorldBinding"
name="CORBAHel loWorldPort">
<corba:address
location="file:../../corba/server/HelloWorld.ioxr"/>
<corba:policy/>
</port>
</service>

<ns2:route name="rl1l">
<ns2:source port="CORBAHelloWorldPort"
service="tns:CORBAHelloWorldService"/>
<ns2:destination port="HelloWorldPort"
service="tns:HelloWorldService"/>
</ns2:route>
</definitions>

463

CHAPTER 17 | Bridging between SOAP and CORBA

Router configuration

464

The preceding router WSDL contract can be explained as follows:

1. TheHellowwWorldservice specifiesa SOAP/HTTP endpoint for the
HelloWorldPortType port type.

2. The SOAP/HTTP endpoint has the address, https://localhost:8085
(you might want to change this to specify the actual name of the host where
the SOAP server is running).

Note: The secure HTTPS protocol is used here (asindicated by the
https prefix in the URL).

3. ThecoreaHelloWorldservice specifiesa CORBA endpoint for the
HelloWorldPortType port type.

4. Thelocation of the CORBA endpoint is given by astringified
interoperable object reference (IOR). The router automatically opensan IP
listener port and writes the corresponding IOR into the Helloworld. ior
file.

Note: A more sophisticated alternative for publishing the CORBA
endpoint would be to use the CORBA Naming Service.

5. The route element sets up aroute as follows:
+ The source endpoint (which receives incoming requests) isthe
CORBA endpoint, CORBAHelloWorldPort.
+ Thedestination endpoint (to which the router sends outgoing
requests) isthe SOAP/HTTP endpoint, HelloWorldPort.

Example 92 shows the configuration of the router in this scenario, which uses
the secure_artix.secure_corba_soap.switch configuration scope.

Example 92: CORBA-to-SOAP Router Configuration
Artix Configuration File

secure_artix
{
secure_soap_corba
{
initial_references:IT SecurityService:reference =
"corbaloc:it_iiops:1.2@localhost:58482/IT SecurityService";

CORBA-to-SOAP Scenario

Example 92: CORBA-t0o-SOAP Router Configuration

switch

{
disable authorization
plugins:gsp:enable_authorization="false";

iiop_tls config

policies:iiop_tls:client_secure_invocation policy:requires
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

policies:iiop_tls:target_secure_invocation policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"] ;

principal_sponsor:use_principal_sponsor = "true";

principal_sponsor:auth method id = "pkcsl2_file";

principal_sponsor:auth method data =
["filename=C:\artix 40/artix/4.0/demos/security/certificates/
tls/x509/certs/services/administrator.pl2",
"password_file=C:\artix_40/artix/4.0/demos/security/certifica
tes/tls/x509/certs/services/administrator.pwf"];

csi auth config

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

policies:csi:auth_over_ transport:target_requires
["EstablishTrustInClient"];

policies:csi:auth_over transport:target_supports =
["EstablishTrustInClient"];

#binding/plugin list

orb _plugins = ["xmlfile log stream", "iiop profile",
"giop", "iiop_tls", "routing", "gsp", "artix security"];

binding:artix:client_request_interceptor list =
"security+principal_ context";

policies:asp:enable_security = "false";

policies:asp:enable_authorization = "false";

binding:server_binding list = ["CSI+GSP", "CSI",
"GSP"];

plugins:routing:wsdl_url="../../etc/router.wsdl";

plugins:xmlfile_log_stream:use_pid = "true";

465

CHAPTER 17 | Bridging between SOAP and CORBA

466

Example 92: CORBA-to-SOAP Router Configuration

b5

secure HTTPS client -> secure HTTPS server settings

plugins:at_http:client:use_secure_sockets="true";

plugins:at_http:client:trusted_root_certificates =
"C:\artix_40/artix/4.0/demos/security/certificates/openssl/x5
09/ca/cacert.pem" ;

plugins:at_http:client:client_certificate =
"C:\artix_40/artix/4.0/demos/security/certificates/openssl/x5
09/certs/testaspen.pl2";

plugins:at_http:client:client_private key password =
"testaspen";

policies:bindings:soap:token propagation = "true";
policies:bindings:soap:gssup_propagation = "true";
Y
Y5

The preceding router configuration can be explained as follows:

1

Thereis no need for the router to perform authorization on incoming
CORBA messages. Therefore, it makes sense to disable authorization in
the GSP plug-in (which is responsible for the authentication and
authorization of CORBA messages).

The IIOP/TLS client and target invocation policies specified here ensure
that both outgoing and incoming |OP/TL S connections are secure.

The principal sponsor settings associate an X.509 certificate with the Artix
router.

The following three lines specify the basic CS| configuration on the client
side, enabling both CSI authentication over transport and CSl identity
assertion.

The gsp plug-in must be included in the orb_plugins list to enable the
router to parse incoming CSl credentials and to authenticate the CSI
credentials with the Artix security service.

If you use a SOAP 1.2 binding, you must include the artix_security
plug-in, as shown. In this case, you must also initialize the client request
interceptor list and disable authentication and authorization, as shown in
the following lines. The Artix security plug-in is needed only for the

CORBA-to-SOAP Scenario

purpose of inserting security credentialsinto SOAP 1.2 headers. The
authentication and authorization features are not needed here.

This line specifies the location of the router WSDL contract.

The following four lines configure security for the HTTPS transport. In
particular, the plugins:at_http:client:client_certificate
configuration variable specifies an own X.509 certificate to use
specificaly with the HTTPS transport.

The CORBA-t0o-SOAP GSSUP propagation option is enabled in this
scenario.

Thisisthe key setting for enabling security interoperability. The router
extracts the username, password, and domain credentials from incoming
CORBA invocations and inserts them into an outgoing WSS credentials
object, to be transmitted in a WSS SOAP header. The domain name from
the incoming CORBA message gets discarded.

467

CHAPTER 17 | Bridging between SOAP and CORBA

SOAP Server

Overview

Server configuration

468

In this scenario, the SOAP server must be configured to accept WSS credentials,
which are transmitted in a SOAP header. This subsection describes how to
configure the SOAP server to authenticate the received WSS credentials.

Example 93 shows the configuration of the SOAP server in this scenario, which
uses the secure_artix.secure_corba_soap.server configurati on scope.

Example 93: SOAP Server Supporting WSS Credentials

secure_artix

secure_corba_soap
{

initial_references:IT SecurityService:reference =
"corbaloc:it_iiops:1.2@localhost:58482/IT SecurityService";

server

principal_sponsor:use_principal_sponsor = "true";

principal_sponsor:auth _method id = "pkcsl2_file";

principal_ sponsor:auth_method data =
["filename=C:\artix 40/artix/4.0/demos/security/certificates/
tls/x509/certs/services/administrator.pl2",
"password_file=C:\artix_40/artix/4.0/demos/security/certifica
tes/tls/x509/certs/services/administrator.pwf"];

policies:target_secure_ invocation_policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering"] ;

policies:target_secure_invocation_policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];

binding:artix:server_request_interceptor list=
"principal_ context+security";

orb_plugins = ["xmlfile_log_stream", "iiop_profile",
"giop", "iiop_tls", "artix security"];
policies:asp:enable authorization = "false";

plugins:asp:security level = "REQUEST LEVEL";

CORBA-to-SOAP Scenario

Example 93: SOAP Server Supporting WSS Credentials

137

plugins:at_http:server:trusted root_certificates =
"C:\artix 40/artix/4.0/demos/security/certificates/openssl/x5
09/ca/cacert.pem" ;

plugins:at_http:server:server_certificate =
"C:\artix 40/artix/4.0/demos/security/certificates/openssl/x5
09/certs/testaspen.pl2";

plugins:at_http:server:server private_ key password =
"testaspen";

iy

};

The preceding server configuration can be described as follows:

1

The principal sponsor settings associate an X.509 certificate with the
SOAP server. This certificate is used when opening a connection to the
Artix security service (this connection uses the I|OP/TL S protocol).

The target invocation policies specified here ensure that incoming
connections are secure, for both the IOP/TLS and HTTPS protocols.
You must include the artix_security plug-inintheorb_pluginslist to
enable Artix security. The iiop_t1s plug-inisrequired in order to
communicate with the Artix security service. In addition, the at_http
plug-in and the https plug-in are loaded, but there is no need to include
at_http Or https in the orb_plugins list. Becausethe HTTPS port is
specified in the WSDL contract, Artix implicitly loads the at_http and
https plug-ins.

In this example, authorization is disabled. In most deployed systems,
however, you would probably need to enable authorization (and add the
additional configuration settings—see “ Security Layer” on page 49).

By setting the security level to REQUEST L.EVEL, you indicate that the
credentials to authenticate are taken preferentially from the SOAP header
(for example, the WSS credentials).

These settings specify an own X.509 certificate that is used with the
HTTPS protocol only.

469

CHAPTER 17 | Bridging between SOAP and CORBA

470

Part V

Programming Security

In thispart This part contains the following chapters:
Programming Authentication page 473
Developing an iSF Adapter page 491

471

472

In this chapter

Programming

CHAPTER 18

Authentication

To ensure that Web services and Web service clients devel oped
using Artix can interoperate with the widest possible array of Web
services, Artix supports the WS Security specification for
propagating Kerberos security tokens, username/password
security tokens and X.509 certificates in SOAP message headers.
Thesecurity tokensareplacedinto the SOAP message header using

Artix APIs that format the tokens and place them in the header

correctly.

This chapter discusses the following topics:

Configuration for SOAP 1.2 Bindings page 474
Propagating a Username/Password Token page 475
Propagating a Kerberos Token page 480
Propagating an X.509 Certificate page 485

473

CHAPTER 18 | Programming Authentication

Configuration for SOAP 1.2 Bindings

Overview If you use a SOAP 1.2 binding to transmit the WSS Username/Password token,
you need to ensure that the artix_security plug-in isloaded and configured
both on the client side and on the server side.

Client-side configuration for On the client side, configurethe artix_security plug-in asfollows:
SOAP 1.2

Artix Configuration File
orb_plugins = ["xmlfile_log_stream", "artix security", ...];

binding:artix:client_request_interceptor list =
"security+principal_context";

The client-side configuration is not required for SOAP 1.1 bindings.

Server-side configuration for On the server side, configure the artix_security plug-in asfollows:
SOAP 1.2

Artix Configuration File
orb_plugins = ["xmlfile_log_stream", "artix security", ...];

binding:artix:server request_interceptor list =
"principal context+security";

474

Propagating a Username/Password Token

Propagating a Username/Password T oken

Overview

C++ Procedure

C++ Example

Many Web services use simple username/password authentication to ensure that
only preapproved clients an access them. Artix provides asimple client side API
for embedding the username and password into the SOAP message header of
requestsin a WS Security compliant manner.

Embedding a username and password token into the SOAP header of arequest
in Artix C++ requires you to do the following:

1

If you use a SOAP 1.2 hinding, make sure to load and configure the
artix_security plug-in as described in “Configuration for SOAP 1.2
Bindings’ on page 474.

Make sure that your application makefile is configured to link with the
it_context_attribute library (it_context_attribute.libon
Windows and it_context_attribute.so OF it_context_attribute.a
on UNIX) which contains the bus-security context stub code.

Get areferenceto the current IT ContextAttributes::BusSecurity
context data type, using the Artix context APl (see Developing Artix
Applicationsin C++).

Set the wssEUsernameToken property on the BusSecurity context using
the setWsSEUsernameToken () method

Set the WssEPasswordToken property on the BusSecurity context using
the setWssEPasswordToken () method

Example 94 shows how to set the Web services username/password token in a
C++ client prior to invoking a remote operation.

Example 94: Setting a WS Username/Password Token in a C++ Client

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

475

CHAPTER 18 | Programming Authentication

476

Example 94: Setting a WS Username/Password Token in a C++ Client

// Include header files related to the bus-security context
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/bus_security xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT_Bus;

int

main (int argc, char* argv(])

{
try
{

}

IT Bus::Bus_var bus = IT Bus::init(argc, argv);

ContextRegistry* context_registry =
bus->get_context_registry() ;

// Obtain a reference to the ContextCurrent
ContextCurrent& context_current =
context_registry->get_current () ;

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.request_contexts() ;

// Obtain a reference to the context

AnyType* info = context_container->get_context (
IT ContextAttributes: :SECURITY_ SERVER_CONTEXT,
true

¥

// Cast the context into a BusSecurity object
BusSecurity* bus_security ctx =
dynamic_cast<BusSecurity*> (info) ;

// Set the WS Username and Password tokens
bus_security ctx->setWSSEUsernameToken ("artix_user") ;
bus_security ctx->setWSSEPasswordToken ("artix") ;

catch (IT Bus: :Exception& e)

{

cout << endl << "Error : Unexpected error occured!"

Java Procedure

Propagating a Username/Password Token

Example 94: Setting a WS Username/Password Token in a C++ Client

}

<< endl << e.message ()
<< endl;
return -1;
}

return 0O;

The preceding code can be explained as follows:

1

Call the IT_Bus: :ContextContainer: :get_context () function to obtain
apointer to aBusSecurity object. Thefirst parameter isthe QName of the
BusSecurity context and the second parameter is set to true, indicating
that a context with that QName will be created if none already exists.

Cast the IT_Bus:: : AnyType instance, info, to its derived type,

IT ContextAttributes::BusSecurity, Whichisthe bus-security context
datatype.

Use the BusSecurity API to set the WSS username and password tokens.
After this point, any SOAP operations invoked from the current thread will
include the specified WSS username and password in the request message.

Embedding a username and password token into the SOAP header of arequest
in Artix Java reguires you to do the following:

1

If you use a SOAP 1.2 hinding, make sure to load and configure the
artix_security plug-in as described in “Configuration for SOAP 1.2
Bindings’ on page 474.

Create anew com. iona.schemas.bus.security context.BusSecurity
context data object.

Set the WssEUsernameToken property on the BusSecurity context using
the setwssSEUsernameToken () method.

Set the wsSEPasswordToken property on the Bussecurity context using
the setWssEPasswordToken () method.

Set the bus-security context for the outgoing request message by calling
setRequestContext () ON an IonaMessageContext object (see
Developing Artix Applicationsin Java).

477

CHAPTER 18 | Programming Authentication

Java Example

478

Example 95 shows how to set the Web services username/password token in a
Java client prior to invoking a remote operation.

Example 95: Setting a WS Username/Password Token in a Java Client

// Java
import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;

import com.iona.jbus.ContextRegistry;

import com.iona.jbus.IonaMessageContext;

import com.iona.schemas.bus.security context.BusSecurity;

// Set the BuSecurity Context

// Insert the following lines of code prior to making a
// WS-secured invocation:

BusSecurity security = new BusSecurity() ;
security.setWSSEUsernameToken ("user_test") ;
security.setWSSEPasswordToken ("user_password") ;

OName SECURITY_ CONTEXT =
new QName (
"http://schemas.iona.com/bus/security context",
"bus-security"

) g

ContextRegistry registry = bus.getContextRegistry () ;

IonaMessageContext contextimpl =
(IonaMessageContext)registry.getCurrent () ;

contextimpl.setRequestContext (SECURITY CONTEXT, security);

1. Create anew com. iona.schemas.bus.security context.BusSecurity
object to hold the context data and initialize the wssEUsernameToken and
WSSEPasswordToken properties on this BusSecurity object.

2. Initiaize the name of the bus-security context. Because the bus-security
context type is pre-registered by the Artix runtime (thus fixing the context
name) the bus-security name must be set to the value shown here.

3. Thecom.iona.jbus.ContextRegistry object manages al of the context
objects for the application.

Propagating a Username/Password Token

The com. iona.jbus . TonaMessageContext Object returned from
getcCurrent () holdsall of the context data objects associated with the
current thread.

Call setRequestContext () to initialize the bus-security context for
outgoing request messages.

479

CHAPTER 18 | Programming Authentication

Propagating a Kerberos Token

Overview

Acquiring a Kerberos Token

C++ embedding the Kerberos
token in the SOAP header

480

Using the Kerberos Authentication Service reguires you to make afew changes
to your client code. First you need to acquire avalid Kerberos token. Then you
need to embed it into the SOAP message header of all the requests being made
on the secure server.

To get a security token from the Kerberos Authentication Service, you must use
platform specific APIs and then base64 encode the returned binary token so that
it can be placed into the SOAP header.

On UNIX platforms, use the GSS APIsto contact Kerberos and get a token for
the service you wish to make requests upon. On Windows platforms, use the
Microsoft Security Framework APIsto contact Kerberos and get atoken for the
service you wish to contact.

Embedding a Kerberos token into the SOAP header of arequest using the Artix

APIsrequires you to do the following:

1. If you use a SOAP 1.2 binding, make sure to load and configure the
artix_security plug-in as described in “ Configuration for SOAP 1.2
Bindings’ on page 474.

2. Make surethat your application makefile is configured to link with the
it_context_attribute Iibrary (it_context_attribute. libon
Windows and it_context_attribute.so OF it_context_attribute.a
on UNIX) which contains the bus-security context stub code.

3. Get areferenceto the current IT ContextAttributes: :BusSecurity
context data type, using the Artix context API (see Developing Artix
Applicationsin C++).

4. Set thewssEKerberosv5SToken property on the Bussecurity context
using the setwsSEKerberosv5SToken () method.

C++ Example

Propagating a Kerberos Token

Example 96 shows how to set the Kerberos token prior to invoking a remote
operation.

Example 96: Setting a Kerberos Token on the Client Sde

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the bus-security context
#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/bus_security xsdTypes.h>

IT_USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT Bus;

int
main(int argc, char* argvl[])
{

try

{

IT Bus::Bus_var bus = IT Bus::init(argc, argv);

ContextRegistry* context_ registry =
bus->get_context_registry() ;

// Obtain a reference to the ContextCurrent
ContextCurrent& context current =
context_registry->get_current () ;

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.request_contexts() ;

// Obtain a reference to the context

AnyType* info = context_container->get_context (
IT ContextAttributes::SECURITY_SERVER_CONTEXT,
true

) g

481

CHAPTER 18 | Programming Authentication

Example 96: Setting a Kerberos Token on the Client Sde

// Cast the context into a BusSecurity object
2 BusSecurity* bus_security ctx =
dynamic_cast<BusSecurity*> (info) ;

// Set the Kerberos token
3 bus_security ctx->setWSSEKerberosv5SToken (
kerberos_token_string
)

}
catch (IT Bus: :Exception& e)
{
cout << endl << "Error : Unexpected error occured!"
<< endl << e.message ()
<< endl;
return -1;

}

return 0;

The preceding code can be explained as follows:

1. TheIT Bus::ContextContainer: :get_context () functioniscalled with
its second parameter set to true, indicating that a context with that name
will be created if none already exists.

2. Castthe 1T_Bus: : AnyType instance, info, to its derived type,

IT ContextAttributes: :BusSecurity, which isthe bus-security context
datatype.

3. UsetheBussecurity APl to set the WSS Kerberos token,
kerberos_token_string. The argument to setWsSEKerberosv5SToken ()
is abase-64 encoded Kerberos token received from a Kerberos server.
The next operation invoked from this thread will include the specified
Kerberos token in the request message.

482

Java embedding the Kerberos
token in the SOAP header

Java Example

Propagating a Kerberos Token

Embedding a Kerberos token into the SOAP header of arequest in Artix Java

reguires you to do the following:

1. If youusea SOAP 1.2 binding, make sure to load and configure the
artix_security plug-in as described in “Configuration for SOAP 1.2
Bindings’ on page 474.

2. Create anew com. iona.schemas.bus.security context.BusSecurity
context data object.

3. Set thewssEKerberosv2SToken property on the Bussecurity context
using the setWssSEKerberosv2SToken () method.

4, Set the bus-security context for the outgoing request message by calling

setRequestContext () ON an IonaMessageContext Object (see
Developing Artix Applicationsin Java).

Example 97 shows how to set the Kerberos token in a Java client prior to
invoking aremote operation.

Example 97: Setting a Kerberos Token in a Java Client

// Java
import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;

import com.iona.jbus.ContextRegistry;

import com.iona.jbus.IonaMessageContext;

import com.iona.schemas.bus.security context.BusSecurity;

// Set the BuSecurity Context

// Insert the following lines of code prior to making a
// WS-secured invocation:

BusSecurity security = new BusSecurity();
security.setWSSEKerberosv5SToken (kerberos_token string) ;

QOName SECURITY_ CONTEXT =
new QName (
"http://schemas.iona.com/bus/security_context",
"bus-security"

483

CHAPTER 18 | Programming Authentication

484

Example 97: Setting a Kerberos Token in a Java Client

ContextRegistry registry = bus.getContextRegistry() ;

IonaMessageContext contextimpl =
(IonaMessageContext)registry.getCurrent () ;

contextimpl .setRequestContext (SECURITY_CONTEXT, security) ;

1. Create anew com. iona.schemas.bus.security context.BusSecurity
object to hold the context data and initialize the wssEKerberosv2SToken
on this Bussecurity object.

The argument to setWSSEKerberosv5SToken () IS abase-64 encoded
Kerberos token received from a Kerberos server.

2. Initiaize the name of the bus-security context. Because the bus-security
context typeis pre-registered by the Artix runtime (thus fixing the context
name) the bus-security name must be set to the value shown here.

3. Thecom.iona.jbus.ContextRegistry object manages all of the context
objects for the application.

4., Thecom.iona.jbus.IonaMessageContext Object returned from
getCurrent () holdsall of the context data objects associated with the
current thread.

5. Call setRequestContext () toinitialize the bus-security context for
outgoing request messages.

Propagating an X.509 Certificate

Propagating an X.509 Certificate

Overview

C++ Procedure

C++ Example

Artix lets you propagate an X.509 certificate inside a SOAP header, as specified
in the WSS standard. Y ou need to program the client to insert a certificate into
outgoing SOAP headers and program the server to extract the certificate from
theincoming SOAP headers.

Embedding an X.509 certificate into the SOAP header of areguest in Artix C++

requires you to do the following:

1. If you use a SOAP 1.2 binding, make sure to load and configure the
artix_security plug-in as described in “Configuration for SOAP 1.2
Bindings’ on page 474.

2. Makesurethat your application makefile is configured to link with the
it_context_attribute library (it_context_attribute.libon
Windows and it_context_attribute.so OF it_context_attribute.a
on UNIX) which contains the bus-security context stub code.

3. Get areferenceto the current IT ContextAttributes: :BusSecurity
context data type, using the Artix context APl (see Developing Artix
Applicationsin C++).

4, SetthewsseEx509Cert property on the Bussecurity context using the
SetWSSEX509Cert () method.

Example 98 shows how to insert an X.509 certificate into a WSS SOAP header
in a C++ client prior to invoking aremote operation.

Example98: Setting a WSS X.509 Certificatein a C++ Client

// C++

#include <it_bus/bus.h>
#include <it_bus/exception.h>
#include <it_cal/iostream.h>

// Include header files related to the bus-security context

#include <it_bus_pdk/context.h>
#include <it_bus_pdk/context_attrs/bus_security xsdTypes.h>

485

CHAPTER 18 | Programming Authentication

Example 98: Setting a WSS X.509 Certificatein a C++ Client

IT USING_NAMESPACE_STD

using namespace IT ContextAttributes;
using namespace IT_Bus;

int

main (int argc, char* argv(])

{
try
{

}

IT Bus::Bus_var bus = IT Bus::init(argc, argv);

ContextRegistry* context_registry =
bus->get_context_registry() ;

// Obtain a reference to the ContextCurrent
ContextCurrent& context_current =
context_registry->get_current () ;

// Obtain a pointer to the Request ContextContainer
ContextContainer* context_container =
context_current.request_contexts() ;

// Obtain a reference to the context

AnyType* info = context_container->get_context (
IT ContextAttributes: :SECURITY_ SERVER_CONTEXT,
true

)

// Cast the context into a BusSecurity object
BusSecurity* bus_security ctx =
dynamic_cast<BusSecurity*> (info) ;

// Read the WSS X.509 Certificate
char x509_cert[10000];
read certificate(
"sample cert.pem",
x509_cert
);:
// Set the WSS X.509 Certificate
bus_security ctx->setWSSEX509Cert (%509 cert);

catch (IT _Bus: :Exception& e)

486

Propagating an X.509 Certificate

Example98: Setting a WSS X.509 Certificatein a C++ Client

}

cout << endl << "Error : Unexpected error occured!"
<< endl << e.message()
<< endl;
return -1;
}

return 0;

The preceding code can be explained as follows:

1

Call the IT_Bus: :ContextContainer: :get_context () function to obtain
apointer to aBussecurity object. Thefirst parameter isthe QName of the
BusSecurity context and the second parameter is set to true, indicating
that a context with that QName will be created if none already exists.

Cast the IT_Bus: : AnyType instance, info, to its derived type,
IT_ContextAttributes: :BusSecurity, Which isthe bus-security context
datatype.

Read the certificate from some external source. The X.509 certificate must
be in Privacy Enhanced Mail (PEM) format (which is aformat proprietary
to the OpenSSL product). For example, you might read the certificate from
afile with the following implementation of the read certificate()
function:

// C++

void

read_certificate(
const char* filename,
char* cert

char buf[5000] ;

strcpy (cert, "\0");

FILE *is;

if ((is = fopen(filename, "rb")) == NULL)

{
fprintf (stdout, "Can't open %s", filename);
return;

}

int n = 200;
while (fgets(buf, n, is) != 0)

487

CHAPTER 18 | Programming Authentication

Java Procedure

Java Example

488

{

strncat (cert, buf, strlen(buf));

}

fclose(is);

}

4, Usethe BusSecurity API to set the X.509 certificate for sending in the

WSS SOAP header. After this point, any SOAP operations invoked from
the current thread will include the specified WSS X.509 certificate in the

request message.

Embedding an X.509 certificate into the SOAP header of arequest in Artix Java

requires you to do the following:

1. If you use a SOAP 1.2 binding, make sure to load and configure the
artix_security plug-in as described in “Configuration for SOAP 1.2
Bindings’ on page 474.

2. Createanew com.iona.schemas.bus.security context.BusSecurity
context data object.

3. Setthewssex509cert property on the Bussecurity context using the
SetWSSEX509Cert () method.

4. Set the bus-security context for the outgoing request message by calling
setRequestContext () ON an TonaMessageContext Object (see
Developing Artix Applicationsin Java).

Example 99 shows how to insert an X.509 certificate into a WSS SOAP header
in aJavaclient prior to invoking a remote operation.

Example 99: Setting a WSS X.509 Certificate in a Java Client

// Java
import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;

import com.iona.jbus.ContextRegistry;

import com.iona.jbus.IonaMessageContext;

import com.iona.schemas.bus.security context.BusSecurity;

// Set the BuSecurity Context

Propagating an X.509 Certificate

Example 99: Setting a WSS X.509 Certificatein a Java Client

// Insert the following lines of code prior to making a
// WS-secured invocation:

BusSecurity security = new BusSecurity();
java.lang.String x509 cert = ... // Get X.509 cert.
security.setWSSEX509Cert (x509 cert);

QName SECURITY_CONTEXT =
new QName (
"http://schemas.iona.com/bus/security_context",
"bus-security"
)7

ContextRegistry registry = bus.getContextRegistry() ;

TonaMessageContext contextimpl =
(IonaMessageContext)registry.getCurrent () ;

contextimpl.setRequestContext (SECURITY_CONTEXT, security);

1. Usethe BusSecurity API to set the X.509 certificate in the WSS SOAP
header.

2. Initialize the name of the bus-security context. Because the bus-security
context type is pre-registered by the Artix runtime (thus fixing the context
name) the bus-security name must be set to the value shown here.

3. Thecom.iona.jbus.ContextRegistry object managesal of the context
objects for the application.

4. Thecom.iona.jbus.IonaMessageContext Object returned from
getcurrent () holdsall of the context data objects associated with the
current thread.

5. Call setRequestContext () toinitialize the bus-security context for
outgoing request messages.

489

CHAPTER 18 | Programming Authentication

490

In this chapter

CHAPTER 19

Developing an ISF
Adapter

An iSF adapter is a replaceable component of the iSF server
module that enables you to integrate i SF with any third-party
enterprise security service. This chapter explains how to develop
and configure a custom i SF adapter implementation.

This chapter discusses the following topics:

i SF Security Architecture page 492
i SF Server Module Deployment Options page 496
iSF Adapter Overview page 498
Implementing the |S2Adapter Interface page 499
Deploying the Adapter page 508

491

CHAPTER 19 | Developing an iSF Adapter

ISF Security Architecture

Overview This section introduces the basic components and concepts of the i SF security
architecture, asfollows:

® Architecture.

° iSF client.

® iSFclient SDK.

®* Artix Security Service.
® Sk adapter SDK.

®* Sk adapter.

* Example adapters.

492

Architecture

iSF client

iSF Security Architecture

Figure 44 gives an overview of the Artix Security Service, showing how it fits
into the overall context of a secure system.

Figure 44: Overview of the Artix Security Service

Java C/C++
application application
iSF client SDK iSF client SDK

Artix Security Service

iSF Server Module

iSF adapter SDK

iSF adapter

Third-party security service

AniSF client is an application that communicates with the Artix Security
Service to perform authentication and authorization operations. The following
are possible examples of i SF client applications:

* CORBA servers.
* Artix servers.
®* Any server that has arequirement to authenticate its clients.

Hence, an i SF client can also be aserver. It isaclient only with respect to the
Artix Security Service.

493

CHAPTER 19 | Developing an iSF Adapter

iSF client SDK

Artix Security Service

iSF server module

iSF adapter SDK

iSF adapter

Example adapters

494

TheiSF client SDK is the programming interface that enables the i SF clients to
communicate (usually remotely) with the Artix Security Service.

Note: TheiSF client SDK isonly used internally. It is currently not available
as a public programming interface.

The Artix Security Serviceis a standalone process that acts a thin wrapper layer
around the i SF server module. On its own, the iSF server moduleis a Java
library which could be accessed only through local calls. By embedding the iSF
server module within the Artix Security Service, however, it becomes possible
to access the security service remotely.

TheiSF server module is abroker that mediates between i SF clients, which
request the security service to perform security operations, and a third-party
security service, which isthe ultimate repository for security data.

The iSF server module has the following special features:

® A replaceable iSF adapter component that enables integration with a
third-party enterprise security service.
®* A single sign-on feature with user session caching.

TheiSF adapter SDK isthe Java APl that enables a devel oper to create a custom
i SF adapter that plugs into the iSF server module.

AniSF adapter isareplaceable component of the i SF server modul e that enables
you to integrate with any third-party enterprise security service. An iSF adapter
implementation provides access to a repository of authentication data and
(optionally) authorization data as well.

The following standard adapters are provided with Artix:
® Lightweight Directory Access Protocol (LDAP).

®* File—asimple adapter implementation that stores authentication and
authorization datain aflat file.

iSF Security Architecture

WARNING: Thefile adapter isintended for demonstration purposes only. Itis
not industrial strength and is not meant to be used in a production environment.

495

CHAPTER 19 | Developing an iSF Adapter

ISF Server Module Deployment Options

Overview

CORBA service

496

TheiSF server module, which is fundamentally implemented as a Javalibrary,
can be deployed in one of the following ways:

® CORBA service.
e Javalibrary.

TheiSF server module can be deployed as a CORBA service (Artix Security
Service), as shown in Figure 45. Thisis the default deployment model for the

i SF server module in Artix. This deployment option has the advantage that any
number of distributed i SF clients can communicate with the iSF server module
over [IOP/TLS.

With this type of deployment, the i SF server module is packaged as an
application plug-in to the Orbix generic server. The Artix Security Service can
be launched by the itsecurity executable and basic configuration is set in the
iona_services.security scope of the Artix configuration file.

Figure 45: iSF Server Module Deployed as a CORBA Service

Application

iSF client SDK

IIOP/TLS
CORBA Service

A

IDL Interface

A

iSF Security Module

iSF adapter

Javalibrary

iSF Server Module Deployment Options

TheiSF server module can be deployed as a Javalibrary, as shown in Figure 46,
which permits access to the i SF server module from asingle iSF client only.
With this type of deployment, the iSF security JAR fileisloaded directly into a
Javaapplication. The security serviceisthen instantiated asalocal object and all
calls made through the iSF client SDK are local calls.

Figure 46: iSF Server Module Deployed as a Java Library

Java application

iSF client SDK
1

v
iSF Security Module

iSF adapter

497

CHAPTER 19 | Developing an iSF Adapter

ISF Adapter Overview

Overview

Standard iSF adapters

Custom iSF adapters

Main elements of a custom iSF
adapter

Implementation of the | SF
Adapter Javainterface

Configuration of the | SF adapter
using the iSF propertiesfile

498

This section provides an overview of the iSF adapter architecture. The
modularity of theiSF server module design makesiit relatively straightforward
to implement a custom i SF adapter written in Java.

Progress provides several ready-made adapters that are implemented with the
iSF adapter API. The following standard adapters are currently available:

* Fileadapter.
* |LDAP adapter.

The i SF server modul e architecture also allows you to implement your own
custom i SF adapter and use it instead of a standard adapter.

The main elements of a custom i SF adapter are, as follows:
* Implementation of the |SF Adapter Javainterface.
®* Configuration of the | SF adapter using the i SF propertiesfile.

The only code that needs to be written to implement an iSF adapter isaclassto
implement the Ts2adapter Javainterface. The adapter implementation class
should respond to authentication requests either by checking arepository of user
data or by forwarding the requests to a third-party enterprise security service.

The i SF adapter is configured by setting Java propertiesin the is2.properties

file. The is2.properties file stores two kinds of configuration data for the iSF

adapter:

® Configuration of the iSF server module to load the adapter—see
“Configuring iSF to Load the Adapter” on page 509.

® Configuration of the adapter itself—see “ Setting the Adapter Properties”
on page 510.

Implementing the | S2Adapter Interface

| mplementing the | S2Adapter Interface

Overview

Test user

iSF adapter example

The com. iona.security.is2adapter package defines an 1s2adapter Java
interface, which adevel oper must implement to create a custom i SF adapter. The
methods defined on the IsFadapter class are called by the iSF server modulein
response to requests received from iSF clients.

This section describes a simple example implementation of the 1s2adapter
interface, which is capable of authenticating a single test user with hard-coded
authorization properties.

The exampl e adapter implementation described here permits authentication of
just asingle user, test_user. Thetest user has the following authentication
data:

Username: test_ user
Password: test_password

and the following authorization data:

®* Theuser'sglobal realm contains the Guestrole role.

° The user’ s EngRealm realm contains the EngineerRole role.

4 The user’s FinanceRealm realm contains the AccountantRole role.

Example 100 shows a sample implementation of an i SF adapter class,
ExampleAdapter, that permits authentication of asingle user. The user’s
username, password, and authorization are hard-coded. In arealistic system,
however, the user datawould probably be retrieved from a database or from a
third-party enterprise security system.

Example 100: Sample IS Adapter Implementation

import com.iona.security.azmgr.AuthorizationManager;
import com.iona.security.common.AuthenticatedPrincipal;
import com.iona.security.common.Realm;

import com.iona.security.common.Role;

import com.iona.security.is2adapter.IS2Adapter;

import com.iona.security.is2adapter.IS2AdapterException;
import java.util.Properties;

import java.util.ArrayList;

import java.security.cert.X509Certificate;

499

CHAPTER 19 | Developing an iSF Adapter

500

Example 100: Sample |SF Adapter |mplementation

import org.apache.log4j.*;
import java.util.ResourceBundle;

import java.util.MissingResourceException;
public class ExampleAdapter implements IS2Adapter {

public final static String EXAMPLE_PROPERTY =
"example_property";

public final static String ADAPTER_NAME = "ExampleAdapter";

private final static String MSG_EXAMPLE_ADAPTER INITIALIZED

= "initialized";

private final static String MSG_EXAMPLE_ADAPTER_CLOSED
= "closed";

private final static String MSG_EXAMPLE_ADAPTER_AUTHENTICATE
= "authenticate";

private final static String
MSG_EXAMPLE_ADAPTER_AUTHENTICATE REALM
"authenticate_realm";

private final static String

MSG_EXAMPLE_ADAPTER AUTHENTICATE OK = "authenticateok";
private final static String MSG_EXAMPLE_ADAPTER GETAUTHINFO

= "getauthinfo";

private final static String

MSG_EXAMPLE ADAPTER_GETAUTHINFO_OK = "getauthinfook";

private ResourceBundle _res_bundle = null;

private static Logger LOG =
Logger .getLogger (ExampleAdapter.class.getName ()) ;

public ExampleAdapter () {
_res_bundle = ResourceBundle.getBundle ("ExampleAdapter") ;
LOG.setResourceBundle (_res_bundle) ;

}
public void initialize (Properties props)
throws IS2AdapterException {

LOG.17dlog (Priority.INFO, ADAPTER NAME + "." +
MSG_EXAMPLE_ADAPTER_ INITIALIZED,null) ;

Implementing the | S2Adapter Interface

Example 100: Sample |SF Adapter Implementation

// example property
String propVal = props.getProperty (EXAMPLE_PROPERTY) ;
LOG. info (propval) ;

public void close() throws IS2AdapterException {
LOG.17dlog (Priority.INFO, ADAPTER NAME + "." +
MSG_EXAMPLE_ADAPTER CLOSED, null) ;
}

public AuthenticatedPrincipal authenticate (String username,
String password)
throws IS2AdapterException {

LOG.17dlog (Priority.INFO, ADAPTER NAME + "." +
MSG_EXAMPLE_ADAPTER_AUTHENTICATE, new
Object [] {username, password},null) ;

AuthenticatedPrincipal ap = null;
try{
if (username.equals("test_user")
&& password.equals ("test_password")) {
ap = getAuthorizationInfo (new
AuthenticatedPrincipal (username)) ;
}
else {
LOG.17dlog (Priority.WARN, ADAPTER NAME + "." +
IS2AdapterException.WRONG_NAME_PASSWORD,null) ;
throw new IS2AdapterException(_res_bundle, this,
IS2AdapterException.WRONG_NAME_PASSWORD, new
Object[] {username}) ;

}

} catch (Exception e) {
LOG.17dlog (Priority.WARN, ADAPTER _NAME + "." +
IS2AdapterException.AUTH_FAILED, e) ;
throw new IS2AdapterException(_res_bundle, this,
IS2AdapterException.AUTH FAILED, new Object[] {username}, e);
}

LOG.17dlog (Priority.WARN, ADAPTER NAME + "." +

MSG_EXAMPLE_ADAPTER_AUTHENTICATE OK,null) ;
return ap;

501

CHAPTER 19 | Developing an iSF Adapter

502

Example 100: Sample |SF Adapter |mplementation

10 public AuthenticatedPrincipal authenticate(String realmname,
String username, String password)
throws IS2AdapterException {

LOG.17dlog (Priority.INFO, ADAPTER NAME + "." +
MSG_EXAMPLE ADAPTER AUTHENTICATE REALM,new
Object [] {realmname, username, password},null) ;

AuthenticatedPrincipal ap = null;
try{
if (username.equals("test_user")
&& password.equals ("test_password")) {
1 AuthenticatedPrincipal principal = new
AuthenticatedPrincipal (username) ;
principal .setCurrentRealm (realmname) ;
ap = getAuthorizationInfo (principal) ;
}
else {
LOG.17dlog (Priority.WARN, ADAPTER NAME + "." +
IS2AdapterException.WRONG_NAME_PASSWORD, null) ;
throw new IS2AdapterException(_res_bundle, this,
IS2AdapterException.WRONG_NAME_PASSWORD, new
Object[] {username}) ;

}

} catch (Exception e) {
LOG.17dlog (Priority.WARN, ADAPTER NAME + "." +
IS2AdapterException.AUTH_FAILED, e) ;
throw new IS2AdapterException(_res_bundle, this,
IS2AdapterException.AUTH_FAILED, new Object[]{username}, e);
}

LOG.17dlog (Priority.WARN, ADAPTER NAME + "." +
MSG_EXAMPLE _ADAPTER_AUTHENTICATE_ OK,null) ;
return ap;

12 public AuthenticatedPrincipal authenticate(X509Certificate
certificate)
throws IS2AdapterException {
throw new IS2AdapterException (
_res_bundle, this,
IS2AdapterException.NOT IMPLEMENTED

Implementing the | S2Adapter Interface

Example 100: Sample |SF Adapter Implementation

) g

public AuthenticatedPrincipal authenticate (String realm,
X509Certificate certificate)
throws IS2AdapterException {
throw new IS2AdapterException (
_res_bundle, this,
IS2AdapterException.NOT_IMPLEMENTED
) g

public AuthenticatedPrincipal
getAuthorizationInfo (AuthenticatedPrincipal principal) throws
IS2AdapterException{

LOG.17dlog (Priority.INFO, ADAPTER NAME + "." +
MSG_EXAMPLE_ADAPTER_GETAUTHINFO, new
Object[] {principal.getUserID()},null) ;

AuthenticatedPrincipal ap = null;
String username = principal.getUserID() ;
String realmname = principal.getCurrentRealm() ;

try{
if (username.equals("test_user")) {
ap = new AuthenticatedPrincipal (username) ;
ap.addRole (new Role("GuestRole", ""));
if (realmname == null || (realmname != null &&
realmname.equals ("EngRealm")))
{

ap.addRealm(new Realm("EngRealm", ""));
ap.addRole ("EngRealm", new
Role ("EngineerRole", ""));
}

if (realmname == null || (realmname != null &&
realmname.equals ("FinanceRealm")))
{

ap.addRealm(new Realm("FinanceRealm","")) ;
ap.addRole ("FinanceRealm", new
Role ("AccountantRole", ""));

}

503

CHAPTER 19 | Developing an iSF Adapter

504

Example 100: Sample |SF Adapter |mplementation

else {
LOG.17dlog (Priority.WARN, ADAPTER NAME + "." +
IS2AdapterException.USER_NOT EXIST, new Object[]{username},

null) ;
throw new IS2AdapterException(_res_bundle, this,
IS2AdapterException.USER_NOT EXIST, new Object[]{username}) ;
}

} catch (Exception e) {
LOG.17dlog (Priority.WARN, ADAPTER NAME + "." +
IS2AdapterException.AUTH_FAILED, e) ;
throw new IS2AdapterException(_res_bundle, this,
IS2AdapterException.AUTH FAILED, new Object[]{username}, e);
}

LOG.17dlog (Priority.WARN, ADAPTER NAME + "." +
MSG_EXAMPLE ADAPTER GETAUTHINFO_OK,null) ;
return ap;

19 public AuthenticatedPrincipal getAuthorizationInfo (String
username) throws IS2AdapterException{

// this method has been deprecated
throw new IS2AdapterException (
_res_bundle, this,
IS2AdapterException.NOT_ IMPLEMENTED
)

20 public AuthenticatedPrincipal getAuthorizationInfo (String
realmname, String username) throws IS2AdapterException{

// this method has been deprecated
throw new IS2AdapterException (
_res_bundle, this,
IS2AdapterException.NOT_IMPLEMENTED
)i

21 public ArraylList getAllUsers ()
throws IS2AdapterException {

Implementing the | S2Adapter Interface

Example 100: Sample |SF Adapter Implementation

22

}

throw new IS2AdapterException (
_res_bundle, this,
IS2AdapterException.NOT_IMPLEMENTED
) g

public void logout (AuthenticatedPrincipal ap) throws
IS2AdapterException {

}

The preceding iSF adapter code can be explained as follows:

1

These lines list the keys to the messages from the adapter’ s resource
bundle. The resource bundle stores messages used by the Log4J logger and
exceptions thrown in the adapter.

This line creates a Log4J logger.

This line loads the resource bundle for the adapter.

The initialize() method is called just after the adapter isloaded. The
properties passed to the initialize () method, props, are the adapter
properties that the i SF server module has read from the is2 . properties
file.

See “ Setting the Adapter Properties’ on page 510 for more details.

The close () method is called to shut down the adapter. This gives you an
opportunity to clean up and free resources used by the adapter.

This variant of the 1s2adapter . authenticate () method is called
whenever an iSF client calls AuthManager . authenticate () With
username and password parameters.

In this simple demonstration implementation, the authenticate () method
recognizes only one User, test_user, With password, test_password.
Thisline calls aLog4Jmethod in order to log alocalized and parametrized
message to indicate that the authenticate method has been called with the
specified username and password values. Since all the keysin the resource
bundle begin with the adapter name, the adapter name is prepended to the

505

CHAPTER 19 | Developing an iSF Adapter

506

10.

11.

12.

13.

14.

key. The 17d1og () methodisused becauseit autometicdly seerchestheresource
beundlewhichwas st previoudy by theloggers setResourceBundle ()
method.

If authentication is successful; that is, if the name and password passed in
match test_user and test_password, the getAuthorizationInfo ()
method is called to obtain an AuthenticatedPrincipal object populated
with all of the user’srealms and role

If authentication fails, an Is2adapterException israised with minor code
IS2AdapterException.WRONG_NAME_PASSWORD.

The resource bundle is passed to the exception as it accesses the exception
message from the bundle using the key,

ExampleAdapter .wrongUsernamePassword.

This variant of the 1s2adapter . authenticate () method is called
whenever an iSF client calls authManager . authenticate () with realm
name, username and password parameters.

This method differs from the preceding username/password
authenticate () method in that only the authorization datafor the
specified realm and the global realm are included in the return value.

If authentication is successful, the getAuthorizationInfo () methodis
called to obtain an authenticatedPrincipal object populated with the
authorization data from the specified realm and the global realm.

This variant of the 1s2adapter.authenticate () method is called
whenever an iSF client calls authManager . authenticate () with an
X.509 certificate parameter.

This variant of the 1s2adapter.authenticate () method is called
whenever an iSF client calls authManager . authenticate () With aream
name and an X.509 certificate parameter.

This method differs from the preceding certificate authenticate ()
method in that only the authorization data for the specified realm and the
global realm areincluded in the return value.

This method should create an authenticatedPrincipal object for the
username User. If arealm is not specified in the principal, the
AuthenticatedPrincipal IS populated with all relms and roles for this

15.

16.

17.

18.

19.

20.

21.

22.

Implementing the | S2Adapter Interface

user. If arealm is specified in the principal, the authenticatedPrincipal
is populated with authorization data from the specified realm and the
global realm only.

Thisline creates anew authenticatedPrincipal object for the username
user to hold the user’ s authorization data.

Thisline adds aGuestRole roleto the global realm, ToNAGlobalRealm,
using the single-argument form of addrole (). Roles added to the global
realm implicitly belong to every named realm as well.

This line checksif no realm is specified in the principal or if the realm,
EngRealm, iS specified. If either of these istrue, the following lines add the
authorization realm, EngRealm, tOthe AuthenticatedPrincipal object
and add the EngineerRole role to the Engrealm authorization realm.

This line checksif no realm is specified in the principal or if the realm,
FinanceRealm, iS specified. If either of these istrue, the following lines
add the authorization realm, FinanceRealm, tothe
AuthenticatedPrincipal object and add the aAccountantRole roleto the
FinanceRealm authorization realm.

Since SSO was introduced to Artix, this variant of the
IS2Adapter.getAuthorizationInfo () method hasbeen deprecated. The
method

IS2Adapter.getAuthorizationInfo (AuthenticatedPrincipal
principal) should be used instead

Since SSO was introduced to Artix, this variant of the
IS2Adapter.getAuthorizationInfo () method hasalso been deprecated.
The method

IS2Adapter.getAuthorizationInfo (AuthenticatedPrincipal
principal) should be used instead

Thegetallusers () method iscurrently not used by theiSF server module
during runtime. Hence, there is no need to implement this method
currently.

When the 1ogout () method is called, you can perform cleanup and rel ease
any resources associated with the specified user principal. The iSF server
module calls back on Ts2adapter. logout () either in response to a user
calling authManager . logout () explicitly or after an SSO session has
timed out.

507

CHAPTER 19 | Developing an iSF Adapter

Deploying the Adapter

Overview This section explains how to deploy a custom iSF adapter.

In this section This section contains the following subsections:
Configuring iSF to Load the Adapter page 509
Setting the Adapter Properties page 510

Loading the Adapter Class and Associated Resource Files page 511

508

Deploying the Adapter

Configuring iSF to L oad the Adapter

Overview

Adapter name

Adapter class

Example adapter

Y ou can configure the i SF server module to load a custom adapter by setting the
following propertiesin the iSF server modul€’s is2.properties file:

® Adapter name.
®* Adapter class.

The i SF server module loads the adapter identified by the
com.iona.isp.adapters property. Hence, to load a custom adapter,
AdapterName, Set the property as follows:

com. iona.isp.adapters=AdapterName

Note: In the current implementation, the iSF server module can load only a
single adapter at atime.

The name of the adapter class to be loaded is specified by the following property
setting:

com.iona.isp.adapter.AdapterName.class=AdapterClass

For example, the exampl e adapter provided shown previously can be configured
to load by setting the following properties:

com. iona.isp.adapters=example
com.iona.isp.adapter.example.class=isfadapter.ExampleAdapter

509

CHAPTER 19 | Developing an iSF Adapter

Setting the Adapter Properties

Overview This subsection explains how you can set properties for a specific custom
adapter inthe is2.properties file.

Adapter property name format All configurable properties for a custom file adapter, Adaptername, should have
the following format:

com. iona.isp.adapter.AdapterName.param. PropertyName

Truncation of property names Adapter property names are truncated before being passed to the i SF adapter.
That is, the com. iona. ispadapter . AdapterName.param prefix is stripped from
each property name.

Example For example, given an adapter named ExampleAdapter Which hastwo
properties, host and port, these properties would be set as followsin the
is2.properties file:
com.iona.isp.adapter.example.param.example property="This is an

example property"
Before these properties are passed to the i SF adapter, the property names are
truncated as if they had been set as follows:

example_property="This is an example property"

Accessing propertiesfrom within ~ The adapter properties are passed to the i SF adapter through the
an iSF adapter com. iona.security.is2adapter.IS2Adapter.initialize() callback
method. For example:

public void initialize(java.util.Properties props)
throws IS2AdapterException {
// Access a property through its truncated name.
String propVal = props.getProperty (" PropertyName")

510

Deploying the Adapter

L oading the Adapter Class and Associated Resour ce Files

Overview

CORBA service

Javalibrary

Y ou need to make appropriate modifications to your cLASSPATH to ensure that
the i SF server module can find your custom adapter class. Y ou need to
distinguish between the following usages of the i SF server module:

° CORBA service.

* Javalibrary

In all cases, the location of the file used to configure Log4j logging can be set
using the 1og4j.configuration property in the is2.properties file.

By default, the Artix Security Service usesthe
secure_artix.full_security.security service Scopein your Orbix
configuration file (or configuration repository service). Modify the
plugins:java_server:classpath variable to include the directory containing
the compiled adapter class and the adapter’ s resource bundle. The
plugins:java_server:classpath variable uses the value of the
SECURITY_CLASSPATH Variable.

For example, if the adapter class and adapter resource bundle are located in the
ArtixInstallDir\ExampleAdapter directory, you should set the
SECURITY_CLASSPATH variable asfollows:

Artix configuration file

SECURITY_ CLASSPATH =
"ArtixInstallDir\ExampleAdapter;ArtixInstallDir\lib\corba\sec
urity _service\5.1l\security service-rt.jar";

In this case, to make the custom i SF adapter class available to an i SF client, add
the directory containing the compiled adapter class and adapter resource bundle
{0 your CLASSPATH.

Y ou must also specify the location of the license file, which can be set in one of
the following ways:

511

CHAPTER 19 | Developing an iSF Adapter

512

Uncomment and set the value of the 1s2. 1icense. filename property in
your domain’s is2.properties fileto point to licensefile for product. For
example:

1SF properties file
is2.license.filename=ArtixInstallDir/licenses.txt

Add the license file to the cLasspaTH used for the iSF client.
Passthe licensefile location to the i SF client using a Java system property:

java -DIT_LICENSE_FILE=LocationOfLicenseFile iSFClientClass
Set the license in the code for the i SF client. For example:

// Java

SecurityService service = SecurityService.instance() ;

Properties props = new Properties();

props.load(new FileInputStream(propsFileName)) ;

props.setProperty (
SecurityService.IS2_ LICENSE FILE NAME,
LocationOfLicenseFile

);

service.initializeSecurity (props) ;

In this appendix

APPENDIX A

Artix Security

This appendix describes variables used by the Artix Security
Framework. The Artix security infrastructure is highly

configurable.

This appendix discusses the following topics:

Applying Constraints to Certificates page 515
bus:initial_contract page 517
bus:security page 518
initia_references page 520
password_retrieval_mechanism page 522
plugins.asp page 523
plugins.at_http page 527
plugins.atli2_tls page 532
plugins.csi page 533
plugins.csi page 533
plugins.gsp page 534
plugins:https page 539
pluginsiiop_tls page 540

513

APPENDIX A | Artix Security

514

plugins;java_server page 544
plugins:login_client page 547
plugins:login_service page 548
plugins:schannel page 549
plugins:security page 550
plugins:wsdl_publish page 554
plugins:wss page 555
policies page 557
policies:asp page 564
policies:bindings page 568
policies.csi page 570
policies:external _token issuer page 573
policies:https page 574
policiesiiop_tls page 580
policies:security server page 590
policies:soap:security page 592
principal _sponsor page 593
principal_sponsor:csi page 597
principal_sponsor:http page 600
principal_sponsor:https page 602
principal_sponsor:iiop_tls page 604
principal_sponsor:wsse page 606

Applying Constraintsto Certificates

Applying Constraintsto Certificates

Certificate constraints policy

Configuration variable

Constraint language

Example

You can usethe CertConstraintsPolicy to apply constraintsto peer X.509
certificates by the default certificatevalidatorPolicy. These conditions are
applied to the owner’s distinguished name (DN) on thefirst certificate (peer
certificate) of the received certificate chain. Distinguished names are made up of
anumber of distinct fields, the most common being Organization Unit (OU) and
Common Name (CN).

Y ou can specify alist of constraints to be used by certconstraintspPolicy

through thepolicies:iiop_tls:certificate_constraints_policy Of

policies:certificate_constraints_policy configuration variables. For

example:

policies:iiop_tls:certificate constraints_policy =
["CN=Johnny*,0U=[unitl|IT_SSL],O=IONA,C=Ireland, ST=Dublin, L=Ea
rth", "CN=Paul*, OU=SSLTEAM, O=IONA, C=Ireland, ST=Dublin, L=Earth",

"CN=TheOmnipotentOne"] ;

These are the special characters and their meanings in the constraint list:

* Matches any text. For example:
an* matches ant and anger, but not aunt
[] Grouping symbols.
| Choice symbol. For example:

oU=[unitl|IT ssL] signifiesthat if the ouisunitl or
IT_ssL, the certificate is acceptable.

=, 1= Signify equality and inequality respectively.

Thisisan examplelist of constraints:

policies:iiop_tls:certificate _constraints_policy = [

"OU=[unitl|IT_SSL],CN=Steve*,L=Dublin",
"OU=IT_ART*,0U!=IT_ ARTtesters,CN=[Jan | Donall, ST=
Boston" 1;

515

APPENDIX A | Artix Security

Distinguished names

516

This constraint list specifiesthat a certificate is deemed acceptable if and only if
it satisfies one or more of the constraint patterns:

If
The OU is unitl or IT_SSL
And
The CN begins with the text Steve
And
The location is Dublin
Then the certificate is acceptable
Else (moving on to the second constraint)
If
The OU begins with the text IT ART but isn't IT ARTtesters
And
The common name is either Donal or Jan
And
The State is Boston
Then the certificate is acceptable
Otherwise the certificate is unacceptable.

Thelanguageis like aboolean OR, trying the constraints defined in each line

until the certificate satisfies one of the constraints. Only if the certificate fails all
congtraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "cN =" might not be recognized, where "cn=" is recognized.

For more information on distinguished names, see the Security Guide.

bus:initial_contract

bus:initial _contract

url:isf_service

url:login_service

Thebus:initial_contract hamespace contains the following configuration
variable:

® urlisf_service
®* url:login_service

Specifies the location of the Artix security service’ sWSDL contract. This
variable is needed by applications that connect to the Artix security service
through a protocol specified in the physical part of the security service’'sWSDL
contract (the alternative would be to connect over [IOP/TLS using a CORBA
object reference).

Thisvariableis used in conjunction with the
policies:asp:use_artix proxies configuration variable.

Specifies the location of the login service WSDL to the 1ogin_client plug-in.
The value of this variable can either be arelative pathname or aURL. The
login_client requiresaccess to the login service WSDL in order to obtain
details of the physical contract (for example, host and I P port).

517

APPENDIX A | Artix Security

bus:security

enable_security

518

The variables in the bus : security are intended for use with the

it_container admin utility, in order to facilitate communication with a secure
Artix container. The bus : security namespace contains the following
configuration variables:

* enable_security

® user_name

® user_password

Thebus:security:enable_security variableis aboolean variable that

enables a client to send WSS username and password credentials. When true,

the client sends WSS username and password credentials with every SOAP

request message (Whether or not the connection is secured by SSL/TLS); when

false, thefeatureis disabled.

There are essentially two different ways of initializing the WSS username and

password credentials on the client side:

® Fromthe Artix .cfg file—you can set the WSS credentials in the Artix
configuration using the related user_name and user_password
configuration variables. For example:

Artix .cfg file

bus:security:enable security = "true";
bus:security:user_name = "Username";
bus:security:user_password = "Password";

L From the command line—if you omit the bus: security:user_name and
bus:security:user_password Settings from the Artix configuration, the
client program will prompt you for the username and password credentials
asit starts up. For example:

Please enter login :
Please enter password :

bus:security

user_name
Initializesa WSS username. Thisvariableisintended for use in conjunction with
the bus:security:enable security variable as part of the configuration for
the it_container admin utility.

user_password

Initializesa WSS password. Thisvariableisintended for use in conjunction with
the bus:security:enable security variable as part of the configuration for
the it_container admin utility.

519

APPENDIX A | Artix Security

Initial_references

The initial references Namespace contains the following configuration
variables:

® |T_SecurityServicerreference
. IT_TLS Toolkit:plugin

I T_SecurityService:reference

This configuration variable specifies the |ocation of the Artix security service.
Clients of the security service need this configuration setting in order to locate
and connect to the security service through the [IOP/TLS protocol.

Note: Thisvariableis not relevant to clients that connect to a HTTPS-based
security service.

The most convenient way to initidize this variableisto use a corbaloc URL.
The corbaloc URL typically has the following format:
corbaloc:it_iiops:1.2@Hostname: Port/IT _SecurityService

Where Hostname is the name of the host where the security service isrunning
and port isthe I P port where the security service s listening for incoming
connections.

If the security serviceis configured as a cluster, you need to use a multi-profile
corbaloc URL, which lists the addresses of all the servicesin the cluster. For
example, if you configure a cluster of three services—with addresses
security01:5001, security02:5002, and security03:5003—Yyou would set
the corbaloc URL asfollows:

corbaloc:it_iiops:1.2@security01:5001,it_iiops:1.2@security02:500
2,it_iiops:1.2@security03:5003/IT SecurityService

520

IT_TLS Toolkit:plugin

initial_references

This configuration variable enables you to specify the underlying SSL/TLS
toolkit to be used by Artix. It is used in conjunction with the
plugins:baltimore_toolkit:shlib_name,
plugins:schannel_toolkit:shlib name (Windows only) and
plugins:systemssl_toolkit:shlib name (Z/OSonly) configuration variables
to implement SSL/TL Stoolkit replaceability.

The default is the Baltimore toolkit.

For example, to specify that an application should use the Schannel SSL/TLS
toolkit, you would set configuration variables as follows:

initial_references:IT TLS_Toolkit:plugin = "schannel_toolkit";
plugins:schannel_toolkit:shlib_name = "it_tls_schannel";

521

APPENDIX A | Artix Security

password_retrieval_mechanism

inherit_from_parent

The configuration variablesin the password retrieval mechanism namespace
areintended to be used only by the Artix services. The following variables are
defined in this namespace:

® inherit_from_parent
® use my password_as kdm_ password

If an application forks a child process and this variable is set to true, the child
process inherits the parent’s X.509 certificate password through the
environment.

Note: Thisvariable isintended for use only by the standard Artix services.

use_my password_as kdm_password

522

This variable should be set to true only in the scope of the KDM plug-in's
container. From a security perspectiveit is dangerous to do otherwise as the
password could be left in cleartext within the process.

The KDM isalocator plug-in and so it is natural that it should use the locator's
identity asits identity. However, it requires a password to encrypt its security
information. By default the KDM requests such a password from the user during
locator startup and thisis separate from the locator password. The locator
password would be used if thisvariableis set to true.

Note: Thisvariable isintended for use only by the standard Artix services.

plugins.asp

plugins.asp

authentication_cache size

The plugins:asp hamespace contains the following variables:

authentication_cache_size
authentication_cache_timeout
authorization_realm

default_password

enable_security_service cert_authentication
enable_security_service load_balancing
security_type

security_level

The maximum number of credentials stored in the authentication cache. If this
Size is exceeded, any new authentication tokens acquired by calling the Artix
security service are not stored in the cache. The cache can shrink again if some
of the cached credentials expire (either because the individual token expiry time
is exceeded or the plugins:asp:authentication_cache_timeout iS
exceeded).

A value of -1 (the default) means unlimited size. A value of 0 means disable the
cache. The value must lie within therange -1 to 2~31-1.

Note: Thisvariable does not affect CORBA credentials. For details of how to
configure the CORBA cache, see “plugins:gsp” on page 534.

523

APPENDIX A | Artix Security

authentication_cache_timeout

authorization_realm

524

The time (in seconds) after which a credential expires. Expired credentials are
removed from the cache and must re-authenticate with the Artix security service
on the next call from that user.

A value of -1 means an infinite time-out. A value of 0 means disable the cache.
The value must lie within therange -1 to 2~31-1.

Default is 600 seconds.

Note: Thisvariable does not affect CORBA credentials. For details of how to
configure the CORBA cache, see “plugins:gsp” on page 534.

Specifies the Artix authorization realm to which an Artix server belongs. The
value of this variable determines which of a user’sroles are considered when
making an access control decision.

For example, consider a user that belongs to the ejb-developer and
corba-developer roleswithin the Engineering realm, and to the ordinary role
within the sales realm. If you set plugins:asp:authorization_realmto
sales for aparticular server, only the ordinary roleis considered when making
access control decisions (using the action-role mapping file).

The default is To0NAGlobalRealm.

default_password

plugins.asp

When the client credential s originate either from a CORBA Principal (embedded
in a SOAP header) or from acertificate subject, the default_password variable
specifies the password to use on the server side. The
plugins:asp:default_password Variable is used to get around the limitation
that a PRINCIPAL identity and a CERT_SUBJECT are propagated without an
accompanying password.

Theartix_security plug-in usesthe received client principal together with the
password specified by plugins: asp:default_password to authenticate the user
through the Artix security service.

The default value isthe string, default_password.

enable security service cert_authentication

When this parameter is set to true, the client certificate is retrieved from the
TLS connection. If no other credentials are available, the client certificateisthen
sent to the Artix security service for authentication.

The client certificate has the lowest precedence for authentication. Hence, if any
other credentials are presented by the client (for example, if the client sends a
WSS username and password), these alternative credentials are sent to the Artix
security service instead of the certificate credentias.

Default is false.

enable _security_service load_balancing

A boolean variable that enables |oad balancing over a cluster of security
services. If an application is deployed in adomain that uses security service
clustering, the application should be configured to use client load balancing (in
this context, client means a client of the Artix security service). See dso

policies:iiop_tls:load balancing mechanism.

Default is false.

525

APPENDIX A | Artix Security

security_type

security level

526

(Obsolete) From Artix 3.0 onwards, this variable isignored.

Specifies the level from which security credentials are picked up. The following
options are supported by the artix_security plug-in:

MESSAGE_LEVEL Get security information from the transport header. Thisis
the defaullt.

REQUEST_LEVEL Get the security information from the message header.

plugins.at_http

plugins.at_http

client:client_certificate

Theplugins:at_http configuration variables are provided to facilitate
migration from legacy Artix applications (that is, Artix releases prior to version
3.0). Theplugins:at_http Namespace contains variables that are similar to the
variables from the old (pre-version 3.0) plugins :http namespace. One
important change made in 3.0, however, isthat an application’s own certificate
must now be provided in PK CS#12 format (where they were previously supplied
in PEM format).

If the variables from the plugins:at_http hamespace are used, they take
precedence over the analogous variables from the principal_sponsor:https
and policies:https Namespaces.

Theplugins:at_http hamespace contains the following variables:

* client:client_certificate.

® client:client_private key password.

® client:itrusted_root_certificates.

® client:use_secure_sockets.

. server:server_certificate.

® server:server_private key password.

* server:trusted root_certificates.

® server:use secure sockets.

This variable specifies the full path to the PK CS#12-encoded X.509 certificate
issued by the certificate authority for the client. For example:

plugins:at_http:client:client_certificate =
"C:\aspen\x509\certs\key.cert.pl2"

client:client_private key password

This variable specifies the password to decrypt the contents of the PK CS#12
certificate file specified by client:client_certificate.

527

APPENDIX A | Artix Security

client:trusted root_certificates

client:use _secure sockets

528

This variable specifies the path to afile containing a concatenated list of CA
certificatesin PEM format. The client usesthis CA list during the TLS
handshake to verify that the server’s certificate has been signed by atrusted CA.

The effect of the client:use_secure_sockets variable depends on the type of
URL specifying the remote service location:
® https://host:port URL format—the client always attemptsto open a
secure connection. That is, the value of
plugins:at_http:client:use_secure_sockets is effectively ignored.
® http://host:port URL format—whether the client attempts to open a
secure connection or not depends on the value of
plugins:at_http:client:use_secure_sockets, asfollows:
¢+ true—theclient attempts to open a secure connection (that is,
HTTPS running over SSL or TLS). If no port is specified in the http
URL, the client uses port 443 for secure HTTPS.
¢+ false—theclient attempts to open an insecure connection (that is,
plan HTTP).

plugins.at_http

|fplugins:at_http:client:use_secure_socketsiStrueandthEC”ent
decides to open a secure connection, the at_http plug-in then automatically
loads the nttps plug-in.

Note: |fplugins:at_http:client:use_secure_socketsiStrueandthe
client decides to open a secure connection, Artix uses the following client
secure invocation policies by default:

policies:https:client_secure_invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

policies:https:client_secure_invocation_policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

Y ou can optionally override these defaults by setting the client secure
invocation policy explicitly in configuration.

server:server certificate

This variable specifies the full path to the PK CS#12-encoded X.509 certificate
issued by the certificate authority for the server. For example:

plugins:at_http:server:server certificate =
"c:\aspen\x509\certs\key.cert.pl2"

server:server_private key password

This variable specifies the password to decrypt the contents of the PK CS#12
certificate file specified by server:server certificate.

server:trusted root_certificates

This variable specifies the path to afile containing a concatenated list of CA
certificatesin PEM format. The server usesthis CA list during the TLS
handshake to verify that the client’s certificate has been signed by atrusted CA.

529

APPENDIX A | Artix Security

server:use secure sockets

The effect of the server:use_secure_sockets variable depends on the type of

URL advertising the service location:

® https://host:port URL format—the server accepts only secure
connection attempts. That is, the value of
plugins:at_http:server:use_secure_sockets iS effectively ignored.

® http://host:port URL format—whether the server accepts secure
connection attempts or not depends on the value of

plugins:at_http:server:use_secure_sockets, aS follows:

¢+ true—the server accepts secure connection attempts (that is, HTTPS
running over SSL or TLS). If no port is specified in the http URL,
the server uses port 443 for secure HTTPS.

¢+ false—theserver acceptsinsecure connection attempts (that is, plain
HTTP).

If plugins:at_http:server:use_secure_sockets iSSet and the server accepts
a secure connection, the at_http plug-in then automatically loads the https
plug-in.

Note: If plugins:at_http:server:use_secure_sockets iS set and the
server accepts a secure connection, Artix uses the following server secure
invocation policies by default:

policies:https:target_secure invocation policy:requires =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];

policies:https:target_secure invocation policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

Y ou can optionally override these defaults by setting the target secure
invocation policy explicitly in configuration.

530

plugins.at_http

server:use secure_sockets:container

The effect of the server:use_secure_sockets:container variableis similar
to the effect of the server :use_secure_sockets variable, except that only the
ContainerService serviceis affected. Using thisvariable, it is possible to
enable HTTPS security specifically for the containerservice service without
affecting the security settings of other services deployed in the container.

531

APPENDIX A | Artix Security

plugins.atli2_tls

Theplugins:atli2_tls namespace contains the following variable:

® use jsse tk

use jsse tk

(Java only) Specifies whether or not to use the JSSE/JCE architecture with the
CORBA binding. If true, the CORBA binding uses the JISSE/JCE architecture
to implement SSL/TL S security; if false, the CORBA binding usesthe
Baltimore SSL/TL S toolkit.

The default is false.

532

plugins.csi

plugins.cs

ClassName

shlib_name

Thepolicies:csi namespace includes variablesthat specify settings for
Common Secure Interoperability version 2 (CSIv2):

b ClassName

i shlib_name

ClassName Specifies the Java class that implements the csi plugin. The default
setting is:

plugins:csi:ClassName = "com.iona.corba.security.csi.CSIPlugin";
This configuration setting makes it possible for the Artix core to load the plugin
on demand. Internally, the Artix core uses a Java class loader to load and
instantiate the csi class. Plugin loading can be initiated either by including the
csiinthe orb plugins list, or by associating the plugin with aninitial
reference.

shlib_name identifies the shared library (or DLL in Windows) containing the
csi plugin implementation.

plugins:csi:shlib_name = "it_csi_prot";

The csi plug-in becomesassociated withthe it_csi_prot shared library, where
it_csi_prot iSthe base name of thelibrary. The library base name,
it_csi_prot, isexpanded in a platform-dependent manner to obtain the full
name of thelibrary file.

533

APPENDIX A | Artix Security

plugins.gsp

The plugins:gsp hamespace includes variables that specify settings for the
Generic Security Plugin (GSP). This provides authorization by checking auser’s
roles against the permissions stored in an action-role mapping file. It includes

the following:

° accept_asserted_authorization_info
° action_role_mapping file

b assert_authorization info

° authentication_cache_size

i authentication_cache_timeout

b authorization realm

° ClassName

i enable authorization

hd enable_gssup_sso

b enable_user_id logging

i enable x509_sso

d enforce_secure_comms_to_sso_server

° enable_security service_cert_authentication
i sso_server_certificate_constraints

d use_client_load_balancing

accept_asserted_authorization_info

If false, SAML authorization datais not read from incoming connections.

Note: InArtix versions 4.0 and earlier, if no SAML authorization datais
received and this variable is true, Artix would raise an exception. In Artix
versions 4.1 and later, if no SAML authorization datais retrieved, Artix
re-authenticates the client credentials with the security service, irrespective of
whether the accept_asserted authorization info variableis true or
false.

Default is true.

534

action_role_mapping_file

assert_authorization_info

authentication_cache size

plugins.gsp

Specifies the action-role mapping file URL. For example:

plugins:gsp:action_role mapping file =
"file:///my/action/role/mapping" ;

If false, SAML authorization datais not sent on outgoing connections. Default

is true.

The maximum number of credentials stored in the authentication cache. If this
size is exceeded the oldest credentia in the cacheis removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable the
cache.

authentication_cache_timeout

authorization_realm

The time (in seconds) after which a credential is considered stale. Stale
credentials are removed from the cache and the server must re-authenticate with
the Artix security service on the next call from that user. The cache timeout
should be configured to be smaller than the timeout set inthe is2.properties
file (by default, that setting is is2.sso.session. timeout=600).

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

authorization_realm specifies theiSF authorization realm to which a server
belongs. The value of this variable determines which of auser'sroles are
considered when making an access control decision.

535

APPENDIX A | Artix Security

ClassName

enable_authorization

enable gssup_sso

536

For example, consider a user that belongs to the ejb-developer and
corba-developer roles within the Engineering realm, and to the ordinary role
within the Salesrealm. If you set plugins:gsp:authorization_realmto Sales
for a particular server, only the ordinary role is considered when making access
control decisions (using the action-role mappingfile).

ClassName specifies the Java class that implements the gsp plugin. This
configuration setting makes it possible for the Artix core to load the plugin on
demand. Internally, the Artix core uses a Java class |oader to |oad and instantiate
the gsp class. Plugin loading can be initiated either by including the csi in the
orb_plugins list, or by associating the plugin with an initial reference.

A boolean GSP palicy that, when true, enables authorization using action-role
mapping ACLsin server.

Default is true.

Enables SSO with a username and a password (that is, GSSUP) when set to

true.

enable_user_id_logging

enable x509 sso

plugins.gsp

A boolean variable that enables|ogging of user IDs on the server side. Default is

false

Up until the release of Orbix 6.1 SP1, the GSP plug-in would log messages

containing user IDs. For example:

[junit] Fri, 28 May 2004 12:17:22.0000000 [SLEEPY:3284]
(IT_CSI:205) I - User alice authenticated successfully.

In some cases, however, it might not be appropriate to expose user IDsin the

Orbix log. From Orbix 6.2 onward, the default behavior of the GSP plug-inis

changed, so that user IDs are not logged by default. To restore the pre-Orbix 6.2

behavior and log user 1Ds, set this variable to true.

Enables certificate-based SSO when set to true.

enforce_secure_comms to Sso_server

Enforces a secure SSL/TLS link between a client and the login service when set
to true. When this setting is true, the value of the SSL/TLS client secure
invocation policy does not affect the connection between the client and the login
service.

Default is true.

enable security_service cert_authentication

A boolean GSP policy that enables X.509 certificate-based authentication on the
server side using the Artix security service.

Default is false.

537

APPENDIX A | Artix Security

Sso_server certificate constraints

use_client_load_balancing

538

A special certificate constraints policy that applies only to the SSL/TLS
connection between the client and the SSO login server. For details of the pattern
constraint language, see “Applying Constraints to Certificates” on page 515.

A boolean variable that enables |oad balancing over a cluster of security
services. If an application is deployed in adomain that uses security service
clustering, the application should be configured to use client load balancing (in
this context, client means a client of the Artix security service). See also

policies:iiop_tls:load balancing_mechanism.

Default is true.

plugins:https

plugins:https

The plugins:https hamespace contains the following variable:
° ClassName

ClassName

(Javaonly) This variable specifies the class name of the https plug-in
implementation. For example:

plugins:https:ClassName = "com.iona.corba.https.HTTPSPlugIn";

539

APPENDIX A | Artix Security

plugins:iiop tls

The plugins:iiop_tls namespace contains the following variables:

buffer_pool:recycle_segments
buffer_pool:segment_preallocation
buffer_pools:max_incoming_buffers_in_pool
buffer_pools:max_outgoing_buffers in_pool
delay_credentia_gathering_until_handshake
enable_iiop_1 O client_support
incoming_connections:hard_limit
incoming_connections.soft_limit
outgoing_connections:hard_limit
outgoing_connections:soft_limit
tcp_listener:reincarnate_attempts
tcp_listener:reincarnation_retry backoff _ratio
tcp_listener:reincarnation_retry _delay

buffer_pool:recycle segments

(Javaonly) When thisvariable is set, the iiop_t1s plug-in readsthisvariable's
value instead of the plugins:iiop:buffer pool:recycle_segments
variable'svalue.

buffer_pool:segment_preallocation

(Javaonly) When thisvariable is set, the iiop_t1s plug-in readsthisvariable's
value instead of the plugins:iiop:buffer _pool:segment_preallocation
variable' svalue.

540

plugins.iiop_tls

buffer_pools:max_incoming_buffers in_pool

(C++ only) When thisvariable is set, the iiop_t1s plug-in readsthisvariable's
valueinstead of the

plugins:iiop:buffer pools:max_incoming buffers_in pool Variable's
value.

buffer_pools:max_outgoing_buffers in_pool

(C++ only) When thisvariable is set, the iiop_t1s plug-in readsthisvariable's
valueinstead of the

plugins:iiop:buffer pools:max_outgoing buffers_in pool Variable's
value.

delay_credential_gathering_until_handshake

(Windows and Schannel only) This client configuration variable provides an
aternativeto using theprincipal_sponsor variablesto specify an application’s
own certificate. When thisvariable is set to true and

principal_sponsor:use principal sponsor iSSetto false, the client delays
sending its certificate to a server. The client will wait until the server explicitly
reguests the client to send its credentials during the SSL/TL S handshake.

This configuration variable can be used in conjunction with the
plugins:schannel : prompt_with_credential_choice configuration variable.

enable iiop_1 0 client_support

This variable enables client-side interoperability of Artix SSL/TLS applications
with legacy [10P 1.0 SSL/TLS servers, which do not support [10P 1.1.

The default value is false. When set to true, Artix SSL/TLS searches secure
target 110OP 1.0 object references for legacy 110P 1.0 SSL/TL S tagged
component data, and attempts to connect on the specified port.

Note: Thisvariablewill not be necessary for most users.

541

APPENDIX A | Artix Security

incoming_connections:hard_limit

Specifies the maximum number of incoming (server-side) connections permitted
to 110OP. 11OP does not accept new connections above this limit. Defaultsto -1
(disabled).

When thisvariableis set, the iiop_t1s plug-in readsthis variable' s value
instead of the plugins:iiop:incoming_connections:hard limit variable's
value.

Please see the chapter on ACM in the CORBA Programmer’ s Guide for further
details.

incoming_connections: soft_limit

Specifies the number of connections at which [10P should begin closing
incoming (server-side) connections. Defaults to -1 (disabled).

When thisvariableis set, the iiop_t1s plug-in readsthis variable's value
instead of the plugins:iiop:incoming_connections:soft_limit variable's
value.

Please see the chapter on ACM in the CORBA Programmer’ s Guide for further
details.

outgoing_connections:hard_limit

When thisvariableis set, the iiop_t1s plug-in readsthis variable' s value
instead of the plugins:iiop:outgoing connections:hard limit variable's
value.

outgoing_connections:soft_limit

542

When thisvariableis set, the iiop_t1s plug-in readsthis variable' s value
instead of the plugins:iiop:outgoing connections:soft_limit variable's
value.

plugins.iiop_tls

tcp_listener:reincarnate_attempts

(Windows only)

plugins:iiop_tls:tcp_listener:reincarnate_attempts Specifiesthe
number of times that a Listener recreates its listener socket after recieving a
SocketException.

Sometimes a network error may occur, which resultsin alistening socket being
closed. On Windows, you can configure the listener to attempt areincarnation,
which enables new connections to be established. This variable only affects Java
and C++ applications on Windows. Defaults to O (no attempts).

tcp_listener:reincarnation_retry backoff_ratio

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry delay Specifiesa
delay between reincarnation attempts. Datatype is 1ong. Defaultsto o (no
delay).

tcp_listener:reincarnation_retry_delay

(Windows only)
plugins:iiop_tls:tcp_listener:reincarnation_retry backoff_ratiospe
cifies the degree to which delays between retries increase from one retry to the
next. Datatypeis long. Defaultsto 1.

543

APPENDIX A | Artix Security

plugins;java server

class

544

In the context of Artix security, the variablesin the plugins:java_server

namespace are used only to configure the Artix security service. To deploy the

security service, Artix exploits the generic server (which is afeature originaly

developed for Orbix). The Artix security service is deployed into the following

container hierarchy:

®* Generic server—asimple container, originally developed for the Orbix
product, which enables you to deploy CORBA services implemented in
C++.

® Java server plug-in—a JNI-based adapter that plugs into the generic
server, enabling you to deploy CORBA services implemented in Java.

* JVM created by the Java server plug-in—once it isloaded, the Java server
plug-in creates a VM instance to host a Java program.

® Artix security service Java code—you instruct the Java server plug-in to
load the security service core (which isimplemented in Java) by specifying
the appropriate classto the plugins: java_server:class variable.

In addition to the configuration variables described in this section, you must also

include the following setting in your configuration:

generic_server_plugin = "java_server";

Which instructs the generic server to load the Java server plug-in.

The plugins:java_server namespace contains the following variables:

® class

* classpath

® jni_verbose

® shlib_name

® system properties

e X _options

In the context of the Artix security service, this variable specifies the entry point
to the core security service (the core security serviceis a pure Java program).
There are two possible values:

classpath

jni_verbose

shlib_name

plugins.java_server

i com.iona.jbus.security.services.SecurityServer—Ccreatesan Artix
bus instance that takes its configuration from the bus sub-scope of the
current configuration scope. This entry point is suitable for a security
service that is accessed through a WSDL contract (for example, a
HTTPS-based security service).

i com.iona.corba.security.services.SecurityServer—a
CORBA-based implementation of the security service, which does not
create an Artix bus instance. This entry point is suitable for running an
I1OP/TLS-based security service.

Specifiesthe cLasspatH for the VM instance created by the Java server plug-in.
For the Artix security service, this cLasspaTa must point at the JAR file
containing the implementation of the security service. For example:

plugins:java_server:classpath =
"C:\artix_40/lib/artix/security_service/4.0/security._service-
rt.jar";

The Java server plug-in ignores the contents of the cLassPATH environment
variable.

A boolean variable that instructs the VM to output JNI-level diagnostics, which
can be helpful for troubleshooting. When true, the JVM-generated diagnostic
messages are sent to the Artix logging stream; when false, the diagnostic
messages are suppressed.

Specifies the abbreviated name of the shared library that implements the
java_server plug-in. Thisvariable must aways be set asfollows:

plugins:java_server:shlib name = "it_java_server";

545

APPENDIX A | Artix Security

system_properties

X_options

546

Specifiesalist of Java system properties to the VM created by the Java server
plug-in. For example, the Artix security service reguires the following Java
system property settings:

plugins:java_server:system properties =
["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com. iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=%{INSTALL DIR}/%{PRODUCT NAME}/%{PRODUCT VERS
ION} /demos/security/full_security/etc/is2.properties.FILE",
"java.endorsed.dirs=%{INSTALL DIR}/%{PRODUCT NAME} /% {PRODUCT
VERSION}/lib/endorsed"];

Where each item in the list specifies a Java system property, asfollows:

<PropertyName>=<PropertyValue>

Specifiesalist of non-standard, -x, optionsto the VM created by the Java
server plug-in. In contrast to the way these options are specified to the java
command-line tool, you must omit the -x prefix in the X_options list.

For example:
plugins:java_server:X options = ["rs"];

To find out more about the non-standard JVM options, type java -x -help at
the command line (using Sun’s implementation of the JVM).

plugins:login_client

plugins:login_client

Theplugins:login_client hamespace contains the following variables:
e wsd_url

wsdl_url

(Deprecated) Use bus:initial_contract:url:login_service instead.

547

APPENDIX A | Artix Security

plugins:login_service

The plugins:login_service namespace contains the following variables:
e wsdl_url

wsdl_url

(Deprecated) Use bus:initial_contract:url:login_service instead.

548

plugins.schannel

plugins.schannel

The plugins:schannel namespace contains the following variable:

®* prompt_with_credential_choice

prompt_with_credential_choice

(Windows and Schannel only) Setting both this variable and the
plugins:iiop_tls:delay credential_gathering_until_handshake
variableto true on the client side allows the user to choose which credentialsto
use for the server connection. The choice of credentials offered to the user is
based on the trusted CAs sent to the client in an SSL/TL S handshake message.

If prompt_with_credential choice IS Set tO false, runtime chooses the first
certificateit findsin the certificate store that meets the applicable constraints.

The certificate prompt can be replaced by implementing an IDL interface and
registering it with the ORB.

549

APPENDIX A | Artix Security

plugins:security

direct_persistence

iiop_tls:addr_list

550

The plugins:security hamespace contains the following variables:
® direct_persistence

®* iiop_tlsaddr_list

* iiop_tlshost

® jiop_tlsport

®* |og4j_to local_log stream

® share credentials across orbs

A boolean variable that specifies whether or not the security servicerunson a
fixed IP port (for an I1OP/TL S-based security service). Y ou must always set this
variable to true in the security service's configuration scope, because the
security service must run on afixed port.

When the security serviceis configured as a cluster, you must use this variable
to list the addresses of al of the security servicesin the cluster.

Thefirst entry, not prefixed by a + sign, must specify the address of the current
security service instance. The remaining entries, prefixed by a + sign, must
specify the addresses of the other servicesin the cluster (the + sign indicates that
an entry affects only the contents of the generated |OR, not the security service's
listening port).

For example, to configure the first instance of a cluster consisting of three
security service instances—with addresses security01:5001,
security02:5002, and security03:5003—Yyou would initialize the address list
asfollows:

plugins:security:iiop_tls:addr_list = ["security01:5001",
"+security02:5002", "+security03:5003"];

iiop_tls:host

iiop_tls:port

log4j _to _local_log_stream

plugins.security

Specifies the hostname where the security serviceis running. Thishostname will
be embedded in the security service’sIOR (for an 11OP/TL S-based security
service).

Specifies the fixed IP port where the security service listens for incoming
connections. This IP port also gets embedded in the security service's IOR (for
an I|OP/TL S-based security service).

Redirects the Artix security service' slog4j output to the local log stream. In the
Artix security service's configuration scope, you can set the
plugins:security:logdj_to_local_ log_stream Variable to one of the
following values:

* true—the security servicelogdj output is sent to thelocal log stream. This
requiresthat the local_log_stream plug-inispresent inthe orb_plugins
list.

° false—(default) the log4j output is controlled by the 1og47 .properties
file (whose location is specified in the is2 . properties file).

When redirecting log4j messages to the local log stream, you can control the

log4j logging level using Artix event log filters. Y ou can specify Artix event log

filterswith the following setting in the Artix .cfgfile:

event_log:filters = ["IT SECURITY=LoggingLevels"];

The 1T_sEcURITY tag configuresthelogging levelsfor the Artix security service

(which includes the redirected log4j stream). log4j hasfive logging levels:

DEBUG, INFO, WARN, ERROR, and FATAL. To select a particular log4j logging level

(for example, warn), replace roggingrevels by that logging level plusall of the

higher logging levels (for example, WARN+ERROR+FATAL).

551

APPENDIX A | Artix Security

For example, you can configure the Artix security service to send log4j logging
to thelocal log stream, asfollows:

Artix .cfg file
security_service

{

orb plugins = ["local log stream", "iiop_profile", "giop",
"iiop_tls"];
plugins:security:log4j_to_local_log_stream = "true";

Log all log4j messages at level WARN and above
event_log:filters = ["IT SECURITY=WARN+ERROR+FATAL"];

share credentials across orbs

Enables own security credentialsto be shared across ORBs. Normally, when you
specify an own SSL/TLS credential (using the principal sponsor or the principal
authenticator), the credential is available only to the ORB that created it. By
setting the plugins: security: share_credentials_across_orbs variable to
true, however, the own SSL/TLS credentials created by one ORB are
automatically made available to any other ORBs that are configured to share
credentials.

See alsO principal_sponsor:csi:use_existing credentials for details of
how to enable sharing of CSI credentials.

Default is false.

552

plugins:security_cluster

plugins.security cluster

Theplugins:security cluster namespace contains the following variable:
* iop_tlsaddr_list

iiop_tls:addr_list

Theplugins:security cluster:iiop_tls:addr_list variableliststhe
addresses for al of the security servicesin the cluster. Each addressin thelist is
preceded by a + sign, which indicates that the service embeds the addressiin its
generated IORs.

Thisvariable is used in combination with the
plugins:security:iiop_tls:host and plugins:security:iiop_tls:port
settings, which specify the address where the security service listens for
incoming I1OP/TLS request messages.

553

APPENDIX A | Artix Security

plugins:wsdl publish

The plugins:wsdl_publish namespace contains the following variables:

° enable_secure_wsdl_publish

enable secure wsdl_publish

A boolean variable that enables certain security features of the WSDL
publishing service that are required whenever the WSDL publishing serviceis
configured to use the HTTPS protocol. Set this variable to true, if the WSDL
publishing service is configured to use HTTPS; otherwise, set it to false.

Default is false.

For example, to configure the WSDL publishing serviceto use HTTPS, you
should include the following in your program’s configuration scope:

Artix .cfg file
secure_server
{
orb_plugins = [... , "wsdl_publish", "at_http", "https"]l:;

plugins:wsdl_publish:publish port = "2222";
plugins:wsdl_publish:enable_secure_wsdl_publish = "true";
plugins:at_http:server:use_secure_sockets = "true";

Other HTTPS-related settings

iy

Theplugins:at_http:server:use_secure_sockets Setting is needed to
enable HTTPS for the WSDL publishing service.

Note: You must set both
plugins:wsdl_publish:enable secure wsdl_publish and

plugins:at_http:server:use secure_sockets tO true, when enabling
HTTPS for the WSDL publish plug-in.

554

plugins.wss

plugins:wss

classname

keyretrieval:keystorefile

The plugins:wss hamespace defines variables that are needed to configure the
Artix partial message protection feature. Partial message protection isa
WS-Security feature that enables you to apply cryptographic operations at the
SOAP 1.1 binding level, including encrypting and signing a message's SOAP
body. The variables belonging to this namespace are as follows:

® classname

* keyretrieva:keystorefile

® keyretrieval:keystore:provider

® Kkeyretrieval:keystore:storepass

* keyretrieval:keystore:storetype

® protection_policy:location

Specifies the name of the Java class that implements the WSS plug-in. This
variable must be set to the value

com.iona.jbus.security.wss.plugin.BusPlugInFactory.

Specifies the location of a Java keystore file. This must be afilename or file
pathname, not a URL .

keyretrieval:keystore:provider

Specifies the name of the Java keystore provider (optional). Using the Java
cryptographic extension (JCE) package from Sun, it is possible to provide a
custom implementation of the Java keystore. If your Java keystoreis based on a
custom provider, use this variable to set the provider name.

Default isto use the default provider provided by the Java virtual machine.

555

APPENDIX A | Artix Security

keyretrieval:keystor e:stor epass

Specifies the password to access the Java keystore. Thisvariableis used in
conjunction with plugins:wss:keyretrieval:keystore: file t0 associate a
Java keystore with the WSS plug-in.

For example:

Artix .cfg file

plugins:wss:keyretrieval :keystore: file="Keystore.jks";
plugins:wss:keyretrieval :keystore: storepass="StorePassword" ;
plugins:wss:keyretrieval :keystore:provider="";
plugins:wss:keyretrieval :keystore:storetype="";

keyretrieval:keystore:storetype

protection_policy:location

556

Specifies the type of the Java keystore (optional). Using the Java cryptographic
extension (JCE) package from Sun, it is possible to provide a custom
implementation of the Java keystore. If your Java keystore is based on a custom
provider, use this variable to set the keystore type.

Default is jks.

Specifies the location of a policy configuration file that governs the behavior of
the partial message protection feature. The policy configuration fileisan XML
file that conformsto the protection-policy.xsd XML schema (located in
ArtixInstallDir/schemas).

policies

policies

The policies namespace defines the default CORBA policies for an ORB.
Many of these policies can also be set programmatically from within an
application. SSL/TL S-specific variablesin the policies namespace include:

b allow_unauthenticated_clients_policy

i certificate constraints_policy

° client_secure_invocation_policy:requires
b client_secure_invocation_policy:supports
i max_chain_length_policy

hd mechanism_policy:accept_v2_hellos

b mechanism policy:ciphersuites

i mechanism policy:protocol_version
session_caching_policy

b target_secure_invocation_policy:requires
b target_secure_invocation_policy:supports

hd trusted_ca_list_policy

allow_unauthenticated_clients policy

A generic variable that sets this policy both for iiop_t1s and https. To set this
policy specifically for the IOP/TLS protocol, set the
policies:iiop_tls:allow_unauthenticated_clients_policy variable,
which takes precedence.

A boolean variable that specifies whether a server will allow aclient to establish
a secure connection without sending a certificate. Default is false.

This configuration variableis applicable only in the special case where the target
secure invocation policy is set to reguire Noprotection (& Semi-secure server).

557

APPENDIX A | Artix Security

certificate_constraints_policy

A generic variable that setsthis policy both for iiop_t1s and https. To set this
policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:certificate_constraints_policy variable, whichtakes
precedence.

A list of constraints applied to peer certificates—see “ Applying Constraints to
Certificates’ on page 515. If a peer certificate failsto match any of the
congtraints, the certificate validation step will fail.

The policy can also be set programmatically using the

IT _TLS_API::CertConstraintsPolicy CORBA policy. Default isno
constraints.

client_secure_invocation_policy:requires

558

A generic variable that setsthis policy both for iiop_t1s and https. To set this
policy specifically for the IIOP/TLS protocol, set the
policies:iiop_tls:client_secure_invocation_policy:requires variable,
which takes precedence.

Specifies the minimum level of security required by a client. The value of this
variableis specified asalist of association options—see the Artix Security Guide
for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

policies

client_secure_invocation_policy:supports

max_chain_length_policy

A generic variable that setsthis policy both for iiop_t1ls and https. To set this
policy specifically for the IOP/TLS protocol, set the
policies:iiop tls:client_secure invocation policy:supports variable,

which takes precedence.

Specifies theinitia maximum level of security supported by aclient. The value
of thisvariable is specified as alist of association options—see the Artix
Security Guide for more detail s about association options.

This policy can be upgraded programmatically using either the gop or the
EstablishTrust policies.

A generic variable that setsthis policy both for iiop_t1s and https. To set this
policy specifically for the IOP/TLS protocol, set the

policies:iiop_tls:max chain length_policy variable, which takes
precedence.

max_chain_length_policy specifies the maximum certificate chain length that
an ORB will accept. The policy can also be set programmatically using the
IT_TLS_APT: :MaxChainLengthPolicy CORBA policy. Default is 2.

Note: Themax_chain_length policy isnot currently supported onthez/OS
platform.

559

APPENDIX A | Artix Security

mechanism_policy:accept_v2 hellos

A generic variable that setsthis policy both for iiop_t1s and https. To set this
policy for a specific protocol, set

policies:iiop_tls:mechanism policy:accept_v2_hellos Or
policies:https:mechanism policy:accept_v2_hellos respectively for
IIOP/TLSor HTTPS.

The accept_v2_hellos policy isaspecial setting that facilitates interoperability
with an Artix application deployed on the z/OS platform. When true, the Artix
application accepts V2 client hellos, but continues the handshake using either the
SSL_V3or TLS V1 protocol. When false, the Artix application throws an
error, if it receivesaV2 client hello. The default is false.

For example:

policies:mechanism policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

A generic variable that setsthis policy both for iiop_t1s and https. To Set this
policy for a specific protocol, set

policies:iiop_tls:mechanism policy:ciphersuites OF
policies:https:mechanism policy:ciphersuites respectively for
IIOP/TLSor HTTPS.

mechanism _policy:ciphersuites specifiesalist of cipher suitesfor the default
mechanism policy. One or more of the cipher suites shown in Table 14 can be
specified in thislist.

Table14: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers
RSA_WITH NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5
RSA_WITH _NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH RC4_128_ SHA

RSA_EXPORT_WITH DES40_CBC_SHA

560

policies

Table14: Mechanism Palicy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers

RSA_WITH DES_CBC_SHA

RSA_WITH 3DES_EDE CBC_SHA

If you do not specify thelist of cipher suites explicitly, all of the null encryption
ciphers are disabled and all of the non-export strength ciphers are supported by
default.

mechanism_policy:protocol_version

session_caching_policy

A generic variable that setsthis policy both for iiop_t1s and https. To set this
policy for a specific protocol, set
policies:iiop_tls:mechanism policy:protocol_version OF

policies:https:mechanism policy:protocol_version respectively for
IIOP/TLS or HTTPS.

mechanism policy:protocol_version Specifiesthelist of protocol versions
used by a security capsule (ORB instance). The list can include one or more of
the values sst._v3 and TLs_v1. For example:

policies:mechanism policy:protocol_version=["TLS_V1", "SSL_V3"];

A generic variable that setsthis policy both for iiop_t1s and https. To set this
policy specificaly for the IOP/TLS protocol, set the
policies:iiop_tls:session_caching policy variable, which takes
precedence.

session_caching policy Specifies whether an ORB caches the session
information for secure associations when acting in aclient role, a server role, or
both. The purpose of session caching is to enable closed connectionsto be
re-established quickly. The following values are supported:

CACHE_NONE(default)

CACHE_CLIENT

561

APPENDIX A | Artix Security

CACHE_SERVER
CACHE_SERVER_AND_CLIENT

The policy can also be set programmatically using the
IT_TLS_API::SessionCachingPolicy CORBA policy.

target_secure_invocation_policy:requires

A generic variable that setsthis policy both for iiop_t1s and https. To set this
policy specifically for the IOP/TLS protocol, set the

policies:iiop tls:target_secure_invocation_policy:requires Variable,
which takes precedence.

target_secure_invocation_policy:requires specifiesthe minimum level of

security required by a server. The value of thisvariable is specified asalist of
association options.

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

target_secure_invocation_policy:supports

562

A generic variable that sets this policy both for iiop_t1s and https. To set this
policy specifically for the IOP/TLS protocol, set the

policies:iiop_ tls:target_secure_invocation_policy:supports Variable,
which takes precedence.

supports specifies the maximum level of security supported by a server. The
value of thisvariableis specified asalist of association options. This policy can
be upgraded programmatically using either the gop or the EstablishTrust
policies.

trusted_ca list_policy

policies

A generic variable that setsthis policy both for iiop_t1ls and https. To set this
policy for a specific protocol, set
policies:iiop_tls:trusted_ca_list_policy Or

policies:https:trusted ca_list _policy respectively for IOP/TLS or
HTTPS.

trusted_ca_list_policy specifiesalist of filenames, each of which containsa
concatenated list of CA certificatesin PEM format. The aggregate of the CAsin
al of the listed filesis the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca_list_policy =
["install dir/asp/version/etc/tls/x509/ca/ca_listl.pem",
"install dir/asp/version/etc/tls/x509/ca/ca_list_extra.pem"];

The purpose of having more than one file containing a CA list isfor
administrative convenience. It enables you to group CAs into different lists and
to select aparticular set of CAsfor a security domain by choosing the
appropriate CA lists.

563

APPENDIX A | Artix Security

policies.asp

enable_authorization

The policies:asp hamespace contains the following variables:
®* enable authorization

®* enable issue external_token

®* enable_security

* enable_sso

* |oad balancing_policy

® use artix_proxies

® server_interception_point

A boolean variable that specifies whether Artix should enable authorization
using the Artix Security Framework. Default is true.

Note: From Artix 4.0 onwards, the default value of
policies:asp:enable_authorization iStrue. For versions of Artix prior to
4.0, the default value of policies:asp:enable authorization iS false.

enable issue external token

564

Sometimes, instead of presenting full credentials (including a password) to an
Artix server, aclient might only be able to provide a username. In spite of the
fact that these credentials are incomplete, the application might require the Artix
Security service to issue a security token.

For example, thiskind of scenario can arise, if your security architecture has a
mechanism for verifying credentialsthat is external to the Artix security
framework. At a certain point in your application, the user’ s identity might
already have been authenticated, but only the usernameis available for
presentation to the Artix security service.

enable_security

policies:asp

To deal with this special case, you can configure the Artix authentication

mechanism to issue security tokens based on usernames only. To enable this

feature, configure your Artix application as follows:

1. Artix server configuration—in the configuration file of the Artix server
that needs to obtain security tokens from the Artix security service, set the

policies:asp:enable issue_external_token Var iableto true.

2. Artix security server configuration—configure the
policies:external_token_ issuer:client_certificate_constraints
variable with the appropriate set of certificate constraints. See
“policies.external_token_issuer” on page 573 for details of how to do this.

The Artix server will now be able to obtain a security token from the Artix
security service for any kind of credentials that contains a username—for
example, HTTP Basic Authentication credentials, WSSE UsernameToken
credentials, or CORBA Principal. The password field in these credentials (if
any) isignored.

Itiscrucial that you configure the certificate constraints in the security service,

so that only the X.509 certificate from the relevant Artix server matches the
constraints.

WARNING: You must be certain that you can trust the Artix server to verify
user identities independently of the Artix security service. Otherwise, your
application’s security will be compromised.

A boolean variable that specifies whether Artix should enable security using the
Artix Security Framework. When thisvariable is set to false, all security
features that depend onthe artix_security plug-in (that is, authentication and
authorization using the Artix security service) are disabled. Default is true.

Note: From Artix 4.0 onwards, the default value of
policies:asp:enable_security iS true. For versions of Artix prior to 4.0,
the default value of policies:asp:enable security IS false.

565

APPENDIX A | Artix Security

enable sso

load_balancing_policy

use artix_proxies

566

This configuration variable is obsolete and has no effect.

When client load balancing is enabled, this variable specifies how often the

Artix security plug-in reconnects to a node in the security service cluster. There

are two possible values for this policy:

®* per-server—(the default) after selecting a particular security service
from the cluster, the client remains connected to that security service
instance for the rest of the session.

® per-request—for each new request, the Artix security plug-in selectsand
connects to a new security service node (in accordance with the algorithm
specified by policies:iiop_tls:load balancing mechanism).

Note: The process of re-establishing a secure connection with every
new request imposes a significant performance overhead. Therefore, the
per-request policy valueis not recommended for most deployments.

This policy is used in conjunction with the
plugins:asp:enable_security service_ load balancing and
policies:iiop_tls:load balancing mechanism configuration variables.

Default is per-server.

A boolean variable that specifies whether a client of the Artix security service

connects to the security service through aWSDL contract or through a CORBA

object reference. Thepolicies:asp:use_artix proxies variable can havethe

following values:

® true—connect to the security service through a WSDL contract. The
location of the security service WSDL contract can be specified using the
bus:initial_contract:url:isf_service configuration variable.

server_inter ception_point

policies:asp

° false—connect to the security service through a CORBA object
reference. The object referenceis specified by the
initial_references:IT SecurityService:reference configuration
variable.

Default is false.

Controls the point at which the Artix security interceptor is called. By default,
the interceptor is called at the intercept_around dispatch phase. The
following setting (which is the default) is suitable for most applications:

policies:asp:server_interception point =
"intercept_around_dispatch";

However, in some advanced applications, you might want to interpret incoming
information on the wire and be able to set related information on the appropriate
Artix security contexts before the Artix security interceptor is called. For
example, if you want to perform dynamic credential mapping, use the following
setting:

policies:asp:server_interception point =
"intercept_pre_dispatch";

Note: This advanced security setting can not be used in conjunction with the
router when it is configured to use pass-thru mode. The Artix router in
pass-thru mode skips the intercept_pre_dispatch interception point. This
meansthat the Artix security interceptor only workswith the Artix router when
the secure application is configured to use the default setting
(intercept_around_dispatch).

567

APPENDIX A | Artix Security

policies:bindings

corba:gssup_propagation

cor ba:token_propagation

soap:gssup_propagation

568

The policies:bindings namespace contains the following variables:
® corba:gssup_propagation

® corbatoken_propagation

® soap:gssup_propagation

* soap:token_propagation

A boolean variable that can be used in a SOAP-to-CORBA router to enable the
transfer of incoming SOAP credentias into outgoing CORBA credentials.

The CORBA binding extracts the username and password credentials from
incoming SOAP/HTTP invocations and inserts them into an outgoing GSSUP
credential s object, to be transmitted using CSI authentication over transport. The
domain name in the outgoing GSSUP credentialsis set to ablank string. Default
IS false.

A boolean variable that can be used in a SOAP-to-CORBA router to enable the
transfer of an SSO token from an incoming SOAP request into an outgoing
CORBA reguest.

The CORBA binding extracts the SSO token from incoming SOAP/HTTP
invocations and inserts the token into an outgoing |1 OP request, to be transmitted
using CSl identity assertion.

A boolean variable that can be used in a CORBA-to-SOAP router to enable the
transfer of incoming CORBA credentials into outgoing SOAP credentials.

soap:token_propagation

policies:bindings

The SOAP binding extracts the username and password from incoming |10OP
invocations (where the credentials are embedded in a GIOP service context and
encoded according to the CSI and GSSUP standards), and inserts them into an
outgoing SOAP header, encoded using the WSS standard.

Default is false.

A boolean variable that can be used in a CORBA-to-SOAP router to enable the
transfer of an SSO token from an incoming CORBA request into an outgoing
SOAP request.

The SOAP binding extracts the SSO token from an incoming 11OP request and
inserts the token into the header of an outgoing SOAP/HTTP request.

569

APPENDIX A | Artix Security

policies.cs

Thepolicies:csi hamespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):
° attribute_service:backward_trust:enabled

i attribute_service:client_supports

b attribute_service:target_supports
auth_over_transport:authentication_service
auth_over_transport:client_supports
auth_over_transport:server_domain_name

auth_over_transport:target_requires

auth_over_transport:target_supports

attribute_service:backward_trust:enabled

(Obsolete)

attribute_service:client_supports

attribute_service:client_supports isaclient-side policy that specifiesthe
association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is
IdentityAssertion. Thispolicy isnormally specified in anintermediate server
so that it propagates CSIv2 identity tokens to atarget server. For example:

policies:csi:attribute _service:client_supports =
["IdentityAssertion"];

570

policies.csi

attribute_service:target_supports

attribute_service:target_supports iSaserver-side policy that specifiesthe
association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is
IdentityAssertion. For example

policies:csi:attribute_service:target_supports =
["IdentityAssertion"];

auth_over_transport:authentication_service

(Java CSl plug-in only) The name of a Java class that implements the
IT_CSI::AuthenticateGSSUPCredentials IDL interface. The authentication
serviceisimplemented as a callback object that plugsinto the CSlv2 framework
on the server side. By replacing this class with a custom implementation, you
could potentially implement a new security technology domain for CSIv2.

By default, if no value for thisvariable is specified, the Java CSl plug-in uses a
default authentication object that always returns false when the
authenticate () operationiscalled.

auth_over_transport:client_supports

auth over_transport:client supports iSaclient-side policy that specifies
the association options supported by CSlv2 authorization over transport. The
only assocation option that can be specified iS EstablishTrustInClient. FOr
example:

policies:csi:auth_over transport:client_supports =
["EstablishTrustInClient"];

571

APPENDIX A | Artix Security

auth_over_transport:server_domain_name

The iSF security domain (CSlv2 authentication domain) to which this server
application belongs. The i SF security domains are administered within an
overall security technology domain.

The value of the server_domain_name variable will be embedded in the IORs
generated by the server. A CSIv2 client about to open a connection to this server
would check that the domain name in its own CSIv2 credentials matches the
domain name embedded in the IOR.

auth_over_transport:target_requires

auth over transport:target requires iSaserver-side policy that specifies
the association options required for CSIv2 authorization over transport. The only
assocation option that can be specified is EstablishTrustInClient. For
example:

policies:csi:auth_over transport:target_requires =
["EstablishTrustInClient"];

auth_over _transport:target_supports

572

auth _over_transport:target_supports iSaserver-side policy that specifies
the association options supported by CSIv2 authorization over transport. The
only assocation option that can be specified is EstablishTrustInClient. FOr
example:

policies:csi:auth_over_ transport:target_supports =
["EstablishTrustInClient"];

policies.external_token_issuer

policies.external token issuer

Thepolicies:external token_ issuer hamespace contains the following
variables:

d client_certificate constraints

client_certificate_constraints

To facilitate interoperability with Artix on the mainframe and to facilitate
interoperability with security architectures that perform authentication
independently of Artix, the Artix security service can be configured to issue
security tokens based on ausername only (no password required). Thisfeatureis
known asthe external token issuer. Because this feature could potentialy open a
security hole in the Artix security service, the external token issuer is made
available only to those applications that present a certificate matching the
constraints specified in
policies:external_token_issuer:client_certificate_ constraints. For
details of how to specify certificate constraints, see “ Applying Constraints to
Certificates’ on page 515.

If you want to configure an Artix server that is not on the mainframeto gain
access to the external token issuer, see “enable_issue_external_token” on
page 564.

For example, by inserting the following setting into the security service's
configuration scopein the Artix . cfg file, you would effectively disable the
external token issuer (recommended for deployments that do not need to
interoperate with the mainframe).

DISABLE the security service’s external token issuer.

Note: The empty list matches no certificates.

#
policies:external_token_issuer:client_certificate_constraints =

[1;

This configuration variable must be set in the security server’s configuration
scope, otherwise the security server will not start.

573

APPENDIX A | Artix Security

policies:https

buffer:prealloc_shared

574

The policies:https hamespace contains variables used to configure the https
plugin. It includes the following variables:

° buffer:prealloc_shared

i buffer:prealloc_size

b client_secure_invocation_policy:requires
client_secure_invocation_policy:supports
mechanism policy:accept_v2_hellos
mechanism_policy:ciphersuites

mechanism policy:protocol_version
target_secure_invocation policy:requires
target_secure_invocation_policy:supports
trace_requests:enabled

trusted_ca_list_policy

policies:https:buffer:prealloc_shared specifies whether the HTTPS
pre-allocation buffer is shared among threads. Defaultsto false. This means
that each thread pre-allocates its own buffer on the first invocation for that
thread.

If thisvariable is set to true, the buffer is shared among threads:
policies:https:buffer:prealloc_shared = "true";

This means that the same buffer pre-allocation is shared among all threads.
Therefore, your application must ensure that multiple invocations are not active
at the sametime.

See also buffer:prealloc_size.

buffer:prealloc_size

policies:https

policies:https:buffer:prealloc_size Specifiesthe pre-allocated size of the
HTTP buffer in bytes. The default valueis 0, which meansthereis no
pre-allocation.

When this variable is set, Artix pre-allocates chunks of the specified buffer size
to avoid repeated allocations and deall ocations. Each thread (dispatcher or reply
consumer) performs this pre-all ocation on the first message. Then repeated
invocations on the same thread reuse this buffer. For example, the following
setting specifiesa 2 MB buffer:

policies:https:buffer:prealloc_size = "2097152";

User applications should work out their worst case load in advance, and set this
variable to an appropriate value. This alocation can be reused by each
subsequent request/reply on the dispatcher/consumer thread. When the Artix bus
is shut down, the buffer allocation is freed.

client_secure_invocation_policy:requires

This policy overides
policies:client_secure_invocation_policy:requires for the https
plugin.

Specifies the minimum level of security required by a client. The value of this
variableis specified asalist of association options—see the Artix Security Guide
for more details about association options.

This policy cannot be downgraded programmatically by the application.

client_secure_invocation_policy:supports

This policy overides
policies:client_secure_invocation_policy:supports for the https
plugin.

Specifies the initial maximum level of security supported by aclient. The value
of thisvariableis specified as alist of association options—see the Artix
Security Guide for more details about association options.

575

APPENDIX A | Artix Security

This policy can be upgraded programmatically using either the gop or the
EstablishTrust policies.

mechanism_policy:accept_v2 hellos

This HTTPS-specific policy overides the generic

policies:mechanism policy:accept_v2_hellos poIicy.

The accept_v2_hellos policy isaspecial setting that facilitates HTTPS
interoperability with certain Web browsers. Many Web browsers send SSL V2
client hellos, because they do not know what SSL version the server supports.

When true, the Artix server accepts V2 client hellos, but continues the
handshake using either the SSL_V3or TLS V1 protocol. When false, the Artix
server throws an error, if it receivesa V2 client hello. The default is true.

Note: Thisdefault valueis deliberately different from the
policies:iiop_tls:mechanism policy:accept_v2_hellos default value.

For example:

policies:https:mechanism policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

Specifiesalist of cipher suitesfor the default mechanism policy. One or more of
the following cipher suites can be specified in thislist:

Table 15: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers
RSA_WITH NULL_MD5 RSA_EXPORT_WITH_RC4_40_MD5
RSA_WITH _NULL_SHA RSA_WITH_RC4_128_MD5

RSA_WITH RC4_128_ SHA

RSA_EXPORT_WITH DES40_CBC_SHA

RSA_WITH DES_CBC_SHA

576

policies:https

Table15: Mechanism Palicy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers

RSA_WITH_3DES_EDE CBC_SHA

If you do not specify the list of cipher suites explicitly, all of the null encryption
ciphers are disabled and all of the non-export strength ciphers are supported by
default.

mechanism_policy:protocol _version

This HTTPS-specific policy overides the generic
policies:mechanism_policy:protocol_version policy.

Specifiesthe list of protocol versions used by a security capsule (ORB instance).
Can include one or more of the following values:

TLS_V1
SSL_V3

The default setting is ss._v3 and TLS_v1.
For example:

policies:https:mechanism policy:protocol_version = ["TLS_V1",
"SSL,_V3"1;

target_secure_invocation_policy:requires

This policy overides
policies:target_secure_invocation_policy:requires for the https
plugin.

Specifies the minimum level of security required by a server. The value of this

variableis specified asalist of association options—see the Artix Security Guide
for more details about association options.

This policy cannot be downgraded programmatically by the application.

577

APPENDIX A | Artix Security

target_secure_invocation_policy:supports

trace requests.enabled

578

This policy overides

policies:target_secure_invocation policy:supports for the https
plugin.

Specifies the maximum level of security supported by aserver. The value of this
variableis specified asalist of association options—see the Artix Security Guide
for more details about association options.

Specifies whether to enable HTTPS-specific trace logging. The default is false.
To enable HTTPS tracing, set this variable as follows:

policies:https:trace_requests:enabled="true";

This setting outputs 1nFo level messages that show full HTTP buffers (headers
and body) as they go to and from the wire.

Y ou must also set log filtering as follows to pick up the additional HTTPS
messages, and then resend the logs:

event_log:filters = ["*=*"];

For example, you could enable HTTPS trace logging to verify that
authentication headers are written to the wire correctly.

Similarly, to enable HTTP-specific trace logging, use the following setting:

policies:http:trace requests:enabled="true";

policies:https

trusted_ca list_policy

Contains alist of filenames (or asingle filename), each of which contains a
concatenated list of CA certificatesin PEM format. The aggregate of the CAsin
all of the listed filesis the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted ca_list_policy =
["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_listl.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];
The purpose of having more than one file containing a CA listisfor
administrative convenience. It enables you to group CAs into different lists and
to select aparticular set of CAsfor a security domain by choosing the
appropriate CA lists.

579

APPENDIX A | Artix Security

policies:iiop_tls

Thepolicies:iiop_tls namespace contains variables used to set |1 OP-related
policies for a secure environment. These setting affect the 1iop_t1s plugin. It
contains the following variables:

° allow_unauthenticated_clients_policy

i buffer_sizes policy:default_buffer_ size

b buffer_sizes_policy:max_buffer size
° certificate_constraints_policy

client_secure_invocation policy:requires

client_secure_invocation_policy:supports

° client_version_policy

i connection_attempts

° connection_retry_delay

° load_balancing_mechanism
° max_chain_length_policy

hd mechanism_policy:accept_v2_hellos

° mechanism policy:ciphersuites
mechanism_policy:protocol_version

hd server_address_mode_policy:local_domain

° server_address_mode_policy:local_hostname
server_address_mode_policy:port_range

hd server_address_mode_policy:publish_hostname
° server_version policy
session_caching_policy
target_secure_invocation_policy:requires
target_secure_invocation_policy:supports
° tcp_options_policy:no_delay
tcp_options_policy:recv_buffer size

° tcp_options_policy:send_buffer size

i trusted_ca_list_policy

580

policies:iiop_tls

allow_unauthenticated_clients policy

A boolean variable that specifies whether a server will allow aclient to establish
a secure connection without sending a certificate. Default is false.

This configuration variable s applicable only in the special case where the target
secure invocation policy is set to require NoProtection (@ Semi-secure server).

buffer_sizes policy:default_buffer_size

When thispolicy isset, the iiop_t1s plug-in readsthis policy’s value instead of
thepolicies:iiop:buffer sizes policy:default_buffer size policy’s
value.

buffer sizes_policy:default_buffer_ size specifies, in bytes, theinitia
size of the buffers allocated by [10P. Defaults to 16000. This value must be
greater than 80 bytes, and must be evenly divisible by 8.

buffer_sizes policy:max_buffer_size

When thispolicy isset, the iiop_t1s plug-in readsthis policy’svalue instead of
thepolicies:iiop:buffer sizes_policy:max buffer size policy’svaue.
buffer_sizes_policy:max_buffer_ size specifiesthe maximum buffer size
permitted by [1OP, in kilobytes. Defaultsto 512. A value of -1 indicates
unlimited size. If not unlimited, this value must be greater than 80.

certificate_constraints _policy

A list of constraints applied to peer certificates—see the discussion of certificate
constraints in the Artix security guide for the syntax of the pattern constraint
language. If apeer certificate fails to match any of the constraints, the certificate
validation step will fail.

The policy can aso be set programmatically using the
IT TLS_API::CertConstraintsPolicy CORBA policy. Default isno
constraints.

581

APPENDIX A | Artix Security

client_secure_invocation_policy:requires

Specifies the minimum level of security required by aclient. The value of this
variableis specified asalist of association options—see the Artix Security Guide
for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

client_secure_invocation_policy:supports

client_version_policy

connection_attempts

582

Specifies theinitial maximum level of security supported by aclient. The value
of this variable is specified as alist of association options—see the Artix
Security Guide for more details about association options.

This policy can be upgraded programmatically using either the gop or the
EstablishTrust policies.

client_version_policy specifiesthe highest IIOP version used by clients. A
client usesthe version of [10P specified by thisvariable, or the version specified
in the IOR profile, whichever islower. Valid valuesfor thisvariable are: 1.0,
1.1,and 1.2.

For example, the following file-based configuration entry sets the server |1OP
versionto 1.1.

policies:iiop:server_version_policy="1.1";
Thefollowing itadmin command set thisvariable:

itadmin variable modify -type string -value "1.1"
policies:iiop:server_version policy

connection_attempts specifies the number of connection attempts used when
creating a connected socket using a Java application. Defaults to s.

connection_retry delay

load_balancing_mechanism

max_chain_length_policy

policies:iiop_tls

connection_retry delay Specifiesthe delay, in seconds, between connection
attempts when using a Java application. Defaults to 2.

Specifies the load balancing mechanism for the client of a security service
cluster (see also plugins:gsp:use_client_load balancing and
plugins:asp:enable_security service_load balancing). Inthiscontext, a
client can also be an Artix server. This policy only affects connections made
using IORs that contain multiple addresses. The iiop_t1s plug-inload balances
over the addresses embedded in the IOR.

The following mechanisms are supported:

® random—choose one of the addresses embedded in the IOR at random (this
isthe default).

® sequential—choosethefirst address embedded in the IOR, moving on to
the next addressin the list only if the previous address could not be
reached.

This policy overides policies:max_chain_length policy fortheiiop tls
plugin.

The maximum certificate chain length that an ORB will accept.

The policy can aso be set programmatically using the

IT TLS_APTI::MaxChainLengthPolicy CORBA policy. Defaultis 2.

Note: Themax_chain length policy isnot currently supported onthez/OS
platform.

mechanism_policy:accept_v2 hellos

This IIOP/TLS-specific policy overides the generic
policies:mechanism policy:accept_v2_hellos policy.

583

APPENDIX A | Artix Security

The accept_v2_hellos policy isaspecial setting that facilitates interoperability
with an Artix application deployed on the z/OS platform. Artix security on the
z/OS platform is based on IBM’s System/SSL toolkit, which implements SSL
version 3, but does so by using SSL version 2 hellos as part of the handshake.
This form of handshake causes interoperability problems, because applications
on other platforms identify the handshake as an SSL version 2 handshake. The
misidentification of the SSL protocol version can be avoided by setting the
accept_v2_hellos policy to true in the non-z/OS application (this bug also
affects some old versions of Microsoft Internet Explorer).

When true, the Artix application accepts V2 client hellos, but continues the
handshake using either the SSL_V3or TLS_V1 protocol. When false, the Artix
application throws an error, if it receivesa V2 client hello. The default is false.

Note: Thisdefault valueis deliberately different from the
policies:https:mechanism policy:accept_v2_hellos default value.

For example:

policies:iiop_tls:mechanism policy:accept_v2_hellos = "true";

mechanism_policy:ciphersuites

584

This policy overides policies:mechanism policy:ciphersuites for the
iiop_tls plugin.

Specifiesalist of cipher suitesfor the default mechanism policy. One or more of
the following cipher suites can be specified in thislist:

policies:iiop_tls

Table16: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers
RSA_WITH NULL_MD5 RSA_EXPORT WITH_RC4_40_MD5
RSA WITH_NULL_SHA RSA_WITH _RC4_128_MD5

RSA_WITH RC4_128_ SHA

RSA_EXPORT_WITH DES40_CBC_SHA

RSA_WITH DES_CBC_SHA

RSA_WITH_3DES_EDE CBC_SHA

If you do not specify the list of cipher suites explicitly, all of the null encryption
ciphers are disabled and all of the non-export strength ciphers are supported by
default.

mechanism_policy:protocol _version

This IIOP/TLS-specific policy overides the generic
policies:mechanism_policy:protocol_version policy.

Specifiesthe list of protocol versions used by a security capsule (ORB instance).
Can include one or more of the following values:

TLS_V1
SSL_V3
sst,_v2v3 (Deprecated)

The default setting is sst._v3 and TLs_v1.
For example:

policies:iiop_tls:mechanism policy:protocol_version = ["TLS_V1",
"SSL_V3"];

585

APPENDIX A | Artix Security

The ss1._v2v3 value is now deprecated. It was previously used to facilitate
interoperability with Artix applications deployed on the z/OS platform. If you
have any legacy configuration that uses ss1._v2v3, you should replaceit with the
following combination of settings:

policies:iiop_tls:mechanism policy:protocol_version = ["SSL V3",
"TLS_V1"];
policies:iiop_tls:mechanism policy:accept_v2_hellos = "true";

server_address mode policy:local_domain

(Javaonly) When this policy is set, the iiop_t1s plug-in reads thispolicy’s
value instead of the

policies:iiop:server_address_mode policy:local_domain policy’svaue.

server_address mode policy:local_hostname

586

(Javaonly) When this policy is set, the iiop_t1s plug-in reads thispolicy’s
value instead of the

policies:iiop:server_address_mode policy:local_hostname policy’ S
value.

server_address_mode_policy:local_hostname Specifies the hostname
advertised by the locator daemon, and listened on by server-side I1OP.

Some machines have multiple hostnames or | P addresses (for example, those
using multiple DNS aliases or multiple network cards). These machines are
often termed multi-homed hosts. The 1local_hostname Variable supports these
type of machines by enabling you to explicitly specify the host that serverslisten
on and publishin their IORs.

For example, if you have a machine with two network addresses (207.45.52.34
and 207.45.52.35), you can explicitly set this variable to either address:

policies:iiop:server_address_mode_policy:local_hostname =
"207.45.52.34";

By default, the 1ocal hostname variable is unspecified. Servers use the default
hostname configured for the machine with the Orbix configuration tool.

policies:iiop_tls

server_address mode _policy:port_range

(Javaonly) When this policy is set, the iiop_t1s plug-in reads this policy’s
value instead of the

policies:iiop:server address_mode_policy:port_range policy’svalue.
server_address_mode_policy:port_range Specifiesthe range of portsthat a
server uses when there is no well-known addressing policy specified for the port.

server_address mode policy:publish_hosthame

server_version_policy

When thispolicy isset, the iiop_t1s plug-in readsthis policy’s value instead of
thepolicies:iiop:server address_mode_policy:publish_hostname

policy’svalue.

server_address_mode-policy:publish hostname Specifes whether 11OP
exports hostnames or | P addresses in published profiles. Defaultsto false
(exports I P addresses, and does not export hostnames). To use hostnamesin
object references, set this variable to true, asin the following file-based
configuration entry:

policies:iiop:server_address_mode_policy:publish_hostname=true
The following itadmin command is equivalent:

itadmin variable create -type bool -value true
policies:iiop:server_address_mode policy:publish_hostname

When thispolicy isset, the iiop_t1s plug-in readsthispolicy’ s valueinstead of
thepolicies:iiop:server version_policy policy’svalue.
server_version_policy specifiesthe GIOP version published in I1OP profiles.
Thisvariable takesavalue of either 1.1 or 1.2. Artix servers do not publish
I1OP 1.0 profiles. The default valueis 1. 2.

587

APPENDIX A | Artix Security

session_caching_policy

Thispolicy overides policies:session _caching policy fortheiiop tls
plugin.

target_secure_invocation_policy:requires

This policy overides

policies:target_secure_invocation policy:requires for theiiop tls
plugin.

Specifies the minimum level of security required by a server. The value of this
variableis specified asalist of association options—see the Artix Security Guide
for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

target_secure_invocation_policy:supports

This policy overides

policies:target_secure_invocation policy:supports for the iiop tls
plugin.

Specifies the maximum level of security supported by a server. The value of this
variableis specified asalist of association options—see the Artix Security Guide
for more details about association options.

This policy can be upgraded programmatically using either the gop or the
EstablishTrust policies.

tcp_options policy:no_delay

When this policy isset, the iiop_t1s plug-in readsthis policy’svaueinstead of
thepolicies:iiop:tcp_options_policy:no_delay policy’svalue.

tcp_options_policy:no_delay Specifies whether the Tcp_NoDELAY Option
should be set on connections. Defaultsto false.

588

policies:iiop_tls

tcp_options policy:recv_buffer_size

When thispolicy isset, the iiop_t1s plug-in readsthis policy’svalue instead of
thepolicies:iiop:tcp_options_policy:recv_buffer size policy’svaue.
tcp_options_policy:recv_buffer_size specifiesthe size of the TCP receive
buffer. This variable can only be set to 0, which coresponds to using the default
size defined by the operating system.

tcp_options policy:send_buffer_size

trusted_ca list_policy

When thispolicy isset, the iiop_t1s plug-in readsthis policy’s value instead of
thepolicies:iiop:tcp_options_policy:send buffer_ size policy’svaue.
tcp_options_policy:send buffer size Specifiesthe size of the TCP send
buffer. This variable can only be set to 0, which coresponds to using the default
size defined by the operating system.

Thispolicy overidesthepolicies:trusted ca list_policyfortheiiop tls
plugin.

Contains alist of filenames (or asingle filename), each of which contains a
concatenated list of CA certificatesin PEM format. The aggregate of the CAsin
al of the listed filesis the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted ca_list_policy =
["ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_listl.pem",
"ASPInstallDir/asp/6.0/etc/tls/x509/ca/ca_list_extra.pem"];
The purpose of having more than one file containing a CA list isfor
administrative convenience. It enables you to group CAs into different lists and
to select aparticular set of CAsfor a security domain by choosing the
appropriate CA lists.

589

APPENDIX A | Artix Security

policies.security server

Thepolicies:security_server namespace contains the following variables:

® client_certificate_constraints

client_certificate _constraints

590

Restricts access to the Artix security server, alowing only clients that match the
specified certificate constraints to open a connection to the security service. For
details of how to specify certificate constraints, see “ Applying Constraints to
Certificates’ on page 515.

For example, by inserting the following setting into the security service's
configuration scope in the Artix .cfg file, you can allow access by clients
presenting the administrator.pl2 and iona_utilities.pl2 certificates
(demonstration certificates).

Allow access by demonstration client certificates.

WARNING: These settings are NOT secure and must be customized

before deploying in a real system.

#

policies:security server:client_certificate constraints =
["C=US, ST=Massachusetts, O=ABigBank*, CN=0rbix2000 IONA
Services (demo cert), OU=Demonstration Section -- no warranty
--", "C=US, ST=Massachusetts, O=ABigBank*, CN=Abigbank Accounts
Server*", "C=US, ST=Massachusetts, 0=ABigBank*, CN=Iona
utilities - demo purposes"];

policies:security_server

The effect of setting this configuration variableis slightly different to the effect
of setting policies:iiop_tls:certificate constraints_policy. Whereas
policies:iiop_tls:certificate constraints_policy affectsall services
deployed in the current process, the

policies:security server:client_certificate constraints variable
affects only the Artix security service. Thisdistinction is significant when the
login server is deployed into the same process as the security server. In this case,
you would typically want to configure the login server such that it does not
require clients to present an X.509 certificate (this is the default), while the
security server does require clients to present an X.509 certificate.

This configuration variable must be set in the security server’s configuration
scope, otherwise the security server will not start.

591

APPENDIX A | Artix Security

policies: soap: security

enforce_must_under stand

592

Thepolicies:soap:security hamespace contains just a single configuration
variable, asfollows:

° enforce_must_understand

Specifies whether the Artix runtime enforces the semantics required by the
mustUnderstand attribute, which appears in the WS-Security SOAP header.

The semantics are as follows: when the mustunderstand attribute is set to 1, the
message receiver must process all of the security elements contained in the
corresponding wsse: Security header element. If the receiving program is
unable to process the wsse : security element completely, the message should
be rejected.

Y ou can disable this behavior by setting the

policies:soap:security:enforce_must_understand variableto false.
Default is true.

The mustunderstand attribute appears as follows in a SOAP 1.1 header:

<S11:Envelope>
<S11:Header>

<wsse:Security Sll:actor="..." Sll:mustUnderstand="...">
</wsse:Security>
</S11:Header>

</S11:Envelope>

principal_sponsor

principal _sponsor

In thissection

use principal_sponsor

Theprincipal_sponsor hamespace stores configuration information to be used
when obtaining credentials. the CORBA binding provides an implementation of
aprincipal sponsor that creates credentials for applications automatically.

Use of the Principalsponsor is disabled by default and can only be enabled
through configuration.

The PrincipalSponsor represents an entry point into the secure system. It must
be activated and authenticate the user, before any application-specific logic
executes. This allows unmodified, security-unaware applications to have
Credentials established transparently, prior to making invocations.

The following variables are in this namespace:
i use_principal_sponsor

° auth_method_id

d auth_method_data

i callback_handler:ClassName

login_attempts

use_principal_sponsor Specifies whether an attempt is made to obtain
credentials automatically. Defaultsto false. If set to true, the following
principal_sponsor variables must contain datain order for anything to
actually happen.

593

APPENDIX A | Artix Security

auth_method_id

auth_method_data

594

auth_method_id specifies the authentication method to be used. The following
authentication methods are available:

pkcsl2_file

pkcsll

security label

The authentication method uses a PK CS#12 file.

Javaonly. The authentication datais provided by a
smart card.

Windows and Schannel only. The authentication data
is specified by supplying the common name (CN) from
an application certificate’s subject DN.

For example, you can select the pkes12_file authentication method as follows:

principal_ sponsor:auth _method id = "pkcsl2 file";

auth_method_data isastring array containing information to be interpreted by
the authentication method represented by the auth_method _id.

For the pkes12_file authentication method, the following authentication data
can be provided in auth_method_data:

filename

password

password_file

A PKCS#12 file that contains a certificate chain and private
key—required.

A password for the private key—optional.

It is bad practice to supply the password from configuration
for deployed systems. If the password is not supplied, the
user is prompted for it.

The name of afile containing the password for the private
key—optional.

Make sure that the password file is read/write protected on
your file system.

principal_sponsor

For the pkes11 (smart card) authentication method, the following authentication
data can be provided in auth_method_data:

provider A namethat identifies the underlying PK CS#11 toolkit
used by Artix to communicate with the smart card.

Thetoolkit currently used by Artix has the provider
name dkck132.d11 (from Baltimore).

slot The number of a particular slot on the smart card (for
example, 0) containing the user’s credentials.
pin A PIN to gain access to the smart card—optional.

It is bad practice to supply the PIN from configuration
for deployed systems. If the PIN is not supplied, the
user is prompted for it.

For the security label authentication method on Windows, the following
authentication data can be provided in auth_method_data:

label (Windows and Schannel only.) The common name
(CN) from an application certificate' s subject DN

For example, to configure an application on Windows to use a certificate,
bob.p12, Whose private key is encrypted with the bobpass password, set the
auth_method_data asfollows:

principal_sponsor:auth method data =
["filename=c:\users\bob\bob.pl2", "password=bobpass"];

The following points apply to Javaimplementations:

° If the file specified by £ilename= is not found, it is searched for on the
classpath.

®* Thefilespecified by filename= can be supplied with a URL instead of an
absolute file location.

® Themechanism for prompting for the password if the password is supplied
through password= can be replaced with a custom mechanism, as
demonstrated by the 10gin demo.

595

APPENDIX A | Artix Security

®* There aretwo extra configuration variables available as part of the
principal_sponsor NAMeSPace, namely
principal_sponsor:callback_handler and
principal_sponsor:login attempts. These are described below.

®* These Java-specific features are available subject to change in future
releases; any changes that can arise probably come from customer
feedback on this area.

callback _handler:ClassName

login_attempts

596

callback_handler:ClassName Specifiesthe class name of an interface that
implements the interface com. iona.corba.tls.auth.CallbackHandler. This
variableis only used for Java clients.

login_attempts Specifies how many timesauser isprompted for authentication
data (usually a password). It applies for both internal and custom
CallbackHandlers; if acallbackHandler iSsupplied, it isinvoked upon up to
login_attempts timesaslong asthe Principalauthenticator returns
SecAuthFailure. Thisvariableisonly used by Javaclients.

principal_sponsor:csi

principal _sponsor:csi

Theprincipal sponsor:csi hamespace stores configuration information to be
used when obtaining CSI (Common Secure Interoperability) credentials. It
includes the following:

d use_existing credentials
i use_principal_sponsor
b auth_method_data

d auth_method_id

use existing_credentials

A boolean value that specifies whether ORBs that share credentials can also
share CSl credentials. If true, any CSl credentials loaded by one
credential-sharing ORB can be used by other credential-sharing ORBs loaded
after it; if false, CSl credentias are not shared.

This variable has no effect, unless the
plugins:security:share_credentials_across_orbs variableisalso true.

Default is false.

use principal_sponsor
use_principal_sponsor iSaboolean value that switches the CSI principal

sponsor on or off.

If set to true, the CSl principal sponsor isenabled; if false, the CSl principal
sponsor is disabled and the remaining principal_sponsor:csi variables are
ignored. Defaults to false.

597

APPENDIX A | Artix Security

auth_method_data

598

auth_method_data isastring array containing information to be interpreted by
the authentication method represented by the auth_method _id.

For the GSSUPM ech authentication method, the following authentication data
can be provided in auth_method_data:

username The username for CSIv2 authorization. Thisis optional.
Authentication of CSlv2 usernames and passwords is performed
on the server side. The administration of usernames depends on
the particular security mechanism that is plugged into the server
side see auth_over_transport:authentication service.

password The password associated with username. Thisisoptional. It is
bad practice to supply the password from configuration for
deployed systems. If the password is not supplied, the user is
prompted for it.

domain The CSlv2 authentication domain in which the
username/password pair is authenticated.

When the client is about to open a new connection, this domain
name is compared with the domain name embedded in the
relevant IOR (see

policies:csi:auth_over_ transport: server_domain_name).
The domain names must match.

Note: If domain iSan empty string, it matches any target
domain. That is, an empty domain string is equivalent to a
wildcard.

If any of the preceding data are omitted, the user is prompted to enter
authentication data when the application starts up.

For example, to log on to a CSIv2 application as the administrator user in the
US-SantaClara domain:

principal_sponsor:csi:auth _method data =
["username=administrator", "domain=US-SantaClara"];

auth_method_id

principal_sponsor:csi

When the application is started, the user is prompted for the administrator
password.

Note: Itis currently not possible to customize the login prompt associated
with the CSIv2 principal sponsor. As an aternative, you could implement your
own login GUI by programming and pass the user input directly to the
principal authenticator.

auth_method_id specifies a string that selects the authentication method to be
used by the CS| application. The following authentication method is available:

GSSUPMech The Generic Security Service Username/Password
(GSSUP) mechanism.

For example, you can select the GSSUPM ech authentication method as follows:

principal_sponsor:csi:auth_method_id = "GSSUPMech";

599

APPENDIX A | Artix Security

principal _sponsor:http

In this section

use principal_sponsor

600

Theprincipal_sponsor:http Namespace provides configuration variables that
enable you to specify the HTTP Basic Authentication username and password
credentials.

Note: Oncethe HTTP principal sponsor is enabled, the HTTP header
containing the username and password is always included in outgoing
messages. For example, it is not possible to omit the HTTP Basic
Authentication credentials while talking to security unaware services. It is
possible, however, to program the application to set the username and
password values equal to empty strings.

The principal sponsor is disabled by default.

For example, to configure aHTTP client to use the credentials test_username
and test_password, configure the HTTP principal sponsor as follows:

principal_sponsor:http:use_principal_sponsor = "true";

principal_sponsor:http:auth _method_id = "USERNAME_ PASSWORD";

principal_sponsor:http:auth_method_data =
["username=test_username", "password=test_password"];

The following variables are in this namespace:
° use_principal_sponsor
i auth_method_id

° auth_method_data

use_principal_sponsor iS used to enable or disable the HTTP principal
sponsor. Defaultsto false. If set to true, the following
principal_sponsor :http variables must be set:

i auth_method_id

° auth_method_data

auth_method_id

auth_method_data

principal_sponsor:http

auth_method_id specifies the authentication method to be used. The following
authentication methods are available:

USERNAME_PASSWORD T he authentication method readsthe HTTP Basic
Authentication username and password from the
auth_method_data var iable.

For example, you can select the UsErNAME_PASSWORD authentication method as
follows:

principal_sponsor:http:auth_method_id = "USERNAME_PASSWORD" ;

auth method _data isastring array containing information to be interpreted by
the authentication method represented by the auth_method_id.

For the userNaAME,_PASSWORD authentication method, the following
authentication data can be provided in auth_method_data:

username The HTTP Basic Authentication username—required.
password The HTTP Basic Authentication password.

It is bad practice to supply the password from configuration
for deployed systems. If the password is not supplied, the
user is prompted for it.

password_file Thename of afile containing the HTTP Basic
Authentication password.

The username field is required, and you can include either apassword field or a
password_file field to specify the password.

For example, to configure an application with the username, test_username,
whose password is stored in the wsse_password_file.txt file, set the
auth method _data asfollows:

principal_sponsor:http:auth _method data =
["username=test_username",
"password_file=wsse password file.txt"];

601

APPENDIX A | Artix Security

principal _sponsor:https

In thissection

use_principal_sponsor

602

The principal_sponsor:https hamespace provides configuration variables
that enable you to specify the own credentials used with the HTTPS transport.

The HTTPS principal sponsor is disabled by default.

Thefollowing variables are in this namespace:
hd use_principal_sponsor
° auth_method_id

i auth_method_data

use_principal_sponsor specifies whether an attempt is made to obtain
credentials automatically. Defaultsto false. If set to true, the following
principal_sponsor:https variables must contain datain order for anything to

actually happen:
° auth_method_id

i auth_method_data

auth_method_id

auth_method_data

principal_sponsor:https

auth_method_id specifies the authentication method to be used. The following
authentication methods are available:

pkesl2_file The authentication method uses a PK CS#12 file

For example, you can select the pkes12_file authentication method as follows:

principal_sponsor:https:auth _method id = "pkcsl2_file";

auth_method_data iSastring array containing information to be interpreted by
the authentication method represented by the auth_method_id.

For the pkcs12_file authentication method, the following authentication data
can be provided in auth_method_data:

filename A PKCSH#12 file that contains a certificate chain and private
key—required.
password A password for the private key.

It is bad practice to supply the password from configuration
for deployed systems. If the password is not supplied, the
user is prompted for it.

password_file The name of afile containing the password for the private
key.
This option is not recommended for deployed systems.

For example, to configure an application on Windows to use a certificate,
bob.p12, Whose private key is encrypted with the bobpass password, set the
auth _method_data as follows:

principal_sponsor:https:auth _method data =
["filename=c:\users\bob\bob.pl2", "password=bobpass"];

603

APPENDIX A | Artix Security

principal _sponsor:iiop tls

In thissection

use_principal_sponsor

604

The principal_sponsor:iiop_tls namespace provides configuration
variables that enable you to specify the own credential s used with the IOP/TLS
transport.

The IIOP/TLS principal sponsor is disabled by defaullt.

Thefollowing variables are in this namespace:
hd use_principal_sponsor
° auth_method_id

i auth_method_data

use_principal_sponsor specifies whether an attempt is made to obtain
credentials automatically. Defaultsto false. If set to true, the following
principal_sponsor:iiop_tls variables must contain datain order for
anything to actually happen:

° auth_method_id

i auth_method_data

auth_method_id

auth_method_data

principal_sponsor:iiop_tls

auth_method_id specifies the authentication method to be used. The following
authentication methods are available:

pkesl2_file The authentication method uses a PK CS#12 file

For example, you can select the pkes12_file authentication method as follows:

principal_sponsor:iiop_tls:auth_method_id = "pkcsl2_file";

auth method data isastring array containing information to be interpreted by
the authentication method represented by the auth_method_id.

For the pkcs12_file authentication method, the following authentication data
can be provided in auth_method_data:

filename A PKCSH#12 file that contains a certificate chain and private
key—required.
password A password for the private key.

It is bad practice to supply the password from configuration
for deployed systems. If the password is not supplied, the
user is prompted for it.

password_file The name of afile containing the password for the private
key.
The password file must be read and write protected to
prevent tampering.

For example, to configure an application on Windows to use a certificate,
bob.p12, Whose private key is encrypted with the bobpass password, set the
auth method _data asfollows:

principal_sponsor:iiop_tls:auth _method data =
["filename=c:\users\bob\bob.pl2", "password=bobpass"];

605

APPENDIX A | Artix Security

principal _sponsor:wsse

Theprincipal_ sponsor:wsse Namespace provides configuration variables that
enable you to specify the WSS username and password credentials sent in a
SOAP header.

Note: Once the WSS principal sponsor is enabled, the SOAP header
containing the WSS username and password is always included in outgoing
messages. For example, it is not possible to omit the WSS username/password
header while talking to security unaware services. It is possible, however, to
program the application to set the username and password values equal to
empty strings.

The principal sponsor is disabled by default.

For example, to configure a SOAP client to use the credentials test_username
and test_password, configure the WSS principal sponsor as follows:

principal_sponsor:wsse:use_principal_sponsor = "true";
principal_sponsor:wsse:auth_method_id = "USERNAME_ PASSWORD";

principal_sponsor:wsse:auth_method_data =
["username=test_username", "password=test_password"];

If you use a SOAP 1.2 binding, you must aso include the following
configuration in the client and in the server:

Artix .cfg file
orb_plugins = ["xmlfile_log_stream", "artix security", ...];

plugins:artix security:shlib name = "it_security plugin";

binding:artix:server_ request_interceptor list =
"principal context+security";

binding:artix:client_request_interceptor list =
"security+principal_ context";

In this section Thefollowing variables are in this namespace:
b use_principal_sponsor
i auth_method_id

i auth_method_data

606

use principal_sponsor

auth_method_id

auth_method_data

principal_sponsor:wsse

use_principal_sponsor iSused to enable or disable the WSS principal
sponsor. Defaultsto false. If set to true, the following
principal_sponsor:wsse variables must be set:

d auth_method_id

° auth_method_data

auth_method_id specifies the authentication method to be used. The following
authentication methods are available:

USERNAME_PASSWORD T he authentication method reads the WSS username
and password from the auth_method_data variable.

For example, you can select the UsErNAME_PASSWORD authentication method as
follows:

principal_sponsor:wsse:auth_method_id = "USERNAME_PASSWORD" ;

auth method _data isastring array containing information to be interpreted by
the authentication method represented by the auth_method_id.

For the userNaAME,_PASSWORD authentication method, the following
authentication data can be provided in auth_method_data:
username The WSS username—required.

password The WSS password.

It is bad practice to supply the password from configuration
for deployed systems. If the password is not supplied, the
user is prompted for it.

password_file The name of afile containing the WSS password.

The username field is required, and you can include either a password field or a
password_file field to specify the password.

607

APPENDIX A | Artix Security

For example, to configure an application with the WSS username,
test_username, Whose password is stored in the wsse_password_file. txt
file, set the auth_method_data as follows:

principal_sponsor:wsse:auth _method_data =
["username=test_username",
"password_file=wsse password file.txt"];

608

APPENDIX B

|SF Configuration

This appendix provides details of how to configure the Artix
security server.

In this appendix This appendix contains the following sections:
Properties File Syntax page 610
iSF Properties File page 611
Cluster Properties File page 636
log4j Properties File page 639

609

APPENDIX B | iSF Configuration

Properties File Syntax

Overview

Property definitions

Specifying full pathnames

Specifying relative pathnames

610

The Artix security service uses standard Java property filesfor its configuration.
Some aspects of the Java properties file syntax are summarized here for your
convenience.

A property is defined with the following syntax:
<PropertyName>=<PropertyValue>

The <PropertyName> is a compound identifier, with each component delimited
by the . (period) character. For example, is2.current.server.id. The
<PropertyValue>isan arbitrary string, including all of the characters up to the
end of the line (embedded spaces are allowed).

When setting a property equal to afilename, you normally specify afull
pathname, as follows:

UNIX

/home/data/securityInfo.xml

Windows
D:/iona/securityInfo.xml

or, if using the backslash as a delimiter, it must be escaped as follows:

D:\\iona\\securityInfo.xml

If you specify arelative pathname when setting a property, the root directory for
this path must be added to the Artix security service's classpath. For example, if
you specify arelative pathname as follows:

UNIX

securityInfo.xml

The security service's classpath must include the file's parent directory:

CLASSPATH = /home/data/:<rest_of_classpath>

iSF PropertiesFile

ISF PropertiesFile

Overview

Filelocation

AniSF properties file is used to store the properties that configure a specific
Artix security service instance. Generally, every Artix security service instance
should have its own i SF properties file. This section provides descriptions of all
the properties that can be specified in an i SF propertiesfile.

The default locations of theiSF property files are as follows:

ArtixInstallDir/samples/security/full_security/etc/is2.propertie
s.FILE

ArtixInstallDir/etc/is2.properties.LDAP

ArtixInstallDir/etc/is2.properties.KERBEROS

In general, the iSF properties file location is specified in the Artix configuration
by setting the is2.properties property in the
plugins:java_server:system_properties property list.

For example, on UNIX the security server’s property list is normally initialized
inthe iona_services.security configuration scope as follows:

Artix configuration file

iona_services {
security {

plugins:java_server:system properties =

["org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl",
"org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.O
RBSingleton",
"is2.properties=ArtixInstallDir/samples/security/full_securit

y/etc/is2.properties.FILE"];

b7

611

APPENDIX B | iSF Configuration

List of properties

com.iona.isp.adapters

The following properties can be specified in the i SF propertiesfile:

Specifies the i SF adapter type to be loaded by the Artix security service at
runtime. Choosing a particular adapter type is equivalent to choosing an Artix
security domain. Currently, you can specify one of the following adapter types:

° file
LDAP
° krb5

For example, you can select the LDAP adapter as follows:

com.iona.isp.adapters=LDAP

com.iona.isp.adapter file.class

Specifies the Java class that implements the file adapter.

For example, the default implementation of the file adapter provided with Artix
is selected as follows:

com.iona.isp.adapter.file.class=com.iona.security.is2adapter.file.FileAuthAdapter

com.iona.isp.adapter file.param.filename

Specifies the name and location of afile that is used by the file adapter to store
user authentication data.

For example, you can specify thefile, c: /is2_config/security_info.xml, as
follows:

com.iona.isp.adapter.file.param.filename=C:/is2_config/security info.xml

612

iSF PropertiesFile

com.iona.isp.adapter .file.param.userI DInCert

If an X.509 certificateis presented to the Artix security service for
authentication, this property specifies which field from the certificate’ s subject
DN istaken to be the user name.

The userIDInCert property can be set to any valid attribute type, where the
attribute type identifes afield in a Distinguished Name (DN). See “Attribute
types’ on page 646 for a partial list.

For example, to specify that the user name is taken from the Common Name
(CN) from the certificate' s subject DN, set the property as follows:

com.iona.isp.adapter.file.param.userIDInCert=CN

com.iona.isp.adapter .file.params

Obsolete. This property was needed by earlier versions of the Artix security
service, but is now ignored.

com.iona.isp.adapter.krb5.class

Specifies the Java class that implements the K erberos adapter.

For example, the default implementation of the Kerberos adapter provided with
Artix is selected asfollows:

com.iona.isp.adapter.kbr5.class=com.iona.security.is2adapter.kbr5.IS2KerberosAdapter

com.iona.isp.adapter .krb5.param.check.kdc.principal

(Used in combination with the

com. iona.isp.adapter.krbS.param.check.kdc. running property.) Specifies
the dummy KDC principal that is used for connecting to the KDC server, in
order to check whether it is running or not.

613

APPENDIX B | iSF Configuration

com.iona.isp.adapter .krb5.param.check.kdc.running

A boolean property that specifies whether or not the Artix security service
should check whether the Kerberos KDC server isrunning. Default is false.

com.iona.isp.adapter .krb5.param.ConnectTimeout.1

Specifies the time-out interval for the connection to the Active Directory Server
in units of seconds. Default is 10.

com.iona.isp.adapter .krb5.param.GroupBaseDN

Specifies the base DN of the tree in the LDAP directory that stores user groups.

For example, you could use the RDN sequence, bc=iona, DC=com, as a base DN
by setting this property as follows:

com. iona.isp.adapter.krb5.param.GroupBaseDN=dc=iona, dc=com

Note: The order of the RDNsis significant. The order should be based on the
LDAP schema configuration.

com.iona.isp.adapter .krb5.param.GroupNameAttr

Specifies the attribute type whose corresponding attribute value gives the name
of the user group. The default iscn.

For example, you can use the common name, cn, attribute type to store the user
group’s name by setting this property as follows:

com. iona.isp.adapter.krb5.param.GroupNameAttr=cn

com.iona.isp.adapter.krb5.param.GroupObjectClass

Specifies the object class that applies to user group entriesin the LDAP
directory structure. An object class definesthe required and allowed attributes of
an entry. The default is groupofuniqueNames.

614

iSF PropertiesFile

For example, to specify that all user group entries belong to the groupofwriters
object class:

com. iona.isp.adapter.krb5.param.GroupObjectClass=groupOfWriters

com.iona.isp.adapter.krb5.param.GroupSear chScope

Specifies the group search scope. The search scope is the starting point of a
search and the depth from the base DN to which the search should occur. This
property can be set to one of the following vaues:

®* mase—Search asingle entry (the base object).

® oNE—Search al entriesimmediately below the base DN.
* suB—Search al entries from awhole subtree of entries.
Default is sus.

For example, to search just the entriesimmediately bellow the base DN you
would use the following:

com.iona.isp.adapter.krb5.param.GroupSearchScope=0NE

com.iona.isp.adapter .krb5.param.host.1

Specifies the server name or | P address of the Active Directory Server used to
retrieve a user’s group information.

com.iona.isp.adapter .krb5.param.java.security.auth.login.config
Specifies the JAAS login module configuration file. For example, if your JAAS
login module configuration fileis jaas . config, your Artix security service

configuration would contain the following:

com. iona.isp.adapter.krb5.param.java.security.auth.login.config=jaas.conf

615

APPENDIX B | iSF Configuration

com.iona.isp.adapter .krb5.param.java.security.krb5.conf

Specifies the location (path and file name) of the Kerberos configuration file,
krbs . conf. In most cases, this configuration is not needed. For more
information, see the Java documentation for Kerberos.

com.iona.isp.adapter .krb5.param.java.security.krb5.kdc

Specifies the server name or |P address of the Kerberos KDC server.

com.iona.isp.adapter .krb5.param.java.security.krb5.realm

Specifies the Kerberos Realm name.

For example, to specify that the KerberosRealmis is2. iona.com would require
an entry similar to:

com.iona.isp.adapter.krb5.param. java.security.krb5.realm=is2.iona.com

com.iona.isp.adapter .krb5.param.javax.security.auth.useSubjectCredsOnly

Thisisa JAAS login module property that must be set to false when using
Artix.

com.iona.isp.adapter.krb5.param.MaxConnectionPool Size

Specifies the maximum LDAP connection pool size for the Kerberos adapter (a
strictly positive integer). The maximum connection pool size is the maximum
number of LDAP connections that would be opened and cached by the Kerberos
adapter. The defaultis 1.

For example, to limit the Kerberos adapter to open a maximum of 50 LDAP
connections at atime:

com. iona.isp.adapter.krb5.param.MaxConnectionPoolSize=50

616

http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorials/KerberosReq.html

iSF PropertiesFile

com.iona.isp.adapter.krb5.param.Member DNAttr

Specifies which LDAP attribute is used to retrieve group members. The
Kerberos adapter uses the MemberDNAt tr property to construct a query to find
out which groups a user belongs to.

Thelist of the user’ s groups is heeded to determine the compl ete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to auser as follows:

1. The adapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongsto, and retrieves all
the roles assigned to those groups.

Default is uniqueMember.

For example, you can select the uniqueMember attribute as follows:

com.iona.isp.adapter.krb5.param.MemberDNAt tr=uniqueMember

com.iona.isp.adapter .krb5.param.MinConnectionPool Size

Specifies the minimum LDAP connection pool size for the Kerberos adapter.
The minimum connection pool size specifies the number of LDAP connections
that are opened during initialization of the Kerberos adapter. The default is 1.

For example, to specify aminimum of 10 LDAP connections at atime:

com. iona.isp.adapter.krb5.param.MinConnectionPoolSize=10

com.iona.isp.adapter .krb5.param.port.1

Specifies the port on which the Active Directory Server can be contacted.

com.iona.isp.adapter .krb5.param.PrincipalUser DN.1

Specifies the username that is used to login to the Active Directory Server (in
distinguished name format). This property need only be set if the Active
Directory Server is configured to require username/password authentication.

617

APPENDIX B | iSF Configuration

com.iona.isp.adapter .krb5.param.PrincipalUser Password.1

Specifies the password that is used to login to the Active Directory Server. This
property need only be set if the Active Directory Server is configured to require
username/password authentication.

WARNING: Because the password is stored in plaintext, you must ensure that
the is2.properties fileis readable and writable only by users with
administrator privileges.

com.iona.isp.adapter .kbr5.param.RetrieveAuthinfo

Specifiesif the user’s group information needs to be retrieved from the Active
Directory Server. Default is false.

Toinstruct the Kerberos adapter to retrieve the user’ s group information, use the
following:

com. iona.isp.adapter.krb5.param.RetrieveAuthInfo=true

com.iona.isp.adapter .krb5.param.RoleNameAttr

Specifies the attribute type that the Kerberos server uses to store the role name.
The default is cn.

For example, you can specify the common name, cn, attribute type as follows:

com. iona.isp.adapter.krb5.param.RoleNameAttr=cn

com.iona.isp.adapter.krb5.param.SSL CACertDir.1

Specifies the directory name for trusted CA certificates. All certificate filesin
this directory are loaded and set as trusted CA certificates, for the purpose of
opening an SSL connection to the Active Directory Server. The CA certificates
can either be in DER-encoded X.509 format or in PEM-encoded X.509 format.

618

iSF PropertiesFile

For example, to specify that the Kerberos adapter usesthe d: /certs/test
directory to store CA certificates:

com.iona.isp.adapter.kbr5.param.SSLCACertDir.1=d: /certs/test

com.iona.isp.adapter .krb5.param.SSL ClientCertFile.1

Specifies the client certificate file that is used to identify the Artix security
serviceto the Active Directory Server. This property isneeded only if the Active

Directory Server requires SSL/TLS mutual authentication. The certificate must
be in PKCS#12 format.

com.iona.isp.adapter.krb5.param.SSL ClientCertPassword.1

Specifies the password for the client certificate that identifies the Artix security
serviceto the Active Directory Server. This property is needed only if the Active
Directory Server requires SSL/TLS mutual authentication.

WARNING: Because the password is stored in plaintext, you must ensure that

the is2.properties fileis readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.krb5.param.SSL Enabled.1

Specifiesif SSL is needed to connect with the Active Directory Server. The
default isno.

To use SSL when contacting the Active Directory Server use the following:

com. iona.isp.adapter.krb5.param.SSLEnabled. l1=yes

com.iona.isp.adapter .krb5.param.sun.security.krb5.debug

Specifies a boolean value for the sun. security.krbs . debug debugging
property. If true, Kerberos debugging output is generated. Default is false.

619

APPENDIX B | iSF Configuration

com.iona.isp.adapter .krb5.param.UseGroupAsRole

Specifies whether a user’s groups should be treated as roles. The following
alternatives are available:

®* yes—each group nameisinterpreted as arole name.
® no—for each of the user’s groups, retrieve all roles assigned to the group.

Thisoption isuseful for some older directory structures, that do not havetherole
concept.

Default isno.
For example:

com. iona.isp.adapter.krb5.param.UseGroupAsRole=no

com.iona.isp.adapter.krb5.param.User BaseDN

Specifies the base DN (an ordered sequence of RDNS) of the tree in the active
directory that stores user object class instances.

For example, you could use the RDN sequence, bc=iona, DC=com, as a base DN
by setting this property as follows:

com. iona.isp.adapter.krb5.param.UserBaseDN=dc=iona, dc=com

com.iona.isp.adapter .krb5.param.User CertAttr Name

Specifies the attribute type that stores a user certificate. The default is

userCertificate.

For example, you can explicitly specify the attribute type for storing user
certificates to be usercertificate asfollows:

com. iona.isp.adapter.krb5.param.UserCertAttrName=userCertificate

620

iSF PropertiesFile

com.iona.isp.adapter .krb5.param.User NameAttr

Specifies the attribute type whose corresponding value uniquely identifies the
user. Thisisthe attribute used asthe user’slogin ID. The default isuid.

For example:

com. iona.isp.adapter.krb5.param.UserNameAttr=uid

com.iona.isp.adapter .krb5.param.User ObjectClass

Specifies the attribute type for the object classthat stores users. The default is

organizationalPerson.

For example to set the class to person you would use the following:

com. iona.isp.adapter.krb5.param.UserObjectClass=Person

com.iona.isp.adapter.krb5.param.User RoleDNALttr

Specifies the attribute type that stores a user’srole DN. The default iSnsRolebn
(from the Netscape LDAP directory schema).

For example:

com. iona.isp.adapter.krb5.param.UserRoleDNAttr=nsroledn

com.iona.isp.adapter.krb5.param.User Sear chFilter

Custom filter for retrieving users. In the current version, $USER_NAMES isthe
only replaceable parameter supported. This parameter would be replaced during
runtime by the LDAP adapter with the current User's login ID. This property
uses the standard LDAP search filter syntax.

For example:

& (uid=SUSER_NAMES) (objectclass=organizationalPerson)

621

APPENDIX B | iSF Configuration

com.iona.isp.adapter .krb5.param.version

Specifies the LDAP protocol version that the Kerberos adapter uses to
communicate with the Active Directory Server. The only supported version is 3
(for LDAP v3, http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

For example, to select the LDAP protocol version 3:

com. iona.isp.adapter.krb5.param.version=3

com.iona.isp.adapter .L DAP.class

Specifies the Java class that implements the LDAP adapter.

For example, the default implementation of the LDAP adapter provided with
Artix is selected as follows:

com.iona.isp.adapter.LDAP.class=com.iona.security.is2adapter.ldap.LdapAdapter

com.iona.isp.adapter .L DAP.param.CacheSize

622

Specifies the maximum LDAP cache size in units of bytes. This maximum
appliesto thetotal LDAP cache size, including all LDAP connections opened by
this Artix security service instance.

Internally, the Artix security service uses athird-party toolkit (currently the
iPlanet SDK) to communicate with an LDAP server. The cache referred to here
isonethat is maintained by the LDAP third-party toolkit. Data retrieved from
the LDAP server istemporarily stored in the cache in order to optimize
subsequent queries.

For example, you can specify a cache size of 1000 as follows:

com. iona.isp.adapter.LDAP.param.CacheSize=1000

http://www.ietf.org/rfc/rfc2251.txt

iSF PropertiesFile

com.iona.isp.adapter L DAP.param.CacheTimeToLive

Specifiesthe LDAP cachetimeto-livein units of seconds. For example, you can
specify a cache time to-live of one minute as follows:

com.iona.isp.adapter.LDAP.param.CacheTimeToLive=60

com.iona.isp.adapter .L DAP.param.ConnectTimeout.1

Specifies the time-out interval for the connection to the Active Directory Server
in units of seconds. Default is 10.

com.iona.isp.adapter L DAP.param.GroupBaseDN

Specifies the base DN of the treein the LDAP directory that stores user groups.

For example, you could use the RDN sequence, bc=iona, DC=com, 8s a base DN
by setting this property as follows:

com.iona.isp.adapter.LDAP.param.GroupBaseDN=dc=iona, dc=com

Note: The order of the RDNsissignificant. The order should be based on the
L DAP schema configuration.

com.iona.isp.adapter.L DAP.param.GroupNameAttr

Specifies the attribute type whose corresponding attribute value gives the name
of the user group. The default isc.

For example, you can use the common name, cn, attribute type to store the user
group’s name by setting this property as follows:

com. iona.isp.adapter.LDAP.param.GroupNameAttr=cn

623

APPENDIX B | iSF Configuration

com.iona.isp.adapter .L DAP.param.GroupObjectClass

Specifies the object class that applies to user group entriesin the LDAP
directory structure. An object class definesthe required and allowed attributes of
an entry. The default is group0fUniqueNames.

For example, to specify that all user group entries belong to the
groupOfUniqueNames object class:

com. iona.isp.adapter.LDAP.param.GroupObjectClass=groupofuniquenames

com.iona.isp.adapter.L DAP.param.GroupSear chScope

Specifies the group search scope. The search scope is the starting point of a
search and the depth from the base DN to which the search should occur. This
property can be set to one of the following values:

* Base—Search asingle entry (the base object).

* one—Search all entriesimmediately below the base DN.
N suB—Search al entries from awhole subtree of entries.
Default is sus.

For example:

com.iona.isp.adapter.LDAP.param.GroupSearchScope=SUB

com.iona.isp.adapter.L DAP.param.host.<ciuster index>

624

For the <cluster._index> LDAP server replica, specifiesthe |P hosthame where
the LDAP server isrunning. The <cluster_index>is1 for the primary server, 2
for the first failover replica, and so on.

For example, you could specify that the primary LDAP server is running on host
10.81.1.100 asfollows:

com.iona.isp.adapter.LDAP.param.host.1=10.81.1.100

iSF PropertiesFile

com.iona.isp.adapter .L DAP.param.M axConnectionPool Size

Specifies the maximum LDAP connection pool size for the Artix security
service (a strictly positive integer). The maximum connection pool sizeisthe
maximum number of LDAP connections that would be opened and cached by
the Artix security service. The default is 1.

For example, to limit the Artix security service to open amaximum of 50 LDAP
connections at atime:

com. iona.isp.adapter.LDAP.param.MaxConnectionPoolSize=50

com.iona.isp.adapter L DAP.param.M ember DNAttr

Specifies which LDAP attribute is used to retrieve group members. The LDAP
adapter uses the MemberDNAttr property to construct a query to find out which
groups a user belongs to.

Thelist of the user’ s groups is needed to determine the compl ete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to auser asfollows:

1. The adapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongsto, and retrieves all
the roles assigned to those groups.

Default is uniqueMember.

For example, you can select the uniqueMember attribute as follows:

com.iona.isp.adapter.LDAP.param.MemberDNAttr=uniqueMember

com.iona.isp.adapter L DAP.param.Member Filter

Specifies how to search for membersin a group. The value specified for this
property must be an LDAP search filter (can be a custom filter).

625

APPENDIX B | iSF Configuration

com.iona.isp.adapter .L DAP.param.MinConnectionPool Size

Specifies the minimum LDAP connection pool size for the Artix security
service. The minimum connection pool size specifies the number of LDAP
connections that are opened during initialization of the Artix security service.
The default is 1.

For example, to specify aminimum of 10 LDAP connections at atime:

com. iona.isp.adapter.LDAP.param.MinConnectionPoolSize=10

com.iona.isp.adapter .L DAP.param.port.<ciuster_index>

For the <cluster index> LDAP server replica, specifiesthe |P port where the
LDAP server islistening. The <cluster index>is 1 for the primary server, 2
for the first failover replica, and so on. The default is 389.

For example, you could specify that the primary LDAP server islistening on
port 636 as follows:

com. iona.isp.adapter.LDAP.param.port.1=636

com.iona.isp.adapter .L DAP.param.PrincipalUser DN.<ciuster_index>

For the <cluster_index> LDAP server replica, specifiesthe usernamethat is
used to login to the LDAP server (in distinguished name format). This property
need only be set if the LDAP server is configured to require username/password
authentication.

No defaullt.

com.iona.isp.adapter.L DAP.param.PrincipalUser Passwor d.<ciuster indexs
For the <cluster_index> LDAP server replica, specifiesthe password that is

used to login to the LDAP server. This property need only be set if the LDAP
server is configured to require username/password authentication.

626

iSF PropertiesFile

No default.

WARNING: Because the password is stored in plaintext, you must ensure that
the is2.properties fileis readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.L DAP.param.RetrieveAuthlnfo

Specifies whether or not the Artix security service retrieves authorization
information from the LDAP server. This property selects one of the following
aternatives:

®* yes—theArtix security service retrieves authorization information from
the LDAP server.

®* no—theArtix security service retrieves authorization information from the
iS2 authorization manager..

Default is no.

For example, to use the LDAP server’s authorization information:

com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo=yes

com.iona.isp.adapter L DAP.param.RoleNameAttr

Specifiesthe attribute type that the LDAP server usesto store the role name. The
default iscw.

For example, you can specify the common name, cn, attribute type as follows:

com.iona.isp.adapter.LDAP.param.RoleNameAttr=cn

com.iona.isp.adapter L DAP.param.SSL CACertDir.<ciuster index>

For the <cluster index>L DAP server replica, specifiesthe directory namefor
trusted CA certificates. All certificate filesin this directory are loaded and set as
trusted CA certificates, for the purpose of opening an SSL connection to the
LDAP server. The CA certificates can either be in DER-encoded X.509 format
or in PEM-encoded X.509 format.

No default.

627

APPENDIX B | iSF Configuration

For example, to specify that the primary LDAP server usesthe d: /certs/test
directory to store CA certificates:

com. iona.isp.adapter.LDAP.param.SSLCACertDir.1=d:/certs/test

com.iona.isp.adapter .L DAP.param.SSL ClientCertFile.<ciuster_index>

Specifies the client certificate file that is used to identify the Artix security
serviceto the <cluster index> LDAP server replica. This property is needed
only if the LDAP server requires SSL/TLS mutual authentication. The certificate
must be in PKCS#12 format.

No defaullt.

com.iona.isp.adapter.L DAP.param.SSL ClientCertPasswor d.<ciuster index>

Specifies the password for the client certificate that identifies the Artix security
serviceto the <cluster._index> LDAP server replica. This property is needed
only if the LDAP server requires SSL/TLS mutual authentication.

WARNING: Because the password is stored in plaintext, you must ensure that
the is2.properties file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.L DAP.param.SSL Enabled.<ciuster index>

Enables SSL/TL S security for the connection between the Artix security service
and the <cluster_index> LDAP server replica. The possible values are yes or
no. Default isno.

For example, to enable an SSL/TL S connection to the primary LDAP server:

com. iona.isp.adapter.LDAP.param.SSLEnabled. l=yes

com.iona.isp.adapter .L DAP.param.UseGroupAsRole

Specifies whether a user’s groups should be treated as roles. The following
aternatives are available:

628

iSF PropertiesFile

®* yes—each group nameisinterpreted as arole name.
® no—for each of the user’s groups, retrieve all roles assigned to the group.

This option is useful for some older versions of LDAP, such asiPlanet 4.0, that
do not have the role concept.

Default is no.
For example:

com.iona.isp.adapter.LDAP.param.UseGroupAsRole=no

com.iona.isp.adapter.L DAP.param.User BaseDN

Specifies the base DN (an ordered sequence of RDNS) of the tree in the LDAP
directory that stores user object class instances.

For example, you could use the RDN sequence, bc=iona, bC=com, as abase DN
by setting this property as follows:

com.iona.isp.adapter.LDAP.param.UserBaseDN=dc=iona, dc=com

com.iona.isp.adapter .L DAP.param.User CertAttrName

Specifies the attribute type that stores a user certificate. The default is

userCertificate

For example, you can explicitly specify the attribute type for storing user
certificates to be usercertificate asfollows:

com.iona.isp.adapter.LDAP.param.UserCertAttrName=userCertificate

com.iona.isp.adapter.L DAP.param.User NameAttr=uid

Specifies the attribute type whose corresponding value uniquely identifies the
user. Thisis the attribute used as the user’slogin ID. The default isuid.

For example:

com.iona.isp.adapter.LDAP.param.UserNameAttr=uid

629

APPENDIX B | iSF Configuration

com.iona.isp.adapter .L DAP.param.User ObjectClass

Specifies the attribute type for the object class that stores users. The default is

organizationalPerson.

For example:

com. iona.isp.adapter.LDAP.param.UserObjectClass=organizationalPerson

com.iona.isp.adapter.L DAP.param.User RoleDNAttr

Specifies the attribute type that stores auser’ srole DN. The default iSnsRoleDn
(from the Netscape LDAP directory schema).

For example:

com. iona.isp.adapter.LDAP.param.UserRoleDNAttr=nsroledn

com.iona.isp.adapter L DAP.param.User Sear chFilter

Custom filter for retrieving users. In the current version, $USER_NAMES is the
only replaceable parameter supported. This parameter would be replaced during
runtime by the LDAP adapter with the current User's login ID. This property
uses the standard LDAP search filter syntax.

For example:

& (uU1d=SUSER_NAMES) (objectclass=organizationalPerson)

com.iona.isp.adapter.L DAP.param.User Sear chScope

Specifies the user search scope. This property can be set to one of the following
values:

* Base—Search asingle entry (the base object).
* one—Search all entriesimmediately below the base DN.
L suB—Search all entries from awhole subtree of entries.

Default is suB.

630

iSF PropertiesFile

For example:

com.iona.isp.adapter.LDAP.param.UserSearchScope=SUB

com.iona.isp.adapter .L DAP.param.version

Specifies the LDAP protocol version that the Artix security service usesto
communicate with LDAP servers. The only supported versionis 3 (for LDAP
v3, http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

For example, to select the LDAP protocol version 3:

com.iona.isp.adapter.LDAP.param.version=3

com.iona.isp.adapter .L DAP.params

Obsolete. This property was needed by earlier versions of the Artix security
service, but is now ignored.

com.iona.isp.authz.adapters

Specifies the name of the adapter that is |oaded to perform authorization. The
adapter nameis an arbitrary identifier, adapterivame, which is used to construct
the names of the properties that configure the adapter—that is,

com. iona.isp.authz.adapter.AdapterName.class and

com.iona.isp.authz.adapter.AdapterName.param.filelist.Forexaﬂpki

com.iona.isp.authz.adapters=file

com.iona.isp.authz.adapter.file.class=com.iona.security.is2AzAda
pter.multifile.MultiFileAzAdapter

com.iona.isp.authz.adapter.file.param.filelist=ACLFileListFile;

com.iona.isp.authz.adapter .adaptername.class

Selects the authorization adapter class for the adaptername adapter. The
following adapter implementations are provided by Orbix:

631

http://www.ietf.org/rfc/rfc2251.txt

APPENDIX B | iSF Configuration

com.iona.isp.authz.adapter.

is2.current.server.id

632

com.iona.security.is2AzAdapter.multifile.MultiFileAzAdapter—
an authorization adapter that enables you to specify multiple ACL files. It
is used in conjunction with the
com.iona.isp.authz.adapter.file.param.filelist property.

For example:
com.iona.isp.authz.adapters = file

com.iona.isp.authz.adapter.file.class=com.iona.security.is2AzAda
pter.multifile.MultiFileAzAdapter

AdapterName.pEﬂ'aTn.f”EﬂiSI

Specifies the absolute pathname of afile containing alist of ACL filesfor the
AdapterName adapter. Each line of the specified file has the following format:

[ACLKey=] ACLF1ileName

A file name can optionally be preceded by an ACL key and an equals sign,
ACLKey=, if you want to select thefile by ACL key. The ACL file, ACLFi1eName,
is specified using an absolute pathname in the local file format.

For example, on Windows you could specify alist of ACL filesasfollows:
U:/orbix security/etc/acl_files/server_A.xml

U:/orbix_security/etc/acl_files/server_ B.xml
U:/orbix_security/etc/acl_files/server C.xml

The server ID is an alphanumeric string (excluding spaces) that specifies the
current Orbix security service'sID. The server ID is needed for clustering.
When a secure application obtains a single sign-on (SSO) token from this Orbix
security service, the server 1D is embedded into the SSO token. Subsequently, if
the SSO token is passed to a second Orbix security service instance, the second
Orbix security service recognizes that the SSO token originates from the first
Orbix security service and delegates security operations to the first Orbix
security service.

The server ID isalso used to identify replicasin the cluster.properties file.

iSF PropertiesFile

For example, to assign aserver ID of 1 to the current Orbix security service:

is2.current.server.id=1

is2.cluster.propertiesfilename

is2.replication.required

is2.replication.interval

Specifies the file that stores the configuration properties for clustering. For
example:

is2.cluster.properties.filename=C:/is2_config/cluster.properties

Enables the replication feature of the Artix security service, which can beusedin
the context of security service clustering. The possible values are true (enabled)
and false (disabled). When replication is enabled, the security service pushes
its cache of SSO data to other serversin the cluster at regular intervals.

Default is false.
For example:

is2.replication.required=true

Specifies the timeinterval between replication updates to other serversin the
security service cluster. The valueis specified in units of a second.

Default is 30 seconds.

For example:

is2.replication.interval=10

is2.replica.selector .classname

If replication isenabled (see is2.replication. required), you must set this
variable equal to com. iona.security.replicate.StaticReplicaSelector.

633

APPENDIX B | iSF Configuration

is2.sso.cache.size

is2.ss0.enabled

is2.ss0.r emote.token.cached

634

For example:

is2.replica.selector.classname=com.iona.security.replicate.Stati
cReplicaSelector

Specifies the maximum cache size (number of user sessions) associated with
single sign-on (SSO) feature. The SSO caches user information, including the
user’s group and role information. If the maximum cache size is reached, the
oldest sessions are deleted from the session cache.

Default is 10000.

For example:

is2.sso.cache.size=1000

Enables the single sign-on (SSO) feature of the Artix security service. The
possible values are yes (enabled) and no (disabled).

Default is yes.
For example:

is2.sso.enabled=yes

In afederated scenario, this variable enables caching of token data for tokens
that originate from another security service in the federated cluster. When this
variableis set to true, asecurity service need contact another security servicein
the cluster, only when the remote token is authenticated for thefirst time. For
subsequent token authentications, the token data for the remote token can be
retrieved from the local cache.

Default is false.

is2.ss0.session.idle.timeout

1S2.550.session.timeout

log4j .configuration

iSF PropertiesFile

Sets the session idle time-out in units of seconds for the single sign-on (SSO)
feature of the Artix security service. A zero value implies no time-out.

If auser logs on to the Artix Security Framework (supplying username and
password) with SSO enabled, the Artix security service returns an SSO token for
the user. The next time the user needs to access a resource, thereis no need to
log on again because the SSO token can be used instead. However, if no secure
operations are performed using the SSO token for the length of time specified in
theidle time-out, the SSO token expires and the user must log on again.

Default is 0 (no time-out).
For example:

is2.sso.session.idle.timeout=0

Sets the absol ute session time-out in units of seconds for the single sign-on
(SSO) feature of the Artix security service. A zero value implies no time-out.

Thisis the maximum length of time since the time of the original user login for
which an SSO token remains valid. After thistimeinterval elapses, the session
expiresirrespective of whether the session has been active or idle. The user must
then login again.

Default is 0 (no time-out).

For example:

is2.ss0.session. timeout=0

Specifiesthe log4j configuration filename. Y ou can use the propertiesin thisfile
to customize the level of debugging output from the Artix security service. See
also “log4j Properties File” on page 639.

For example:

log4j.configuration=d: /temp/myconfig. txt

635

APPENDIX B | iSF Configuration

Cluster PropertiesFile

Overview The cluster propertiesfileis used to store properties common to agroup of Artix
security service instances that operate as a cluster or federation. This section
provides descriptions of all the properties that can be specified in a cluster file.

Filelocation The location of the cluster propertiesfile is specified by the
is2.cluster.properties.filename property in theiSF propertiesfile. All of
the Artix security service instancesin acluster or federation must share the same
cluster propertiesfile.

List of properties The following properties can be specified in the cluster propertiesfile:

com.iona.security.common.securityl nstanceURL .<server 1p>

Specifies the server URL for the <server_1D> Artix security service instance.

When single sign-on (SSO) is enabled together with clustering or federation, the
Artix security serviceinstances use the specified instance URL s to communicate
with each other. By specifying the URL for a particular Artix security service
instance, you are instructing the instance to listen for messages at that URL .
Because the Artix security service instances share the same cluster file, they can
read each other’s URL s and open connections to each other.

The connections between Artix security service instances can either be insecure
(HTTP) or secure (HTTPS). To enable SSL/TL S security, usethe https: prefix
in each of the instance URLSs.

For example, to configure two Artix security service instances to operatein a
cluster or federation using insecure communications (HTTP):

com.iona.security.common.securityInstanceURL.1=http://localhost:8080/isp/AuthService
com. iona.security.common.securityInstanceURL.2=http://localhost:8081/isp/AuthService

636

Cluster PropertiesFile

Alternatively, to configure two Artix security service instances to operatein a
cluster or federation using secure communications (HTTPS):

com. iona.security.common.securityInstanceURL.1=https://localhost:8080/isp/AuthService
com. iona.security.common.securityInstanceURL.2=https://localhost:8081/isp/AuthService

In the secure case, you must also configure the certificate-related cluster
properties (described in this section) for each Artix security service instance.

com.iona.security.common.replicaURL .<server 1p>

A comma-separated list of URLs for the other security servicesto which this
service replicates its SSO token data.

com.iona.security.common.cACertDir .<server_1p>

For the <server 1D> Artix security serviceinstancein aHTTPS cluster or
federation, specifies the directory containing trusted CA certificates. The CA
certificates can either be in DER-encoded X.509 format or in PEM-encoded
X.509 format.

For example, to specify d: /temp/cert asthe CA certificate directory for the
primary Artix security service instance:

com. iona.security.common.cACertDir.1l=d:/temp/cert

com.iona.security.common.clientCertFileName.<server 1p>

For the <server 1D> Artix security serviceinstancein aHTTPS cluster or
federation, specifies the client certificate file that identifies the Artix security
service to its peers within acluster or federation. The certificate must bein
PKCS#12 format.

637

APPENDIX B | iSF Configuration

com.iona.security.common.clientCertPasswor d.<server 1p>

For the <server 1D> Artix security service instance in aHTTPS cluster or
federation, specifies the password for the client certificate that identifies the
Artix security service to its peers within a cluster or federation.

WARNING: Because the password is stored in plaintext, you must ensure that
the is2.properties fileis readable and writable only by users with
administrator privileges.

638

logdj PropertiesFile

log4j PropertiesFile

Overview

log4j documentation

Filelocation

List of properties

Thelog4j propertiesfile configureslogdj logging for your Artix security service.
This section describes aminimal set of log4j properties that can be used to
configure basic logging.

For complete log4j documentation, see the following Web page:
http://jakarta.apache.org/| og4j/docs/documentation.html

The location of the log4j propertiesfileis specified by the
logdj.configuration property in the iSF propertiesfile. For ease of
administration, different Artix security service instances can optionally share a
common log4j propertiesfile.

To give you some idea of the capabilities of logdj, the following isan
incomplete list of properties that can be specified in alogdj propertiesfile:

I Og4j .appen der .<appendersandle>

This property specifies alog4j appender class that directs <appenderHandle>
logging messages to a particular destination. For example, one of the following
standard log4j appender classes could be specified:

org.apache.log4j.ConsoleAppender
org.apache.log4j.FileAppender
org.apache.log4j.RollingFileAppender
org.apache.log4j.DailyRollingFileAppender
org.apache.log4j.AsynchAppender

org.apache.log4j .WriterAppender
For example, to log messages to the console screen for the a1 appender handle:

log4j .appender .Al=org.apache.log4j .ConsoleAppender

639

http://jakarta.apache.org/log4j/docs/documentation.html

APPENDIX B | iSF Configuration

I Og4j . a.p p en d €l . <appenderHandle>. | ayOUt

This property specifies alog4j layout class that is used to format
<AppenderHandle> logging messages. One of the following standard log4j
layout classes could be specified:

org.apache.logdj.PatternLayout
org.apache.log4j.HTMLLayout
org.apache.log4j.SimpleLayout
org.apache.log4j.TTCCLayout

For exampl e, to use the pattern layout class for |og messages processed by the a1
appender:

log4j.appender.Al.layout=org.apache.logdj.PatternLayout

log4j .appender .<appendermandie-.layout.Conver sionPattern

This property is used only in conjunction with the
org.apache.logdj.PatternLayout class (when specified by the

log4j .appender . <AppenderHandle>.layout property) to definethe format of
alog message.

For example, you can specify abasic conversion pattern for the a1 appender as
follows:

logdj.appender.Al.layout.ConversionPattern=%-4r [%$t] %-5p %C %x - %m%n

logd4j .rootCategory

640

This property is used to specify thelogging level of the root logger and to
associate the root logger with one or more appenders. The value of this property
is specified as a comma separated list as follows:

<LogLevel>, <AppenderHandle0l>, <AppenderHandle02>,

Thelogging level, <cogLevel>, can have one of the following values:

DEBUG
INFO
WARN
ERORR

logdj PropertiesFile

b FATAL

An appender handle is an arbitrary identifier that associates alogger with a
particular logging destination.

For example, to select all messages at the pesuG level and direct them to the a1
appender, you can set the property asfollows:

log4j.rootCategory=DEBUG, Al

641

APPENDIX B |iSF Configuration

642

In thisappendix

APPENDIX C

ASN.1 and
Distinguished
Names

The O Abstract Syntax Notation One (ASN.1) and X.500
Distinguished Names play an important role in the security
standards that define X.509 certificates and LDAP directories.

This appendix contains the following section:

ASN.1 page 644

Distinguished Names page 645

643

APPENDIX C| ASN.1 and Distinguished Names

ASN.1

Overview

BER

DER

References

644

The Abstract Syntax Notation One (ASN.1) was defined by the OSI standards
body in the early 1980s to provide away of defining data types and structures
that isindependent of any particular machine hardware or programming
language. In many ways, ASN.1 can be considered a forerunner of the OMG’s
IDL, because both languages are concerned with defining platform-independent
data types.

ASN.1 isimportant, because it iswidely used in the definition of standards (for
example, SNMP, X.509, and LDAP). In particular, ASN.1 is ubiquitousin the
field of security standards—the formal definitions of X.509 certificates and
distinguished names are described using ASN.1 syntax. Y ou do not require
detailed knowledge of ASN.1 syntax to use these security standards, but you
need to be aware that ASN.1 is used for the basic definitions of most
security-related data types.

The OSI’ s Basic Encoding Rules (BER) define how to translate an ASN.1 data
type into a sequence of octets (binary representation). The role played by BER
with respect to ASN.1 is, therefore, similar to the role played by GIOP with
respect to the OMG IDL.

The OSI’ s Distinguished Encoding Rules (DER) are a specialization of the BER.
The DER consists of the BER plus some additional rules to ensure that the
encoding is unique (BER encodings are not).

Y ou can read more about ASN.1 in the following standards documents:
® ASN.lisdefinedin X.208.
4 BER is defined in X.209.

Distinguished Names

Distinguished Names

Overview

String representation of DN

DN string example

Structureof a DN string

oID

Historically, distinguished names (DN) were defined as the primary keysin an

X.500 directory structure. In the meantime, however, DNs have come to be used

in many other contexts as general purpose identifiers. In the Artix Security

Framework, DNs occur in the following contexts:

® X.509 certificates—for example, one of the DNsin acertificate identifies
the owner of the certificate (the security principal).

¢ LDAP—DNsare used to locate objectsin an LDAP directory tree.

Although aDN isformally defined in ASN.1, thereis also an LDAP standard
that defines a UTF-8 string representation of aDN (see rrc 2253). The string
representation provides a convenient basis for describing the structure of aDN.

Note: The string representation of a DN does not provide a unique
representation of DER-encoded DN. Hence, aDN that is converted from string
format back to DER format does not always recover the original DER
encoding.

The following string is atypical example of a DN:

C=US,0=IONA Technologies, OU=Engineering,CN=A. N. Other

A DN string is built up from the following basic elements:

i OID.

* Attributetypes.
° AVA.

. RDN.

An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely identifies
agrammatical construct in ASN.1.

645

APPENDIX C| ASN.1 and Distinguished Names

Attribute types

The variety of attribute types that could appear in aDN is theoretically
open-ended, but in practice only a small subset of attribute types are used.
Table 17 shows a selection of the attribute types that you are most likely to
encounter:

Table17: Commonly Used Attribute Types

String X.500 Attribute Type Size of Data Equivalent OID
Representation
C countryName 2 2.5.4.6
0 organizationName 1...64 2.5.4.10
ou organizationalUnitName 1...64 2.5.4.11
CN commonName 1...64 2.5.4.3
ST stateOrProvinceName 1...64 2.5.4.8
L localityName 1...64 2.5.4.7
STREET streetAddress
DC domainComponent
UID userid

AVA

646

An attribute value assertion (AVA) assigns an attribute value to an attribute
type. In the string representation, it has the following syntax:

<attr-type>=<attr-value>
For example:
CN=A. N. Other

Alternatively, you can use the equivalent OID to identify the attribute typein the
string representation (see Table 17). For example:

2.5.4.3=A. N. Other

RDN

Distinguished Names

A relative distinguished name (RDN) represents a single node of aDN (the bit
that appears between the commas in the string representation). Technically, an
RDN might contain more than one AVA (it isformally defined as a set of

AV AYS); in practice, however, this almost never occurs. In the string
representation, an RDN has the following syntax:

<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]
Hereis an example of a (very unlikely) multiple-value RDN:
OU=Engl+0U=Eng2+0U=Eng3

Here is an example of asingle-value RDN:

OU=Engineering

647

APPENDIX C | ASN.1 and Distinguished Names

648

DTD file

APPENDIX D

Action-Role
Mapping DTD

Thisappendix presents the document type definition (DTD) for the
action-role mapping XML file.

The action-role mapping DTD is shown in Example 101.

Example 101:

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT
<!ELEMENT
<!ELEMENT
< !ELEMENT
< !ELEMENT
<!ELEMENT
< !ELEMENT
< !ELEMENT
<!ELEMENT

action-name (#PCDATA)>

role-name (#PCDATA)>

server-name (#PCDATA) >

action-role-mapping (server-name, interface+)>
name (#PCDATA) >

interface (name, action-role+)>

action-role (action-name, role-name+)>
allow-unlisted-interfaces (#PCDATA)>
secure-system (allow-unlisted-interfaces*,

action-role-mapping+) >

649

APPENDIX D | Action-Role Mapping DTD

Action-role mapping elements The elements of the action-role mapping DTD can be described as follows:
<!ELEMENT action-name (#PCDATA)>

Specifies the action name to which permissions are assigned. The

interpretation of the action name depends on the type of application:

¢+ CORBA server—for IDL operations, the action name corresponds to
the GIOP on-the-wire format of the operation name (usually the same
asit appearsin IDL).
For IDL attributes, the accessor or modifier action name corresponds
to the GIOP on-the-wire format of the attribute accessor or modifier.
For example, an IDL attribute, foo, would have an accessor,
_get_foo, and amodifier, _set_foo.

¢ Artix server—for WSDL operations, the action nameis equivalent to
aWSDL operation name; that is, the operationnName from atag,
<operation name="OperationName">

The action-name element supports a wildcard mechanism, where the

special character, *, can be used to match any number of contiguous

characters in an action name. For example, the following action-name

element matches any action:

<action-name>*</action-name>

<!ELEMENT action-role (action-name, role-name+)>
Groups together aparticular action and all of theroles permitted to perform
that action.

<!ELEMENT action-role-mapping (server-name, interface+)>

Contains all of the permissions that apply to a particular server application.

650

<!ELEMENT allow-unlisted-interfaces (#PCDATA)>
Specifies the default access permissions that apply to interfaces not
explicitly listed in the action-role mapping file. The element contents can
have the following values:

¢+ true—for any interfaces not listed, access to all of the interfaces
actionsis allowed for al roles. If the remote user is unauthenticated
(in the sense that no credentials are sent by the client), accessis also
alowed.

Note: However, if <allow-unlisted-interfaces> iS true and a
particular interface is listed, then only the actions explicitly listed within
that interface’s interface element are accessible. Unlisted actions from
the listed interface are not accessible.

¢+ false—for any interfaces not listed, accessto al of the interfaces’
actionsis denied for al roles. Unauthenticated users are also denied
access.

Default is false.

<!ELEMENT interface (name, action-role+)>
In the case of a CORBA server, the interface element contains al of the
access permissions for one particular IDL interface.

In the case of an Artix server, the interface element contains all of the
access permissions for one particular WSDL port type.
<!ELEMENT name (#PCDATA)>

Within the scope of an interface element, identifies the interface (IDL

interface or WSDL port type) with which permissions are being associ ated.

The format of the interface name depends on the type of application, as

follows:

¢+ CORBA server—the name element identifiesthe IDL interface using
theinterface’s OMG repository ID. The repository ID normally
consists of the characters 1or: followed by the fully scoped name of
theinterface (using / instead of : : asthe scoping character),

651

APPENDIX D | Action-Role Mapping DTD

followed by the characters :1.0. Hence, the simple: : SimpleObject
IDL interface isidentified by the IDL: Simple/SimpleObject:1.0
repository 1D.

Note: Theform of the repository ID can also be affected by various
#pragma directives appearing in the IDL file. A commonly used directive
iS #pragma prefix.

For example, the cosNaming: :NamingContext interface in the naming
service module, which uses the omg . org prefix, has the following
repository ID: IDL: omg . org/CosNaming/NamingContext: 1.0

¢ Artix server—the name element contains a WSDL port type name,
specified in the following format:
NamespaceURI : PortTypeName
The PortTypeName comes from atag, <portType
name="PortTypeName">, defined in the NamespaceURT Namespace.
The NamespaceURT is usually defined in the <definitions
targetNamespace="NamespaceURI" ...> tag of the WSDL
contract.
The name element supports a wildcard mechanism, where the special
character, *, can be used to match any number of contiguous charactersin
an interface name. For example, the following name €lement matches any
interface:

<interface>
<name>*</name>

</interface>

<!ELEMENT role-name (#PCDATA)>

652

Specifies arole to which permission is granted. The role name can be any
role that belongs to the server’s Artix authorization realm (for CORBA
bindings, the realm name is specified by the
plugins:gsp:authorization_realm configuration variable; for SOAP
bindings, the realm name is specified by the
plugins:asp:authorization_realm configuration variable) or to the
TONAGlobalRealm realm. The roles themselves are defined in the security
server backend; for example, in afile adapter file or in an LDAP backend.

<!ELEMENT secure-system (allow-unlisted-interfaces*,
action-role-mapping+)>

The outermost scope of an action-role mapping file groups together a
collection of action-role-mapping €lements.

<!ELEMENT server-name (#PCDATA)>
The server-name element specifies the configuration scope (that is, the
ORB name or BUS name) used by the server in question. Thisis normally
the value of the -orRBname OF -BUSname parameter passed to the server
executable on the command line.

The server-name element supports a wildcard mechanism, where the
special character, *, can be used to match any number of contiguous
charactersin an ORB name or BUS name. For example, the following
server-name €lement matches any ORB name or BUS name:

<server-name>*</server-name>

653

APPENDIX D | Action-Role Mapping DTD

654

APPENDIX E

OpenSSL Utilities

The openss1 program consists of a large number of utilities that
have been combined into one program. This appendix describes
how you use the cpenss1 programwith Artix when managing X.509
certificates and private keys.

In thisappendix This appendix contains the following sections:
Using OpenSSL Utilities page 656
The OpenSSL Configuration File page 670

655

APPENDIX E | OpenSSL Utilities

Using OpenSSL Utilities

The OpenSSL package This section describes a version of the openss1 program that is available with
Eric Young's OpenSSL package, which you can download from the OpenSSL
Web site, http://www.openssl.org. OpenSSL is apublicly available
implementation of the SSL protocol. Consult “License Issues’ on page 677 for
information about the copyright terms of OpenSSL.

Note: For complete documentation of the OpenSSL utilities, consult the
documentation at the OpenSSL web site http: / /www.openssl . org/docs.

Command syntax An openss1 command line takes the following form:
openssl Utility arguments
For example:

openssl x509 -in OrbixCA -text

The openss1 utilities This appendix describes the following openss1 utilities:
%509 Manipulates X.509 certificates.
reg Creates and manipulates certificate signing requests, and self-signed
certificates.
rsa Manipulates RSA private keys.
ca Implements a Certification Authority (CA).

s_client |mplementsageneric SSL/TLS client.
s_server |mplementsageneric SSL/TLS server.

The -help option To get alist of the arguments associated with a particular command, use the
-help option asfollows:

openssl Utility -help
For example:

openssl x509 -help

656

http://www.openssl.org

Using OpenSSL Utilities

The x509 Utility

Purpose of the x509 utility

Options

In Artix the x509 utility ismainly used for:

® Printing text details of certificates you wish to examine.

® Converting certificates to different formats.

The options supported by the openssl x509 utility are as follows:

-inform arg

-outform arg

-keyform arg
-CAform arg
-Chakeyform arg
-in arg

-out arg
-serial
-hash
-subject
-issuer
-startdate
-enddate
-dates
-modulus
-fingerprint
-noout

-days arg

-signkey arg
-x509toreq

-req

-CA arg

- input format - default PEM
(one of DER, NET or PEM)

- output format - default PEM

(one of DER, NET or PEM

- set the CA certificate,

private key format - default PEM

CA format - default PEM

CA key format - default PEM

input file - default stdin

output file - default stdout

print serial number value
print serial number value
print subject DN

print issuer DN

notBefore field

notAfter field

both Before and After dates

print the RSA key modulus

print the certificate fingerprint

no certificate output

How long till expiry of a signed certificate

def 30 days

self sign cert with arg

output a certification request object

input is a certificate request, sign and
output

must be PEM format

657

APPENDIX E | OpenSSL Utilities

Using the x509 utility

658

-Cakey arg - set the CA key, must be PEM format. If missing
it is assumed to be in the CA file

-CAcreateserial - create serial number file if it does not exist

-CAserial - serial file

-text - print the certificate in text form

-C - print out C code forms

-md2/-md5/-shal/ - digest to do an RSA sign with

-mdc2

To print the text details of an existing PEM-format X.509 certificate, use the
%509 utility asfollows:

openssl x509 -in MyCert.pem -inform PEM -text

To print the text details of an existing DER-format X.509 certificate, use the
%509 utility asfollows:

openssl x509 -in MyCert.der -inform DER -text

To change a certificate from PEM format to DER format, use the x509 utility as
follows:

openssl x509 -in MyCert.pem -inform PEM -outform DER -out
MyCert.der

Using OpenSSL Utilities

Thereq Utility

Purpose of the x509 utility

Options

The req utility is used to generate a self-signed certificate or acertificate signing
request (CSR). A CSR contains details of a certificate to be issued by a CA.
When creating a CSR, the req command prompts you for the necessary
information from which a certificate request file and an encrypted private key
file are produced. The certificate request is then submitted to a CA for signing.

If the -nodes (no DES) parameter is not supplied to req, you are prompted for a
pass phrase which will be used to protect the private key.

Note: Itisimportant to specify avalidity period (using the -days parameter).
If the certificate expires, applications that are using that certificate will not be
authenticated successfully.

The options supported by the openssl req utility are asfollows:

-inform arg input format - one of DER TXT PEM

-outform arg output format - one of DER TXT PEM
-in arg inout file

-out arg output file

-text text form of request

-noout do not output REQ

-verify verify signature on REQ

-modulus RSA modulus

-nodes do not encrypt the output key

-key file use the private key contained in file

-keyform arg
-keyout arg
-newkey rsa:bits

-newkey dsa:file

-[digest]
-config file

-new

key file format
file to send the key to

generate a new RSA key of ‘bits’ in size

generate a new DSA key, parameters taken from

CA in ‘file’
Digest to sign with (md5, shal, md2, mdc2)
request template file

new request

APPENDIX E | OpenSSL Utilities

Using thereq Utility

660

-x509 output an x509 structure instead of a
certificate req. (Used for creating self signed
certificates)

-days number of days an x509 generated by -x509 is

valid for

-asnl-kludge Output the ‘request’ in a format that is wrong
but some CA’s have been reported as requiring
[It is now always turned on but can be turned
off with -no-asnl-kludge]

To create a self-signed certificate with an expiry date a year from now, the req
utility can be used as follows to create the certificate ca_cert . pem and the
corresponding encrypted private key file ca_pk.pem:

openssl reqg -config ssl_conf_path_name -days 365

-out CA_cert.pem -new -x509 -keyout CA_pk.pem

This following command creates the certificate request MyReq. pem and the
corresponding encrypted private key file MyEncryptedkey . pem:

openssl req -config SS_conf_path_name -days 365
-out MyReq.pem -new -keyout MyEncryptedKey.pem

Using OpenSSL Utilities

Thersa Utility

Purpose of the rsa utility

Options

Using thersa Utility

The rsa command is auseful utility for examining and modifying RSA private
key files. Generally RSA keys are stored encrypted with a symmetric algorithm
using a user-supplied pass phrase. The OpenSSL req command prompts the user
for apass phrase in order to encrypt the private key. By default, req uses the
triple DES agorithm. The rsa command can be used to change the password
that protects the private key and to convert the format of the private key. Any
rsa command that involves reading an encrypted rsa private key will prompt
for the PEM pass phrase used to encrypt it.

The options supported by the opensd rsa utility are as follows:

-inform arg input format - one of DER NET PEM

-outform arg output format - one of DER NET PEM

-in arg inout file

-out arg output file

-des encrypt PEM output with cbc des

-des3 encrypt PEM output with ede cbc des using
168 bit key

-text print the key in text

-noout do not print key out

-modulus print the RSA key modulus

Converting a private key to PEM format from DER format involves using the
rsa Utility asfollows:

openssl rsa -inform DER -in MyKey.der -outform PEM -out MyKey.pem

Changing the pass phrase which is used to encrypt the private key involves using
the rsa utility asfollows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out MyKey.pem
-des3

Removing encryption from the private key (which is not recommended)
involves using the rsa command utility as follows:

openssl rsa -inform PEM -in MyKey.pem -outform PEM -out MyKey2.pem

661

APPENDIX E | OpenSSL Utilities

Note: Do not specify the samefile for the -in and -out parameters, because
this can corrupt the file.

662

Using OpenSSL Utilities

The ca Utility

Purpose of the ca utility Y ou can use the ca utility create X.509 certificates by signing existing signing
requests. It isimperative that you check the details of a certificate request before
signing. Y our organization should have a policy with respect to the issuing of
certificates.

The ca utility is used to sign certificate requests thereby creating avalid X.509
certificate which can be returned to the request submitter. It can also be used to
generate Certificate Revocation Lists (CRLS). For information on the ca
-policy and -name options, refer to “The OpenSSL Configuration File” on
page 670.

Creating anew CA To create anew CA using the openss| ca utility, two files (serial and
index. txt) need to be created in the location specified by the openssl
configuration file that you are using.

Options The options supported by the openssl ca utility are asfollows:
-verbose - Talk alot while doing things
-config file - A config file
-name arg - The particular CA definition to use
-gencrl - Generate a new CRL
-crldays days - Days is when the next CRL is due
-crlhours hours - Hours is when the next CRL is due
-days arg - number of days to certify the certificate for
-md arg - md to use, one of md2, md5, sha or shal
-policy arg - The CA ‘policy’ to support
-keyfile arg - PEM private key file
-key arg - key to decode the private key if it is
encrypted
-cert - The CA certificate
-in file - The input PEM encoded certificate request(s)
-out file - Where to put the output file(s)
-outdir dir - Where to put output certificates

663

APPENDIX E | OpenSSL Utilities

Using the ca Utility

664

-infiles.... - The last argument, requests to process

-spkac file - File contains DN and signed public key and
challenge

-preserveDN - Do not re-order the DN

-batch - Do not ask questions

-msie_hack - msie modifications to handle all thos

universal strings

Note: Most of the above parameters have default values as defined in
openssl.cnf.

Converting aprivate key to PEM format from DER format involves using the ca
utility as shown in the following example. To sign the supplied CSR MyReq. pem
to be valid for 365 days and create a new X.509 certificate in PEM format, use
the ca utility asfollows:

openssl ca -config S3_conf_path_name -days 365
-in MyReq.pem -out MyNewCert.pem

Using OpenSSL Utilities

The s client Utility

Purpose of the s _client utility

Options

You can usethe s_client utility to debug an SSL/TLS server. Using the
s_client utility, you can negotiate an SSL/TLS handshake under controlled
conditions, accompanied by extensive logging and error reporting.

The options supported by the openssl s_client utility are asfollows:

—connect
host[:port]
—-cert certname

-certform format

-key keyfile

-keyform format

-pass arg
-verify depth
-CApath directory

-Cafile file

-reconnect

-pause

-showcerts

-prexit

-state

-debug

-msg

-nbio_test

- Specify the host and (optionally) port to
connect to. Default is local host and port 4433.

- Specifies the certificate to use, if one is
requested by the server.

- The certificate format, which can be either
PEM or DER. Default is PEM.

- File containing the client’s private key.
Default is to extract the key from the client
certificate.

- The private key format, which can be either
PEM or DER. Default is PEM.

- The private key password.
- Maximum server certificate chain length.

- Directory to use for server certificate
verification.

- File containing trusted CA certificates.

- Reconnects to the same server five times using
the same session ID.

- Pauses for one second between each read and
write call.

- Display the whole server certificate chain.

- Print session information when the program
exits.

- Prints out the SSL session states.

- Log debug data, including hex dump of
messages.

- Show all protocol messages with hex dump.

- Tests non-blocking I/O.

665

APPENDIX E | OpenSSL Utilities

Using thes_client utility

666

-nbio - Turns on non-blocking I/O.

-crlf - Translates a line feed (LF) from the terminal
into CR+LF, as required by some servers.

-ign_eof - Inhibits shutting down the connection when end
of file is reached in the input.

-quiet - Inhibits printing of session and certificate
information; implicitly turns on -ign_eof as
well.

-ssl2, -ssl3, - These options enable/disable the use of

-tlsl, -no_ssl2, certain SSL or TLS protocols.

-no_ssl3, -no_tlsl

-bugs - Enables workarounds to several known bugs in
SSL and TLS implementations.

-cipher cipherlist- Specifies the cipher list sent by the client.
The server should use the first supported
cipher from the list sent by the client.

-starttls protocol- Send the protocol-specific message(s) to
switch to TLS for communication, where the
protocol can be either smtp or pop3.

-engine id - Specifies an engine, by it's unique id string.

-rand file(s) - A file or files containing random data used to
seed the random number generator, or an EGD
socket. The file separator is ; for
MS-Windows, , for OpenVMS, and : for all
other platforms.

Before running the s_client utility, there must be an active SSL/TL S server for
you to connect to. For example, you could have an s_server test server running
on thelocal host, listening on port 9000. To run the s_client test client, open a
command prompt and enter the following command:

openssl s_client -connect localhost:9000 -ssl3
-cert clientcert.pem

Where clientcert.pemisafile containing the client’s X.509 certificate in PEM
format. When you enter the command, you are prompted to enter the pass phrase
for the clientcert .pemfile

Using OpenSSL Utilities

Thes server Utility

Purpose of the s_server utility

Options

You can usethe s_server utility to debug an SSL/TLS client. By entering
openssl s_server a the command line, you can run asimple SSL/TLS server
that listens for incoming SSL/TL S connections on a specified port. The server
can be configured to provide extensive logging and error reporting.

The options supported by the openssl s_server utility are asfollows:

—-accept port

-context id

—-cert certname

-certform format

-key keyfile

-keyform format

-pass arg

-dcert filename,
-dkey keyname

—-dcertform format,
-dkeyform format,
-dpass arg

-nocert
-dhparam filename

-no_dhe

-no_tmp_rsa

- Specifies the IP port to listen for incoming
connections. Default is port 4433.

- Sets the SSL context id (any string value).

- Specifies the certificate to use for the
server.

- The certificate format, which can be either
PEM or DER. Default is PEM.

- File containing the server’s private key.
Default is to extract the key from the server
certificate.

- The private key format, which can be either
PEM or DER. Default is PEM.

- The private key password.

- Specifies an additional certificate and
private key, enabling the server to have
multiple credentials.

- Specifies additional certificate format,
private key format, and passphrase respectively.

- If this option is set, no certificate is used.
- The DH parameter file to use.

- If this option is set, no DH parameters will
be loaded, effectively disabling the ephemeral
DH cipher suites.

- Certain export cipher suites sometimes use a
temporary RSA key. This option disables
temporary RSA key generation.

667

APPENDIX E | OpenSSL Utilities

668

-verify depth,
-Verify depth

-CApath directory

- Maximum client certificate chain length. With
the -Verify option, the client must supply a
certificate or an error occurs.

- Directory to use for client certificate

verification.

-CAfile file
-state

-debug

-msg
-nbio_test
-nbio
-crlf

-quiet

-ssl2, -ssl3,
-tlsl, -no_ssl2,
-no_ssl3, -no_tlsl
-bugs

-hack

-cipher cipherlist

-HTTP

-engine id

-id_prefix_arg

- File containing trusted CA certificates.
- Prints out the SSL session states.

- Log debug data, including hex dump of
messages .

- Show all protocol messages with hex dump.
- Tests non-blocking I/0.
- Turns on non-blocking I/O0.

- Translates a line feed (LF) from the terminal
into CR+LF, as required by some servers.

- Inhibits printing of session and certificate
information; implicitly turns on -ign_eof as
well.

- These options enable/disable the use of
certain SSL or TLS protocols.

- Enables workarounds to several known bugs in
SSL and TLS implementations.

- Enables a further workaround for some some
early Netscape SSL code.

- Specifies the cipher list sent by the client.
The server should use the first supported
cipher from the list sent by the client.

- Sends a status message back to the client when
it connects. The status message is in HTML
format.

- Emulates a simple web server, where pages are
resolved relative to the current directory.

- Emulates a simple web server, where pages are
resolved relative to the current directory.

- Specifies an engine, by it's unique id string.

- Generate SSL/TLS session IDs prefixed by arg.

Connected commands

Using thes_server utility

Using OpenSSL Utilities

-rand file(s) - A file or files containing random data used to
seed the random number generator, or an EGD
socket. The file separator is ; for
MS-Windows, , for OpenVMS, and : for all
other platforms.

When an SSL client is connected to the test server, you can enter any of the
following single letter commands at the server side:

a End the current SSL connection but still accept new connections.
End the current SSL connection and exit.

r Renegotiate the SSL session.
R Renegotiate the SSL session and request a client certificate.
P Send some plain text down the underlying TCP connection. This

should cause the client to disconnect due to a protocol violation.
S Print out some session cache status information.

To usethe s_server utility to debug SSL clients, start the test server with the
following command:

openssl s_server -accept 9000 -cert servercert.pem

Where the test server listens on the IP port 9000 and servercert.pemisafile
containing the server’s X.509 certificate in PEM format.

The s_server utility also provides a convenient way to test a secure Web
browser. If you start the s_server utility with the -www switch, the test server
functions as a simple Web server, serving up pages from the current directory.
For example:

openssl s_server -accept 9000 -cert servercert.pem -WWW

669

APPENDIX E | OpenSSL Utilities

The OpenSSL Configuration File

Overview A number of OpenSSL commands (for example, req and ca) take a -config
parameter that specifies the location of the opensd configuration file. This
section provides a brief description of the format of the configuration file and
how it appliesto the req and ca commands. An example configuration fileis
listed at the end of this section.

Structure of openssl.cnf The openss1 . cnf configuration file consists of anumber of sectionsthat specify
a series of default values that are used by the openssl commands.

In this section This section contains the following subsections:
[req] Variables page 671
[ca] Variables page 672
[policy] Variables page 673
Example openssl.cnf File page 674

670

The OpenSSL Configuration File

[req] Variables

Overview of thevariables

default_bits configuration
variable

default_keyfile configuration
variable

distinguished_name
configuration variable

The req section contains the following variables:

default_bits = 1024

default_keyfile = privkey.pem
distinguished name = req distinguished name
attributes = req attributes

The default_bits variableisthe default RSA key size that you wish to use.
Other possible values are 512, 2048, and 4096.

The default_keyfile variableisthe default name for the private key file
created by req.

The distinguished_name variable specifies the section in the configuration file
that defines the default values for components of the distinguished name field.
Thereq_attributes variable specifies the section in the configuration file that
defines defaults for certificate request attributes.

671

APPENDIX E | OpenSSL Utilities

[ca] Variables

Choosing the CA section

Overview of thevariables

672

Y ou can configure the file openss1 . enf to support a number of CAsthat have
different policies for signing CSRs. The -name parameter to the ca command
specifieswhich CA section to use. For example:

openssl ca -name MyCa ...

This command refersto the CA section [Myca]. If -name is not supplied to the
ca command, the CA section used is the one indicated by the default_ca
variable. In the “ Example openssl.cnf File” on page 674, thisis set to
CA_default (which isthe name of another section listing the defaults for a
number of settings associated with the ca command). Multiple different CAscan
be supported in the configuration file, but there can be only one default CA.

Possible [ca] variablesinclude the following

dir: The location for the CA database
The database is a simple text database containing the
following tab separated fields:

status: A value of ‘R’ - revoked, ‘E’ -expired or ‘V’ valid
issued date: When the certificate was certified

revoked date: When it was revoked, blank if not revoked

serial number: The certificate serial number

certificate: Where the certificate is located

CN: The name of the certificate

The serial number field should be unique, as should the ci/status
combination. The ca utility checks these at startup.

certs: This is where all the previously issued certificates are
kept

The OpenSSL Configuration File

[policy] Variables

Choosing the policy section

Example policy section

Thematch policy value

The optional policy value

The supplied policy value

The policy variable specifies the default policy section to be used if the -policy
argument is not supplied to the ca command. The CA policy section of a
configuration file identifies the requirements for the contents of a certificate
request which must be met before it is signed by the CA.

There are two policy sections defined in the “ Example openssl.cnf File” on
page 674: policy match and policy anything.

Thepolicy match section of the example openss1. enf file specifies the order
of the attributes in the generated certificate as follows:

countryName
stateOrProvinceName
organizationName
organizationalUnitName
commonName
emailAddress

Consider the following value:
countryName = match

This means that the country name must match the CA certificate.

Consider the following value:
organisationalUnitName = optional

This means that the organisationalunitName does not have to be present.

Consider the following value:
commonName = supplied

This means that the commonName must be supplied in the certificate request.

673

APPENDIX E | OpenSSL Utilities

Example openssl.cnf File

Listing

674

The following listing shows the contents of an example openss1 .cnf
configuration file:

R
openssl example configuration file.

This is mostly used for generation of certificate requests.
A R S
[cal

default_ca= CA_default # The default ca section
A R R

[CA_default]
dir=/opt/iona/OrbixSSLl.0c/certs # Where everything is kept

certs=$dir # Where the issued certs are kept
crl_dir= $dir/crl # Where the issued crl are kept
database= $dir/index.txt # database index file
new_certs_dir= $dir/new_certs # default place for new certs
certificate=$dir/CA/OrbixCA # The CA certificate
serial= $dir/serial # The current serial number
crl= $dir/crl.pem # The current CRL

private_key= $dir/CA/OrbixCA.pk # The private key
RANDFILE= $dir/.rand # private random number file
default_days= 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md= md5 # which message digest to use
preserve= no # keep passed DN ordering

A few different ways of specifying how closely the request
should
conform to the details of the CA

policy= policy match
For the CA policy

[policy_match]

countryName= match
stateOrProvinceName= match
organizationName= match
organizationalUnitName= optional
commonName= supplied

The OpenSSL Configuration File

emailAddress= optional

For the ‘anything’ policy
At this point in time, you must list all acceptable ‘object’
types

[policy anything]

countryName = optional
stateOrProvinceName= optional
localityName= optional
organizationName = optional
organizationalUnitName = optional
commonName= supplied
emailAddress= optional

[req]

default_bits = 1024

default_keyfile= privkey.pem
distinguished name = req distinguished name
attributes = req attributes

[req distinguished name]

countryName= Country Name (2 letter code)

countryName min= 2

countryName_max = 2

stateOrProvinceName= State or Province Name (full name)
localityName = Locality Name (eg, city)
organizationName = Organization Name (eg, company)

organizationalUnitName = Organizational Unit Name (eg, section)

commonName = Common Name (eg. YOUR name)
commonName_max = 64

emailAddress = Email Address
emailAddress_max = 40

[req attributes]

challengePassword = A challenge password
challengePassword_min = 4
challengePassword max = 20
unstructuredName= An optional company name

675

APPENDIX E | OpenSSL Utilities

676

APPENDIX F

| 1cense | ssues

This appendix contains the text of licenses relevant to Artix.

In this appendix This appendix contains the following section:

OpenSSL License page 678

677

APPENDIX F | License I ssues

OpenSSL License

Overview The licence agreement for the usage of the OpenSSL command line utility
shipped with Artix SSL/TLSisasfollows:

LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of
the OpenSSL License and the original SSLeay license apply to the toolkit.
See below for the actual license texts. Actually both licenses are BSD-style
Open Source licenses. In case of any license issues related to OpenSSL
please contact openssl-core@openssl.org.

OpenSSL License

/*
* Copyright (c) 1998-1999 The OpenSSL Project. All rights reserved.

*

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:

* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.

* 3. All advertising materials mentioning features or use of this

* software must display the following acknowledgment :

* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.

* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.

678

OpenSSL License

*

* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment :

* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"

*

*

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT AS IS'' AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

R N S N N

*

* %

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com). This product includes software written by Tim
Hudson (tjh@cryptsoft.com) .

*

*

Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

* All rights reserved.

*

* This package is an SSL implementation written

by Eric Young (eay@cryptsoft.com).

The implementation was written so as to conform with Netscapes SSL.

* X %

*

This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions

* apply to all code found in this distribution, be it the RC4, RSA,

* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).

* Copyright remains Eric Young's, and as such any Copyright notices in

* the code are not to be removed.

* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.

679

APPENDIX F | License | ssues

L I R

*

*

*/

This can be in the form of a textual message at program startup or
in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software
must display the following acknowledgement :

"This product includes cryptographic software written by

Eric Young (eay@cryptsoft.com)"
The word 'cryptographic' can be left out if the rouines from the library
being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from
the apps directory (application code) you must include an acknowledgement :
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG '‘AS IS'' AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. 1IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

The licence and distribution terms for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution licence

[including the GNU Public Licence.]

680

| ndex

Symbols
NET

and principal propagation 427
<action-role-mapping> tag 322
<interface> tag 322
<name> tag 322
<realm>tag 313
<role>tag 313
<server-name> tag 322
<users>tag 313

A
access control
wsdl2acl subcommand 324
ACL
<action-role-mapping> tag 322
<interface> tag 322
<name>tag 322
<server-name> tag 322
action_role_mapping configuration variable 327
action-role mapping file 321
action-role mapping file, example 321
action-role mapping
and role-based access control 307
action_role_mapping configuration variable 124, 327
action-role mapping file
<action-role-mapping> tag 322
<interface> tag 322
<name> tag 322
<server-name> tag 322
CORBA
configuring 321
example 321
administration
OpenSSL command-line utilities 154
and i SF adapter properties 510
Artix security layer
and certificate-based authentication 96
Artix security plug-in
and security layer 73
authentication_cache _size configuration variable 75
artix_security plug-in
loading and basic configuration 330

Artix security plug-in plug-in
authentication_cache_timeout configuration
variable 76
Artix security service
and embedded deployment 497
architecture 493
configuring 235
definition 494
features 494
file adapter 257
is2.propertiesfile 257
LDAP adapter 259
LDAP adapter, properties 260
log4j logging 301
plugins;java_server:classpath configuration
variable 511
security infomation file 257
standal one deployment of 496
ASN.1 143, 643
attribute types 646
AVA 646
OID 645
RDN 647
ASP plug-in
caching of credentials 75
asp plug-in
default_password configuration value 422
security_type configuration variable 422
association options
and cipher suite constraints 229
and mechanism policy 217
client secure invocation policy, default 213
compatibility with cipher suites 230
EstablishTrustInClient 85, 86, 116, 130
NoProtection 119
rules of thumb 217
SSL/TLS
Confidentiaity 211
DetectMisordering 211
DetectReplay 211
EstablishTrustinClient 212
EstablishTrustinTarget 212
Integrity 211

681

INDEX

NoProtection 211
setting 208
target secure invocation policy, default 215, 216
attribute value assertion 646
authenticate() method
in IS2Adapter 505
authentication
and security layer 73
caching of credentials 75
certificate-based 70
Csl 70
HTTP Basic Authentication 70
iSF
processof 121
own certificate, specifying 190
SSL/TLS
mutual 174
targetonly 171
trusted CA list 182
authentication_cache_size configuration variable 75
authentication_cache_timeout configuration
variable 75, 76
authorization
and security layer 73
caching of credentials 75
role-based access control 307
roles
creating 309
special 311
authorization realm
adding aserver 308
IONAGIobalRealm realm 311
iSF 307
iSF, setting in server 124
rolesin 309
serversin 308
special 311
authorization realms
creating 309
AVA 646

B
backward trust 131
Baltimore toolkit
selecting for C++ applications 521
Basic Encoding Rules 644
BER 644
bus:initial_contract:url:login_service configuration
variable 344, 350

682

bus:security 333
-BUSname argument 324
bus-security:security interceptor 95, 345

C
CA 142
choosing ahost 146
commercial CAs 145
index file 156
list of trusted 148
multiple CAs 148
private CAs 146
private key, creating 157
security precautions 146
See Alsocertificate authority
self-signed 157
serial file 156
trusted list 182
672
CA, setting up 155
CACHE_CLIENT session caching value 232
CACHE_NONE session caching value 232
CACHE_SERVER_AND_CLIENT session caching
value 232
CACHE_SERVER session caching value 232
caching
authentication_cache size configuration variable 75
authentication_cache_timeout configuration
variable 75, 76
CACHE_CLIENT session caching value 232
CACHE_NONE session caching value 232
CACHE_SERVER_AND_CLIENT session caching
value 232
CACHE_SERVER session caching value 232
of credentials 75
SSL/TLS
cache size 232
validity period 232
Caching sessions 232
CAs 155
cautility 663
CertCongtraintsPolicy 515
CertConstraintsPolicy policy 515
certificate authority
and certificate signing 142
certificate-based authentication 70
and HTTP 80
example scenario 96, 106, 132
file adapter, configuring 314

LDAP adapter, configuring 317
certificate constraints policy
three-tier target server 131
certificate_constraints_policy variable 202, 515
Certificates
chain length 201
constraints 202, 515
certificates
CertCongtraintsPolicy policy 515
chaining 147
constraint language 202, 515
congtraints policy 131
contents of 143
creating and signing 158
importing and exporting 150
length limit 148
own, specifying 190
peer 147
PKCS#12 file 149
public key 143
public key encryption 223
security handshake 171, 175
self-signed 147, 157
serial number 143
signing 142, 161, 164
signing request 160, 164
trusted CA list 182
X.509 142
certificate signing request 160, 164
signing 161, 164
chaining of certificates 147
Ciper suites
order of 227
cipher suites
ciphersuites configuration variable 227
compatibility algorithm 231
compatibility with association options 230
default list 228
definitions 224
effective 229
encryption algorithm 223
exportable 224
integrity-only ciphers 222, 227
key exchange algorithm 223
mechanism policy 226
secure hash algorithm 223
secure hash algorithms 224
security algorithms 223
specifying 221

INDEX

standard ciphers 222
ciphersuites configuration variable 227
CLASSPATH 511
client_binding_list configuration variable
iSF, client configuration 122
secureclient 115
ClientCertificate attribute 87
ClientPrivateK eyPassword attribute 87
client secureinvocation policy 229
HTTPS 213
IIOP/TLS 213
ClientSecurel nvocationPolicy policy 209
client_version_policy
I1OP 582
close() method 505
cluster.propertiesfile
example 291
clustering
definition 282
is2.cluster.properties.filename property 290
is2.replica.selector.classname 290
IT_SecurityServiceinitia reference 293
load balancing 295
login service 289, 290
plugins:security:iiop_tls:host variable 293
plugins:security:iiop_tls:port variable 293
policiesiiiop_tls:load_balancing_mechanism
variable 296
securitylnstanceURL property 291
cluster propertiesfile 286
colocated invocations
and secure associations 206
colocation
incompatibility with principal propagation 420
com.iona.isp.adapters property 509
Confidentiality association option 211
hints 219
Confidentiality option 211
configuration
and i SF standal one deployment 496
of the iSF adapter 509
plugins;java_server:classpath configuration
variable 511
Configuration file 670
connection_attempts 582
constraint language 202, 515
Constraints
for certificates 202, 515
CORBA

683

INDEX

action-role mapping file 321
action-role mapping file, example 321
and iSF client SDK 494
configuring principal propagation 421
intermediate server configuration 127
iSF, three-tier system 126
principal propagation 420
security, overview 112
SSL/TLS
client configuration 114
securing communications 114
three-tier target server configuration 129
CORBA binding
CSl authorization over transport 70
CSl identity assertion 70
protocol layers 72
CORBA Principa 69, 105
CORBA security
CSlv2 plug-in 113
GSPplug-in 113
IIOP/TLS plug-in 113
csl
authorization over transport 70
identity assertion 70
CSl interceptor 122
CSlv2
certificate constraints policy 131
principal sponsor
client configuration 123
CSlv2 plug-in
CORBA security 113
CSR 160, 164

D
data encryption standard
see DES
default_password configuration value 422
DER 644
DES
symmetric encryption 223
DetectMisordering association option 211
hints 219
DetectMisordering option 211
DetectReplay association option 211
hints 219
DetectReplay option 211
DH_ANON_EXPORT_WITH_DES40_CBC_SHA
cipher suite 222, 230
DH_ANON_EXPORT_WITH_RC4_40_MDS5 cipher

684

suite 222, 230
DH_ANON_WITH_3DES EDE_CBC_SHA cipher
suite 222, 230
DH_ANON_WITH_DES CBC_SHA cipher
suite 222, 230
DH_ANON_WITH_RC4_128 MD?5 cipher suite 222,
230
Distinguished Encoding Rules 644
distinguished names
definition 645
DN
definition 645
string representation 645
domain name
ignored by iSF 121
domains
federating across 283

E
effective cipher suites
definition 229
embedded deployment 497
loading an adapter class 511
enable_principal_service_context configuration
variable 421
encryption algorithm
RC4 223
encryption algorithms 223
DES 223
symmetric 223
triple DES 223
enterprise security service
and i SF security domains 305
EstablishTrustInClient association option 85, 86, 116,
212
hints 218
three-tier target server 130
EstablishTrustInClient option 212
EstablishTrustinTarget association option 212
hints 218
EstablishTrustinTarget option 212
event_log:filters 578
exportable cipher suites 224

F
failover
definition 288
features, of the Artix security service 494

federation
and the security service 283
cluster propertiesfile 286
definition 282
is2.cluster.properties.filename property 285
is2.current.server.id property 283
is2.propertiesfile 285, 290
plugins:security:iiop_tls settings 287

file adapter 257
configuring certificate-based authentication 314
properties 258

filedomain
<readm>tag 313
<users>tag 313
example 312
filelocation 312
managing 312

G
generic server 496
getAllUsers() method 507
getAuthorizationinfo() method 506
GroupBaseDN property 262
GroupNameAttr property 262
GroupObjectClass property 262
GroupSearchScope property 262
GSP plug-in

and security layer 73

authentication_cache _size configuration variable 75

authentication_cache_timeout configuration
variable 75
caching of credentials 75
CORBA security 113
GSSUP credentials 285

H
high availability 288
HTTP
security layer 79
security layers 78
HTTP Basic Authentication 70, 80
overview 92
HTTP buffer 575
HTTP-compatible binding
compatible bindings 79
overview 78
protocol layers 71
HTTPS

ciphersuites configuration variable 227
client configuration 83, 85
mutual authentication 87
HTTPS security
overview 81

I
identity assertion 70
IIOPITLS
ciphersuites configuration variable 227
IIOP/TLS plug-in
CORBA security 113
I1OP plug-in
and semi-secure clients 115
IIOP policies 574, 580
client version 582
connection attempts 582
export hostnames 587
export | P addresses 587
GIOP version in profiles 587
server hosthame 586
TCP options
delay connections 588
receive buffer size 589
11OP policy
ports 587
IIOP_TLS interceptor 115
index file 156
initialize() method 505, 510
Integrity association option 211
hints 219
integrity-only ciphers 222, 227
Integrity option 211
interceptors
artix security 95
bus-security 345
login_client 344
interoperability
explicit principal header 428
with .NET 427
with Orbix applications 420
invocation policies
interaction with mechanism policy 217
IONAGIobaRealm 507
IONAGIobalRealm realm 311
IONAUserRole 324
is2.cluster.properties.filename property
and clustering 290
and federation 285

INDEX

685

INDEX

is2.current.server.id property 283
and clustering 290
is2.propertiesfile 257
and clustering 290
and federation 285, 290
and i SF adapter configuration 498
IS2AdapterException class 506
|S2A dapter Java interface 498
implementing 499
iS2 adapters
file domain
managing 312
LDAP domain
managing 317
standard adapters 494
iSF
action_role_mapping configuration variable 124
and certificate-based authentication 132
authorization realm
setting in server 124
client configuration
CSl interceptor 122
CORBA
three-tier system 126
three-tier target server configuration 129
two-tier scenario description 121
CORBA security 112
domain name, ignoring 121
intermediate server configuration 127
security domain
creating 306
server configuration
server_binding_list 122
server_domain_name configuration variable 124
three-tier scenario description 127
user account
creating 306
iSF adapter
adapter class property 509
and IONAGIobaRealm 507
and the i SF architecture 494
authenticate() method 505
close() method 505
com.iona.isp.adapters property 509
configuring to load 509
custom adapter, main elements 498
example code 499
getAllUsers() method 507
getAuthorizationlnfo() method 506

686

initialize() method 505, 510

logout() method 507

overview 498

property format 510

property truncation 510

WRONG_NAME_PASSWORD minor
exception 506

i SF adapters

enterprise security service 305

i SF adapter SDK

and the i SF architetecture 494

iSF client

in iSF architecture 493

iSF client SDK 494
iSF server

plugins;java_server:classpath configuration
variable 511

IT_SecurityServiceinitial reference 293

J
2

EE
and iSF client SDK 494

JCE architecture

K

enabling 532

Kerberos 265

token 69

key exchange agorithms 223

L

LDAP adapter 259

basic properties 262

configuring certificate-based authentication 317
GroupBaseDN property 262
GroupNameAttr property 262
GroupObjectClass property 262
LDAP server replicas 263
MemberDNALtr property 262
PrincipalUserDN property 264
PrincipalUserPassword property 264
properties 260

replicaindex 263

RoleNameALttr property 261
SSLCACertDir property 264

SSL ClientCertFile property 264

SSL ClientCertPassword property 264
SSLEnabled property 264

UserBaseDN property 261
UserNameAttr property 261
UserObjectClass property 261
UserRoleDNALtr property 261
LDAP database
and clustering 289
LDAP domain
managing 317
Lightweight Directory Access Protocol
see LDAP
load balancing 289
and clustering 295
policiesiiiop_tls:load_balancing_mechanism
variable 296
local_hostname 586
log4j 301
documentation 301
logging
in secure client 84, 116
log4j 301
login_client:login_client interceptor 344
login_client plug-in 344
and the login service 340
login service
and single sign-on 340
standal one deployment 341
WSDL contract for 351
login_service plug-in
configuring 350
logout() method 507

M
max_chain_length_policy configuration variable 201
MD5 211, 224
mechamism policy
interaction with invocation policies 217
MechanismPolicy 211
mechanism policy 226
MemberDNALtr property 262
message digest 5
see MD5
message digests 211
message fragments 211
mixed configurations, SSL/TLS 119
multi-homed hosts, configure support for 586
multiple CAs 148
mutual authentication 174
HTTPS 87

INDEX

N
namespace
plugins.csi 533
plugins.gsp 534
policies 557
policies.csi 570
policies:https 574
policiesiiiop_tls 579
principal_sponsor:csi 597
principle_sponsor 593, 600, 602, 606
no_delay 588
NoProtection assocation option
rules of thumb 217
NoProtection association option 119, 211
hints 219
semi-secure applications 220
NoProtection option 211

O

opage Abstract Syntax Notation One
see ASN.1 643
OpenSSL 146, 655
openSSL
configuration file 670
utilities 656
openSSL.cnf examplefile 674
OpenSSL command-line utilities 154
Orbix configuration file 496
orb_plugins configuration variable 115
client configuration 122
orb_plugins variable
and the NoProtection association option 219
semi-secure configuration 220

]
Password attribute 93
peer certificate 147
performance
caching of credentials 75
PKCS#12 files
creating 150, 158
definition 149
importing and exporting 150
viewing 150
plug-ins
CSlv2, in CORBA security 113
GSP, in CORBA security 113

687

INDEX

[IOP 115
IIOP/TLS, in CORBA security 113
plugins.asp:default_password configuration
variable 107
plugins.asp:security_level 526
plugins.asp:security _|level configuration variable 95
plugins.csi:ClassName 533
plugins:.csi:shlib_name 533
plugins.gsp:authorization_realm 535
plugins.gsp:ClassName 536
pluginsiiop:tcp_listener:reincarnate_attempts 543
plugins.iiop:tcp_listener:reincarnation_retry backoff r
atio 543
pluginsiiop:tcp_listener:reincarnation_retry_delay 543
pluginsiiop_tls:hfs keyring_file_password 583
pluginsiiop_tls:itcp_listener:reincarnation_retry _backof
f_ratio 543
pluginsiiop_tls:itcp_listener:reincarnation_retry _delay
543

plugins;java_server:classpath configuration
variable 511
plugins:security:iiop_tls:host variable 293
plugins:security:iiop_tls:port variable 293
plugins:security:iiop_tls settings 287
POA_Coloc interceptor 420
polices:max_chain_length_policy 559
policies
CertConstraintsPolicy 515
client secure invocation 229
ClientSecurel nvocationPolicy 209
HTTPS
client secure invocation 213
target secureinvocation 215
IIOP/TLS
client secure invocation 213
target secureinvocation 215
target secure invocation 229
TargetSecurelnvocationPolicy 209
policies:allow_unauthenticated _clients policy 557
policies:asp:enable_authorization configuration
varigble 95
policies:certificate_constraints policy 558
policies.csi:attribute_service:client_supports 570
policies.csi:attribute_serviceitarget_supports 571
policies.csi:auth_over_transpor:target_supports 572
policies.csi:auth_over_transport:client_supports 571
policies.csi:auth_over_transport:target_requires 572
policies:https:buffer:prealloc_shared 574
policies:https:buffer:prealloc_size 575

688

policies:https:mechanism_policy:ciphersuites 576
policies:https:mechanism_policy:protocol _version 577
policieshttps:trace_requests:enabled 578
policies.https:trusted_ca list_policy 579
policiesiiiop_tls:allow_unauthenticated_clients policy
581
policiesiiiop_tls.certificate_constraints policy 581
policiesiiop_tls:client_secure_invocation_policy:requir
es 582
policiesiiiop_tls.client_secure_invocation_policy:suppo
rts 582
policiesiiiop_tls.client_version_policy 582
policiesiiiop_tls.connection_attempts 582
policiesiiiop_tls.connection_retry_delay 583
policiesiiiop_tls:load_balancing_mechanism
variable 296
policiesiiiop_tls:max_chain_|length_policy 583
policiesiiiop_tls:mechanism_policy:ciphersuites 584
policiesiiiop_tls:mechanism_policy:protocol_version 5
85
policiesiiiop_tls:server_address mode_policy:local_ho
stname 586
policiesiiiop_tls:server_address_mode_policy:port_ran
ge 587
policiesiiiop_tls:server_address mode policy:publish
hostname 587
policiesiiiop_tls:server_version_policy 587
policiesiiiop_tls:session_caching_policy 588
policiesiiiop_tls:ttarget_secure_invocation_policy:requir
es 588
policiesiiiop_tls:target_secure invocation_policy:suppo
rts 588
policiesiiiop_tls:tcp_options:send_buffer_size 589
policiesiiiop_tls:tcp_options_policy:no_delay 588
policiesiiop_tlsitcp_options_policy:recv_buffer_size 5
89

policiesiiop_tls:trusted ca list_policy 589
policies:mechanism_policy:ciphersuites 560
policies:mechanism_policy:protocol_version 561
policies:session_caching_policy 561
policies:target_secure_invocation_policy:requires 562
policiesitarget_secure_invocation_policy:supports 562
policiesitrusted ca list_policy 563
673

Principal 69
principals

and colocation 420

configuring propagation 421

explicit principal header 428

from O/S username 421
interoperability 420
interoperating with .NET 427
overview 420
reading on the server side 426
setting on the client side 424
principa sponsor
CSlv2
client configuration 123
SSL/TLS
enabling 89, 118
SSL/TLS, disabling 84, 86, 116
principal_sponsor:csi:auth_method_data 598
principal_sponsor:csi:use_principal_sponsor 597
principal_sponsor Namespace Variables 593, 600, 602,
606
PrincipalUserDN property 264
PrincipalUserPassword property 264
principle_sponsor:auth_method data 594, 601, 603,
607
principle_sponsor:auth_method_id 594, 601, 603, 607
principle_sponsor:callback_handler:ClassName 596
principle_sponsor:login_attempts 596
principle_sponsor:use_principle_sponsor 593, 600,
602, 607
private key 157
protocol_version configuration variable 226
public key encryption 223
public keys 143
publish_hostname 587

R
RCA4 encryption 223
RDN 647
realm
see authorization realm
realms
IONAGIobaRealm, adding to 507
recv_buffer_size 589
relative distinguished name 647
Replay detection 211
671
REQUEST_LEVEL security level 345
reg utility 659
req Utility command 659
Rivest Shamir Adleman
see RSA
role-based access control 307
example 310

INDEX

RoleNameAttr property 261
role-propertiesfile 325
roles
creating 309
special 311
root certificate directory 148
RSA 223
symmetric encryption algorithm 223
RSA_EXPORT_WITH_DESA0_CBC_SHA cipher
suite 222, 230
RSA_EXPORT_WITH_RC4_40_MDS5 cipher
suite 222, 230
rsautility 661
rsa Utility command 661
RSA_WITH_3DES EDE_CBC_SHA cipher
suite 222, 230
RSA_WITH_DES CBC_SHA cipher suite 222, 230
RSA_WITH_NULL_MDS5 cipher suite 222, 230
RSA_WITH_NULL_SHA cipher suite 222, 230
RSA_WITH_RC4_128 MDS5 cipher suite 222, 230
RSA_WITH_RC4_128 SHA cipher suite 222, 230

S
Schannel toolkit

selecting for C++ applications 521
secure associations

client behavior 213

definition 206

TLS_Coloc interceptor 206
secure hash algorithms 223, 224
security algorithms

and cipher suites 223
security domain

creating 306
security domains

architecture 305

iSF 306
security handshake

cipher suites 221

SSL/TLS 171,175
security infomation file 257
securitylnstanceURL property 291
security layer

and HTTP 79

and SOAP binding 103

overview 73
security levels

REQUEST_LEVEL 345
security service

689

INDEX

federation of 283
security_type configuration variable 422
self-signed CA 157
self-signed certificate 147
semi-secure applications
and NoProtection 220
send_principal configuration variable 421
serial file 156
serial number 143
server_hinding_list configuration variable 122
ServerCertificate attribute 91
server_domain_name configuration variable
iSF, ignored by 124
ServerPrivateK eyPassword attribute 91
server_version_policy
I1OP 587
session_cache_size configuration variable 232
session_cache_validity_period configuration
variable 232
session_caching_policy configuraion variable 232
session_caching_policy variable 232
session idle timeout
SSO 341
session timeout
SSO 341
SHA 224
SHA1 211
signing certificates 142
Single sign-on
and security layer 73
single sign-on
SSO token 70
token timeouts 341
SOAP
principal propagation 420
SOAP 1.2
configuring Artix security plug-in for 330
SOAP binding
configuring principal propagation 421
protocol layers 72, 102
security layer 103
SOAP protocol layer 103
SSO overview 340
Specifying ciphersuites 221
SSL/TLS
association options
setting 208
caching validity period 232
cipher suites 221

690

client configuration 114
colocated invocations 206
encryption algorithm 223
[IOP_TLS interceptor 115
key exchange algorithm 223
logging 84, 116
mechanism policy 226
mixed configurations 119
orb_pluginslist 115
principal sponsor
disabling 84, 86, 116
enabling 89, 118
protocol_version configuration variable 226
secure associations 206
secure hash algorithm 223
secure hash algorithms 224
securing communications 114
security handshake 171, 175
selecting atoolkit, C++ 521
semi-secure client
IIOP plug-in 115
session cache size 232
TLSsession 206
SSLCACertDir property 264
SSL ClientCertFile property 264
SSL ClientCertPassword property 264
SSLeay 146
SSLEnabled property 264
SSO

advantages 340
login_client plug-in 344
login service WSDL 351
session idle timeout 341
session timeout 341
SOAP binding 340
username/password-based authentication 343
SSO token 70
and the login service 340
automatic refresh 341
timeouts 341
standal one deployment 496
standard ciphers 222
symmetric encryption algorithms 223

T
Target
choosing behavior 215
target authentication 171
target secure invocation policy 229

HTTPS 215
IIOP/TLS 215
TargetSecurel nvocationPolicy policy 209
TCP palicies
delay connections 588
receive buffer size 589
three-tier scenario description 127
TLS_Coloc interceptor 206
TLS security
and HTTP 78
TLSsession
definition 206
toolkit replaceability
enabling JCE architecture 532
selecting the toolkit, C++ 521
triple DES 223
truncation of property names 510
trusted CA list policy 182
trusted CAs 148
TrustedRootCertificates attribute 91

U
use_jsse_tk configuration variable 532
user account
creating 306
UserBaseDN property 261
username/password-based authentication
overview 342
SSO 343
UserName attribute 93
UserNameAttr property 261
UserObjectClass property 261
UserRoleDNALttr property 261
UserSearchScope property

INDEX

LDAP adapter
UserObjectClass property 261
UseSecureSockets attribute 90
utilities
wsdl2acl 324

\%
Variables 671, 672, 673

\W

Web service security extension

opage see WSSE 69
WRONG_NAME_PASSWORD minor exception 506
wsdl2acl subcommand 324
wsditoacl utility

role-propertiesfile 325
WSSE

Kerberostoken 69

UsernameToken 69
WSSE Kerberos credentials 104
WSSE UsernameToken credentials 104
WSSEUsernameT oken property 475, 477, 480, 483
WSSEX509Cert property 485, 488

X
X.500 643
X.509
public key encryption 223
X.509 certificate
definition 142
X.509 certificates 141
x509 utility 657

691

INDEX

692

	List of Tables
	List of Figures
	Preface
	What is Covered in This Book
	Who Should Read This Book
	The Artix Documentation Library

	Introduction to Security
	Getting Started with Artix Security
	Secure SOAP Demonstration
	Secure Hello World Example
	HTTPS Connection
	IIOP/TLS Connection
	Security Layer

	Secure Container Demonstration
	Debugging with the openssl Utility

	Introduction to the Artix Security Framework
	Artix Security Architecture
	Types of Security Credential
	Protocol Layers
	Security Layer
	Using Multiple Bindings

	Caching of Credentials

	Security for HTTP-Compatible Bindings
	Overview of HTTP Security
	Securing HTTP Communications with TLS
	HTTP Basic Authentication
	X.509 Certificate-Based Authentication

	Security for SOAP Bindings
	Overview of SOAP Security
	WSS X.509 Certificates and Authentication

	Security for CORBA Bindings
	Overview of CORBA Security
	Securing IIOP Communications with SSL/TLS
	Securing Two-Tier CORBA Systems with CSI
	Securing Three-Tier CORBA Systems with CSI
	X.509 Certificate-Based Authentication for CORBA Bindings

	TLS Security Layer
	Managing Certificates
	What are X.509 Certificates?
	Certification Authorities
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	PKCS#12 Files
	Special Requirements on HTTPS Certificates
	Creating Your Own Certificates
	Set Up Your Own CA
	Use the CA to Create Signed PKCS#12 Certificates
	Use the CA to Create Signed Certificates in a Java Keystore

	Generating a Certificate Revocation List

	Configuring HTTPS and IIOP/TLS
	Authentication Alternatives
	Target-Only Authentication
	Mutual Authentication
	No Authentication

	Specifying Trusted CA Certificates
	Specifying Trusted CA Certificates for HTTPS
	Specifying Trusted CA Certificates for IIOP/TLS

	Specifying an Application’s Own Certificate
	Deploying Own Certificate for HTTPS
	Deploying Own Certificate for IIOP/TLS

	Specifying a Certificate Revocation List
	Advanced Configuration Options
	Setting a Maximum Certificate Chain Length
	Applying Constraints to Certificates

	Configuring Secure Associations
	Overview of Secure Associations
	Setting Association Options
	Secure Invocation Policies
	Association Options
	Choosing Client Behavior
	Choosing Target Behavior
	Hints for Setting Association Options

	Specifying Cipher Suites
	Supported Cipher Suites
	Setting the Mechanism Policy
	Constraints Imposed on Cipher Suites

	Caching Sessions

	The Artix Security Service
	Configuring the Artix Security Service
	Configuring the Security Service
	Security Service Accessible through IIOP/TLS
	Security Service Accessible through HTTPS

	Configuring the File Adapter
	Configuring the LDAP Adapter
	Configuring the Kerberos Adapter
	Overview of Kerberos Configuration
	Configuring the Adapter Properties
	Configuring the KDC Connection
	Configuring JAAS Login Properties
	Configuring the LDAP Connection

	Clustering and Federation
	Federating the Artix Security Service
	Failover
	Client Load Balancing

	Additional Security Configuration
	Configuring Single Sign-On Properties
	Configuring the Log4J Logging

	Managing Users, Roles and Domains
	Introduction to Domains and Realms
	Artix security domains
	Artix Authorization Realms

	Managing a File Security Domain
	Managing an LDAP Security Domain

	Managing Access Control Lists
	Overview of Artix ACL Files
	ACL File Format
	Generating ACL Files
	Deploying ACL Files

	Configuring the Artix Security Plug-In
	The Artix Security Plug-In
	Configuring an Artix Configuration File
	Configuring a WSDL Contract

	Artix Security Features
	Single Sign-On
	SSO and the Login Service
	Username/Password-Based SSO for SOAP Bindings

	Publishing WSDL Securely
	Introduction to the WSDL Publish Plug-In
	Deploying WSDL Publish in a Container
	Preprocessing Published WSDL Contracts
	Enabling SSL/TLS for WSDL Publish Plug-In

	Partial Message Protection
	Introduction to SOAP PMP
	Setting Up a Java Keystore
	Artix Configuration
	Policy Configuration
	Introduction to Policy Configuration
	Action Definitions
	Action Properties
	Protection Policy Definitions
	Conditions

	Example of WSS Signing and Encryption
	Basic Signing and Encryption Scenario
	Configuring the Client
	Configuring the Server

	Exception Handling

	Principal Propagation
	Introduction to Principal Propagation
	Configuring
	Programming
	Interoperating with .NET
	Explicitly Declaring the Principal Header
	Modifying the SOAP Header

	Bridging between SOAP and CORBA
	SOAP-to-CORBA Scenario
	Overview of the Secure SOAP-to-CORBA Scenario
	SOAP Client
	SOAP-to-CORBA Router
	CORBA Server

	Single Sign-On SOAP-to-CORBA Scenario
	Overview of the Secure SSO SOAP-to-CORBA Scenario
	SSO SOAP Client
	SSO SOAP-to-CORBA Router

	CORBA-to-SOAP Scenario
	Overview of the Secure CORBA-to-SOAP Scenario
	CORBA Client
	CORBA-to-SOAP Router
	SOAP Server

	Programming Security
	Programming Authentication
	Configuration for SOAP 1.2 Bindings
	Propagating a Username/Password Token
	Propagating a Kerberos Token
	Propagating an X.509 Certificate

	Developing an iSF Adapter
	iSF Security Architecture
	iSF Server Module Deployment Options
	iSF Adapter Overview
	Implementing the IS2Adapter Interface
	Deploying the Adapter
	Configuring iSF to Load the Adapter
	Setting the Adapter Properties
	Loading the Adapter Class and Associated Resource Files

	Artix Security
	Applying Constraints to Certificates
	bus:initial_contract
	bus:security
	initial_references
	password_retrieval_mechanism
	plugins:asp
	plugins:at_http
	plugins:atli2_tls
	plugins:csi
	plugins:gsp
	plugins:https
	plugins:iiop_tls
	plugins:java_server
	plugins:login_client
	plugins:login_service
	plugins:schannel
	plugins:security
	plugins:security_cluster
	plugins:wsdl_publish
	plugins:wss
	policies
	policies:asp
	policies:bindings
	policies:csi
	policies:external_token_issuer
	policies:https
	policies:iiop_tls
	policies:security_server
	policies:soap:security
	principal_sponsor
	principal_sponsor:csi
	principal_sponsor:http
	principal_sponsor:https
	principal_sponsor:iiop_tls
	principal_sponsor:wsse

	iSF Configuration
	Properties File Syntax
	iSF Properties File
	Cluster Properties File
	log4j Properties File

	ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	Action-Role Mapping DTD
	OpenSSL Utilities
	Using OpenSSL Utilities
	The x509 Utility
	The req Utility
	The rsa Utility
	The ca Utility
	The s_client Utility
	The s_server Utility

	The OpenSSL Configuration File
	[req] Variables
	[ca] Variables
	[policy] Variables
	Example openssl.cnf File

	License Issues
	OpenSSL License

	Index

