
Revised 19-January-2015

AccuRev®

Technical Notes
Version 6.2

Copyright and Trademarks
Copyright © Micro Focus 2015. All rights reserved.

This product incorporates technology that may be covered by one or more of the following patents:
U.S. Patent Numbers: 7,437,722; 7,614,038; 8,341,590; 8,473,893; 8,548,967.

AccuRev, AgileCycle, and TimeSafe are registered trademarks of AccuRev, Inc.

AccuBridge, AccuReplica, AccuSync, AccuWork, Kando, and StreamBrowser are trademarks of
AccuRev, Inc.

All other trade names, trademarks, and service marks used in this document are the property of their
respective owners.

AccuRev® Technical Notes iii

Table of Contents

1. Converting Baselevel
Directories to AccuRev1

Creating a Depot ...1

Processing the First Baselevel ..1

Recording the Baselevel with a Snapshot..2

Processing Subsequent Baselevels..2

Handling Additional Baselevel-to-Baselevel Differences...3

Cleaning Up ..4

2. Creating and Using
a Maintenance Stream5

Creating a Snapshot ..5

Creating a Stream Based on the Snapshot ..5

Performing Maintenance Work...5

3. Specifying Ignore Patterns
for External Objects .. 7
What Is an Ignore Pattern?..7

Example ...7

Where You Can Specify Ignore Patterns ..8

Global versus per-Directory Use of Ignore Patterns..8

Ignore Pattern Precedence ...9

Specifying an Exception to an Ignore Pattern ...9

The (ignored) Status ..9

Using .acignore ...10

Where You Can Use .acignore...10

Specifying Ignore Patterns in .acignore...11

Using the --ignore Option for CLI Commands...11

One Pattern per Each --ignore ...11

Wildcards in Ignore Patterns...12

Specifying Directories and Their Contents...12

Using Filenames, Masks, and Lists ..13

4. Techniques for Sharing
Workspaces ... 15
Accessing a Windows Workspace From Multiple Windows Clients ...15

Universal Access to a Workspace Located on a Share ...16

The ‘share_map.txt’ File..16

Workspace Location Entries ..17

Example: Samba Share ..18

AccuRev® Technical Notes iv

5. What’s the Difference Between
Populate and Update?... 19
In a Nutshell19

Example 1: Standard Update Scenario ..20

Example 2: Restoring a Deleted File (“missing” by accident) ..20

Example 3: Handling Active Elements..20

Example 4: A Tale of Two Files ..20

Data Structures Used by Populate and Update ...21

How the Data Structures Get Their Data ..22

Backing Stream..22

Workspace Stream ...23

Workspace Tree ...25

The Update Algorithm ..26

Incomplete Updates ...27

Incomplete Update: Command Interrupted ...28

Incomplete Update: Checksum Failure ...28

Performing the “Fixup” Update...28

6. Using a Trigger to Maintain
a Reference Tree.. 31

7. Notes for CVS Users ... 33
AccuRev Workspaces vs. CVS Sandboxes...33

Common Operations ...33

Obtaining a copy of the source files ..33

Placing files under version control ..33

Bringing others’ changes into your workspace/sandbox ...34

Saving your changes ..34

Finding the history of files...34

Finding the status of files in your workspace/sandbox..35

Removing files...35

Reverting changes to files..35

Moving files...35

Checking out files to edit...36

Comparing versions of files...36

8. Version Control of
Namespace-Related Changes .. 37
Twin Elements and Stranded Elements...37

Handling Stranded Elements...41

Defunct element obscured by element with same name..42

Elements under a defunct parent..42

Elements under an excluded parent ...43

Dangling directory elements..43

Elements under a non-existent (purged) parent directory..44

Elements under a stranded parent directory...44

AccuRev® Technical Notes v

Active element refers to a purged version ...44

9. Notes on Cross-Links ... 45
Cross-Link Direction and Terminology...45

Cross-Links and Stream Namespaces..45

Double Vision: Seeing an Element Multiple Times in a Workspace...48

Cross-Link Overlaps..50

10.Notes on Revert to ... and
Diff Against... GUI Commands ... 51
Overview...51

Diff Against... ...52

Revert to..53

AccuRev® Technical Notes vi

AccuRev® Technical Notes 1

1. Converting Baselevel
Directories to AccuRev
Many development groups use source code provided by another group within the organization, or from
another organization altogether. Typically, the code is imported on a periodic basis as a complete source
tree, which we’ll call a “baselevel”. This note examines a scenario in which source-code baselevels are
imported into AccuRev. Suppose each baselevel is stored as a directory tree:

D:\baselevels\gizmo1.0

D:\baselevels\gizmo2.0

D:\baselevels\gizmo3.0

It is easy to incorporate the multiple baselevels into AccuRev. Make sure you read these instructions all the
way through before trying it out.

Creating a Depot
First, create an AccuRev depot, where AccuRev permanently stores all of the data for a programming
project. For example:

accurev mkdepot -p gizmo

This creates a depot called gizmo. It has a single stream, also called gizmo.

Processing the First Baselevel
Next, populate gizmo with files from the first baselevel.

1. Go to the first baselevel directory:

cd \baselevels\gizmo1.0

2. Create a workspace to be used for importing files from the baselevel into AccuRev:

accurev mkws -w import -b gizmo -l .

Note that the command line ends with “dash-ell dot”. This creates a workspace called import, which is
based on stream gizmo (currently empty) in the current location.

3. Get a list of all of the files that AccuRev doesn't know about (which is all of them):

accurev stat -x > extfiles.list

The –x stands for external. View the resulting file. You may see many files that you don’t want to put
under version control: object files, executables, text-editor backup files, etc.

4. You can have AccuRev ignore such files, by specifying patterns (wildcards) that match their names in
the .acignore file. For example:

*.exe

*.obj

*.lnk

2 AccuRev® Technical Notes

*.err

*.map (and so on)
(See Specifying Ignore Patterns for External Objects on page 7.)

5. Try the preceding two steps again, keep repeating this process until the stat –x command lists exactly
the set of files that you want AccuRev to keep track of.

6. Create initial versions of these files in the depot:

accurev add -c "initial file add" -x

This creates versions in the import workspace, but has not yet made them available to others working
on the gizmo project. The –c option allows you to associate a comment with the transaction.

7. To make these new files public, promote them to the gizmo stream:

accurev promote -c "initial file promote" -k

Recording the Baselevel with a Snapshot
At this point, you can create a snapshot of the gizmo stream. A snapshot is a special kind of stream, whose
contents can never change. (Hence, a snapshot is also called a “static stream”, distinguishing it from a
standard dynamic stream.) In this case, the snapshot will contain the versions in the first baselevel, because
that’s exactly what the gizmo stream contains at the current time.

(The gizmo stream itself will change, as you incorporate additional baselevels. But any snapshot you
create is guaranteed to be frozen forever!)

Use the mksnap command to create the snapshot:

accurev mksnap -s gizmo1.0 -b gizmo -t now

At any time in the future, you can use snapshot gizmo1.0 to see the contents of the first baselevel. And if
you need to fix a bug that existed at this baselevel, you can create a maintenance stream below the
snapshot. See Creating and Using a Maintenance Stream on page 5.

Note: AccuRev does not implement snapshots with “version labels”, as do branch-and-label SCM
systems. Since there’s no need to attach a label to each version in the baselevel, creating a snapshot is
virtually instantaneous!

Processing Subsequent Baselevels
Now, you need to “layer” the files in the next baselevel on top of the files that you’ve already placed under
AccuRev control.

1. Change the definition of the import workspace:

cd D:\baselevels\gizmo2.0

accurev chws -w import -l . (again, “dash-ell dot”)
In effect, you’ve moved the workspace to where the files are, instead of moving the files into the
workspace! The files fall into several categories.

2. Make sure that all files in this baselevel have timestamps that are later than the timestamps in the
preceding baselevel:

accurev touch -R .

3. Process the files that changed from gizmo1.0 to gizmo2.0.

AccuRev® Technical Notes 3

To AccuRev, these files appear to be modified versions of the gizmo1.0 files that you add’ed and
promote’d in the preceding section. You can list all these “modified” files:

accurev stat -m

And you can keep the new versions of the files:

accurev keep -m -c "my comment"

4. Process the files that didn’t change from gizmo1.0 to gizmo2.0.

You don’t need to do anything about these files. In particular, you don’t need to keep new versions.

5. Process the files that didn’t exist in gizmo1.0, but do exist in gizmo2.0.

These files are external, because AccuRev hasn’t seen them before. (Just as all the files were external
when you placed the first baselevel under version control.) Add the external files to the depot, just as
you did in the preceding section:

accurev add -x

As above, you may want to use stat –x and ignore patterns to filter out unwanted files before entering
the add command.

6. Promote the new files and changed files:

accurev promote -k

You’ve now placed two baselevels under AccuRev control. Layering the third baselevel, gizmo3.0, on top
of the second one is exactly the same as layering the second one on top of the first. Just repeat the steps in
this section.

Handling Additional Baselevel-to-Baselevel Differences
In the discussion above, we broke a baselevel’s “new layer” of files into three categories. This was a bit
oversimplified — there are additional categories to consider.

• Files that existed in one baselevel, but were deleted in the next baselevel.

You can make such files disappear from the new baselevel by defuncting them:

accurev defunct <filenames>

• Files that were renamed from one baselevel to the next.

This will appear to be (1) a file that existed in one baselevel, but was deleted from the next baselevel,
along with (2) a new file that didn’t exist in the preceding baselevel. If you know that file oldname.c in
the preceding baselevel was renamed to newname.c in the next baselevel, use this series of commands
to make the connection:

accurev pop oldname.c

ren newname.c SAVEME (UNIX/Linux: use the mv command)
accurev move oldname.c newname.c

ren SAVEME newname.c

accurev keep newname.c

Now, AccuRev knows that the element formerly known as oldname.c is henceforth to be known as
newname.c (until the next name change, that is!).

4 AccuRev® Technical Notes

Cleaning Up
Finally, deactivate the import workspace:

accurev rmws import

AccuRev® Technical Notes 5

2. Creating and Using
a Maintenance Stream
Many software development organizations have two main streams of development: work towards the next
release, and maintenance of the previous release. Other SCM systems use a “branch based on a label”
paradigm to accomplish this. AccuRev uses snapshots (static streams).

Creating a Snapshot
At the time of the release (say, “WidgetSoft Release 1.0”), create a snapshot:

accurev mksnap -s widget1.0 -b widget -t now

This creates a new snapshot called widget1.0. The snapshot contains whatever versions the widget stream
contained at the time the mksnap command is executed. Subsequently, the widget stream can change as
new versions are promoted to it, but the widget1.0 snapshot never changes. Instead of now, you can
specify any time in the past, such as 2005/05/18 10:10:24.

Creating a Stream Based on the Snapshot
For maintenance work on this release, create a new dynamic stream based on the snapshot:

accurev mkstream -s widget_maint -b widget1.0

Initially, widget_maint will be identical to widget1.0, but it will change as people promote changes to it.

Performing Maintenance Work
Maintenance developers use workspaces based on the widget_maint stream. For instance, to make a
maintenance fix, Mary might create a workspace like this:

accurev mkws -w widget_maint -b widget_maint -l <wherever>

When Mary promotes her maintenance work, the changes will go to widget_maint.

All maintenance work is isolated from the main development stream, and vice-versa. Developers working
on the next release create their workspaces off the development stream, not the maintenance stream. For
example:

accurev mkws -w widget -b widget -l <wherever>

Changes promoted from widget_justine will go to the main development stream, widget. The changes
won’t appear in the widget_maint stream.

The Change Palette in the AccuRev GUI makes it easy to migrate changes back and forth between a main
development stream (widget) and a maintenance stream (widget_maint).

6 AccuRev® Technical Notes

AccuRev® Technical Notes 7

3. Specifying Ignore Patterns
for External Objects

Software development projects can result in the addition of hundreds of new files to a workspace. This
chapter describes how to create and use ignore patterns that help AccuRev distinguish files you care about
(source files with suffixes like .c or .cc or .java, for example) from those you do not (program-generated
executables (.exe) and backup files (.bak), for example).

What Is an Ignore Pattern?
An ignore pattern is a value AccuRev uses to filter external objects (and only external objects) from
various AccuRev operations and displays. For example, if your workspace is routinely cluttered with
numerous backup files, you can create an ignore pattern to filter them out so they do not appear in the File
Browser’s Detail pane or are not listed when you run the CLI stat -x command.

Example
Imagine identifying the external objects in a workspace. Most are source files that you want to get under
AccuRev control, but there are several files (files with the .backup.fm and .pdf extensions in this
example) that you do not.

Since you know you never want to add files with a .backup.fm or .pdf extension to AccuRev version
control, you specify an ignore pattern that includes these extensions. For example:

*.backup.fm

*.pdf

In this example, we specify the ignore pattern in an AccuRev file called .acignore. Now, if you add this file
to the \se-installdoc directory and perform the External search again, AccuRev filters out the files in that
directory with the extensions you specified in the .acignore file:

8 AccuRev® Technical Notes

In addition to using a .acignore file, you can also specify ignore patterns using CLI command options. See
Where You Can Specify Ignore Patterns on page 8 for more information.

Where You Can Specify Ignore Patterns
You can specify ignore patterns in AccuRev using:

• One or more .acignore files

• The --ignore option for the add, files, and stat CLI commands

All of these methods accept the ignore patterns described in Wildcards in Ignore Patterns on page 12. This
section describes differences in their use, and the precedence when ignore patterns have been specified in
multiple places.

Global versus per-Directory Use of Ignore Patterns
A globally specified ignore pattern is one that affects more than a single directory -- all of a user’s
workspaces, or all of the directories within a workspace, for example. An ignore pattern specified in a
directory affects only that directory. The following table summarizes the effect of the ignore patterns you
can specify in AccuRev.

Examples
A simple wild card pattern such as “*.doc” that is specified globally matches any of these names:

docs/chap01.doc

docs/manuals/chap01.doc

docs/widgetproj/src/manuals/usergd/chap01.doc

The pattern manuals/*.doc specified in docs/.acignore matches any of these names:

docs/manuals/chap01.doc

docs/manuals/chap02.doc

Ignore Pattern Method Effect For More Information

.acignore Per-directory or global,
depending on where it is
specified.

See Using .acignore on page 10.

--ignore Global See Using the --ignore Option for CLI
Commands on page 11.

AccuRev® Technical Notes 9

... but not these names:

docs/manuals/usergd/src/chap01.doc

docs/widgetproj/src/manuals/usergd/chap01.doc

However, using ** to specify recursion as in manuals/**/*.doc or manuals/**/*chap*.doc will match any
occurrence of *.doc or *chap*.doc in any directory underneath the docs/manuals directory. See Wildcards
in Ignore Patterns on page 12 for more information on using **.

Ignore Pattern Precedence
As mentioned previously, you can specify ignore patterns using one or more .acignore files and the --
ignore option for the add, files, and stat CLI commands. If more than one ignore pattern matches a given
file or directory, AccuRev enforces those patterns in the following order:

1. --ignore command line option takes precedence over any other ignore patterns

2. .acignore in any workspace directory

3. .acignore in %WS_ROOT%/.accurev

4. .acignore in %USERPROFILE%/.accurev

In addition, note that:

• A file or directory is automatically considered to be ignored if one of its parent directories is already
ignored. In this case, AccuRev does not perform matching.

• If multiple pattern matches are found in the same .acignore file or set of --ignore options, the last
match takes precedence over other matches in the same file or command line option.

Specifying an Exception to an Ignore Pattern
You can use the exclamation mark (!) to specify an exception to an ignore pattern. For example, imagine
you have specified a global ignore pattern, *.exe, so that AccuRev ignores all external objects in your
workspace with a .exe extension. If you wanted, you could specify !*.exe locally in an individual
workspace directory, in which case AccuRev would ignore all external objects ending with .exe except
those in the directory you specified. Similarly, specifying !generate.exe
(stat -x --ignore=!generate.exe, for example) would include the generate.exe file in the list returned
by the stat command.

The (ignored) Status
When you specify an ignore pattern, any external objects matching that pattern are given an (ignored)
status (in addition to the (external) status they have because they are external objects). Ignored objects are
not displayed when navigating using the Workspace Explorer -- because you have explicitly told AccuRev
to ignore them.

You can display ignored objects in the File Browser (as shown in the following illustration) by choosing
the Include Ignored Objects preference on the General tab of the AccuRev Preferences dialog box.

10 AccuRev® Technical Notes

(Ignored objects are never displayed in the File Browser when using the External search filter, regardless
of how the Include Ignored Objects preference is set.)

See Controlling the Display of External Objects on page 58 of the AccuRev On-Line Help Guide for
more information.

Using .acignore
This section describes considerations for using the .acignore file to specify ignore patterns.

Where You Can Use .acignore
The following table summarizes where you can use .acignore files and what effect that has on the external
objects AccuRev ignores.

Note that patterns specified in per-directory .acignore files are not inherited unless they are specified using
recursion syntax (**). For example, if you add a .acignore file to the \forms directory with the pattern
*.bak, external objects with a .bak extension in the \forms\xml directory are not filtered.

Similarly, you could specify different patterns using separate .acignore files in the \se-install\drafts and
\forms\xml directories. See Wildcards in Ignore Patterns on page 12 to learn about recursion syntax.

Location Effect Description

Workspace directory Per-directory Sets the ignore pattern for that directory only.

%WS_ROOT%/.accurev Global Sets the ignore pattern for the specified workspace. For
example:
c:\accurev\workspaces\ws_beta\.accurev\.acignore

%USERPROFILE%/.accurev Global Sets the ignore pattern for all workspaces. For example:
c:\users\dfoster\.accurev\.acignore

AccuRev® Technical Notes 11

Specifying Ignore Patterns in .acignore
Each ignore pattern in an .acignore file must be on its own line. For example, you can specify this:

*.exe

*.doc

manuals/*.doc

README.html

but not this:

*.exe *.doc

manuals/*.doc README.html

Using the --ignore Option for CLI Commands
You can specify ignore patterns using one or more --ignore options for the add, files, and stat CLI
commands. Ignore patterns specified using --ignore options take precedence over patterns specified using
either the .acignore file.

(Note that the stat -x command is also used by the External search in the AccuRev GUI.)

When applying stat -x and add -x commands to an entire workspace, AccuRev uses any applicable ignore
patterns to filter the list of objects before sending the list to the AccuRev Server process. You can,
however, instruct AccuRev to include objects that would otherwise be ignored because they match an
applicable ignore pattern, as described in the following section.

One Pattern per Each --ignore
The --ignore option can be used to express only a single pattern, however, you can use multiple --ignore
options for a single CLI command. For example, if you want AccuRev to ignore all .bak and .txt files, for
example, you might enter the following:

accurev stat -x --ignore=*.bak --ignore=*.txt

You can also specify a file containing ignore patterns and reference that file using --ignore. For example:

accurev stat -x --ignore="@c:\my_files\ignore.txt"

Patterns specified in this file (ignore.txt, in this example) must follow the same rules as the .acignore file.

See the CLI User’s Guide or command line help for more information on the --ignore option for these
commands.

Command Description

stat -x Lists external objects. (In the AccuRev GUI, performing an External search in the File Browser
Outgoing Changes mode executes a stat-x command.)

add -x Adds external objects to the AccuRev depot, placing them under AccuRev control.

files Lists all elements and external objects.

12 AccuRev® Technical Notes

Wildcards in Ignore Patterns
In addition to explicit filenames and paths (dev_notes.doc, /temp/notes/ and /pubs/design_offsite.txt, for
example) AccuRev ignore patterns support wildcards, as summarized in the following table.

Specifying Directories and Their Contents
A typical use of an ignore pattern is to have stat -x (or the External search in the File Browser) ignore
temporary build directories. That is, you want the list of external objects that AccuRev returns to ignore
both the directories themselves and all the files within those directories. If the build directories are named
build_001, build_002, and so on, you might be tempted to use this pattern:

build_???/*

But this patterns matches only the contents of the build_??? directories and not the directories themselves.
(Note that in these examples, a directory matching the pattern that is a subdirectory of another matching
directory will be excluded. For example, in a structure like build_001/build_002, the build_002 directory
will be excluded, but the build_001 directory will not.)

Instead, to exclude build directories such as build_001, build_002 and their contents, specify the ignore
pattern as follows:

build_???/

(The pattern */build_???* would match both build_001 and build_002 directories and their contents, but
it also might coincidentally match names of some source files, such as lib/build_end.c.)

Wildcard Description Examples

? Matches exactly one character, which can be
anything other than the path separator (typically /).

pa?t.txt matches pact.txt and part.txt, but
not pat.txt

* Matches zero or more characters, which can be
anything other than the path separator (typically /).

pa*t.txt matches pat.txt, pact.txt, part.txt,
and paint.txt

[] Matches exactly one character from the list, which
can be anything other than the path separator
(typically /).
If the list begins with an exclamation mark (!),
matches any character not in the list.
Use a dash (-) to specify a range of characters.

[aekz] matches a, e, k, or z
[a-e] matches a, b, c, d, or e
.*ba[kt] matches any file with either a .bak
or .bat extension
file[!12].cpp matches the file3.cpp and
file4.cpp but not file1.cpp and file2.cpp

** Matches zero or more nested directories. The
wildcard must be specified as if it were a directory or
a filename itself. That is, it must occur:
• At the beginning of the pattern or be preceded

by a path separator

• At the end of the pattern or be followed by a
path separator

pubs **/*.doc matches any file with a .doc
extension in any directory under the pubs
directory: pubs/overview.doc and
pubs/ui/preferences.doc, for example.

{ } Matches exactly one word from the comma-
separated list. Words in the list may contain other
wildcards, including nested { } wildcards) as well as
path separators.

n_{one,t??,s*}.txt matches n_one.txt,
n_two.txt, n_ten.txt, n_six.txt and
n_seven.txt,

AccuRev® Technical Notes 13

When using path separators, keep the following rules in mind:

• You can use Windows style backslashes (\) or UNIX/Linux style slashes (/) as path separators in your
patterns. However:

• If a pattern contains at least one slash (/), then / is treated as the path separator, regardless of
platform, and \ (if any) is treated as an escape character. For example, \? matches ?.

• If a pattern contains only backslashes (\), AccuRev assumes a Windows path and \ is treated as the
path separator. There is no provision for escape sequences in this situation.

• When you start a pattern with a slash (/), AccuRev applies that pattern to that directory only. For
example, if you specify an ignore pattern of /*.exe at the workspace root, stat -x returns all external
objects in the workspace; only files with a .exe extension at the workspace root would be excluded. On
the other hand, if you specified an ignore pattern of *.exe (no slash) at the workspace root, stat -x
would exclude files with a .exe extension in any workspace directory, including those at the workspace
root (the same as if you specified recursion by prepending /**/ to the pattern).

• A slash after a directory name (daily_build/, for example) matches the directory itself and its contents.

Using Filenames, Masks, and Lists
The stat, add, and files commands accept filename/pathname specifications in several forms:

• Individual filename: chap01.doc

• Individual pathname: doc/chap01.doc or /./widgets/doc/chap01.doc

• Wildcard pattern: *.doc or docs/*.doc

• list-file: –l my_list_of_files

Using such specifications has two effects:

• The command is restricted to processing a certain set of files, not the whole workspace (even if you
also specify -x, -m, -n, or -p)

• The command includes all specified objects, even if they match an ignore pattern

14 AccuRev® Technical Notes

AccuRev® Technical Notes 15

4. Techniques for Sharing
Workspaces

This note describes two techniques for accessing the same workspace from multiple machines.

Accessing a Windows Workspace From Multiple
Windows Clients
Multiple AccuRev users, on Windows client machines, can share a workspace that is physically located on
a Windows machine. (Or maybe there’s just one user, who wants to access a workspace from multiple
Windows client machines.)

1. Designate a directory that is above the top-level directory of the workspace tree as a Windows “shared
directory”. For example, if the workspace tree for workspace widget_maint_derek on machine
derekpc is located at C:\widget\workspaces\maintdrp, you could set the shared directory as follows:

net share widgwork=C:\widget\workspaces

Note: The workspace tree’s top-level directory itself (maintdrp in the example above) cannot be des-
ignated as the shared directory.

2. Determine how AccuRev records the workspace tree location, using the command accurev show
wspaces. (The pathname will always use forward slashes, even if it’s a Windows pathname.)

• If the workspace tree location incorporates the share name ...

 widget_maint_derek /widgwork/maintdrp derekpc ...

... skip to Step 3.

• But if the workspace tree location appears as an absolute pathname ...

 widget_maint_derek C:/widget/workspaces/maintdrp derekpc ...

... you must use the chws command to change the recorded location to a pathname that incorpo-
rates the share name. This involves mapping a network drive to the shared directory:

> net use K: \\derekpc\widgwork

The command completed successfully.

> K:

> cd \maintdrp

> accurev chws -w widget_maint_derek -l . (“dash-ell dot”)
Changed location.

Changed machine name.

> accurev show wspaces

16 AccuRev® Technical Notes

 ...

widget_maint_derek /widgwork/maintdrp derekpc ...

3. Now, all users on Windows client machines can access the workspace tree by mapping a network drive
to the shared directory. Even the user on the machine where the workspace tree is located (derekpc in
our example) must use a network drive to access the workspace tree.

> net use P: \\derekpc\widgwork

The command completed successfully.

> P:

> cd \maintdrp

> accurev info

 ...

Workspace/ref: widget_maint_derek

Basis: widget_maint

Top: P:/maintdrp

Users on different machines can map the shared directory to different drive letters, and access the
workspace as, for example, Y:\maintdrp or R:\maintdrp.

Universal Access to a Workspace Located on a
Share
A workspace whose workspace tree is network-accessible through a share, can be accessed from any client
machine — running UNIX/Linux or Windows. The share can be configured through Samba/SMB or some
other network file system. It must make the actual storage location available through a machine name and
a simple “share name”: a name that looks like a single pathname component.

The ‘share_map.txt’ File
The technique in Accessing a Windows Workspace From Multiple Windows Clients on page 15 relies only
on Windows operating system facilities. But the “universal workspace access” technique requires the
maintaining of a pathname-mapping file for use by the AccuRev Server. If a “share” (that is, shared
directory) has an entry in the pathname-mapping file, any workspace located on that share can be used on
all AccuRev client machines capable of accessing the machine where the share resides.

The pathname-mapping file is a text file, share_map.txt, which must be located in the AccuRev site_slice
directory on the AccuRev Server machine. It maps share names to absolute pathnames. Each line of
share_map.txt consists of three TAB-separated fields, describing one share. For example:

jupiter accwks /public05/accurev_workspaces

This entry says, “a share named accwks is physically located on machine jupiter, at absolute pathname /
public05/accurev_workspaces”. More generally:

• The first field (jupiter) names a machine where one or more workspace trees are (or will be) located.

• The second field (accwks) specifies the share name.

AccuRev® Technical Notes 17

• The third field (/public05/accurev_workspaces) indicates the absolute pathname of the share on the
machine. On a Windows machine, this includes the drive letter — for example, C:/Public Directories/
AccuRev Workspaces.

Notes:

• All pathnames in share_map.txt must use forward-slash characters (/), even Windows pathnames.

• The field separator in the share_map.txt file must be single TAB character — don’t use SPACEs. If a
specification (e.g. a share name) includes a SPACE character, do not enclose the specification in
quotes.

Workspace Location Entries
The accurev show wspaces (or the GUI’s View > Workspaces) command displays the locations of existing
workspaces in the repository. The pathnames always use forward slashes, even if they are Windows
pathnames.

AccuRev can record the location as an absolute pathname on its machine:

C:/wks/light24/mnt_john(Windows)
/bigdisk/home/john/widget_devel(UNIX/Linux)

Alternatively, it can record a location that incorporates a share name:

/accwks/wks_john(Windows or UNIX/Linux)
Universal workspace access requires that a workspace’s location be recorded as an absolute pathname in
the workspaces table. (Note that the sharing technique described in Accessing a Windows Workspace From
Multiple Windows Clients on page 15 has the opposite requirement: workspace locations must incorporate
the share name.) In addition, the “Host” name listed in this table for a workspace must exactly match the
first field in some share_map.txt entry. Beware of domain name discrepancies — for example, jupiter vs.
jupiter.mycorp.com.

Fixing Workspace Location Entries
If a workspace located on a share has the “wrong kind” of entry in the workspaces table, fix it to enable
universal client access:

1. Make sure that share_map.txt has a valid entry for the share.

2. On any client machine that can “see” the workspace, go the top-level directory of the workspace tree.

3. Use the chws command to change the location recorded in the workspaces table to an absolute
pathname:

> accurev chws -w <workspace-name> -l . (“dash-ell dot”)
You must fix each workspace location entry in this way individually.

Fixing Machine Name Entries
If there’s a discrepancy between a machine’s name in a share_map.txt entry (say, jupiter) and its name in
the workspaces table (say, jupiter.mycorp.com), change the workspace table entry:

accurev chws -w <workspace-name> -m jupiter

18 AccuRev® Technical Notes

Example: Samba Share
Here’s an example of how it can all work in a Samba environment, elaborating on the scenario above:

1. The organization decides that a directory, /public05/accurev_workspaces, on UNIX host jupiter will
be a location where users can create workspaces that can be shared across platforms.

2. The system administrator on jupiter turns that directory into a Samba share, named accwks. Here’s
the relevant excerpt from the Samba smb.conf file on host jupiter:

[accwks]

 comment = All users

 path = /public05/accurev_workspaces

 browseable = yes

 guest ok = yes

 writeable = yes

3. The AccuRev administrator makes this entry in the share_map.txt file, in the AccuRev Server’s
site_slice directory.

jupiter accwks /public05/accurev_workspaces

4. User john, working on a Windows machine, wants to creates a workspace on the share. First, he makes
the share accessible as a network drive:

net use T: \\jupiter\accwks

5. Then john creates his workspace on this network drive:

accurev mkws -w shrwks_john -b dvt_stream -l T:\wks_john

A show wspaces command indicates that the AccuRev Server uses an absolute pathname to record the
new workspace’s location on jupiter:

shrwks_john /public05/accurev_workspaces/wks_john jupiter ...

6. john can now use this workspace from any client machine that can access the machine where the share
resides.

AccuRev® Technical Notes 19

5. What’s the Difference Between
Populate and Update?

AccuRev users sometimes confuse the two commands Populate and Update. These commands seem
similar because they both bring new data into your workspace. But they are quite different, both in their
usage pattern — most people use Update far more often — and in what they accomplish. Understanding
the difference between these two commands will enable you to choose the right command at the right time
(always useful!), and will deepen your knowledge of how AccuRev really works.

Note: The AccuRev CLI command accurev pop corresponds to the GUI’s Populate command.

This chapter starts with a brief statement of the difference between Populate and Update, along with a few
examples. Then, we present a full discussion of the data structures and mechanisms involved in these
commands.

In a Nutshell ...
The essential difference between Populate and Update concerns time. Roughly speaking, your workspace
contains an informal “baseline” (the contents of the shared backing stream, at a particular moment) plus
“changes” (the modifications that you make to some of the files). The Update command advances the
workspace’s baseline from the time of the workspace’s last update to the present moment. This
incorporates into the workspace data recently placed in the backing stream by other team members.

Note: AccuRev actually tracks the workspace’s baseline in terms of transactions, not timestamps.

The Populate command doesn’t advance a workspace’s baseline at all, but leaves it “stuck in the past”.
Instead, Populate simply restores the appropriate “old” version of one or more elements that are currently
missing from the workspace.

The two commands also differ in their scope: Update always processes the entire workspace; Populate
processes just a selected set of elements or directory subtrees.

The capsule description above uses imprecise language, such as “advancing the workspace’s baseline” and
“old version”. The following description is more precise, using AccuRev-specific terminology. The terms
are explained fully in section Data Structures Used by Populate and Update on page 21 below.

The Update command changes both the workspace stream and the workspace tree:

• It advances the workspace stream’s update level to the depot’s most recent transaction — say, from
current update level 32155 to new update level 34002. This allows a new set of versions — in this
case, some or all the versions created by transactions 32156 through 34002 — to flow into the
workspace stream from the backing stream.

• It copies the contents of the workspace stream’s new versions from the repository’s file-storage area to
the workspace tree.

By contrast, the Populate command changes the workspace tree only, not the workspace stream. In
particular, it doesn’t change the workspace stream’s update level. Populate merely fixes a discrepancy
between the workspace stream and the workspace tree: a certain version of a file is in the workspace
stream, but there is no actual file in the workspace tree — that is, the file’s status is (missing). To fix this

20 AccuRev® Technical Notes

situation, you invoke Populate, which copies the version currently in the workspace stream to the
workspace tree.

Note: It would be incorrect to conclude that Update never processes (missing) elements, and that Pop-
ulate only processes (missing) elements. Examples 3 and 4 below show that exceptions exist for both
these “rules”.

Example 1: Standard Update Scenario
You’ve just finished a coding project, so you’re not actively working on any files in your workspace. Other
team members create new versions of files red, white, and blue in their workspaces, then promote those
versions to the team’s backing stream. You invoke the Update command, which copies the most recent
versions of red, white, and blue from the backing stream to your workspace.

Example 2: Restoring a Deleted File (“missing” by accident)
Since you have complete control over the files in the workspace tree, it’s easy to accidentally delete a
version-controlled file with an operating-system command or a third-party tool. If you do this, AccuRev
knows that the file should be there, because a version of the element still exists in the workspace stream.
Thus, the File Browser continues to list the element, but shows it as (missing) from the workspace tree.
You select the element and invoke Populate to fix the accidental deletion.

Example 3: Handling Active Elements
Update and Populate differ in how they handle elements that are active (are in the workspace’s default
group). The Update story is simple: it never overwrites the file in the workspace tree. Populate usually
doesn’t overwrite the file, but there are a couple of cases to consider.

• It doesn’t need to overwrite a file that you’ve kept and not subsequently edited, because the active
version in the workspace stream is identical to the file in the workspace tree.

• But if you have subsequently edited the file in the workspace tree,
so that the element status is (modified)(member), then you can
order Populate to overwrite the file and clobber those subsequent
edits. This can also happen with a file that you’ve edited, but never
kept, so that its status is (modified).

Be careful — (modified) files will also be overwritten if you invoke
Populate with both the Recursive and Overwrite options on a direc-
tory that directly or indirectly contains the active element.

Example 4: A Tale of Two Files
Let’s see how Update and Populate differ in this situation:

You have a workspace that is completely up to date. You delete two files, named blue and green.
Someone creates a new version of blue in another workspace, and then promotes it to your work-
space’s backing stream.

If you select both blue and green in the File Browser, then invoke Populate, the two files that you deleted
are restored to the workspace tree. This does not bring in the new backing-stream version of blue, because
that version is not in the workspace stream — it’s too new, having been created after your workspace’s
most recent update.

AccuRev® Technical Notes 21

If you invoke Update instead of Populate, the workspace tree gets the new version of blue. No version of
green is copied to the workspace tree, because Update only handles new versions — ones that enter your
workspace stream as a result of advancing its update level.

Data Structures Used by Populate and Update
The simplicity of AccuRev’s day-to-day usage model stems, in large part, from the fact that you don’t need
to worry about the “big picture” of your organization’s development scheme and process. Instead, you only
need to concern yourself with:

• the workspace in which you maintain your private copies of version-controlled files

• the workspace’s backing stream, a “data switchboard” that organizes the sharing of files’ changes with
other members of your development team

The illustration below shows how a workspace and its backing stream typically appear in the AccuRev
StreamBrowser:

But a workspace actually consists of two parts:

• the workspace tree, an ordinary directory tree (“just a bunch of files”)

• the workspace stream, which contains all of the workspace’s configuration management information

So the picture looks more like this:

workspace

backing stream

22 AccuRev® Technical Notes

The above illustration shows one important difference between a workspace’s two parts: the workspace
tree lives in “AccuRev client space”, while the workspace stream lives in “AccuRev Server space”. The
following table summarizes all the important differences.

The following sections expand on these differences.

How the Data Structures Get Their Data
Each of the data structures introduced above — backing stream, workspace stream, and workspace tree —
is different in the way it gets changes (i.e. new data) from other parts of the development environment.

Backing Stream
The backing stream is, in most cases, a dynamic stream. (It can also be a snapshot or a time-based stream.)
A dynamic stream is a changing configuration of its depot. At any given moment, it (logically) contains a
simple table that indicates particular versions of a set of elements. For example:

Workspace Stream Workspace Tree

Resides in an AccuRev depot, located on the
AccuRev server machine

A standard directory tree, located on your client
machine (or in other user-accessible storage)

Managed by the AccuRev Server process Managed by you, the individual user

Contains all version control and configuration
management information for the workspace, such
as version-IDs

Contains no version control or configuration
management information

Contains no actual files, just version objects that
point to files in permanent storage

Contains only files and directories, which you can
edit, compile, copy, etc.

Operating system commands and tools never
change data here

Operating system commands and tools can
change data here

workspace stream workspace tree

server client

 workspace

backing stream machine machine

AccuRev® Technical Notes 23

At any given moment, a dynamic stream’s versions fall into two categories:

• passive versions: versions that the stream inherits from its parent stream. Inheritance is automatic and
instantaneous: as soon as a new version enters the parent stream, it is inherited at once by the child
stream.

• active versions: versions that have been Promoted to the stream, (usually) from lower-level
workspaces and substreams. This set of versions constitutes the stream’s default group.

In the configuration table above, all the garnet_dvt\... version-IDs indicate active versions in the
garnet_dvt stream. All the garnet\... version-IDs indicate passive versions, inherited from the parent
stream, named garnet.

Workspace Stream
The workspace stream is the “behind the scenes” part of your workspace. It is the information contained in
the database about changes made to your workspace. In many ways, it resembles a dynamic stream:

• It’s a changing configuration of one of the repository’s depots.

• It logically contains a particular version of some or all of the depot’s elements.

• It doesn’t contain actual files, but is logically just a table of elements and version-IDs.

Element Version-ID

doc garnet_dvt\1

doc\chap01.doc garnet_dvt\5

doc\chap02.doc garnet\3

doc\chap03.doc garnet_dvt\2

src garnet\1

src\garnet.c garnet_dvt\12

src\commands.c garnet_dvt\7

tools garnet\3

tools\start.sh garnet_dvt\6

tools\end.sh garnet\2

passive versions

active versions
lower-level workspaces
and streams promote
versions to garnet_dvt
stream

contents of a
dynamic stream

24 AccuRev® Technical Notes

Note: When creating a new version of a file, the Keep command copies the file to the repository’s file-
storage area, not to the workspace stream itself. The workspace stream just gets a version-ID for the
new version; the version-ID serves as a pointer to the file in the file-storage area.

• It contains active versions, created by explicit user commands: Add, Keep, Rename, Defunct, etc. The
new versions in the repository preserve the changes that you’ve made to files in your workspace tree.
(There’s only one way to create an active version in a dynamic stream: the Promote command.)

• It also contains passive versions, inherited from its parent stream, the workspace’s backing stream.

The last item is where the crucial difference between workspace streams and dynamic streams comes into
play. The versions inherited by the workspace stream are not the ones currently in the backing stream, but
the versions that were in the backing stream when the workspace was last updated. This is called the
workspace’s update level. More precisely, AccuRev records the number of the depot’s most recent
transaction — say, transaction #32155 — as the workspace stream’s update level. So we can rephrase the
principle:

The workspace stream inherits from the backing stream versions that were created in transactions up
to and including the workspace’s update level.

Note: The update level of a workspace stream is very much like the optional basis time of a dynamic
stream. Both mechanisms restrict the flow of versions to a child stream from its parent stream, based
on a point in the depot’s development history.

Thus, a workspace stream is not updated dynamically when changes occur to its parent stream. It gets new
versions from the backing stream only when you issue an Update command. This is how AccuRev
implements the workspace’s user-controlled “privateness”, isolating it from the changes regularly being
recorded in the backing stream by other team members.

To summarize: at any given moment, a workspace stream contains:

• a set of passive, inherited versions, created in transactions that do not exceed the workspace’s update
level. (A file that you’ve Promote’d since the last update is an exception. The version is passive, but
was created after the workspace’s update.)

• a set of active versions, which you’ve created in that workspace with such AccuRev user commands as
Add, Keep, Rename, and Defunct.

Roughly speaking, the set of versions in the workspace stream indicates what data currently should be in
your workspace tree. Examples:

workspace stream

backing stream

update
level:

32155

versions
created before
update-level
transaction are
inherited

versions
created after
update-level
transaction are
not inherited

AccuRev® Technical Notes 25

• The workspace stream contains active version garnet_dvt_mfj\9 of file commands.c, which you
created with the Keep command. This means your workspace tree should contain a file commands.c
that matches the repository file referenced by version-ID garnet_dvt_mfj\9.

• The workspace stream contains passive version garnet_dvt\6 of file start.sh. This means your
workspace tree should contain a file start.sh that matches the repository file referenced by the version
in the backing stream, garnet_dvt\6.

If you modify a file without Keep’ing it (or modify it again after Keep’ing it), the file in the workspace tree
does not exactly match the version in the workspace stream. AccuRev indicates this by reporting the file’s
status as (modified).

Workspace Tree
The workspace tree is an ordinary directory tree, located in your personal disk storage. You can modify the
contents of the workspace tree in two basic ways:

• By invoking operating system commands, text-editing tools, IDEs, etc.

• By invoking AccuRev commands to copy existing versions from the repository to the workspace tree.
This can either overwrite existing files in the workspace tree or add new files. Both the Populate and
Update commands copy versions from the workspace stream to the workspace tree. (So do a couple of
other commands, such as Send to Workspace.)

passive versions
workspace stream inherits
versions in backing
stream, but with update-
level cutoff

active
versions
AccuRev commands issued by
user create new versions in
workspace stream

update
level

contents of a
workspace stream

26 AccuRev® Technical Notes

The Update Algorithm
The processing of the Update command is not as simple as “get all the new versions”, because AccuRev
takes care not to overwrite version-controlled files that you have changed, but whose changes have not yet
been preserved in the repository.

1. AccuRev first searches the workspace tree for such “at-risk” files, by performing a CLI stat (file
status) command on your workspace:

• It uses the –n option to stat, which restricts the search to version-controlled files that you have
modified but are not in the workspace’s default group — the status of such “non-member” files
includes the (modified) indicator but not the (member) indicator. It’s safe to ignore default-group
files, because these are never affected by an Update.

• It uses Timestamp Optimization (TSO) to speed its search for files that have been modified in your
workspace: it does not consider files whose timestamps have not changed since the last time the
workspace was updated or searched for modified files.

• To make sure that a file with a recent timestamp has actually been modified, AccuRev compares
the file with the version currently in the workspace stream by performing a checksum. (This means
that simply modifying a file’s timestamp with a touch command won’t prevent the file from being
overwritten by Update. You have to make a real change to the file.)

2. If the preceding step found any “non-member” files — modified, but not in the default group — the
Update command in AccuRev releases prior to Version 4.6 terminated immediately, without updating
any file. Starting in Version 4.6, the Update command can sometimes proceed, even in the presence of
such files:

• A non-member file that is not due to be updated, because there is no newer version in the backing
stream, does not prevent the update from proceeding.

• A non-member file that is due to be updated has (modified)(overlap) status. By default, the
presence of one or more such files causes the update to terminate immediately, without updating
any file. But you might be able to enable the update to proceed if you invoke an update option —
update –m in the CLI, user preference Update Resolves Trivial Merges in the GUI. With this
option invoked, the update proceeds only if a trivial merge can be performed for each file with
(modified)(overlap) status. (The backing-stream version can be merged with the workspace-tree
file automatically, because there are no conflicts that require manual intervention.)

3. AccuRev notes the number of the repository’s latest transaction, and sets that number as the
workspace’s target update level.

text editor

OS command

IDE

Update
command

Populate
command

contents of a
workspace tree

AccuRev® Technical Notes 27

4. AccuRev decides which recently created versions in the repository should be delivered to the
workspace tree. A version is a candidate for delivery if it became visible in the workspace’s backing
stream by one of the transactions between the workspace’s current update level and the newly set
target update level.

5. AccuRev attempts to deliver all those versions to the workspace tree. Each time it is about to overwrite
a file in the workspace tree, AccuRev first makes sure it won’t be “clobbering” unpreserved changes: it
checksums the existing file to confirm that it matches the current version in the workspace stream (the
version at the current update transaction level).

Note: It is sometimes OK for the workspace tree to already contain the new version (the version at the
target update level). See Incomplete Updates below for an explanation.

If a file about to be overwritten fails this checksum step, AccuRev reports a “crc mismatch” and the
Update command terminates immediately. The most common cause of this error is your having over-
written the file in such a way that it gets an old timestamp. Such a file escapes detection in Step 1, but
gets caught here — just in the nick of time to avoid being clobbered.

If the checksum succeeds, the file is safe to overwrite, so AccuRev updates it — finally! The update
can be a replacement of the file’s contents, a change in its pathname, or both.

If AccuRev is processing files with (modified)(overlap) status (see Step 2 above regarding update -
m), it automatically merges the backing-stream version with the file in the workspace tree, instead of
simply overwriting the file. No checksum of the workspace-tree file is performed for such elements.

6. If all the recently created versions identified in Step 4 were successfully delivered to the workspace

• The target update level becomes the workspace’s current update level, indicating a successful,
complete update.

• The local TSO cache will be updated for all files that are updated.

Incomplete Updates
The Update command is not implemented as an atomic operation, and it is not recorded as an AccuRev
transaction. Transactions are used to organize and serialize changes to the repository, not to the workspace
trees that implement user “sandboxes”. An Update can take a significant amount of time, and is sometimes
interrupted before it completes — by user request, by network failure, by loss of telephone connection, etc.

For purposes of discussion, assume that your workspace, talon_dvt_mary, has a current update level of 84,
that the highest transaction in the repository is 109, and that 45 files in your workspace would be involved
in a complete Update. You can monitor transaction levels using the CLI command show wspaces:

• Before the update the output of show wspaces might include:

talon_dvt_mary c:\wks\talon_dvt xlnt 13 84 84 1 0

The first 84 indicates the workspace’s target update level; the second 84 indicates the current update
level.

• The Update command sets the target update level to 109, then proceeds. If Update processes all files
successfully, it raises the current update level to the target:

talon_dvt_mary c:\wks\talon_dvt xlnt 13 109 109 1 0

But if the Update does not complete successfully, the target update level remains unchanged. A subse-
quent show wspaces reveals that the target update level differs from current update level:

talon_dvt_mary c:\wks\talon_dvt xlnt 13 109 84 1 0

28 AccuRev® Technical Notes

The differing update levels — target vs. current — is the telltale sign that the most recent Update did
not complete successfully.

Incomplete Update: Command Interrupted
Consider the case in which Update was interrupted — say, after it had processed 29 out of the 45 files to be
updated. When a subsequent Update command is issued:

• The checksum of the 29 files will succeed, because those files are already at the target transaction
level.

• The checksum of the 16 files will fail, because those files are still at the current update transaction
level.

(See Step 5 above for a discussion of the checksum process.)

Incomplete Update: Checksum Failure
Now consider the case of an incomplete Update, due to one or more “crc mismatch” errors. Suppose that
only 42 out of 45 files are updated, because 3 files fail the checksum match. You must fix the problem
before issuing another Update.

If those three files had been overwritten by mistake, you can restore the proper versions using the Revert to
Basis command (CLI: purge). Then, a second Update brings the new versions of those 3 files into the
workspace.

Performing the “Fixup” Update
When it begins executing an Update command, AccuRev determines whether the preceding update of the
workspace completed successfully or not:

• The Update completed successfully if the target and current update levels are the same.

• The Update was incomplete if the target and current update levels differ.

If the preceding update was incomplete, AccuRev performs two updates at once. First, it performs a
“fixup” update that completes the preceding update; then it performs an additional update (if necessary), to
process changes made to the backing stream after the incomplete update. During the “fixup” update,
AccuRev avoids the unnecessary work: it does not retransfer files that were successfully delivered to the
workspace during the incomplete update.

Example:

• Your workspace’s current update level is 84, and the highest transaction in the repository is 109.

• You issue an Update, but it fails to complete. At this point, the workspace’s target update level is 109,
but its current update level is still 84.

• You wait until after lunch break to reissue the Update command. At this point, the highest transaction
in the repository is 137.

• AccuRev performs a “fixup” update, which brings the current update level to the original target update
level, 109. Then, it advances the target update level to 137 and performs another update. If this update
succeeds, it advances the current update level to 137.

AccuRev® Technical Notes 31

6. Using a Trigger to Maintain
a Reference Tree

Reference trees allow you to have a physical copy of the most recent sources for a stream. They are
available for reference, thus the name reference tree. Snapshots never change, so they only need to be
updated once using update –r and then you can forget about them.

To create a reference tree, use the mkref command. To keep a reference tree up to date with its associated
stream, you need to run update on the reference tree every time versions are promoted to the stream.

AccuRev supplies the following trigger scripts to automate this procedure:

server_post_promote.pl

A general-purpose script, which can be used to perform various tasks after completion of every
promote command. In this case, we're going to have it call the update_ref.pl script.

update_ref.pl

A script that invokes the update command to update the files in a reference tree. On a UNIX/Linux
machine, this script must be setUID-root.

The indirection is necessary for security purposes.

To enable the automatic updating of one or more reference trees, follow these steps:

1. Make sure the following Perl scripts are installed in some directory on the search path of the AccuRev
Server process’s user identity:

server_post_promote.pl

update_ref.pl

See Operating-System User Identity of the Server Processes on page 13 of the AccuRev Administra-
tor’s Guide.

2. Edit both the server_post_promote.pl and update_ref.pl scripts, and follow the step-by-step
instructions contained within them.

3. Windows only: convert the Perl scripts to Windows batch files:

pl2bat server_post_promote.pl

pl2bat update_ref.pl

4. Tell AccuRev to run the server_post_promote script after every promote command:

accurev mktrig server-post-promote-trig server_post_promote.pl (UNIX/Linux)
accurev mktrig server-post-promote-trig server_post_promote (Windows)

For more information, see the descriptions of mkref, mktrig, and show triggers commands.

32 AccuRev® Technical Notes

AccuRev® Technical Notes 33

7. Notes for CVS Users
This note contains information that will be helpful for CVS users who are migrating to AccuRev.

AccuRev Workspaces vs. CVS Sandboxes
Each directory in a CVS sandbox has a subdirectory named CVS. This subdirectory stores metadata:
where the versions were checked out from and the version number of each file. Only these directories
record the relationship between files in the sandbox and the repository. If you move a sandbox, CVS
doesn’t care because you are simultaneously moving the CVS subdirectories.

With AccuRev, the relationship between a workspace and the repository is tracked by the AccuRev Server.
No metadata is stored in the workspace itself. AccuRev tracks the client machine where each workspace
resides and the pathname of its top-level directory. If you move a workspace to a different location, you
must inform AccuRev of the move using the chws command.

Common Operations
This section lists common version-control operations, and describes how to perform them with CVS, with
the AccuRev CLI, and with the AccuRev GUI.

Obtaining a copy of the source files
CVS

cvs checkout <module>
AccuRev CLI

accurev mkws –w <workspace-name> –b <backing-streamname> –l <workspace-location>
AccuRev GUI

File > New > Workspace

Placing files under version control
CVS

cvs add <file(s)>
AccuRev CLI

accurev add <file(s)>
AccuRev GUI

Select files, right-click, Keep

34 AccuRev® Technical Notes

Bringing others’ changes into your workspace/sandbox
CVS

1. cvs update –dP

2. Edit any merge conflicts.

AccuRev CLI
1. accurev update

2. accurev merge –o (edit any merge conflicts for each file)

AccuRev GUI
1. Go to the File Browser Incoming Changes mode.

2. If necessary, resolve any elements with (overlap) status (select and click the Merge button).

3. Click the Update button.

Saving your changes
CVS

cvs commit

AccuRev CLI
accurev keep –m

accurev promote –k

AccuRev GUI
1. Go to the File Browser Outgoing Changes mode.

2. Select the files you want to save and share with others.

3. Click the Promote button.

Finding the history of files
CVS

cvs history [<file(s)>]

AccuRev CLI
accurev hist [<file(s)>]

... or ...
accurev hist –a

AccuRev GUI
1. Select file, right-click, History > Show History.

... or ...
1. Admin > Depots
2. Right-click depot, History.

AccuRev® Technical Notes 35

Finding the status of files in your workspace/sandbox
CVS

cvs status <file(s)>
AccuRev CLI

accurev stat <file(s)>
... or ...

accurev files <file(s)>
AccuRev GUI

Automatically displayed in File Browser

Removing files
CVS

1. cvs remove <file(s)>

2. cvs commit
AccuRev CLI

1. accurev defunct <file(s)>
2. accurev promote <file(s)>

AccuRev GUI
1. Select files, right-click, Defunct.
2. Select files, right-click, Promote.

Reverting changes to files
CVS

cvs unedit <file(s)>
AccuRev CLI

accurev purge <file(s)>
AccuRev GUI

Select files, right-click, Revert to > Basis Version.
... or ...

Select files, right-click, Revert to > Most Recent Version.

Moving files
CVS

1. cp <old-name> <new-name>

2. cvs remove <old-name>

3. cvs add <new-name>

36 AccuRev® Technical Notes

AccuRev CLI
1. accurev move <old-name> <new-name>

2. accurev promote <new-name>

AccuRev GUI
1. Select file, right-click, Rename.

2. Select file, right-click, Promote.

Checking out files to edit
CVS

cvs edit <file(s)>
AccuRev CLI

Not necessary; just start editing the file.

AccuRev GUI
Not necessary; just start editing the file with right-click, Edit.

Comparing versions of files
CVS

cvs diff –r <rev1> –r <rev2> <file>
AccuRev CLI

accurev diff –v <rev1> –V <rev2> <file>
AccuRev GUI

1. Right-click file, History > Browse Versions.

2. Right-click version, Diff Against > Other Version, click other version.

AccuRev® Technical Notes 37

8. Version Control of
Namespace-Related Changes

AccuRev SCM includes both management of changes to the contents of files and changes to the pathnames
of files and directories (folders). During the course of development — and in particular, during periodic
“refactoring” of the source code base — developers may make several kinds of namespace-related changes
to the pathnames of version-controlled elements:

• Changing the names of files (for example, from framework.java to gizmo_arch.java)

• Changing the names of directories (for example, from src to gizmo_src)

• Moving files and directories to different locations in the source tree (for example, moving file
commands.java from directory gizmo_src to a subdirectory named gizmo_src/lib)

AccuRev records each change to the pathname of a file or directory element as a new version of that
element. As with content changes, all such namespace-related changes originate in workspaces, and are
subsequently promoted up the stream hierarchy.

Twin Elements and Stranded Elements
Namespace-related changes :

• “twin” elements — Two or more distinct elements are described as twins if they have the same
pathname within a depot. (Some SCM environments use the term “evil twins”.) AccuRev tracks
element names consistently, provides better information about the existence of twins, and provides
tools for resolving unintended twin situations.

Tip: AccuRev provides a wizard and other features in the AccuRev GUI to help you identify and
resolve elements with a (twin) status. See Resolving (twin) Status on page 119 in the AccuRev On-Line
Help Guide for more information.

• “stranded” elements — An element is stranded in a particular workspace or stream if (1) it is active
in that workspace or stream, but (2) does not have a pathname in that workspace or stream. AccuRev
includes stranded elements.

These two areas are related. If a stream contains a set of twins at a particular pathname, only one of those
elements is visible at that pathname, for most purposes. The other twin(s) are stranded.

The following sections describe namespace-related functionality in detail.

Preventing Creation of Twins in Workspaces
Two checks performed by the add command help to prevent twins from being created:

• If the user’s workspace currently contains a defunct element at the same pathname, the add command
is cancelled.

• If an element with the same pathname currently appears in the workspace’s parent stream — and the
element does not have (defunct) status in the parent stream — the add command is cancelled. If the
element is (defunct) in the parent stream, an add command succeeds.

38 AccuRev® Technical Notes

Reporting of Twins in Dynamic Streams
The checks described in the preceding section apply to workspaces only, not to dynamic streams. There are
various ways to create twins in dynamic streams — for example:

Defunct an existing element in a workspace, and promote the change to the parent stream. Then create
a new element at the same pathname (in the same workspace or in a sibling workspace), and promote
the new element to the parent stream. The parent stream now contains two elements at the same path-
name — one is defunct, the other is “live”.

If a set of two or more twins exists in a dynamic stream (or snapshot), the File Browser shows only the one
“live” element. (If every element in a set of twins has (defunct) status, the most recently defuncted element
is deemed to be “live”.)

In this situation, all the other twins in the set have (stranded) and (twin) status. These elements are
displayed by the Stranded search in the File Browser Outgoing Changes mode, and by the AccuRev CLI
command stat –i:

> accurev stat -s tin_dvt -i

\.\doc\new.doc e:20 tin_dvt\2 (4\2) (defunct) (member) (stranded) (twin)

For more information, see Detection of All Stranded Elements, Including “Twins” below.

Tip: Twin elements are displayed in the File Browser Conflicts mode.

Ability to Reuse an Element Name after a Rename Operation
AccuRev support for “refactoring” operations. , all element renamings and directory hierarchy overhauls
can be completed and tested in the developer’s workspace, before any changes are promoted to the parent
stream.

This flexibility stems from the fact that after an element Rename operation (CLI command: move), the
element’s former name becomes available for reuse immediately. (Previous releases “reserved” the former
name, in case the change was purged from the workspace — see When a Purge Operation Causes an
Element to Disappear below.)

Here’s a simple refactoring example:

> accurev move brass.h util.h

Moving \.\src\brass.h to \.\src\util.h

> copy c:\temp\temp_new_brass.h .\brass.h

 1 file copied

> accurev add brass.h

Added and kept element \.\src\brass.h

> accurev promote util.h

Validating elements.

Promoting elements.

Promoted element \.\src\util.h

> accurev promote brass.h

Validating elements.

AccuRev® Technical Notes 39

Promoting elements.

Promoted element \.\src\brass.h

Note that util.h (formerly named brass.h) must be promoted first, to “free” the name brass.h in the parent
stream. Then the new element named brass.h can be promoted.

When a Purge Operation Causes an Element to Disappear
The preceding section describes flexibility for refactoring. But it does introduce a complication: what
happens if you rename an element, create a new element at the same pathname, then invoke Revert to
Basis (CLI command: purge) on the renamed element?

The renamed element cannot revert to its old pathname, because there’s a new element at that pathname.
Accordingly, the original element simply disappears from your workspace. This element does not assume
(stranded) status — the purge operation makes the element inactive in the workspace, and (stranded)
status applies only to active elements.

Note that at this point, your workspace contains a new element at the given pathname, and the parent
stream contains the original element at that pathname. Attempting to promote the new element would
produce a “name already exists in parent stream” error. These steps remove the original element from the
parent stream: (1) defunct the original element in the workspace, using defunct –e; (2) promote this change
to the parent stream.

Detection of All Stranded Elements, Including “Twins”
The Stranded search in the File Browser Outgoing Changes mode, and equivalently, the AccuRev CLI
command stat –i detect all known cases of stranded files:

• Defunct elements in same workspace/stream as a “live” element at the same pathname (“twins”)

• Elements located in a directory that is, itself, stranded

• Elements located in a directory that is defunct

• Elements located in a directory that is excluded from the workspace/stream

• Elements located in a directory that has been purged from the workspace/stream

• Elements with a “pathname cycle”

Stranded files are reported with the status flag (stranded). If a stranded file happens to be a twin of another
element, it is also reported with the status flag (twin).

Tip: Twin elements are displayed in the File Browser Conflicts mode.

The final case, “pathname cycle”, occurs when two sibling workspaces make contradictory changes to the
depot’s directory hierarchy, then promote the changes to the common parent stream. For example, one
workspace might move directory src under directory util, while another workspace moves util under src.
When both the changes are promoted to the parent stream, AccuRev won’t be able to determine the correct
pathname for these directories and the elements under them. The two directories assume (stranded) status,
and the elements under these directories become inaccessible.

Ability to Operate on Stranded Elements Using Element-IDs
The CLI provides tools for relieving situations involving stranded elements. The move, defunct, and
undefunct commands support the –e option, which enables you to specify an element by its element-ID,
rather than by its pathname. This is necessary for situations in which the desired element does not have a
pathname in the workspace or stream.

40 AccuRev® Technical Notes

See Handling Stranded Elements on page 41.

 Sophisticated Analysis of Namespace-Related Changes
AccuRev distinguishes between these two changes to the pathname of an element:

• Renaming of the directory in which the element resides. This is not considered a change to the element
itself; it is a change to the parent-directory element.

• Moving of the element from its current directory to another directory in the depot. This is considered a
change to the element itself (and not a change to either of the parent-directory elements).

For example, suppose that file element commands.java resides in directory cmd_interface. A colleague
changes the name of the directory to cli in her workspace, then promotes the change to the parent stream.
When you update your workspace, the pathname of the file changes from .../cmd_interface/
commands.java to .../cli/commands.java, as a “side effect” of the change to the parent directory. Note
that this is not a change to the commands.java file element itself.

On the other hand, if the colleague moves file commands.java to another directory, say .../cmd_interface/
utils/commands.java, this is a change to the file element. When you update your workspace, the pathname
of the file changes accordingly (unless you have made a namespace-related change to the file, in which
case a merge is required).

AccuRev implements this scheme by tracking an element’s parent directory by its element-ID (which
never changes), rather than by its name (which can change, and can vary from stream to stream).

Change to Merge Algorithm for Namespace-Related Changes
The algorithm used by the Merge command (both in the GUI and the CLI) uses the analysis described in
the preceding section. Merge may perform two separate namespace-related steps:

• Element name merge — required when the simple name of the element being merged differs in the
two contributor versions.

• Path merge — required when the parent directory of the element being merged differs in the two
contributor versions.

Often, either or both of these steps will be performed automatically by Merge. If only one of the two
contributors differs from the versions’ closest common ancestor, then that contributor’s change is applied
automatically.

(Note that Merge may also need to perform a third step — a content merge — for a file element.)

The following example of the CLI merge command involves both kinds of namespace-related changes: (1)
a file’s simple name has been changed by two users, john and mary; (2) each user has moved the file to
different sibling directory.

> accurev merge file01.mary

Current element: \.\dir02\sub03\file01.mary

most recent workspace version: 4/2, merging from: 5/5

common ancestor: 5/3

Both “path” and “element name” conflicts must be resolved manually, but

the contributors’ contents can be merged automatically.

Path merge will be required.

Element name merge will be required.

AccuRev® Technical Notes 41

Automatic merge of contents successful. No merge conflicts in contents.

Path conflict for \.\dir02\sub03\file01.mary

John moved the file from directory sub02 to directory sub01 (which has element-ID 68).

Mary moved the file from directory sub02 to directory sub03 (which has element-ID 82).

Resolve path conflict by choosing path from:

(1) common ancestor: \.\dir02\sub02\ [eid=75]

(2) backing stream : \.\dir02\sub01\ [eid=68]

(3) your workspace : \.\dir02\sub03\ [eid=82]

Actions: (1-3) (s)kip (a)bort (h)elp

action ? [3] 2

John renamed the file from from file01.txt to file01.john.

Mary renamed the file from from file01.txt to file01.mary.

Resolve name conflict by choosing name from:

(1) common ancestor: \.\dir02\sub01\file01.txt

(2) backing stream : \.\dir02\sub01\file01.john

(3) your workspace : \.\dir02\sub01\file01.mary

Actions: (1-3) (s)kip (a)bort (h)elp

action ? [3] 3

The content merge is performed automatically.

Actions: keep, edit, merge, over, diff, diffb, skip, abort, help

action ? [keep]

Moving \.\dir02\sub03\file01.mary to \.\dir02\sub01\file01.mary

Kept element \.\dir02\sub01\file01.mary

Handling Stranded Elements
As described above, an AccuRev workspace or stream can contain one or more elements that are stranded.
An element is stranded in a particular workspace or stream if it is a member of the default group, but
cannot be accessed because there is no pathname to the element in that workspace or stream. An element
can be stranded in one stream but not be stranded in other streams.

42 AccuRev® Technical Notes

In the AccuRev GUI, stranded elements are listed in the File Browser’s Stranded filter. In the CLI, the
command stat –i lists stranded elements. A stranded element is listed by its element-ID, along with a
pathname that was once (but is not currently) valid in that stream.

The sections below describe the ways in which elements can become stranded, along with procedures for
handling each situation.

Defunct element obscured by element with same name

Elements under a defunct parent

Elements under an excluded parent

Dangling directory elements

Elements under a non-existent (purged) parent directory

Elements under a stranded parent directory

Active element refers to a purged version

Defunct element obscured by element with same name
This occurs in the parent stream of two workspaces if:

• The user in workspace #1 defuncts an element, then promotes this change to the parent stream.

• The user in workspace #2 updates the workspace (to incorporate the defuncting), creates a new
element with the same name, then promotes the new element to the parent stream.

At this point, the defuncted element is stranded in the parent stream. It cannot be promoted to the
“grandparent” stream by name, because it doesn’t have a name in the parent stream. The new element
cannot be promoted to the grandparent stream at all, because the name in the grandparent stream belongs to
the defuncted element.

Note: through repeated add-promote-defunct-promote cycles, it’s possible to have multiple elements
with defunct status in the parent stream, all of which were created at the same pathname.

Resolving the Situation
To get the defuncted element out of the way, promote it by element-ID to the grandparent stream: promote
–e <eid> –s <parent_stream>.

To recover the defuncted element in workspace #1, use undefunct –e <eid> on the defuncted element. This
has the side effect of making the new element inaccessible in workspace #1. Depending on your needs, use
defunct –e or move –e on the new element.

Elements under a defunct parent
This occurs in the parent stream of two workspaces if:

• The user in workspace #1 defuncts a directory element, then promotes this change to the parent stream.

• The user in workspace #2 modifies a file element in that directory, then keeps and promotes it to the
parent stream.

At this point, the file element is stranded in the parent stream. In addition, the user in workspace #1 cannot
access the file element by name.

AccuRev® Technical Notes 43

Resolving the Situation
To propagate the file element’s change to the grandparent stream, promote it by element-ID: promote –e
<eid> –s <parent_stream>.

To access the file’s contents, use its element-ID: cat –e <eid> –v <version-ID>.

The only way to work with the file element in workspace #1 is to first undefunct the directory, which
makes the file visible again.

Elements under an excluded parent
This occurs in the parent stream of two workspaces if:

• The user in workspace #1 modifies a file element in that directory, then keeps and promotes it to the
parent stream.

• The user in workspace #2 sets a rule that excludes a directory element from the parent stream (excl –s
<parent-stream> <directory-name>).

At this point, the file element is stranded in the parent stream. In addition, the user in either workspace
cannot access the file element by name (after updating the workspace).

Resolving the Situation
To propagate the file element’s change to the grandparent stream, promote it by element-ID: promote –e
<eid> –s <parent_stream>.

To access the file’s contents, use its element-ID: cat –e <eid> –v <version-ID>.

The only way to work with the file element in either workspace is to first remove the exclude rule (clear
command) from the parent stream, and then update the workspace. This makes the file visible again.

Dangling directory elements
This contradictory situation — a particular directory seems to be both above and below another directory
— occurs in the parent stream of two workspaces if:

• The user in workspace #1 moves directory A under directory B, then promotes directory A.

• The user in workspace #2 moves directory B under directory A, then promotes directory B.

At this point, both directories are stranded in the parent stream. An update of workspace #1 causes
directory B to be removed; an update of workspace #2 causes directory A to be removed.

Resolving the Situation
The only way to untangle this knot of inconsistency is to checkout (co command) a previous version of
each directory that has the “correct” (that is, consistent with the other directory) pathname, then promote
these old versions to the parent stream.

The simplest way to do this is to specify the transaction that created the directory at its correct pathname:
co –t <add-transaction-number>. But this method can be “messy” if the add transaction also created other
elements, such as the files within the directory.

Another method is to use a workspace under a time-based stream to see the relevant directories with their
correct pathnames. Checkout the “old” directory versions, promote these versions from the workspace to
the time-based stream, then use promote –s <time-based-stream> –S <parent-stream> to promote to the
parent stream.

44 AccuRev® Technical Notes

Note: with either method, you’ll probably need to use the –O option to the promote command, in order
to avoid the need to merge the “old” directory versions.

Elements under a non-existent (purged) parent directory
This occurs in the parent stream of a workspace if:

• The user creates a new directory and file within the new directory, and promotes both new elements to
the parent stream.

• The user purges (GUI: Revert to Basis) the new directory from the parent stream.

At this point, the new file is stranded in the parent stream.

Resolving the Situation
You cannot propagate the file element’s change to the grandparent stream, because the new directory never
existed in that stream.

To access the file’s contents, use its element-ID: cat –e <eid> –v <version-ID>.

The only way to work with the file element is to first checkout (co command) the version of the directory
that was originally created in the workspace. The simplest way to do this is to specify the transaction that
created the directory: co –t <add-transaction-number>. But this method can be “messy” if the add
transaction also created other elements.

Another method is to use a workspace under a time-based stream to see the directory before it was purged
from the parent stream. Checkout the directory, promote it from the workspace to the time-based stream,
then use promote –s <time-based-stream> –S <parent-stream> to promote to the parent stream.

Note: with either method, you’ll probably need to use the –O option to the promote command, in order
to avoid the need to merge the “old” directory version.

Elements under a stranded parent directory
To access an element under a stranded parent directory, restore the accessibility of the parent, as described
in the sections above. This restores the accessibility of the element in question.

Active element refers to a purged version
This occurs when an element (file, directory, or link) is active in a dynamic stream. The dynamic stream’s
virtual version is a reference to a version that has been purged, so that there is no active version of the
element in a higher-level stream (and no version in the depot’s root stream).

The only known scenario involves promoting an active element from a dynamic stream to one of its child
streams, then purging the element from the original stream.

AccuRev® Technical Notes 45

9. Notes on Cross-Links
This note clarifies and supplements the basic documentation of AccuRev’s cross-link feature.

Cross-Link Direction and Terminology
A cross-link is created in a workspace by the Include from Stream command (CLI: incl –b). The
command name implies that a connection is being established from a specified backing stream to the
workspace. But an existing cross-link is listed by the CLI command lsrules like this:

xlink <pathname> from <workspace> to <backing-stream>

That is, the direction of the cross-link “arrow” is the opposite of the direction implied by the “include
from” command name. When describing a cross-link, we use this terminology:

• The workspace (or stream) where the cross-link has been created is the cross-link’s source stream.

• The designated backing stream is the cross-link’s target stream.

In CLI messages, “cross-link” is abbreviated to “xlink”.

Cross-Links and Stream Namespaces

Each AccuRev stream (including snapshot streams and workspace streams) provides a namespace: a set
of pathnames to some or all of the depot’s elements. For example:

\.\doc

\.\src

\.\tools

\.\doc\chap01.doc

\.\doc\chap02.doc

\.\src\commands.c

\.\src\topaz.c

\.\src\topaz.h

\.\tools\cmdshell

\.\tools\perl

\.\tools\python

\.\tools\tools.readme

\.\tools\cmdshell\bash

\.\tools\cmdshell\csh

\.\tools\cmdshell\bash\end.sh

\.\tools\cmdshell\bash\start.sh

\.\tools\cmdshell\csh\end.csh

\.\tools\cmdshell\csh\start.csh

\.\tools\perl\add_cr.pl

\.\tools\perl\remove_cr.pl

\.\tools\python\setup.py

\.\tools\python\vars.py

46 AccuRev® Technical Notes

Since this set of depot-relative pathnames defines a hierarchy, it’s often clearer to list the pathnames
component-by-component, like this:

\.\

doc

chap01.doc

chap02.doc

src

commands.c

topaz.c

topaz.h

tools

tools.readme

...

To locate an element, AccuRev interprets its specified pathname component-by-component (just like the
operating system does). The cross-links facility provides a way to make AccuRev switch namespaces in
the middle of the pathname-interpretation process.

Note:

For example, consider this pathname:

\.\tools\cmdshell\csh\end.csh

And suppose you’ve created a cross-link at subdirectory
cmdshell, with workspace W as the source stream and
stream S as the target stream. AccuRev will process the
pathname, component-by-component, as illustrated here:

• Pathname components up to and including the
cross-linked component, are interpreted in the
original (source stream) namespace.

• Additional pathname components, if any, are
interpreted in the new (target stream) namespace.

Note that in workspace W, you continue to access the
cross-linked element, subdirectory cmdshell, through its
“local” name in the workspace’s namespace. It’s quite possible (but you don’t need to know) that this
element has a different name — even a different pathname — in the target stream:

\.\tools\shell_scripts

\.\tools\common\scripts\

\.\scripting

... etc.

Pathname components below “cmdshell” are interpreted in the namespace of stream S, the target stream.
For example, if script end.csh has been renamed in stream S to topaz_exit.csh, then that’s the name you
must use in workspace W, as well:

\.\tools\cmdshell\csh\topaz_exit.csh

The File Browser and the CLI commands stat and files make this namespace-switching transparent:
AccuRev shows you the element names and pathnames that will enable you to access the data from your
current workspace or stream context.

AccuRev® Technical Notes 47

Source Stream: Workspace vs. Dynamic Stream
The example in the preceding section uses a workspace as the “source stream”. The same pathname-
interpretation principles apply if the source stream is a dynamic stream.

But the basic difference between workspace streams and dynamic streams affects the way cross-links work
in them:

• In a dynamic stream, the Include from Stream command incorporates all changes from the target
stream immediately. This reflects the fact that a dynamic stream inherits versions from its backing
stream automatically and instantly.

• In a workspace, the Include from Stream command respects the workspace’s update level. That is, it
incorporates only those changes that occurred in the target stream before the workspace’s most recent
update. A subsequent Update command will bring in the more recent changes from the target stream.

Example: to see how cross-links work with a workspace’s update level, suppose that the following changes
have been made in stream topaz_mnt:

• directory element \.\tools\cmdshell\cmd has been Defunct’ed

• directory element \.\tools\cmdshell\csh has been renamed to \.\tools\cmdshell\c_shell

• file element \.\tools\cmdshell\c_shell\start.csh has been edited

You use the Include from Stream command to create a cross-link from your workspace to stream
topaz_mnt, at pathname \.\tools\cmdshell. The immediate change to your workspace depends on its
update level:

• If the changes in stream topaz_mnt occurred after your workspace’s most recent update, you won’t
see the changes immediately in your workspace: directory cmd will still exist, directory csh won’t be
renamed to c_shell, and you won’t see the edits to file start.csh. But the status of these elements
includes the (stale) indicator, showing that the changes are in the backing stream, waiting to be
incorporated:

.\tools\cmdshell\cmd topaz\1 (9\1) (backed) (xlinked) (stale)

.\tools\cmdshell\csh topaz\1 (9\1) (backed) (xlinked) (stale)

.\tools\cmdshell\csh\start.csh topaz\2 (9\4) (backed) (xlinked) (stale)

At this point, performing an Update will bring the changes into the workspace.
• If the changes in stream topaz_mnt occurred before your workspace’s most recent update, all those

changes will be brought into the workspace immediately.

The procedure in the first bulleted paragraph can be described as “Include then Update”; the second
bulleted paragraph’s case can be described as “Update then Include”. The final result is the same in both
cases: the changes to the cross-linked elements in their new backing stream are incorporated into your
workspace. We consider the second case to be an AccuRev best practice:

Best Practice:

Update your workspace before performing an Include from Stream command

If you Update first, other backing-stream changes won’t be “mixed in” with the Include from Stream
changes during the next workspace update. Moreover, fully establishing the link from your workspace to
the target stream will involve a single step (Include), rather than two steps (Include then Update).

Note: because it respects — but does not change — your workspace’s update level, Include from
Stream more closely resembles the Populate command than the Update command.

48 AccuRev® Technical Notes

Multiple Cross-Links: Chaining
AccuRev can traverse two or more cross-links in the same pathname. For example, you might use this
pathname in workspace W:

/./aaa/bbb/ccc/DDD/eee/fff/GGG/hhh/foo.java

And suppose there are two cross-links:

• At subdirectory DDD, a cross-link from workspace W to stream S1

• At subdirectory GGG, a cross-link from stream S1 to stream S2

As AccuRev traverses the pathname
component-by-component, it interprets
the components as illustrated here. As it
progresses down the pathname, AccuRev
also traverses a “chain” of cross-links:

• start in workspace W, then ...

• cross-link to stream S1, then ...

• cross-link to stream S2

“Chaining” of cross-links can continue to
any number of levels. The same principle applies repeatedly: a cross-linked pathname component is
interpreted in the source stream’s namespace; subsequent non-cross-linked components are interpreted in
the target stream’s namespace.

But you must take care when “chaining” cross-links in this way. It is possible to create ambiguous
configurations, which AccuRev handles by removing the affected elements. See Cross-Link Overlaps on
page 50.

A special case of cross-link chaining occurs when you create a configuration in which two or more cross-
links occur at the same pathname component. For example, consider again this pathname:

\.\tools\cmdshell\csh\end.csh

And suppose there is a chain of two cross-links at the same pathname component:

• At subdirectory cmdshell, a cross-link from workspace W to stream S1

• At subdirectory cmdshell, a cross-link from stream S1 to stream S2

In workspace W, the subdirectory will continue to have its “original” name, cmdshell. But the subtree
under the subdirectory will come from the stream S2 namespace. By extension, you could chain any
number of cross-links at the cmdshell component: W > S1 > S2 > S3 > S4 ... As above, the directory
retains its “original” name in the workspace, and the workspace sees the directory’s subtree as it exists in
the final target stream.

Double Vision: Seeing an Element Multiple Times in a Workspace
One consequence of AccuRev’s cross-link facility is that two (or more) different versions of the same
element can appear at different pathnames in the same workspace or stream. We call this phenomenon
double vision. This is not an error — at least, not from AccuRev’s perspective. Seeing the same element
twice might be exactly what you intended, or it might signify that you’ve left some refactoring work
unfinished.

Here’s an example: suppose you are tasked with doing some cleanup on the Topaz project’s development
tree:

AccuRev® Technical Notes 49

• Flatten out the subdirectories under tools.

• Move file tools.readme to the depot’s root directory, and rename it to README-tools.txt.

• Improve the source file comments in the src directory.

You perform this work in your workspace, named topaz_refact. But when the dust settles, you find that
the programs in the tools subdirectory no longer work. You are not sure whether the problem is in the tools
directory or the src directory. So you decide to “back out” your refactoring of the tools directory, by cross-
linking to the known-to-work version of the tools directory in snapshot stream topaz_2.3.9.

Now, you have two different versions of the “README” element in your workspace! In your refactoring,
you created a new version in your workspace, at pathname \.\README-tools.txt:

But your workspace now cross-links to the Release 2.3.9 version of the tools subdirectory, which contains
the Release 2.3.9 version of the same element, at pathname \.\tools\tools.readme:

This case of double-vision is clearly an error, reflecting the fact that your refactoring work is still ongoing.
In other cases, you might want two (or more) versions of a commonly used source file, say topaz.h, to
appear in a workspace. Perhaps several different versions of the file are required, in order to build different
executables using that file. Version skew is the executables’ other dependencies might mandate the
different versions of topaz.h.

Double Vision and the ‘accurev name’ Command
The accurev name command lists the pathname for a given element (specified by element-ID) in your
workspace. It can also list the pathname for a specific version of an element, or the version in a specific
stream:

accurev name -e 28

accurev name -v topaz_mnt -e 116

In a double vision situation, the name command can list all of an element’s pathnames in a workspace or
stream:

> accurev name -e 28 -v topaz_refact

\.\tools\tools.readme

\.\README-tools.txt

50 AccuRev® Technical Notes

Cross-Link Overlaps
Section Multiple Cross-Links: Chaining on page 48 describes how a set of cross-links can define a “chain”
of backing streams to be used at different components in a pathname:

Chaining works correctly if each switch to the next link in the chain occurs at the same pathname
component or at a lower component. But here’s a situation that violates this rule:

In this case, the second link in the cross-link chain (S1 > S2) occurs at a higher pathname component,
DDD, than the first link (W > S1, at component GGG). AccuRev recognizes this situation as a cross-link
overlap.

When a workspace that
has a cross-link overlap
gets updated, AccuRev
removes the subtree
below the component
where the first link was
created.

start interpreting
pathname in
workspace W

switch from
workspace W
to stream S1

switch from
stream S1
to stream S2

start interpreting
pathname in
workspace W switch from

stream S1
to stream S2

switch from
workspace W
to stream S1

AccuRev® Technical Notes 51

10.Notes on Revert to ... and
Diff Against... GUI Commands

Revert to Basis is the GUI version of the CLI purge command. The name “Revert to Basis” is something
of a misnomer, as the operation would more accurately be named “Revert to Last Update Version” (that is,
replace the current workspace version with the version from the backing stream based on the last time the
workspace was updated).

Since the Diff Against... GUI command offers both “Backed” and “Basis” options, and Revert to... also
offers a “Most Recent Version” option, it is easy for new users to be confused by these different features.
This section illustrates the differences between Backed and Basis versions of an element, and what a user
can expect from various AccuRev GUI commands.

Overview
The following screenshot shows the progression of file foo_3.java. The file is initially created, edited, and
promoted to stream prod3000_itr by user1 in workspace prod3000_itr_user1. It is then edited and
promoted to stream prod3000_itr by user2 in workspace prod3000_itr_user2. Finally, user1 makes two
more sets of changes in workspace prod3000_itr_user1, which she keeps, but does not promote. The

52 AccuRev® Technical Notes

screenshot is taken from an “Expanded Mode” Version Browser display (History -> Browse Versions) of
foo_3.java from the prod3000_itr stream.

Note: For the discussions below, it is critical to have a firm understanding of the AccuRev Glossary terms
workspace stream and workspace tree:

workspace stream
The private stream that is built into a workspace. All new versions of elements are originally created in
workspaces; AccuRev records these versions in workspace streams.

workspace tree
The ordinary directory tree, located in the user’s disk storage, in which the user performs development
tasks and executes AccuRev commands.

Diff Against...
In relation to the “Most Recent Version” of foo_3.java in the prod3000_itr_user1 workspace stream
(prod3000_itr_user1/4), Diff Against... can used with:

• Backed Version—prod3000_itr/2. For a Diff operation, this is always the current version in the
backing stream.

• Basis Version—prod3000_itr/1. In this example, this is the previous promoted version, and is the base
version originally used to create Version 4. The basis version is the version you began your work
with—usually the version from the backing stream downloaded from the server by your last update
operation, or the last time you promoted the file, whichever came last.

AccuRev® Technical Notes 53

• Previous Version —prod3000_itr_user1/3. The previous kept version in the workspace stream. (Note:
Diff Against... the previous version is available from the Other Version option in the Version
Browser.)

Similarly, foo_3.java in the prod3000_itr_user1 workspace tree can be compared with the backed and basis
versions from the prod3000_itr backing stream using the rules above, and its most recent version,
prod3000_itr_user1/4 in the workspace stream. It can also be compared to the previous kept version and
any prior version using Diff Against.. -> Other Version from the Version Browser.

Revert to...
In the context of a Revert to... operation on foo_3.java in the prod3000_itr_user1 workspace tree:

• Revert to Basis would replace the version of foo_3.java in the workspace tree (the current workspace
version, which may or may not be the Most Recent Version) with the version from the backing stream
based on the last time workspace was updated. In this example, this is its basis version, prod3000_itr/1,
not the current version in the backing stream (prod3000_itr/2), which could potentially cause your
local build to fail. Think of this command as “Revert to Last Update Version”.

• Revert to Most Recent Version would replace the modified version in your workspace tree with the
last kept version (i.e., it would replace the version of foo_3.java in the workspace tree with the latest
version from the workspace stream, prod3000_itr_user1/4.)

A Revert to Basis operation on the current version in the prod3000_itr dynamic stream (prod3000_itr/2)
would cause foo_3.java to become inactive in the stream. This would result in the prod3000_itr stream
inheriting the version from its parent stream. (It is not replaced with the previous version in the stream,
prod3000_itr/1.) To "undo" a promote or purge operation, a Revert from the History Browser (or a CLI
revert command) is issued specifying the transaction number. This creates new kept versions that are
minus the set of changes promoted in the specified transaction. These kept versions must then be promoted
to complete the undo (reverse merge) operation.

54 AccuRev® Technical Notes

	Copyright and Trademarks
	1. Converting Baselevel Directories to AccuRev
	Creating a Depot
	Processing the First Baselevel
	Recording the Baselevel with a Snapshot

	Processing Subsequent Baselevels
	Handling Additional Baselevel-to-Baselevel Differences

	Cleaning Up

	2. Creating and Using a Maintenance Stream
	Creating a Snapshot
	Creating a Stream Based on the Snapshot
	Performing Maintenance Work

	3. Specifying Ignore Patterns for External Objects
	What Is an Ignore Pattern?
	Example

	Where You Can Specify Ignore Patterns
	Global versus per-Directory Use of Ignore Patterns
	Examples

	Ignore Pattern Precedence
	Specifying an Exception to an Ignore Pattern
	The (ignored) Status

	Using .acignore
	Where You Can Use .acignore
	Specifying Ignore Patterns in .acignore

	Using the --ignore Option for CLI Commands
	One Pattern per Each --ignore

	Wildcards in Ignore Patterns
	Specifying Directories and Their Contents
	Using Filenames, Masks, and Lists

	4. Techniques for Sharing Workspaces
	Accessing a Windows Workspace From Multiple Windows Clients
	Universal Access to a Workspace Located on a Share
	The ‘share_map.txt’ File
	Workspace Location Entries
	Fixing Workspace Location Entries
	Fixing Machine Name Entries

	Example: Samba Share

	5. What’s the Difference Between Populate and Update?
	In a Nutshell ...
	Example 1: Standard Update Scenario
	Example 2: Restoring a Deleted File (“missing” by accident)
	Example 3: Handling Active Elements
	Example 4: A Tale of Two Files

	Data Structures Used by Populate and Update
	How the Data Structures Get Their Data
	Backing Stream
	Workspace Stream
	Workspace Tree

	The Update Algorithm
	Incomplete Updates
	Incomplete Update: Command Interrupted
	Incomplete Update: Checksum Failure
	Performing the “Fixup” Update

	6. Using a Trigger to Maintain a Reference Tree
	7. Notes for CVS Users
	AccuRev Workspaces vs. CVS Sandboxes
	Common Operations
	Obtaining a copy of the source files
	Placing files under version control
	Bringing others’ changes into your workspace/sandbox
	Saving your changes
	Finding the history of files
	Finding the status of files in your workspace/sandbox
	Removing files
	Reverting changes to files
	Moving files
	Checking out files to edit
	Comparing versions of files

	8. Version Control of Namespace-Related Changes
	Twin Elements and Stranded Elements
	Preventing Creation of Twins in Workspaces
	Reporting of Twins in Dynamic Streams
	Ability to Reuse an Element Name after a Rename Operation
	When a Purge Operation Causes an Element to Disappear
	Detection of All Stranded Elements, Including “Twins”
	Ability to Operate on Stranded Elements Using Element-IDs
	Sophisticated Analysis of Namespace-Related Changes
	Change to Merge Algorithm for Namespace-Related Changes

	Handling Stranded Elements
	Defunct element obscured by element with same name
	Resolving the Situation

	Elements under a defunct parent
	Resolving the Situation

	Elements under an excluded parent
	Resolving the Situation

	Dangling directory elements
	Resolving the Situation

	Elements under a non-existent (purged) parent directory
	Resolving the Situation

	Elements under a stranded parent directory
	Active element refers to a purged version

	9. Notes on Cross-Links
	Cross-Link Direction and Terminology
	Cross-Links and Stream Namespaces
	Source Stream: Workspace vs. Dynamic Stream
	Multiple Cross-Links: Chaining

	Double Vision: Seeing an Element Multiple Times in a Workspace
	Double Vision and the ‘accurev name’ Command

	Cross-Link Overlaps

	10. Notes on Revert to ... and Diff Against... GUI Commands
	Overview
	Diff Against...
	Revert to...

