AcCuRev

AccuRev®

Concepts Manual

Version 5.4
January 2012

Revised 9-January-2012

10 Maguire Road, Building 1 Tel: 781-861-8700
Lexington, MA 02421 Fax: 781-861-8704
www.accurev.com Email: sales@accurev.com

Copyright

Copyright © AccuRey, Inc. 1995-2012

ALL RIGHTS RESERVED

This product incorporates technology that may be covered by one or more of the following patents:
U.S. Patent Numbers: 7,437,722; 7,614,038.

TimeSafe and AccuRev are registered trademarks of AccuRev, Inc.
AccuBridge, AccuReplica, AccuWork, Kando, and StreamBrowser are trademarks of AccuRey, Inc.

All other trade names, trademarks, and service marks used in this document are the property of their
respective owners.

Table of Contents

ACCUREY CONCEPLS coeeerrrirsrncisnnesssncsssnicsssnessssnessssesssssossssssssssssssssssssssssssssosssssosssssssssssssssssssssssses 1
The AccuRev Data REPOSIEOIY ...cuuiiieciiensenssnensenssnnnsnenssnesssessssssssesssnessssssssssssssssassssssssssssasssne 3
Organization Of the REPOSIIOTYeeiiiiiiiiiieiieiie ettt ettt eebe e e esveesaesnaeens 3
Single Depot vs. Multiple DepPOts.......cc.cveerieriiriiiiiiiriereneeseee e 4

Inside a Depot: Versions and Files.........c.ccooiiiiiriiiiiieiiiiiciecee e 4
Versions Of NON-File OBJECESccuiviiiiiriiriiiiiiiieceneceeteeee et 6
Promotion: Real Versions and Virtual Versions..........ccoceevervierieneriienienenieneenceeeneeenne 6
Replication of the REPOSITOTYooouiiiiiiiiiiiiieiee ettt 7
Archiving Data and Removing Data...........ccoocieiiiiiiiiniiiiieiecieceeee et 7
What is a Software Configuration?ceieevvicnsvencnsrncssnncsssncssssnsssssnsssssnossssssssssssssssssssseses 9
Software Configurations and Development Tasks..........ccccooeeiiniiiiniiininiiniieeccee 10
AccuRev’s Stream HIerarchyceiceicnniinnsiiciniinnsniinssnncssnissssscssssssssssssssssssssssssssssssssassses 11
How Changes Migrate Through the Stream Hierarchyccccoooeviiiiniininiiniincicnee 15
Inheriting Versions From Higher-Level Streamsccccooeveiiieiiiiniiniiienieciccieeens 17
Pass-Through Streamscocueieiiiiiiiiieriet et 18

The Include/Exclude and Cross-Link Facilities........ccccccuevieriiriiinieninieniienienceiceeene 19
AccuRev Workspaces and Reference Treesiieneeenneensennsnnnsecssnecsenssacsssncsssesssssssncsns 21
USING @ WOTKSPACEeovvieiiiieiieeiiieiteeite ettt e vt esttesteesateesbeessaesaaeesseessseenseessseeseessseenseessneans 22
Putting Data Into the RepOSItOTYcceiiiieiiiiiieiieeee e 22
Getting Data Out of the REPOSITOTYccuiieiiiiiiiiieiiecieeeeee e 23

The Workspace as @ SrEAMc..cevuiriiiiiiiiiieieeeee ettt 23
Real Versions and Virtual VErsions............coceeveiieiienirienieneniesiceieeeeseeie e 25

Active Files and the Default Groupcocveeciieiieeiiiesieceeeeeee e 25
Updating @ WOTKSPACEeeiuiiiiieiieiie ettt ettt ettt et e e e ste et e saaeeseesnbeebeeenseensaesnnaans 25
Variation #1: Workspace Based on a Snapshot..........cccoceriininiiniinininicneccccccee 26
Variation #2: REference TIEEcccuevuiriiriieieiieieeee et 27
Parallel and Serial DevelOPMEnt..........ccceeriiiiiiriieiieeeeie et 27
Serial Development through Exclusive File LocKing..........cccecvveviiiiiienieniieniecieeene 27

The Limited Effect of an Exclusive File Lockccccooiiiiiiiiiiiiiicceiees 28
Anchor-Required WOorkSpacescoccueeiiiriiiiiiiiiiciieeie et 29
Getting Only the Files You Need: the Include/Exclude Facilityc..ccoceveriiniinincnnnnne. 29
Historical Note: Sparse WOrKSPaCES........cecuueeuieriieeiieriieeieeieesiie et esiteeveeseee e eneaeseeens 29
ACCUREY TranSacCtionsSecccveeciieressnicssnnecssnnessssncssssesssssesssssssssssssssssssssssssssesssssssssssessssssssssnes 31
TranSactions A€ ATOINIC ...ccc.eeiuieriiieiiiiiie ettt ettt et e e e sate e bt e s st e e beesabeenbeeee 31
Transactions are IMmutablecooiiiiiiiiiiiiiiie e 31

AccuRev Concepts Manual

ii

Transactions and WOTKSPACEScccviiriiiriiiiiieiieie ettt e eebe e es 32

Transactions and ISSUE Mana@emMENtccuieruieriieiiieriieiiieiee et 32
AccuRev/AccuWork Change PacKkagesccccvcceeicnsisnnnicssssnnnicsssnnsecssssssesssssssssssssssssssssssssses 33
Structure of @ Change Packagec.ccouveiiiiiiiiiiieiiecieeeee et 33
Creating Change Package ENtries........ccccoiiiiiiiiiiiiieeiieieeecieeee et 34
Complex Change Package ENtriescoceviiviiiiiniiniiiiiiienienecsieceecece e 35
Updating Change Package ENtries.........cccviviieiiieiiiiiiieiie ettt eree e esee e e 36

A Little Bit 0f NOtAtION.......ooiiiiiieiieie ettt st e 36
Combining Two Change Package Entriescccoocveeviieniiiiieiiieeiieiiecie e 37
ACCUREY GIOSSATY ceuvernrrrnensnnnsnensnnnsuensnnsssessnnsssesssnssssessssssssesssssssassssasssssssassssassssassssssssssssnsssns 39

AccuRev Concepts Manual

iv

AccuRev Concepts

The chapters in this manual describe the main concepts and facilities of the AccuRev® software
configuration management system:

* The AccuRev Data Repository

* What is a Software Configuration?

* AccuRev's Stream Hierarchy

* AccuRev Workspaces and Reference Trees
* AccuRev Transactions

* AccuRev/AccuWork Change Packages

The manual concludes with a cross-referenced AccuRev Glossary.

AccuRev Concepts Manual

The AccuRev Data Repository

As a data management product, AccuRev’s foremost job is to provide a secure data repository for
long-term storage of your organization’s development data. AccuRev’s implementation of the
repository is straightforward and flexible, and key product features make it easy to protect the
repository from accidental or malicious damage.

AccuRev has a simple client-server architecture. While the AccuRev Server (accurev_server) is
running, it is the only program that accesses the data repository. This “single point of entry” to the
repository makes it easy to enforce tight security at the operating system level.

The data repository is built around a database technology that is transaction-based and manages
most tables as append-only. This makes the repository extremely resistant to accidental damage.
Using “atomic” transactions means that the database won’t become corrupted, even if a power
failure occurs while the database is being modified. The append-only feature enables “live
backup” of the repository, without having to interrupt developers’ work. This means that backups
can be made as often as desired — even continually.

Organization of the Repository
An AccuRev data repository consists of:
* adatabase called accurev, which contains:

» asite schema, which contains the user registry, list of depots, list of workspaces, and other
repository-wide information.

» aschema for each depot, each of which contains depot-specific metadata and AccuWork
issue records. (For licensing purposes, AccuRev’s issue management capability is termed
“AccuWork™.)

 the site_slice directory, which contains repository-wide AccuWork data, workflow
configuration data, server preferences, and triggers

» the depots directory, which contains a set of subdirectories, each storing an individual depot.
A depot subdirectory stores one or both of:

» aversion-controlled directory tree: all the versions of a set of files and directories.
* AccuWork schema, query, and change package configuration data.

The illustration below shows the modular structure of the AccuRev data repository. Logically, the
entire repository is located on the machine where the AccuRev Server program runs, but only the
accurev database must physically reside on the server machine. The file storage areas — which
typically are far larger than the databases and grow far faster — can be located elsewhere. For
example, the file storage area of depot jupiter might be located on another disk on the AccuRev
server machine, and the file storage area of depot saturn might reside within the local area
network’s disk farm.

AccuRev Concepts Manual 3

‘ AccuRev Data Repository

{ depot: mars |

o
"5“,'&" . .

metadata | metadata

A
i

file storage araa)
-

| depot: jupiter ~ | depot: saturn |—————

y. , metadata

|
metadata file storage area file storage area y

Single Depot vs. Multiple Depots

You can place all version-controlled files in a single depot, or split them among multiple depots.
In general, we advise storing all files for a given project in the same depot. By “project”, we mean
all the programs and other software deliverables that share the same development/test/release
procedures and the same release cycle. The procedures determine how a depot’s stream hierarchy
will be structured; the release cycle determines how the stream hierarchy will be used.

If Project_ X and Project Y have completely different release cycles, then put their source files in
different depots. Likewise, if Project A requires stringent in-house regression testing and two
levels of beta-testing, whereas Project B is mandated to “ship yesterday”, use different depots.

Note: when using the include/exclude (cross-link) facility, you can have a single depot serve
multiple partially-independent or totally independent projects. See 7he Include/Exclude and
Cross-Link Facilities on page 19.

AccuRev has no problem in storing thousands, tens of thousands, or even hundreds of thousands
of files in a single depot.
Inside a Depot: Versions and Files

Let’s look inside a depot, to examine its architecture. This will help explain how AccuRev works,
and will illuminate some of its most important, and unique, features.

AccuRev Concepts Manual 4

Developers working on their files is the principal activity in any software development
environment. With AccuRev, a developer’s files are stored in an ordinary directory structure —
perhaps on the hard drive of a personal computer or laptop, perhaps in a designated area of a well-
backed-up disk farm, etc. The only thing special about this “developer’s work area” is that
AccuRev keeps track of its association with a particular depot. (The work area is called a
workspace — for more information, see AccuRev Workspaces and Reference Trees on page 21.)

A developer can use any software tools to create and edit files, compile and build modules and
applications. AccuRev doesn’t get involved in these operations at all, so there’s no performance
penalty. Every so often, the developer tells AccuRev to save the current contents of a file (or a
group of files) to the depot’s repository. This operation, called a keep, does two things:

» Copies the current contents of the file to a container file in the depot’s file storage area.

» Creates an associated version object in the depot’s schema.

— depot |

storage file

metadata file storage area

keep
operation

modified
file

workspace |

This association is permanent: no matter what happens in the future, the contents of the file will
always be available, through a reference to the version object. (For now, we’ll skip the details of
how to specify a version — it’s just a bit more complicated than saying “version 45 of file
gizmo.c”.)

In addition to providing access to the actual file contents, the version object stores additional
information relating to the “keep” operation: the date and time of the operation, the user who
performed the operation, a user-supplied comment, etc. This kind of information is often termed
“metadata”.

AccuRev Concepts Manual 5

In general, version objects are much smaller than the corresponding container files. (Developers
often work with large source files; they also work with audio, image, and multimedia files, which
are often even larger.) As developers create more and more versions, the depot’s file storage area
may grow to many gigabytes, requiring it to be split among multiple disk drives. But since the
metadata stored for the depot contains the relatively small version objects, it grows much more
slowly. Most likely, it will never outgrow its original storage location.

Versions of Non-File Objects

In all modern operating systems, files are organized into directories (or folders). Some operating
systems also support additional kinds of file system objects: symbolic links, hard links, device
files, named pipes, etc.

AccuRev provides full version-control of directories. A new version of a directory records the
renaming of the directory or the moving of the directory to another location in the depot’s
directory hierarchy.

AccuRev provides file-link and directory-link objects, which can be used to version-control hard
links and symbolic links / junction points.

Promotion: Real Versions and Virtual Versions

Software development is much more than just creating and modifying files. A typical
development project involves many phases, possibly including initial development, integration of
work done independently, internal system testing, external testing, and final production. AccuRev
uses a “promotion model” to manage files in these multiple development phases. Files progress
through the phases, one by one: when a set of files pass the tests (if any) mandated for a particular
phase, a user working on that phase promotes them to the next phase.

initial dvt | integration | internal test
phase | phase | phase

| |

| |

AccuRev keeps track of each promotion by creating a new version of each promoted file. But
promotion doesn’t change the contents of a file; it only changes the file’s “approval level”. Thus,
each new version object created by promotion is merely an additional reference to (or “alias for”)
the same file in the depot’s file storage area.

AccuRev Concepts Manual 6

internal test .
version ‘ ™
1
promote ..I
integration
VErsion
o promote f
Initial '_j"‘ft storage file
metadata file storage area A

. real version ’ virtual version

AccuRev distinguishes between the original version, created by a keep operation, and all the
additional versions created by a promote operation:

» A real version is created by operations like keep, add, merge, rename, etc. The operation
creates a new version object in the metadata stored for the depot and places a new file in the
depot’s file storage area when content changes.

» A virtual version is created by a promote. It creates a new version object in the metadata
stored for the depot, which provides an additional reference to an existing file in the file
storage area.

Replication of the Repository

The AccuRev repository can be replicated at multiple sites, to support distributed development
organizations. It can also be replicated at a single site, to provide better performance. Each replica
repository can store the data for a selected subset of the master repository’s depots (or for all the
depots).

Replication is discussed in the AccuRev Administrator s Guide.

Archiving Data and Removing Data

In a perfect world, no one makes mistakes and there’s an infinite amount of disk storage. But in
this world, you sometimes save data by mistake and your repository sometimes outstrips your
storage capacity. In general, AccuRev’s TimeSafe principle (its ability to reproduce previous
configurations) does not allow version data to be removed from the repository once it has been
placed there. There’s just one exception: you can remove an entire depot from the repository.

AccuRev Concepts Manual 7

Removing depots that were created by mistake (or, perhaps, for practice) can help to reclaim
valuable disk space. Another strategy is to “get rid” of old versions, ones that you anticipate won’t
need to be used again.

AccuRev allows you to archive old versions, moving their space-consuming container files out of
the repository to offline storage. And if it turns out that you do need the versions, after all, you can
restore them from offline storage to the repository.

Both depot removal and archiving versions are discussed in the AccuRev Administrator’s Guide.

AccuRev Concepts Manual 8

What is a Software Configuration?

AccuRev is a software configuration management (SCM) product. So what is a software
configuration? A configuration is a particular set of versions of a particular set of files.

Note: AccuRev keeps track of changes to both files and directories.

The contents of files change over time, as developers, QA engineers, technical writers, and
release engineers work on them. These people save the changes in new versions of the files. The
organization of the files changes, too: new files are created, old files are deleted, some files get
renamed, and directory structures get reorganized.

Take a particular set of files — for example, the files required to build and deliver an application
named Gizmo. At any given moment, this set of files is in a particular state, which can be
described in terms of version numbers:

gi zno. ¢ version 45
framm s.c versi on 39
base. h verion 8

rel ease _nunber. t xt version 4
G znmo_Overvi ew. doc version 19
G znp_Rel ease_Not es. doc version 3

... or in terms of time:

gi zno. c | ast nodified 2004/11/18 14:15:03
framm s. c | ast nodified 2004/ 11/18 14:15:19
base. h | ast nodified 2004/ 10/ 08 09: 09: 44
rel ease_nunber. t xt | ast nodified 2004/ 11/17 21:59: 34
G zno_Overvi ew. doc | ast nodified 2004/11/20 17:25:00
G zno_Rel ease_Not es. doc | ast nodified 2004/ 11/21 19: 29: 57

That’s two different ways of specifying the same configuration.

Suppose one of the files changes:

rel ease_nunber . t xt | ast nodified 2004/ 11/24 07:19:18 (version 5)

You can think of this change as producing a new software configuration. But in many situations,
it’s more useful to think of this as an incremental change to an existing, long-lived configuration
— the one called “Gizmo source base” or, perhaps more precisely, “Gizmo Version 2.5 source
base”.

So in the end, is a software configuration just “a bunch of files”? Almost, but not quite. It’s
important to keep in mind that a software configuration does not contain the files themselves, but
only a description or listing of the files and their versions. Think of the difference between an
entire book (big) and its table of contents (small). This crucial distinction makes it possible for
AccuRev to keep track of hundreds or thousands of software configurations, without needing an
infinite amount of disk storage.

AccuRev Concepts Manual 9

The change described above to file release_number.txt illustrates the distinction between files
and configurations of files. The change to the contents of the file is something like this:

replace text line “RELEASE=2.5" with text line “RELEASE=2.5.1"

The change to the software configuration is something like this:

replace version 4 of file “release_number.txt” with version 5

For another example of the distinction, recall that a configuration takes into account filenames
and directory structures, too. Consider this configuration:

src/ gi zno. c

src/framm s.c

src/ base. h

src/ rel ease_nunber. t xt
doc/ G zno_Overvi ew. doc
doc/ G zno_Rel not es. doc

version 45
version 39
verion 8

version 4
version 19
version 3

Boldface shows the differences from the first configuration listed above. The file contents are
exactly the same; but one filename has changed, and the files have been organized into
subdirectories. So this is a different software configuration, even though there has been no change

to the contents of the files.

Software Configurations and Development Tasks

In most modern software development organizations, many tasks are under way concurrently. At
the beginning of this section, we listed a few: new products, new releases of existing products,
ports to different platforms, and bugfixes. In addition, consider the fact that each one of the above
tasks is often several coordinated efforts: initial development, unit testing, internal system testing,
external system (“beta”) testing, final production.

To enable all the tasks to progress smoothly at the same time, each person gets her own software

configuration — her own set of versions of the files in the repository. (A small, close-knit team
might choose to share a single configuration.)

It’s the job of the software configuration management system, such as AccuRev, to help the

organization:

» Keep track of the various configurations.

* Manage, preserve, and protect changes to the files.

» Detect conflicting changes that take place in different configurations (for example, two people

modify the same section of the same file).

» Assist in resolving those conflicting changes.

AccuRev Concepts Manual

10

AccuRev’s Stream Hierarchy

This section discusses the AccuRev implementation of software configurations. Be sure to read
What is a Software Configuration? before starting this section. First, we set the scene and
introduce some necessary terminology.

AccuRev’s basic job is to keep track of the changes that a development team makes to a set of
files. That’s called version control. A file under version control is called an element; developers
can create any number of versions of each element. AccuRev saves all the versions permanently

in a depot.

Note: we’re oversimplifying here. AccuRev version-controls directories as well as files; and
there can be multiple depots, each one storing a separate directory tree. But the above
paragraph is enough to get us into a discussion of software configurations. For more on depots
and version-controlled files and directories, see section 7/e AccuRev Data Repository on
page 3.

AccuRev can manage any number of configurations of a depot’s elements. Each configuration
contains one version of every element in the depot — or perhaps, just some of the elements. Here
are the basic data structures:

* A stream is a configuration of the depot that changes over time.

* A snapshot is a configuration of the depot that never changes.

* A depot’s streams and snapshots are organized into a stream hierarchy: each stream or
snapshot has one “parent”, and can have any number of “children”.

The stream hierarchy can be changed at any time: move a child to a different parent, interpose a
new stream between a child and its parent, etc. Using these structures, it’s easy and intuitive to
model many aspects of the software development process.

AccuRev Concepts Manual 11

A g =
File Edit Actions View Issues Tools Admin Help

iR REE v 0|?
|' f- Depots ['ﬁ | -
Al X REEAD aEDE4 s

El-{@ browmn—=HE brown_tst F—Eqm_ipﬂ—‘@ browen_cvt_johin

) - IS brown_Rls2 0 _m brossen_rart : (] brown_mnt_john

= e i

I :
i 3 |

i brown Ris2.0.2

[E& brown Rl=2.01

B brown_Rls1 .1

B brown_Rlz=1.0)

[Inclyde hidden streams g |I\\u:u Snapshots %| |Current User \ \?| [] ©nly streqm paths to workspaces

joh fo brown
top-level stream 2nd-level 3rd-level 4th-level 5th-level
(“root stream” or streams streams streams streams

“base stream”)

The main idea is to enable multiple development tasks to take place concurrently, and to manage
when (and if) work done for one task is shared with other tasks. For example:

* A stream corresponds to a

development task. It might Wed Thurs

be a long-lived project, such stream: ! z

as “the Release 2.5 RLS2.3 J J

development effort™; or it i e / base.h wer 6 J

might be a quickie, such as Nm ; gizmo.c ver 45) base.h wer 7
“fix error message e P ;’ ff

ERRO037”. When a

developer modifies an
element, the new version is recorded as a change to the configuration of a particular stream.

AccuRev Concepts Manual 12

* A snapshot corresponds to a project milestone, such as “Build e T
451” or “Release 2.5 final build”. It’s vitally important to be able BLD451
to tell exactly which versions of which files went into Build 451,
no matter what changes were made subsequently. A snapshot base.h ver B
answers this need precisely and completely reliably, because it’s frammis.c ver 39
a never-changing configuration. gizmo.c wer 45

* A “parent” snapshot acts as a S — — _ _
stable starting point for any RLS2.5 "'"t':L;ﬂgg:fﬂ?g;:ﬁﬂ'?ﬂ?;zm =
number of “child” streams.

No matter when a new child is
created, its initial *
configuration is an exact copy

of the parent snapshot. This
. . Jan 14 Jan 19
structure is appropriate for
. . EITEAM ! £
managing multiple bugfixes to BUG345 / J
an old release. Each bugfix S ¢ more
stream starts with the versions ¢/ changes ;' changes
that were used to build the : J
original release — say, the 5 /
versions in snapshot “Release
2.5 final build”.
s Lredrl r &
BUG391 ¢ !
; /
/ ! more
) ; rhanges f; changes
; /

’ i
; !

* Versions created at the bottom of the stream hierarchy rise up through the hierarchy by being
promoted from stream to stream — from child to parent, then from parent to grandparent, etc.
Promotion is one of AccuRev’s most important operations, enabling you to intuitively model a
project’s workflow.

AccuRev Concepts Manual 13

top-level Ind-level Jrd-level dth-level
stream streams streams streams

promote

_Z pr-n':umnte

For example, after initial development work on a set of files is completed, the files are
submitted to unit testing, then to internal system testing, then to external system (“beta’)
testing, then to final production. If this workflow is too elaborate for your organization, or not
elaborate enough, just design your stream hierarchy differently. You can redesign a project’s
workflow at any time by changing the stream hierarchy.

A parent stream provides an integration point for any number of child streams. This structure
is appropriate for a development effort that is divided into multiple tasks, to be undertaken
concurrently by different developers. As developers complete their changes, they promote the
changes to the parent “integration stream”.

If two or more

developers happen to parent stream child streams

change the same file,

AccuRev detects the /

version conflict and promote

assists the developer / ’

with a merge. This ’

ensures that one person’s ’

work is not overwritten

accidentally by another ! ’

person’s. promote ’
. merge required it /

Note: the merge conflict 1 streams want to

1s detected when the pramoate versions of

second developer the same file

attempts to promote the
element. The versions must be merged before AccuRev will permit the second promote to
succeed.

AccuRev Concepts Manual 14

* Each stream
provides a change
scope for the
subhierarchy
beneath it: child () R
streams, grandchild
streams, etc. Once a
version has been promate
promoted to a
stream, that version
becomes available
to the stream’s entire
subhierarchy. In
many cases, the
newly promoted e / ‘ {;’f
version will appear
automatically in b
(“be inherited by”) inert
all the descendant
streams.

7\

i

inherit

~ ¢/
—~+ /

For example, suppose a new corporate logo has been designed and saved in a new version of
file corp_logo.png. Promoting this version to a high-level stream makes it appear instantly in
many lower-level streams where Web pages are being developed and updated.

It may be worthwhile to study the above scenarios a bit more, and to consider how your
organization might use AccuRev’s streams and snapshots in your own development environment.
As you do so, keep these two important points in mind:

» A stream is a software configuration, a specification of particular versions of particular
elements. A stream doesn’t contain copies of files stored in the depot’s file storage area; it just
contains a “set of versions”, selected from all the versions recorded in the metadata stored for
the depot.

* A depot’s files are organized into a directory tree; a depot’s streams are organized into a tree-
structured hierarchy. These two tree structures are different and independent of each other. In
a sense, the directory tree is a “picture” of the filesystem representation of the elements, and
the stream hierarchy is a “picture” of the software development process that creates and
maintains the elements.

How Changes Migrate Through the Stream Hierarchy

AccuRev provides configuration-management capabilities that are sophisticated and robust,
without sacrificing ease of use. What’s the secret? One main reason is that AccuRev sees the
development environment in the same way as a typical development team:

* Many development tasks are active concurrently, all using the same source base.

AccuRev Concepts Manual 15

» Tasks are often interrelated; they must share their changes with each other (“integration”) and
weed out inconsistencies; some tasks cannot be completed until one or more others have been
completed.

* Most tasks are accomplished by making changes to relatively few files.

» A task is completed by “delivering” a set of changes to another task. For example, a
development task might deliver its changes to an integration task, or to a testing task.

* A developer’s next task may involve changing a completely different set of files from the
previous task.

AccuRev streams neatly model all these aspects of development tasks. The (relatively few) files
that a developer changes for a task become active in a particular stream. Typically, this occurs
when the developer records new versions of the files. To complete the task, or to mark an
intermediate milestone, the developer delivers the changes to the parent stream, using the
promote command. The files become active in the parent stream, and inactive (not under active
development) in the child stream.

greeting. java
BITMS. java

no active signoff java
developrment greeting. java
BITMS]. java
signaff java
keep

greeting. java

_ BITMISY.java
twio files _ signnf%.jjava
become active reeting.iava
in child stream gerrmsggjgva
signoff.java
greeting.java
arrmsg. java i
promote new signoff.java
wersions to .
greeting.|ava
parent stream BIMS. java

signoff java
promote

AccuRev Concepts Manual 16

In a multiple-level stream hierarchy, several promotions are required to propagate a set of changes
all the way to the top level. Each promotion causes the file(s) to become active in the “to” stream,
and inactive in the “from” stream.

AccuRev terminology: the set of elements (files and directories) that are currently active in a
particular stream constitute the default group of that stream. When an element is active within
the stream, it is considered a member of that stream.

You may have gotten the impression that a given file can be active in only one stream at a time.
Not so — that would mean only one development task at a time could be actively working on the
file. AccuRev allows each file to be active in any number of streams — even al/ of the streams at
once. Typically, though, a file is active in just a few streams at any particular moment.

The diagram below uses contrasting colors to show how a particular file might be active in four
different streams. That is, four different versions of the same file are in use at the same time, for
various development tasks.

ED
CE
— & /
—
—_

[© F

—___/
A,

e

Inheriting Versions From Higher-Level Streams

What about the other streams? Each stream in the hierarchy contains some version of the file; if a
file is not active in a particular stream, the stream automatically inherits an active version from a
higher-level stream. The diagram below shows how the four active versions fill out the entire
stream hierarchy:

AccuRev Concepts Manual 17

it

— @& f— e /

e e

This scheme makes it easy for an organization to manage many development tasks concurrently,
each with its own software configuration in a separate stream. As changes are made for certain
tasks, AccuRev takes care of automatically applying the changes to the software configurations
used by other subsidiary tasks — except for the tasks that are actively working on the same file(s).
Just a few promote operations can effectively propagate versions to tens or even hundreds of other
streams.

i

Pass-Through Streams

AccuRev features a special kind of stream, called a pass-through stream. A version that is
promoted to such a stream automatically passes through to the parent stream. The file doesn’t
become active in the pass-through stream; it does become active in the parent of the pass-through
stream.

. pass-through
/ W 7 stream

promote

- & /

Pass-through streams are useful for grouping lower-level streams. (Most commonly, the streams
to be grouped are ones built into user workspaces. For a full discussion of workspaces, see
AccuRev Workspaces and Reference Trees on page 21.) For example, suppose a “swat team” of
four programmers often moves from project to project. AccuRev accomplishes the task of moving
a programmer from Project A to Project B by reparenting the programmer’s personal stream:
making it a child of the Project-B stream instead of the Project-A stream.

AccuRev Concepts Manual 18

Reparenting all four programmers’ personal streams from the Project-A stream to the Project-B
stream requires four separate operations. But suppose the programmers’ streams were all children
of the same pass-through stream; moving the team to a different project requires just a single
operation: reparenting the pass-through stream.

/ Project A ”fqy f,f passsnmr'ﬂug

/ Project B f“f

The intermediate stream level doesn’t impose any extra day-to-day work on the programmers.
The versions they promote automatically pass through the intermediate stream to the project
stream.

The Include/Exclude and Cross-Link Facilities

AccuRev has an advanced include/exclude facility, which vastly increases the flexibility of a
depot’s stream hierarchy. You can configure any dynamic stream (or workspace) to include just
some, not all, of the elements from its parent stream; the subhierarchy below the stream inherits
this configuration. This facility makes it easy to logically partition a source tree, so that different
development projects can work on different parts of the source code, and so that different
development groups cannot even see each other’s work.

You use include and exclude rules to specify which elements are included from the parent stream.

* An include rule can specify an individual file, an individual directory’s contents, or the
contents of an entire directory tree.

* An exclude rule can specify an individual file or an entire directory tree.

* Rules are inherited by lower-level streams and workspaces, in much the same way that
versions are inherited.

» Rules at lower levels of the directory hierarchy can refine rules at a higher level. For example,
a graphic artist might add a rule to exclude everything below the directory src, but then add
another rule to include the single subdirectory sre/gui/images/icons.

* An include rule can implement a cross-link, specifying a different backing stream for an
individual element or an entire subtree. In effect, this enables different elements to have
different stream hierarchies, even though they are in the same depot.

In any dynamic stream or workspace, you can also change the backing stream of individual
elements or entire subtrees of elements (termed cross-linking). This provides a way to make the
stream hierarchy look different for different elements.

AccuRev Concepts Manual 19

AccuRev Workspaces and Reference Trees

As described in AccuRev’s Stream Hierarchy on page 11, AccuRev uses streams to organize your
project data, as any number of projects can be under way concurrently. But streams are not the
entire story. A stream is just a bookkeeping device, though a very sophisticated one! It’s a
mechanism that records which versions of files are in use for a particular development task. The
promote command propagates an existing version of a file from a lower-level stream to a higher-
level stream.

But what about the actual files themselves, which developers edit and build software systems
with? How are new versions of files created in the first place? In other words, how do users access
AccuRev-controlled files, in order to perform their day-to-day development tasks? Through
workspaces.

A workspace is a special type of stream — one that is associated with a particular user and a
particular location on the filesystem. We’ve said that a depot’s files are organized into a directory
tree; a workspace instantiates all or part of that directory tree at the specified location. Which
parts are instantiated depend on what stream the workspace is “based on” (that is, what stream is
the workspace’s parent). That stream is said to be the backing stream for the workspace; we’ll
explain this term in Updating a Workspace on page 25.

For example, suppose a stream contains these versions of the elements in a depot:

src/ gi zno. c version 45
src/franm s.c versi on 39
src/ base. h verion 8

src/ rel ease_nunber. t xt version 4
doc/ G zno_Overvi ew. doc version 19
doc/ G zno_Rel not es. doc version 3

A workspace based on this stream is a directory tree containing:
* asrc subdirectory, containing four files (gizmo.c, frammis.c, base.h, release_number.txt).
* adoc subdirectory, containing two files (Gizmo_Overview.doc, Gizmo Relnotes.doc).

Another stream in the depot’s stream hierarchy might contain different versions of some or all the
files. So, for example, the contents of files release_number.txt and Gizmo_Relnotes.doc might
be different in a workspace based on another stream.

Any number of workspaces can be based on the same stream. A typical scenario is for all the
members of a project team to maintain workspaces based on the stream that records the project’s
ongoing work. Conversely, a workspace can be based on any stream. But typically, workspaces
are created only at the “leaf level” of a depot’s tree-structured stream hierarchy: if a stream acts as
the backing stream for one or more workspaces, it generally doesn’t have child streams, too.

AccuRev Concepts Manual 21

Using a Workspace

As the name implies, a workspace provides a location for performing development tasks: editing
source files, compiling, debugging, testing, creating web sites, etc.

Here are a few points that show how easy it is to do day-to-day work in a workspace:

* A workspace need not be in any special file system location. Any place where you have
permission to store data will do.

» If you need more space, you can move a workspace to another location.

* You don’t have to worry about losing track of your workspaces — AccuRev keeps track of
every workspace’s location.

* You can modify any file in a workspace at any time when using a non-locking workspace. No
“checkout” operation is required.

The thing that’s special about a workspace is that it provides a two-way portal to the AccuRev
data repository: you put your own changes into the repository, and you draw out the changes that
your colleagues have previously recorded there.

Putting Data Into the Repository

A workspace enables you to create new versions of the files in a particular depot. (Each
workspace is based on a particular stream, which belongs to a particular depot.) First, you use any
development tools to work with the workspace’s copies of existing versions; then you use
AccuRev commands to store new versions in the depot. In addition to creating new versions of
existing files (keep command), you can use the workspace to add new files and directories to the
depot (add command), rename files and directories (move command), and even rearrange the
depot’s directory hierarchy (move command).

Workspaces provide an isolated, private
development environment. The changes you backing stream
make become public only when you enter a public
promote command. This creates versions of data
one or more elements in the parent stream.
These versions are public: your changes are
now visible to the entire sub-tree of streams promote
under the parent stream. Subsequent command
promotions to higher-level streams will make

the changes available to a larger sub-tree of

streams and workspaces. g BIELETEC private
data

AccuRev Concepts Manual 22

Getting Data Out of the Repository

A stream is a configuration of a depot. A typical stream has new versions entering it all the time.
Some of the versions are promoted from the workspaces based on them, as described just above;
other versions are inherited automatically from higher-level streams. (See /n/eriting Versions
From Higher-Level Streams on page 17.)

As new versions enter a stream,

. Jan Jan Jan
they become available to the sub- 15 o3 o
tree of streams and workspaces hacking o P L !
under that stream. But AccuRev stream A K S f?
never copies a new version of a ; s * ‘.

- ‘e J\® ,
file into your workspace PO y ; ’ /
. i § 'y £
automatically. Instead, you , ; _
periodically use AccuRev J S . L
commands to update the
workspace. This replaces existing
files (or adds new ones), so that update update
an Jan 135 an Jan 26

the files in the workspace

accurately reflect the stream’s

versions and path elements,
including any recently-arrived

versions. AccuRev takes care not

to overwrite files that you’re

working on when it copies new versions to the workspace.

The Workspace as a Stream

The diagram above, showing how data flows from a workspace into the repository, is an
oversimplification. Changes that you make in your workspace don’t actually go directly into the
backing stream. Long experience with configuration management systems has shown that users
sometimes enter changes into the repository before they’re truly ready to be shared with others —
for example, code that’s never been tested. But a delaying strategy also has its drawbacks — for
example, it increases the chances of mistakenly deleting several weeks worth of changes without
ever preserving them in the repository.

Some other version control systems use “private branches” to address these issues. AccuRev
solved the problem by making each workspace a special type of stream. Here’s a more detailed
diagram showing how data flows from a workspace into the repository:

AccuRev Concepts Manual 23

m server |] | client |]
g

backing

/ stream .-_"
/ depot's file storage area
promote L

command

wiorkspace

stream wiorkspace
/ O 7 kee p / tree
Q command ra

depot's databaze

Workspace

This diagram shows that in AccuRev’s client-server world, a workspace has one foot on each side
of the divide:

» The instantiated directory tree associated with a workspace (the workspace tree) lives on the
the local filesystem. The files you work with on a day-to-day basis are entirely in the
workspace tree.

» The workspace (or workspace stream) lives in the data repository managed by the AccuRev
Server. It contains all of the workspace’s configuration information. And it resides, as all
streams do, entirely within the metadata stored for a particular depot.

The diagram also shows that recording a new version of a file in the backing stream is a two-step
process:

1. The keep command creates a new version in the workspace stream. Think of keep as moving
data from the client side to the server side. This command also copies the file in your
workspace tree to the depot’s file storage area. That version is visible only to your workspace.

2. The promote command propagates the version from the workspace stream to the backing
stream. This command operates totally within the metadata stored for the depot. No files are
copied to the file storage area during a promote.

Why the extra stream and the extra step? Isn’t it redundant? No, because the workspace stream
and backing stream play different roles. The whole idea of the workspace is to provide a degree of
isolation from the changes that others are making concurrently. The workspace stream makes the
isolation more flexible. It enables you to keep any number of intermediate versions of a file in
your workspace, before “going public” by promote’ing the most recent version. If you decide that
you’ve headed off in the wrong direction, you can revert a file to any of those intermediate

AccuRev Concepts Manual 24

versions. You can even purge all the work you’ve done on a file, which reverts to using the
version in the backing stream.

All the intermediate versions that you keep are stored permanently in the depot, even the versions
you never promote. Thus, the keep command provides a data-backup capability: “save a copy of
this file, just in case I ever want to restore it to its current state”. It also means you can change
your mind as many times as you like about which version of a file should be shared with the rest
of the world.

Real Versions and Virtual Versions

The difference between keep and promote highlights an important aspect of the way that
AccuRev organizes and manages development data. It also highlights the difference between
backing streams and workspace streams.

All “real” development takes place in the workspace tree. The keep command preserves the
changes you’ve made to a file. Accordingly, versions created by the keep command are called real
versions. Every real version can only be created in the workspace stream.

By contrast, the promote command does not record a change to any file. Rather, it changes
availability of a change that was previously recorded with keep. The version that promote creates
in a higher-level stream is called a virtual version; each virtual version is just an alias for an
existing real version in some workspace stream.

Active Files and the Default Group

The AccuRev repository keeps track of which files have changed in your workspace. This set of
files is called the workspace’s default group. Many of the changes are new versions, created with
keep. The default group also includes renamed or relocated files (move command), deleted files
(defunct command), and added files (add command), etc.

When you promote a file’s changes from your workspace stream to the backing stream, the file is
removed from the workspace’s default group. This reflects the fact that you’re done working on
that file — at least for now! Similarly, a purge of your work on a file removes the file from the
workspace’s default group.

Updating a Workspace

The workspace’s two-part structure — workspace tree on the client side, workspace stream on the
server side — plays an important role in how AccuRev keeps a workspace synchronized with the
stream it is based on. (Refer to How Changes Migrate Through the Stream Hierarchy on page 15
for information on how the streams synchronize with each other.)

At any given time, a workspace should contain:
 the files you’re actively working on (that is, the members of the workspace’s default group)

» copies of the backing stream’s version for all other files

AccuRev Concepts Manual 25

(You can think of the active files as being in the “foreground” of the workspace, and the non-
active files as being in the “background”. Those “background files” are copies of versions in the
stream to which the workspace is attached.

A workspace often gets out-of-date with respect to its backing stream. Typically, each member of
a development team has his own workspace, and all the workspaces are based on the same
backing stream. For files that you’re not working on, your workspace continues to have versions
from the time the workspace was last synchronized with the backing stream, even as your
colleagues are promoting new versions of those files. If the backing stream contains a file more
recent than one in your workspace, that file’s status in your workspace is stale.

It’s the job of the update command to synchronize the workspace and its backing stream in this
way. To determine which files you’re actively working on, update looks in the workspace stream;
it considers a file to be active if you’ve created one or more new versions of it in the workspace
stream. Then, update makes sure that the workspace tree contains a copy of the backing-stream
version of each non-active file. Typically, this involves replacing old files with new files. But it
can also involve renaming, relocating, and removing files.

Variation #1: Workspace Based on a Snapshot

A workspace can be based on a snapshot, instead of a stream. Initially, this might not seem to
make sense; after all, a snapshot is an unchanging software configuration, and a workspace is a
tool for getting changes in and out of the data repository, but a snapshot-based workspace is quite
useful — for example, for performing maintenance work on a previous product release.

When you create a snapshot-based workspace, AccuRev copies the versions in the snapshot to the
new workspace tree. (This step is just like the creation of a stream-based workspace.) It doesn’t
make sense to update the workspace, because there’s guaranteed to be nothing new in the
snapshot. It’s a configuration that never changes.

You can make changes to the files in a snapshot-based workspace, saving the changes in the
workspace stream with the keep command. You can’t promote the changes to the snapshot,
though, because the snapshot is a configuration that never changes.

In some cases, there won’t be any need for such promotions. For example, some of the bugfixes to
a previous product release never need to be propagated elsewhere. You can just build the
maintenance release(s) in the maintenance workspace where you’ve fixed the bugs.

In other cases, you’ll want to incorporate bugfixes into ongoing development work. AccuRev has
special facilities, including the Change Palette, which enable you to propagate changes from a
maintenance workspace to any stream.

AccuRev Concepts Manual 26

Variation #2: Reference Tree

Important! Reference trees will be deprecated in a future release. The use of reference trees in
AccuRev 5.0 and higher is not recommended.

Sometimes, you don’t need to create any new versions — you just need the files. For example,
you might want a complete set of your product’s source files in order to test the speed of a new
compiler.

For such “just the files” purposes, you can create a reference tree instead of a workspace. A
reference tree instantiates a stream or snapshot, but doesn’t provide any mechanism for creating
new versions. Thus, you can’t use the keep or promote commands when working in a reference
tree. You can use the update command, though. Here’s a typical scenario:

* Create a reference tree named nightly, based on stream gizmo_dvt.

» Each night, perform an update of the reference tree. This retrieves new copies of the files for
which new versions appeared in the gizmo_dvt stream that day.

» After the update is complete, build the Gizmo software application using the updated sources.

You can think of a reference tree as a read-only portal to the AccuRev data repository (in contrast
to a workspace, which is read-write).

Parallel and Serial Development

Like other advanced configuration management systems, AccuRev supports parallel
development:

+ Edit Stage. Two or more users start with the same data: a particular version of a file. Each
user works on a copy of the file in his own workspace. He can keep as many (private,
intermediate) versions as he wishes in his workspace stream.

* Merge Stage. The merge stage begins when one of the developers promotes his private
version of the file to the backing stream. After that, each other developer must merge the
current version in the backing stream into his own work, then promote this merged, private
version. In the end, all users’ changes are incorporated into the backing stream; conflicting
changes to the file, if any, are both detected and resolved.

If two developers work on a file concurrently, a single merge-and-promote operation is required.
If N developers work on a file concurrently, then N—/ merge-and-promotes are required.

Serial Development through Exclusive File Locking

Parallel development is flexible and powerful, but it is not appropriate for every situation. Some
organizations don't like the extra steps involved in merging, even when merging is largely
automated. Some files cannot be merged, because they are in binary format. (AccuRev’s merge
algorithm handles text files only, not binary files such as bitmap images and office-automation
documents.)

AccuRev Concepts Manual 27

Accordingly, AccuRev supports serial development through its exclusive file locking feature.
Each workspace is in parallel-development mode (exclusive file locking disabled) or is in serial-
development mode (exclusive file locking enabled). You can also set locks on individual
elements.

The serial development model places more restrictions on users in the edit stage, but it eliminates
the merge stage altogether. Here's the standard scenario, in which all the workspaces are in serial-
development mode:

1. A user starts working on a file by specifying it in a co (“checkout”) or anchor command. The
file changes from being read-only to writable.

2. AccuRev places an exclusive lock on the file. This prevents the file from being processed with
co, anchor, or keep in other workspaces.

3. The user can edit and keep any number of private versions of the file in his workspace. Then,
the user promotes his most recently kept version to the backing stream. The exclusive file lock
guarantees that no merge will be required before this promotion.

4. After promote records the new version in the backing stream, things return to the initial state:
AccuRev releases the exclusive lock, and the file returns to read-only status in the user’s
workspace.

5. A user in any workspace can now ce or anchor the file, which starts the exclusive-file-locking
cycle again.

For more details, see File Locking in Workspaces on page 5 of the AccuRev CLI User s Manual.

The Limited Effect of an Exclusive File Lock

Exclusive file locking does not freeze an element completely:

» The lock applies only to the sub-hierarchy under a particular backing stream. It doesn't affect
streams elsewhere in the hierarchy and the workspaces based on them.

» The lock acquired through workspace-level or depot-level exclusive file locking applies only
to workspaces in serial-development mode. Users in parallel-development-mode workspaces
can make changes and promote the changes to the backing stream.

A lock placed on an individual element in a workspace applies to all sib/ing workspaces.

» The lock doesn’t prevent the current version in the backing stream from being promoted to
higher-level streams.

Exclusive file locking does not prevent any user from modifying any file with a text editor or IDE.
AccuRev encourages users in serial-development-mode workspaces to “ask permission first™: it
maintains files in a read-only state, and makes a file writable when a user executes a co or anchor
command on it. But users can modify a file “without asking permission”, by changing the access
mode (UNIX/Linux: chmod command, Windows: attrib command or Properties window) and
then editing it. Such “unauthorized” changes can’t be sent to the AccuRev depot, though: the
exclusive file lock disallows a co, anchor, or keep.

AccuRev Concepts Manual 28

Anchor-Required Workspaces

AccuRev also offers a less-restrictive variant of exclusive file locking. Anchor-required
workspaces allow parallel development, with multiple users modifying the same file at the same
time (in their own workspaces). But as in the exclusive file locking environment, files are read-
only by default, and must be anchored (“checked out) before they can be modified.

Getting Only the Files You Need: the Include/Exclude Facility

In some development situations, it makes sense to configure your workspace to contain a
specified subset of the depot’s elements, rather than all the elements. The benefits can be quite
significant:

 less clutter, allowing you to concentrate on the files that are important to you

» less disk space required to store your workspace on your machine

» faster backups of your workspace

» faster AccuRev processing of your workspace, especially during the Update command

See The Include/Exclude and Cross-Link Facilities on page 19 for more information.

Historical Note: Sparse Workspaces

Prior to Version 3.5, AccuRev supported a feature similar to include/exclude mode, called sparse
workspaces. A sparse workspace started out empty; you added certain elements to the workspace
using the Populate command. Those elements were maintained in the regular manner, using
Keep, Promote, and Update. Other elements in the depot were ignored.

This scheme was satisfactory for many purposes, but there were some drawbacks. For example,
an Update would not bring newly created elements into your workspace, just new versions of the
elements that you had already Populate’d.

The include/exclude facility has significant advantages over sparse workspaces:

* Include rules and exclude rules are official attributes of the workspace, maintained in the
AccuRev repository. Since AccuRev knows that a directory is included in the workspace, it
“remembers” to bring newly created elements in that directory into the workspace during
updates.

* You can use include rules and exclude rules to configure streams as well as workspaces. The
rules are inherited down the stream hierarchy. For example, to make the marketing directory
invisible to all developers, you can exclude that directory from a stream that all developers’
workspaces are based on (either directly or through multiple stream levels).

AccuRev no longer supports the creation of sparse workspaces.

AccuRev Concepts Manual 29

AccuRev Transactions

The AccuRev data repository is organized into a set of depots, each of which stores the complete
revision history of a particular set of elements. Each depot has its own section of the database.
Changes to a depot are structured as a series of transactions, each of which saves all the
information involved in a particular change to the depot. Thus, the entire story of how a depot’s
elements have evolved is contained in its transaction history.

Transactions are a well-established database technology, helping to guarantee that the database is
always in a self-consistent state. But for AccuRev, transactions are not just a low-level
mechanism for achieving database integrity. They play an essential role in organizing the user
environment. Two aspects of AccuRev transactions make this possible: atomicity and
immutability.

Transactions are Atomic

A user command that modifies elements is recorded as a single transaction in the metadata stored
for the depot, no matter how many elements are involved. For example, if a user enters a keep
command to create new versions of 12 files, a single transaction records all 12 versions. What if
something goes wrong (for example, a network failure) while AccuRev is processing those 12
files? The entire transaction is cancelled, and no new version is created. The term atomic
describes this “all or nothing” aspect of AccuRev transactions.

The atomicity of transactions makes life simpler for the user. He never needs to worry about how
to finish up the work of a partially-successful command. If a command fails, he just fixes the
problem that caused the failure and executes the command again. Atomicity also means that
AccuRev’s view of the various changes applied to the repository matches the user’s view.

Note: AccuRev does not record every change in a transaction. Keeping a new version is
recorded in a transaction, as is promote’ing an existing version to a higher-level stream. But
no transaction is recorded when you change the location of a workspace.

Transactions are Immutable

Once a transaction is recorded in the metadata stored for the depot, it’s there permanently. There
is no way to revise or delete an existing transaction — the transaction is immutable. This property
is essential to successful configuration management. Users must be able to recreate previous
configurations with absolute reliability. The immutability of transactions means that users can
reproduce any previous configuration, not just a few configurations that they happened to “label”.

AccuRev does make it easy to undo the effect of a transaction. For example, the revert command
reinstates an old version of one or more elements. But this is accomplished by recording an
additional transaction, not by removing any existing transaction.

AccuRev Concepts Manual 31

Transactions and Workspaces

This section describes how AccuRev uses a depot's transaction history to efficiently manage the
contents of the depot's workspaces.

Over time, the version-controlled elements in a workspace change in two ways: you modify
certain files yourself, using text editors and other development tools; and you periodically use the
update command to get copies of the files that your colleagues have modified. Accordingly, at
any given moment the version-controlled elements in a workspace fall into two categories:

* Files placed in the workspace by the ‘update’ command. All of these files are unmodified
copies of the versions in the workspace’s backing stream at the time of its most recent update.
Some of these files may have been placed in the workspace during previous updates.
Typically, some files are copied into the workspace when it is originally created and are never
touched thereafter, because no new versions of the files are ever created in the backing stream.

AccuRev records the fact that the workspace is up-to-date as of the transaction that most
recently precedes the time of the update. (This is completely accurate — no new versions
could have been created between that transaction and the update.) This transaction is called
the current update level of the workspace.

» Files that you’ve worked on in the workspace. These are files that you’ve modified (or
newly created), and whose changes you’ve preserved with the keep (or add) command. You
may also have promote’d the latest version you created to the workspace’s backing stream.

AccuRev can quickly fulfill a request to update the workspace, because it doesn’t need to
consider every file in the depot. Instead, it needs to process only the files that have gotten new
versions since the workspace’s last update that are visible in the workspace’s backing stream. It
accesses these versions by examining the set of transactions between the workspace’s current
update level and the most recent transaction. When the update is complete, the most recent
transaction becomes the workspace’s new update level.

Transactions and Issue Management

The atomicity of transactions makes it efficient to implement the integration between AccuRev’s
basic version-control facility and its issue-management facility (AccuWork). Suppose a particular
AccuWork issue record contains a bug report. When you fix the bug by modifying five files,
you’ll want to note this fact in the issue record. AccuRev can simply note the single promote
transaction that placed the fixed versions of the five files in the backing stream. Alternatively, you
can have AccuRev keep track of the individual versions in the issue record; in this case, the issue
record acts as a change package, recording all the versions that were created to implement a
particular bugfix or new feature.

AccuRev Concepts Manual 32

AccuRev/AccuWork Change Packages

Any version-control system must be able to keep track of the changes that developers make to
individual files. A full-fledged configuration management system, like AccuRev, should be able
to handle questions like these:

“What were all the changes made to source files in order to fix bug #457?”

“Have all the changes made to fix bug #457 been handed off to the QA Group” (That is, have
the appropriate versions been promoted to the QA stream?)

AccuRev can handle such questions through its change package facility. (Change packages are
available in the AccuRev Enterprise product only.)

Structure of a Change Package
A change package is a collection of element versions; for example:

version kestrel dvt_jjp/13 of element /./src/brass.c
version kestrel_dvt_jjp/14 of element /./src/brass.h
version kestrel_dvt_jjp/16 of element /./sr¢/commands.c

The basic idea is that this set (or “package”) of versions contains all the changes required to
implement a certain development project. But we need to refine this idea. Consider that version
14 of brass.h probably contains more than just the changes for that development project. For
example:

* Versions 1-7 might have been created years ago, when the product was first developed
* Versions 8 and 9 might have been minor tweaks, performed last month
* Versions 10-14 are the only versions with changes for the development project in question

So we need a way to express the idea that only the “recent changes” to brass.h, those in versions
10-14, are to be included in the change package. AccuRev accomplishes this by defining each
change package entry using two versions: a user-specified head version and an older,
automatically-determined basis version The “recent changes” to be included in the change
package were made by starting with the basis version (version 9 in this example) and Keep’ing
one or more new versions (versions 10, 11, 12, 13, and 14 in this example).

In the AccuRev GUI, the head version of a change package entry is usually identified simply as
the “Version”.

Note: the Patch command uses the same “recent changes” analysis to determine which
changes in the “from” version are to be incorporated into the “to” version.

Where should the change package entry for brass.h be recorded? AccuRev already provides a
mechanism for keeping track of development activities: the AccuWork issue-management facility.
Each task — fixing a bug, creating a new feature, etc. — is tracked by a particular AccuWork
issue record. So it makes sense to implement change packages using issue records.

AccuRev Concepts Manual 33

Each issue record includes a Changes section that acts as an “accumulator” for versions’ changes.
Here’s how the above example of a change package would appear in an issue record’s edit form:

Basics | Assignment | Misc | Atkachments | Resalution Changa‘&-, Issue Histary:
b | W B S . head version

Mame ! ;In Foalder |Version 'f |E-asrs 'L-'ersi-:m
& brass.c src| 5/13 5110

zl chap03.doc (1doch, 511 417

) tools.readme (ikools) 5/9 (123

This change package has entries for three elements:

» brass.c: The basis version, 5/10 was created in the user’s own workspace. This indicates that
the user promoted 5/10 to the backing stream. AccuRev assumes that this change was for
another task, not the one covered by this issue record. Then, the user turned his attention to the
current task, creating additional versions up to and including 5/13, the head version.

» chap03.doc: This change began when the user updated his workspace, bringing in version 4/7
of the element (which had originally been created in another workspace, then was promoted to
the backing stream). Then, the user created one or more versions in his own workspace, up to
and including version 5/11, the head version.

* tools.readme: Similarly, this change began when the user updated his workspace, bringing in
version 12/3, originally created in another workspace. The user created one or more versions
in his workspace, ending with version 5/9, the head version.

Each change package can include at most one entry for a given element. This rule helps to ensure
that the changes in a given change package are consistent with each other. See Updating Change
Package Entries on page 36.

Creating Change Package Entries

AccuRev can record change package entries automatically, whenever the Promote command is
invoked in a workspace. For example, suppose issue record #3 represents a particular bug (and its
fix). Whenever a developer promotes one or more versions whose changes address that bug, he
specifies issue #3 at a prompt. AccuRev automatically creates a change package entry in issue #3
for each promoted version.

Automatic recording of change package entries is enabled through the change-package-level
integration between AccuRev configuration management and AccuWork issue management. For
more on both these integrations, /ntegrations Between AccuRev and AccuWork on page 92 of the
AccuRev Administrator’s Guide.

AccuRev Concepts Manual 34

Also, you can manually add entries to a change package: >

. are
right-click a version in the File Browser, Version —
Browser, or History Browser, and then select the Send o g= —

Issue command from the context menu. The selected commands.c Open

version becomes the head version of the change package Wi

entry; AccuRev automatically determines the Save As, ..

corresponding basis version. As the examples above [y Edit

suggest, AccuRev uses an algorithm that determines the _

set of “recent changes” to the element, made in a single

workspace. E" Keep

In the Version Browser, a variant command, Send to

Issue (specifying basis), enables you to pick the basis Bi: Derunct

version, rather than allowing AccuRev to determine it ——

automatically. R
Mew K

You can also invoke the Send to Issue command on the
Changes tab of an issue record. This copies an existing
change package entry to a different change package (issue
record).

2 Send To Issue

E . Properties

Complex Change Package Entries

All change package entries are recorded in terms of real versions (those created in users’
workspaces), even though there may be corresponding virtual versions (created by promoting the
real versions from workspaces to dynamic streams). In all the examples shown above, each
change package entry is a series of consecutive real versions created in the same workspace —
that is, each change package entry records a particular patch to the element.

But the change package facility can also track ongoing changes to elements — changes made at
different times, and in different workspaces. To support this capability, AccuRev defines a change
package entry in a more general way than a patch:

A change package entry for an element consists of all the real versions in the element’s
version graph between a specified basis version and a specified head version. Between-ness is
determined both by direct predecessor-successor connections (created, for example, by Keep)
and by merge connections (created by Merge). Patch connections are not considered in this
determination; the basis version itself is not part of the change package entry.

The following Version Browser excerpts show the range of complexity that a change package
entry can have. In fact, these excerpts show how the same change package entry can change over
time, becoming more complex.

AccuRev Concepts Manual 35

head
Version

basis / change package
version 17 |—| 18 |—| 19 |L

EER =]
bhasis R d,,f"f hP:ad
version IE R version

head

basis | {et{ol—fu {1 T g version
version e e .
s {7] --|.'|-|

S

These illustrations suggest the following definition for a change package entry, which is
equivalent to the definition above:

A change package entry for an element consists of the element’s entire version graph up to the
specified head version, minus the entire version graph up to the specified basis version. For
these purposes, the version graph includes direct predecessor-successor connections and
merge connections, but not patch connections.

Updating Change Package Entries

When you want to create change package entry for a particular element, but an entry for that
element already exists in the change package, AccuRev attempts to combine the new entry with
the existing one. (Recall that there can be at most one entry for a given element in a given change
package.) This produces an updated entry that includes all the changes.

A Little Bit of Notation

To help explain how AccuRev performs “change package arithmetic” to combine and update
entries, we’ll use a simple notation. Suppose a change package entry contains the set of an
element’s versions defined by these specifications:

the head version is H
the basis version is B

We’ll use the ordered pair [B,H] to indicate this change package entry.

AccuRev Concepts Manual 36

Combining Two Change Package Entries

Now, suppose a new change is to be combined with the existing change package entry [B,H].
There are several cases, each handled differently by AccuRev:

Case 1: [B,H] + [H,X] — This simple case typically arises when you think you’re done with
a task and record your work as change package entry [B,H] — but it turns out that more work
on the same element is required. So you (or a colleague) start where you left off, with version
H, and make changes up to version X. Then, you want to incorporate the new set of changes
[H,X] into the same change package.

original changes [B,H] new changes [H,X]

version B version H version X

In this case, it’s clear that the two series of changes can be viewed a single, uninterrupted
series — starting at version B and ending with version X. That is:

[B,H] + [H,X] = [B,X]

Accordingly, AccuRev updates the change package entry automatically — keeping B as the
“Basis Version” and changing the “Version” from H to X.

Case 2: [B,H] + [J,X] (where H is an ancestor of J: “change package gap”) — This case
typically arises when you do work on a task at two different times, and someone else has
worked on the same element in between.

original changes [B,H] new changes [J,X]

version B wversion H Version .J version X

In this example, a colleague updated her workspace to bring in your original changes, created
versions 9 and 10 in her workspace, and promoted her changes. You then updated your
workspace to bring in her changes, and made a new set of changes.

AccuRev Concepts Manual 37

When AccuRev tries to combine the change [B,H] and the change [J,X] into a single change
package entry, it detects that version H and version J are not the same, but that H is a direct
ancestor of J. Thus, there is a simple “gap” in the potential combined change package entry
(in this example, consisting of your colleague’s versions 9 and 10).

Probably, your colleague was not working on the same task when she made her changes. (If
she had been, she would have added her changes to the same change package, as in Case 1.)
On the other hand, it’s probably OK to include the entire, uninterrupted series of versions
[B,X] in your change set — this includes both your original changes and your new changes
(and, harmlessly, your colleague’s changes, too).

Accordingly, AccuRev can “span the gap” between the two change set entries, in order to
create a single, combined entry.

Case 3: [B,H] + [K,X] (where H is not an ancestor of K: “change package merge required”)
— This case typically arises when developers in workspaces that do not share the same
backing stream try to use the same change package. There is no simple “gap” between the
existing change package entry and the new one — which means there is no way to combine
them into a single change package entry, according to definitions in Complex Change
Package Entries on page 35.

original changes [B,H] new changes [K,X]

version B version H

version K version X

AccuRev signals this situation with a “change package merge required” message, and cancels
the current operation. You can remedy this situation by performing a merge at the element
level. (There is no merge operation defined at the change package level.) In the example
above, merging version H and version X would create a new version; a change package entry
with the new version as its head can be combined with the existing entry.

AccuRev Concepts Manual 38

AccuRev Glossary

3-way merge

The kind of algorithm that AccuRev uses to combine the contents of two versions
(contributors) of a text-file e/lement: it compares the two files line-by-line with a third version,
the closest common ancestor of the contributors.

access control list

A data structure that controls the rights of one or more users, or groups of users, to access the
data within a particular depot or stream.

access mode

(UNIX/Linux only) The standard set of permissions (user/group/others, read/write/execute),
as they apply to a particular file e/ement.

AccuRev home directory

A subdirectory, named .accureyv, of your operating-system home directory (or of the directory
specified by environment variable ACCUREV_HOME). This subdirectory stores your
preferences file and other AccuRev configuration files.

AccuRev Server

The program that manages the AccuRev repository and handles commands issued by
AccuRev client programs.

ACL

A set of entries (“permissions”) that controls the rights of individual users or user groups to
access the data within a particular depot or stream.

active

An element is said to be active in a workspace or stream if a new version of the element has
been created there, and that version has not been either (1) promoted to the parent stream or
(2) purged from the workspace or stream. An issue record is said to be active in a workspace
or stream if the /ead version of one or more of its change package entries is in the stream's
default group. See default group, backed, passive.

add

The operation that places a file or directory, located in a user’s workspace tree, under version
control.

ancestor

In the version graph of an e/ement, version A is an ancestor of version B is there is a direct line
of descent (possibly including merges) from A to B. See predecessor (or direct ancestor). “A
is an ancestor of B” is equivalent to “B is a descendant of A”.

AccuRev Concepts Manual 39

ancestry
The entire set of versions of an element. See version graph.
anchor

A “checkout”-type operation, which declares that a file e/ement is under development in the
current workspace. AccuRev records the fact that the element is “active” by adding it to the
workspace’s default group. With exclusive file locking, anchoring a file in one workspace
prevents it from being made active in sibling workspaces.

anchor-required

An optional setting on a workspace, specifying that the workspace’s file e/ements are to be
read-only until the user performs a c/eckout operation (GUIL: Anchor command; CLI: anchor
or co command).

anyuser

A security-related keyword: describes the set of users who do not have passwords. See
authuser.

archive

An operation that transfers the storage files for one or more versions from a depot’s file
storage area to its gateway area. After the archived storage files are copied to off-line storage,
the disk storage within the gateway area can be rec/aimed.

atomic

An important characteristic of AccuRev transactions: the entire transaction (including all
specified files) must be performed successfully; if not, the entire transaction is cancelled, as if
it were never attempted.

authuser
A security-related keyword: describes the set of users who have passwords. See anyuser.
backed

An element has “backed” status in a workspace or stream if it is not currently active there.
This means that the workspace/stream in/erits the version of the element that is currently in
the workspace/stream’s parent stream (also called the hacking stream).

backing chain

The “path” (sequence of streams) through the depot’s stream hierarchy, leading from a
particular workspace or stream up to the depot’s root stream.

backing stream

(“parent stream”, “basis stream’’) The stream that is just above a given workspace or stream in
a depot’s stream hierarchy. The given workspace/stream inherits versions from the backing
stream.

AccuRev Concepts Manual 40

base rule

The include/exclude rule that makes the top-level directory of a depot appear in the depot’s
root stream.

base stream
(“root stream’) The top-level stream in a depot’s stream hierarchy.
basis stream

(“parent stream”, “backing stream’) The stream that is just above a given workspace or
stream in a depot’s stream hierarchy. The given workspace/stream inherits versions from the
basis stream.

basis time

A date-timestamp setting for a stream, affecting which versions the stream inherits from its
parent stream: for each element, the version inherited is the one that was in the parent stream
at the basis time. See snapshot.

basis version

A particular ancestor of the version specified in a patch, revert, diff, or co command. The
series of versions between the basis version and the specified version constitute the “recent
changes” to be patched into (or removed from) the target. Similarly, a ciange package entry
consists of all the versions between a specified basis version and a specified head version.

binary
See element type.
change package

A set of entries, each in the form of a basis version/head version pair, recorded on the
Changes tab of an issue record. The change package records the changes to one or more
elements, made to implement the feature or bugfix described in that issue record. Each entry
in the change package describes changes to one element: the changes between the basis
version and the head version. See patch.

change package dependency

A relationship between the change package of an issue record (A) and the change packages of
one or more other issue records (B,C,D, ...), expressing the fact that promote’ing A would also
cause some or all of the changes in B,C,D, ... to be promoted.

Change Palette

The AccuRev GUI tool that enables users to perform merge and promote operations involving
any streams, not just a workspace and its parent stream.

change section

In a text-file merge (or patch) operation, a location where the two contributors being merged
differ from each other. The Merge tool highlights and counts the change sections. It also tracks

AccuRev Concepts Manual 41

the conflicting changes (conflicts) — the subset of change sections in which both contributors
differ from the closest common ancestor. Conflicts must be resolved by human intervention.
See difference section.

checkout

An operation that makes a file active in a workspace, without recording any new changes to
the file in the repository. In an exclusive file locking or anchor-required workspace, a
checkout transitions the file from read-only to writable.

checkpoint

Stopping to save a version of an element, then proceeding to make additional changes to the
element.

client program

An AccuRev CLI or GUI program through which users submit commands to be executed by
the AccuRev Server.

closest common ancestor

(of two versions of an element) The most recent version that is an ancestor of two specified
versions. Used in a merge operation to minimize the amount of work required to combine the
contents of the two specified versions. See merge, version graph.

coalesce

If a promote-by-issue operation (a standard child-to-parent promote, not a cross-promote)
involves multiple issues whose change packages include the same element, AccuRev attempts
to combine those entries into a single, valid change package entry. If the element’s change
package entries cannot be coalesced (caused, for example, by a “gap”), the promote operation
fails.

If this occurs, proceed as described in section Cross-Promoting Issues to a Non-Parent Stream
— Patch Required in AccuRev Technical Notes.

concurrent development

(“parallel development”) The practice of having two or more users concurrently work on the
same project — modifying the same version-controlled e/ements. See serial development.

configuration

A set of element versions — one version of each element. Typically, the set of versions
currently in a particular workspace or stream.

conflict

See conflicting change.

AccuRev Concepts Manual 42

conflicting change

The situation in which both contributors to a merge operation differ from the closest common
ancestor at the same text line (or set of lines). Also, the situation in which both contributors
have pathnames that differ from the closest common ancestor, and from each other.

container file

The ordinary file, located in the file storage area of the AccuRev repository, that contains the
permanent copy of a version created in a workspace with the keep command.

content change

A change to the contents of a file e/ement, recorded in a new version created with the keep
command. For a symbolic-link element, a change to the target pathname is a content change.
For an element-link element, a change to the target element is not considered a content change
to the link. See namespace change.

contributor

Either of two versions of an element, which are to be combined in a merge operation,
producing a new version of the element. This can involve both content changes and
namespace changes.

cross-link

An include/exclude mode operation (“Include from Stream” or incl —b) that includes an
element in a workspace or stream, specifying an alternative hacking stream for that element.
Cross-linking a directory also cross-links the entire subtree below it. Cross-linked elements
have (xlinked) status.

cross-promotion

A promote operation that propagates one or more versions from a dynamic stream to another
stream that is not its direct parent. See parent stream.

current change
See current difference.
current depot

CLI: the depot associated with the workspace that contains current working directory. GUI:
the depot whose data appears in the currently visible GUI tab. The current depot’s name is
displayed in the status bar at the bottom of the GUI window.

current difference
The currently highlighted difference section (Diff tool) or change section (Merge tool).
current version

The version of an e/ement that currently appears in a particular workspace or stream. (It’s also
possible that a given workspace/stream might not contain any version of a given element.)

AccuRev Concepts Manual 43

The current version can be directly active in the workspace/stream; if not, it is inherited from
the parent stream. See passive.

current workspace

The workspace whose data is displayed in the current tab; or the workspace from which the
current tab was invoked.

cyclical

In a change-package dependency display, refers to the situation in which issue A depends on
issue B and issue B depends on issue A.

deep overlap, deep underlap

An overlap or underlap that is not in the current workspace or stream, but in the parent stream
or another stream higher up in the stream hierarchy.

default group
The set of e/lements that are currently active in a particular workspace or stream.
default query

An AccuWork query that you’ve designated to be executed automatically in certain situations:
when you open a new Queries tab; when AccuRev prompts you to specify one or more issue

records in a co command; when you execute promote and an AccuRev/AccuWork integration
is enabled.

defunct

A particular kind of change to an e/ement in a workspace or stream: that the element is to be
deleted. The element disappears from the workspace or stream. Somewhat counter-intuitively,
it also becomes active in the workspace or stream, because defuncting is a change that can be
promoted to the parent stream (or can be undone with a purge operation). A defunct operation
is originally recorded as a new version of the element in some workspace. Promoting this
version up the stream hierarchy causes the element to disappear from the higher-level streams.

dependency
See change package dependency.
depot

The portion of the AccuRev repository that stores the entire history of a particular directory
tree. See element, version.

depot-relative pathname

A pathname that begins with /./ (UNIX/Linux) or \.\ (Windows), indicating the path from the
top-level directory of a depot to a particular e/ement.

descendant

See ancestor.

AccuRev Concepts Manual 44

diff
An operation that compares the contents of two versions of a text-file element.
difference section

In a text-file-comparison operation, a location where the two files (or two versions of the same
file) differ from each other. The Diff tool highlights and counts the difference sections. See
change section.

direct ancestor
See predecessor.
direct

An issue record is “in” a stream indirectly if its versions were propagated to the stream with a
promote-by-issue operation (a cross-promote, not a standard child-to-parent promote).

Any other kind of promotion causes an issue record to be “in” a stream directly.
directory

(“folder”) A file system object that can contain files and other directories. Each version of a
directory records a change to its name and/or pathname location in the depot’s directory
hierarchy.

directory link
This term is no longer used. See e/lement link and symbolic link.
double vision

The appearance of two or more versions of an element in the same workspace or stream, each
version at a different pathname. This is a possible side-effect of cross-/inking the element (or a
higher-level directory).

dynamic stream

A stream whose configuration changes over time, with new versions promoted from child
workspaces and/or from other dynamic streams. It also inherits versions from its parent
Stream.

edit-by-diff

The Diff tool feature enables you to edit your workspace’s version of an element while you’re
comparing it with another version.

edit form

(AccuWork) A fill-in-the-blanks form for displaying and changing the field values of issue
records.

EID

See element-1D.

AccuRev Concepts Manual 45

element
A file or directory that is under AccuRev version control. See version.
element-1D

The unique, immutable integer identifier by which AccuRev tracks the changes to a particular
file element or directory element. An element’s name or pathname can change, but its
element-ID never changes.

element link

(element-link element) An e/ement whose contents is a pointer to another element, which
must be in the same depot. The target element can be a direcfory element, a file element,
another element link, or a symbolic link.

element type

The kind of data stored in versions of a file e/ement. Different versions of the same element
can have different element types. Three element types exist: text, ptext, and binary. Text and
binary are relatively self-explanatory, but ptext is a special case. When AccuRev copies a text
file from the repository to a workspace (such as through an update or pop command), it gives
it line terminators appropriate for the machine where the workspace exists. Binaries are
copied exactly as they exist in the repository. However, if you declare a text file to be a ptext
file, it will be copied to and from the repository with no line termination changes, just like a
binary. For more information, see the description of the add command in the AccuRev CLI
User's Guide.

exclude rule
See include rule.
exclusive file locking

An AccuReyv feature that enforces serial development: when a file becomes active in one
workspace, an exclusive file lock prevents the file from becoming active in sibling
workspaces.

executable bits

(UNIX/Linux only) The data items in a file’s access mode that controls the ability of users to
invoke the file as an executable program.

external

A file or directory that is located within a workspace tree but has not been placed under
version control has “external” status.

File Browser
The Explorer-like tool in the AccuRev GUI that shows the contents of a workspace or stream.
file link

This term is no longer used. See e/lement link and symbolic link.

AccuRev Concepts Manual 46

file storage area

The portion of a depot in which AccuRev maintains a permanent copy (“storage file”) of each
newly created file version. See metadata.

filter
Same as an AccuRev search. See also stream filter, user/group filter.
folder

(“directory”) A file system object that can contain files and other folders. Each version of a
folder records a change to its name and/or pathname location in the depot’s folder hierarchy.

from version

One of the contributor versions in a merge operation. In a typical merge, it’s the version in the
parent stream that is to be combined with the version in the user’s workspace.

gateway area

A directory with a depot’s slice, but outside the depot’s file storage area, where version
container files are staged for offline archiving. The gateway area is also used to restore
archived versions’ storage files.

group

A named set of AccuRev users. Each user can belong to multiple groups, and groups can be
nested.

head version

The version of an e/ement that, along with a basis version, specifies that element’s entry in a
change package. Equivalently, the head-version/basis-version pair specifies a patch to that
element.

header section

(AccuWork) The section of a multiple-page edit form that always remains visible as you
switch from page to page.

History Browser

The AccuRev GUI tool that displays the set of rransactions that affect a particular data
structure: depot, stream, file, etc.

immutable

The “permanence” property of an AccuRev transaction: the transaction cannot be deleted or
modified in any way.

include rule

User-defined include rules and exclude rules specify which elements are to appear in a given
stream or workspace. Rules can apply to individual files or directories, or to entire directory

AccuRev Concepts Manual 47

trees. Rules for a stream are inherited by its subsidiary streams and workspaces, but can be
overridden at lower levels.

include/exclude

The facility of streams and workspaces that enables users to specify which elements are to
appear. See include rule.

incomplete

This term has the same meaning in a change-package dependency situation as in the Stream
Issues tab: some, but not all, of an issue’s change package entries are “in” the stream.

indicator

See status indicator.
indirect

See direct.
inherit

The facility by which versions in higher-level streams automatically propagate to lower-level
streams. If an e/ement is not currently active in a stream or workspace, the stream/workspace
inherits the version of the element that appears in its parent stream.

invisible
Describes a data structure that has been deactivated (remove command), and so does not
appear in default GUI displays or CLI listings.

issue record

(AccuWork) A set of data, consisting of fields and values, which represents one AccuWork
issue in the current depot. Each issue record implements a bug report, feature description, etc.

issue schema

(AccuWork) The set of specifications that define the structure of issue records in a depot: data
fields and their value types/ranges, edit-form layout, field validations.

keep

The operation (keep command) that creates a new version of a file element in a workspace,
permanently recording that version in the AccuRev repository.

kept
Refers to a version that has been created with a keep operation.
lock (dynamic stream)

A control on the ability to perform promote and include/exclude operations involving the
Stream.

AccuRev Concepts Manual 48

lock (file element)

A control on the file e/ement, requiring (1) users must anchor the file before editing it, and (2)
if a user has anchored the file, users in sibling workspaces cannot anchor or edit the file.

login

Establishing a particular user identity (“username”) with the login command. The username
must have been created previously. AccuRev licenses specify a maximum number of
currently-active usernames.

master repository

The primary data repository that logs all transaction activity processed by the AccuRev
master server. All storage depots are created in the master repository, from which they can
later be replicated.

master server

The instance of the AccuRev Server process that handles all /ransactions that change the
status of e/ements in the master repository. Only the master server can write data to the
repository. See replica server.

member

An element has member status in a workspace or stream if one of its versions is in the default
group of that workspace or stream. An element with member status is said to be active in that
workspace or stream; otherwise, it’s passive.

merge

An operation that combines the contents of two versions (contributors) of the same element.
To merge the contents of text files, AccuRev uses a “3-way merge” algorithm: it compares the
two files line-by-line with a third file, the version that is the closest common ancestor of the
other two. Merging of namespace changes also takes into account the closest common
ancestor.

metadata

Information stored in the AccuRev repository other than the contents of file versions.
Metadata is stored in the repository database; file contents are stored in the file storage area.

modified

A file element has “modified” status in a workspace if the file’s contents have changed since
the last time the user kept a new version of the file or updated the entire workspace.

multiple-columns mode

The mode of a table displayed by the AccuRev GUI in which you can define a hierarchical
sort order for the rows, using the values in two or more of the table’s columns. See single-
column mode.

AccuRev Concepts Manual 49

namespace change

A change to the pathname of a file or directory e/ement: either renaming the element in place
or moving the element to a different location in the depor’s directory hierarchy.

non-conflicting change

In a merge operation, a change that occurs in just one contributor (not both of them). Such a
change can be merged automatically, without requiring a decision from the user.

optimization

A heuristic algorithm that AccuRev uses to speed the performance of certain operations on
users’ workspaces. In the timestamp optimization, AccuRev ignores files created/modified
before the workspace’s most recent scan threshold. In the pathname optimization, AccuRev
ignores files whose pathnames match a pattern specified in environment variable
ACCUREV_IGNORE_ELEMS. See search.

overlap

Version X, in a workspace or stream, has “overlap” status if the parent stream’s current
version of the element contains changes that are not reflected in version X. (That is, the parent
stream’s version is not an ancestor of version X.) Such a version cannot be promoted to the
parent stream; the user must create a new version with a merge operation, combining version
X with the parent stream’s version. The new, merged version can then be promoted. Similarly,
an overlap can exist between the versions in two dynamic streams. See deep overlap, deep
underlap, underlap.

parallel development

(“concurrent development”) The practice of having two or more users concurrently work on
the same project — modifying the same version-controlled e/ements. See serial development.

parent stream

(“backing stream”, “basis stream’) The stream that is just above a given workspace or stream
in a depot’s stream hierarchy. The given workspace/stream inherits versions from the parent
stream.

pass-through stream

When a version is nominally promoted to pass-through stream X, the version automatically
“passes through” X: it is actually promoted to the parent stream.

passive

An element that is not active in a workspace or stream 1is said to be passive in that workspace
or stream. Passive versions can be overwritten by an update operation.

patch

A set of versions of a text-file element -- typically, containing the “recent changes” made in
one workspace. Also, the merge-like operation that incorporates those changes into another

AccuRev Concepts Manual 50

version of the same element. See merge, basis version, head version, change package, reverse
patch.

pathname optimization

One of AccuRev’s optimizations, which improves the performance of workspace searches to
determine the status of e/ements.

pending

An element has “pending” status in a workspace if the version in the workspace has changes
that have not yet been promoted to the parent stream. The set of pending elements includes
both kept elements and modified elements.

permission
See ACL.
predecessor

(direct ancestor) The real version from which a given version was derived. A version and its
predecessor are not necessarily located in the same workspace stream. In the Version Browser,
a version and its predecessor are connected by a black line. (Exception: a version created by
the revert command is connected to its predecessor by a dashed blue line.)

preferences file

An XML-format file, named preferences.xml, stored in the .accurev subdirectory of your
AccuRev home directory.

principal-name
The username of an AccuRev user, recorded in the AccuRev repository.
private query

(AccuWork) A guery that appears in the Queries pane only for the user who created it. See
public query.

promote

The operation (promote command) that transitions a version from being active in one
workspace or stream to being active in the parent stream (or some other stream). This
operation creates a new virtual version in the parent stream; the virtual version provides an
alias for the real version, which was originally created in some user’s workspace. See version.

ptext
See element type.
public query
(AccuWork) A query that appears in the Queries pane for all users. See private query.

AccuRev Concepts Manual 51

purge

The operation (CLI: purge command; GUI: Revert to Backed command) that discards the
changes made to an e/ement in a given workspace or stream.

query

A set of search criteria that selects AccuWork issue records, based on the records’ field values.
Within each depot containing issue records, one of the queries designated as the default query,
to be invoked automatically in certain situations calling for the user to specify one or more
issue records.

real version

A version of an element, created in some user’s workspace, recording a change to the
contents, type, and/or pathname of the element. See version, virtual version.

recent changes

A set of versions of a particular file e/ement; representing the changes made to accomplish
some task (or any set of related changes). The recent changes start with the current version (or
another selected version), termed the /iead version; they extended backward to (but do not
include) the corresponding basis version.

reclaim

An operation that deletes archived storage file from a depot’s gateway area, to reduce the
amount of disk storage required for the depot’s s/ice.

reference tree

A directory tree in users’ disk storage that instantiates a particular dynamic stream or
snapshot. It contains a copy of the current version of each e/ement in the stream or snapshot.
A reference tree based on a dynamic stream can be updated, to incorporate the stream’s recent
changes.

reparent
The operation that changes the parent stream of a particular workspace or stream.
replica repository

A copy of part or all of the contents of the master repository that must be resynchronized
regularly to remain current. New transaction records are written to the master repository only,
making resynchronization necessary.

replica server

The instance of the AccuRev Server process that is associated with a replica repository on the
same machine. It can directly service client programs’ repository-read requests, but forwards
repository-write requests to the master server.

AccuRev Concepts Manual 52

repository

The directory tree and database, which together store all software configuration management
data managed by AccuRev. This data is maintained by the AccuRev Server, responding to
requests made through AccuRev client programs. Users never manipulate the repository
directly.

repository database

The portion of the repository that stores data other than the contents of e/ement versions. See
file storage area.

reverse patch

An operation that removes a selected set of changes from the current version of a text-file
element. See patch, change package.

revert

An operation that “removes” a selected set of changes from a specified version, by creating a
new version that does not contain the change.

root stream
(“base stream”) The top-level stream in a depot’s stream hierarchy.
scan threshold

The time at which a workspace’s most recent search for modified files was initiated. Such
searches are performed by the update and files commands, and by certain forms of the stat
command. In the GUI, several of the File Browser searches include a search for a workspace’s
modified files. See update level.

SCM
Acronym for software configuration management.
search

An operation that determines all the e/ements in a workspace or stream that have a particular
status.

serial development

The practice of ensuring that multiple #sers do not work concurrently on the same file under
version control. See parallel development.

server
See AccuRev Server.
session file

A file in the .accurev subdirectory of your home directory, which establishes your user
identity for a particular AccuRev Server.

AccuRev Concepts Manual 53

sibling

Two or more workspaces or streams that have the same parent stream. Pass-through streams
“don’t count” -- that is, all workspaces that promote versions to the same stream are
considered siblings, even if some of them are direct children of the stream, while others are
children of an intervening pass-through stream.

single-column mode

The mode of a table displayed by the AccuRev GUI in which the rows are sorted on the values
in one of the table’s columns. See multiple-columns mode.

site slice

The subdirectory tree within the AccuRev repository that stores repository-wide information
(such as AccuWork configuration data, workflow configuration data, server preferences, and
triggers). By default, the top-level directory of this subtree is named site_slice. See repository
database.

slice

The subdirectory tree that contains the depot’s file storage area. By default, the top-level
directory of this subtree has the same name as the depot itself.

snapshot

29 <¢

An immutable (“frozen”, “static”) stream that captures the configuration of another stream at
a particular time. A snapshot cannot be renamed or modified in any way.

stage
See workflow stage.
stale

An element has “stale” status in a workspace if it is not currently active in the workspace, but
a new version of the element has entered the parent stream. An update operation will
overwrite the stale version with the parent stream’s new version.

static stream

An AccuRev snapshot. The term “static stream” emphasizes the fact that snapshots are part of
a depot’s stream hierarchy.

status

The state of an e/lement, from a version control perspective, in a particular workspace or
Stream.

status indicator

A keyword (usually enclosed in parentheses) that reports the AccuRev-level starus of a
particular e/ement in a particular workspace or stream. Commonly, multiple status indicators
apply to an element.

AccuRev Concepts Manual 54

storage file
See container file.
stranded

An element has (stranded) status in a workspace or stream if it’s currently active, but cannot
be accessed through the file system. This can occur in several situations:

* There is no pathname to the element, because the element’s directory (or a higher-level
directory) was removed from the workspace or stream by the defiinct command or an
exclude rule.

* (dynamic stream only) There are one or more defunct elements at a given pathname, along
with one non-defunct element. The defunct element(s) have (stranded) status.

* The element’s directory (or a higher-level directory) is cross-/ink’ed, making another
version appear at the pathname of the active version.

stream

The AccuRev data structure that implements a configuration of the elements in a particular
depot. The configuration of a dynamic stream changes over time; the configuration of a
snapshot (static stream) never changes. Each workspace has its own private workspace
stream. See workspace, stream hierarchy, stream path.

stream-ID

An integer that uniquely identifies a stream, snapshot, or workspace with its depot. Changing
the name of a stream or workspace does not affect its stream-ID.

stream filter

A list of streams, which is used to define a subset of a depot’s stream hierarchy that includes
the stream path and all children of each stream in the filter. This subset is used to build the
StreamBrowser display and populate lists of streams in the AccuRev GUI as long as stream
filtering is in effect.

stream hierarchy

The tree-structured collection of streams — including snapshots and workspace streams —
for a particular depot.

stream lock
See lock (dynamic stream).
stream path

A sequence of streams that starts at the roof stream and ends at the stream being referenced.
See also stream.

AccuRev Concepts Manual 55

StreamBrowser

The GUI tool that provides both graphical and tabular view of a depot’s stream hierarchy. It
has commands for comparing streams, promote’ing versions between streams, and other
stream-based operations.

symbolic link

(symbolic-link element) An e/ement whose contents is a pathname. The pathname can point to
AccuRev data (that is, a location inside a workspace) or non-AccuRev data.

target
element link, symbolic link: the file system location that the link points to.
target transaction

The most recent transaction at the time of a workspace’s most recent update. The update
command attempts to load versions created in transactions up to and including the target
transaction.

text
See element type.
time-based stream

A stream that has a basis time, aftecting which versions it inherits from its parent stream.
Unlike a snapshot, the basis time can be changed.

time-spec

A specification of a particular date/time combination, used in various contexts: creating
snapshots, viewing portions of the history of an e/ement, etc.

TimeSafe

The aspect of AccuRev’s architecture that guarantees the reproducibility of any previous
configuration of a stream, a depot, or the entire repository.

timestamp optimization

One of AccuRev’s optimizations, which improves the performance of workspace searches to
determine the status of e/ements.

timewarp

A situation in which the discrepancy between a client machine’s system clock and the
AccuRev Server machine’s system clock exceeds the allowable limit.

to version

One of the contributor versions in a merge operation. In a typical merge, it’s the version in a
user’s workspace that is to be combined with the version in the parent stream.

AccuRev Concepts Manual 56

transaction

A record in the AccuRev repository database that indicates a particular change: promoting of
a set of versions, changing the name of a stream, modification to an issue record, etc. Each
transaction has an integer transaction number, which is unique within the depor.

transaction-level integration

The AccuRev facility that records the ransaction number of a promote operation in a user-
specified AccuWork issue record. This facility is enabled on a depor-by-depot basis by a

trigger.
transaction history

The set of transactions related to a particular depot, stream, element, or other AccuRev data
structure that changes over time.

transaction level

The number of the most recently completed /ransaction for a particular depot. See update
level.

transition
See workflow transition.
trigger

The AccuRev facility that enables user-defined procedures (trigger scripts) to be performed
automatically before or after certain operations take place.

trigger script

The executable program that implements a user-defined procedure, to be invoked when a
trigger fires. Also called a trigger program.

twins, evil twins

Two or more e/ements with the same pathname in a dynamic stream. Example: (1) an element
is defuncted in a workspace, (2) the element is promote’d to the backing stream, (3) another
element is created at the same pathname in the same workspace or a sib/ing workspace, (4) the
new element is promoted to the backing stream.

undefunct

The operation (undefunct command) that undoes the effect of a previous defunct operation,
restoring a previously removed element back to a workspace. (The element must then be
promote’d to be visible to other streams.)

underlap

Similar to overlap: for both underlap and overlap, the version in the parent stream is not an
ancestor of your version. With an underlap (but not an overlap), your version is an ancestor of
the parent stream’s version; that is, the parent-stream version already contains all the changes

AccuRev Concepts Manual 57

in your version. Deep underlaps can occur in the stream hierarchy, just like deep overlaps. See
deep overlap, deep underlap.

update

The operation (update command) that copies new versions of elements into a workspace from
its parent stream.

update level

The most recent (highest-numbered) /ransaction whose changes have been incorporated into a
workspace, through an update operation. See scan threshold, transaction level, target
transaction.

user

A person who uses an AccuRev client program to access (read and/or change) the data in the
AccuRev repository. Access is granted only to those who /ogin with a “username” that was
previously registered in the AccuRev repository.

user/group filter

A subset of AccuRev users or groups, which is used to limit the data displayed in parts of the
AccuRev GUL

validation

(AccuWork) A rule, specified on the Validations subtab of the Schema Editor, that controls a
particular edit-form field. This can take various forms, including specifying a default value,
making a field required, and modifying the list of choices in a multiple-choice listbox. See
issue schema.

version

A particular revision of an e/ement, reflecting a content change (files only) or a namespace
change (files and directories). All versions are originally created in workspaces, and can
subsequently be promoted to dynamic streams. The original (workspace) version is termed a
real version. Each promotion to a dynamic stream creates a virfual version, which serves as an
alias for (pointer to) the original real version.

version-I1D

The unique identifier for a version, consisting of two parts: (1) the name or number of the
workspace or stream in which the version was created; (2) an integer. Examples:
talon_dvt_mary/14, 245\19.

Version Browser
The AccuRev GUI tool that displays the version graph of an element.
version control

The discipline of keeping track of the changes made over time to a file or directory.

AccuRev Concepts Manual 58

version graph

The directed-graph data structure that shows the ancestry of an element. The nodes are all the
versions of an element, and whose lines indicate how later versions were derived from earlier
versions. The Version Browser displays the version graph of an element.

version specification

Identifies a particular version of one or more e/lements. It can be a version-/D; in many
contexts, it can be a stream or workspace name/number, which indicates the version currently
in that stream/workspace.

version tools

AccuRev GUI tools that provide access to historical versions of elements. The Version
Browser provides easy access to all versions of an element. The History Browser provides
access to versions through the rransactions in which they were created. The Stream Version
Browser provides easy access to the version that currently appears in a given stream.

virtual version

In a dynamic stream, a version of an element, created by the promote command, which serves
as an alias for (reference to) a previously created real/ version. In a workspace stream, a
version created by the co or anchor command, referring to the real version that the command
“checked out”. See checkout.

workflow

A directed graph, defined in the Workflow subtab of the AccuWork Schema Editor. The
graph's nodes are the workflow stages that an AccuWork issue record can pass through. The
graph's arrows are the workflow transitions that users invoke to migrate issue records from
stage to stage.

workflow query

An AccuWork guery, automatically composed in the Stream Browser or a Queries tab, and
then executed in order to determine which issue records are “in” a particular workflow stage.

workflow stage

A node in an AccuWork workflow, representing one of the steps in the “lifetime” of an issue
record. See workflow transition.

workflow transition

An arrow in an AccuWork workflow, pointing to a particular workflow stage. This represents
one step that an issue record can take through the workflow. A transition has two components:
a transition action (such as “Finish Dvt”) and a workflow stage (such as “Implemented”) that
is the arrow's destination. Each workflow transition can be configured to start from any
number of stages.

AccuRev Concepts Manual 59

workspace

A location in which one or more users perform their work, using files under version control.
Each workspace consists of a workspace stream in the repository and a workspace tree in the
user’s disk storage.

workspace name

The name by which users refer to a workspace. A workspace name always ends with
_<principal_name>, to indicate the user who own its. The default workspace naming
convention, used by the mkws command, is <backing_stream_name>_ <principal name>.

workspace stream

The private stream that is built into a workspace. All new versions of elements are originally
created in workspaces; AccuRev records these versions in workspace streams.

workspace tree

The ordinary directory tree, located in the user’s disk storage, in which the user performs
development tasks and executes AccuRev commands.

AccuRev Concepts Manual 60

	Copyright
	AccuRev Concepts
	The AccuRev Data Repository
	Organization of the Repository
	Single Depot vs. Multiple Depots

	Inside a Depot: Versions and Files
	Versions of Non-File Objects
	Promotion: Real Versions and Virtual Versions

	Replication of the Repository
	Archiving Data and Removing Data

	What is a Software Configuration?
	Software Configurations and Development Tasks

	AccuRev’s Stream Hierarchy
	How Changes Migrate Through the Stream Hierarchy
	Inheriting Versions From Higher-Level Streams
	Pass-Through Streams
	The Include/Exclude and Cross-Link Facilities

	AccuRev Workspaces and Reference Trees
	Using a Workspace
	Putting Data Into the Repository
	Getting Data Out of the Repository

	The Workspace as a Stream
	Real Versions and Virtual Versions
	Active Files and the Default Group

	Updating a Workspace
	Variation #1: Workspace Based on a Snapshot
	Variation #2: Reference Tree
	Parallel and Serial Development
	Serial Development through Exclusive File Locking
	The Limited Effect of an Exclusive File Lock
	Anchor-Required Workspaces

	Getting Only the Files You Need: the Include/Exclude Facility
	Historical Note: Sparse Workspaces

	AccuRev Transactions
	Transactions are Atomic
	Transactions are Immutable
	Transactions and Workspaces
	Transactions and Issue Management

	AccuRev/AccuWork Change Packages
	Structure of a Change Package
	Creating Change Package Entries
	Complex Change Package Entries
	Updating Change Package Entries
	A Little Bit of Notation
	Combining Two Change Package Entries

	AccuRev Glossary

