AcCuRev

AccuRev®

Day-to-Day Usage of AccuRev

Version 5.4
January 2012

Revised 9-January-2012

10 Maguire Road, Building 1 Tel: 781-861-8700
Lexington, MA 02421 Fax: 781-861-8704
www.accurev.com Email: sales@accurev.com

Copyright

Copyright © AccuRey, Inc. 1995-2012

ALL RIGHTS RESERVED

This product incorporates technology that may be covered by one or more of the following patents:
U.S. Patent Numbers: 7,437,722; 7,614,038.

TimeSafe and AccuRev are registered trademarks of AccuRev, Inc.
AccuBridge, AccuReplica, AccuWork, Kando, and StreamBrowser are trademarks of AccuRey, Inc.

All other trade names, trademarks, and service marks used in this document are the property of their
respective owners.

Table of Contents

Day-to-Day Usage of ACCUREV®viiiuuiiiaiiireiierieisstsssscsssssssscssscsssscssssssssssssssnsssasscsnns 1
The AcCuREV® UsSage IMOAEL..........oeiiiiiiiiieeeeeeeee e e 1
Change and Synchronization: The Four Basic Commands..................o.ovvviiiiiieiiniieeeeeeeeeene, 2

Keep: Preserving Changes in Your Private WorkSpaceccceeeeeeeeeeiiiiiiiiiiiiiiiiiiicieeeennn, 2
Promote: Making Your Private Changes PUbLIiC..........ccc.oooiviiiiiiiiiiiiinn e, 4
Update: Incorporating Others’ Changes into Your Workspaceccoeeeevvviiiieeeeiiiiiinnnnnn. 6
Merge: When Changes Would Collideccoooiiiiiiiiiiiiiiiiiiieceeie e 7

Learning More About AccuRev®

Day-to-Day Usage of AccuRev iii

Day-to-Day Usage of AccuReve® — =

This document presents enough information for the individual user to work with AccuRev on a day-
to-day basis. We provide a brief overview and discuss a handful of commands. The document is short
because AccuRev is an elegantly simple configuration management system.

Note: Words with a double-underscore are defined in the AccuRev Glossary, located in the
AccuRev Concepts Manual.

The AccuRev® Usage Model

AccuRev’s flexibility makes it easy to use for a variety of development scenarios. But like every
software system, AccuRev has usage models that were foremost in the minds of its architects. This
section describes the most common usage model.

AccuRev is a software configuration management (SCM) system, designed for use by a team of people
(users) who are developing a set of files. This set of files might contain source code, images, technical
and marketing documents, audio/video tracks, or any other digital content the user puts into the
system. The files and directories are said to be “version-controlled” or “under source control”.

For maximum productivity, the team’s users must be able to work independently of each other —
sometimes for just a few hours or days, other times for many weeks. Accordingly, each user has his
own private copy of the version-controlled files. The private copies are stored on the user’s own
machine (or perhaps in the user’s private area on a public machine), in a directory tree called a
workspace. We can picture the independent workspaces for a three-user team as follows:

talon_dvt_john talon_dvt_mary talon_dvt_derek

This set of users’ workspaces uses the convention of having like names, suffixed with the individual
usernames. AccuRev enforces this username-suffix convention. talon_dvt might mean “development
work on the Talon product”; john, mary, and derek would be the users’ login names.

From AccuRev’s perspective, development work in this set of workspaces is a continual back-and-
forth between getting “in sync” and “out of sync”:

» Initially, the workspaces are completely synchronized: each workspace has copies of the same set
of version-controlled files.

* The workspaces lose synchronization as each user makes changes to some of the files.

» Periodically, users share their changes with each other. When john incorporates some or all of
mary’s changes into his workspace, their two workspaces become more closely (perhaps com-
pletely) synchronized.

Day-to-Day Usage of AccuRev 1

You might assume that the
workspace synchronization process Thiz i= notthe symchronize
involves the direct transfer of data vy ACCLIREY M /”_—\‘\‘
from one workspace to another. But warks
this is not the way AccuRev
organizes the work environment.
Instead of transferring data directly
between private areas (that is,
between users’ workspaces),
AccuRev organizes the data transfer Tﬂif.jﬁér;i}gﬁ" backing stmeam
into two steps: works
1. One user makes his changes pub- pmmm/E' Update
lic — available to all the other
members of his team. This step talon_dwt_john talon_dwt_mary

is called promotion.

2. Whenever they wish, other team
members incorporate the public changes into their own workspaces. This step is called updating.

talon_dvt_john talon_dwvt_mary

The first step involves a public data area, called a stream. AccuRev has several kinds of streams; the
kind that we are discussing here is called a backing stream. Later, we will show you how the data in
this public stream “is in back of” or “provides a backstop for” all the private workspaces of the team
members.

Change and Synchronization: The Four Basic
Commands

With the usage model described above, you’ll be able to accomplish most of your AccuRev work with
four simple commands: Keep, Promote, Update, and Merge. We describe these commands in the
following sections. Each section has a subsection titled “The Fine Print”, in which we present
additional usage details, notes on the way AccuRev implements certain features, and other items of
interest. You might want to skip over these sections on your first reading of this material.

Keep: Preserving Changes in Your Private Workspace

An AccuRev workspace is just a normal directory tree, in which you make changes to version-
controlled files. You can work with the files using text editors, build and test tools, IDEs, and so on,
just as if the files were not version-controlled at all. For example, you might edit a source file and
invoke the editor’s Save command a dozen times over the course of an hour or two. These operations
do not involve AccuRev at all — the operating system changes the contents and the timestamp of the
file in your workspace.

You do not need to perform a “check out” operation or otherwise get permission from AccuRev
before editing a file in your workspace. (Some legacy SCM systems do impose such a regimen, and
AccuRev can be configured to require checkouts, if your organization requires them.)

2 Day-to-Day Usage of AccuRev

Every so often, you want AccuRev to preserve the

current contents of the file as an official new = & | Oy | FEHRH% LB | B & <
version of the file. You accomplish this using .

_ | Marne £ |Status |'-.-'er5||:|n
AccuRev’s Keep command. This figure shows brass.c (backed) hawkia
how to invoke the Keep command from a file’s brass.h (backed) hawk o
context (right-click) menu in the AccuRev File Y SEEEe Enclead? =

Browser tool. You can also invoke Keep with the

% toolbar button.

You can continue modifying the file, using Keep
to preserve the latest changes, as often as you like.
Other team members will not complain about
“thrashing” because these new versions stay
within your workspace and do not affect any [#1_focheor
other user’s workspace.

AccuRev retains all the versions that you Keep. This makes it possible for you to roll back to any
previous version you created.

Several other operations are similar to Keep, in that they create a new version of a file in your
workspace, without affecting any other user’s workspace. The most important are:

* Rename/Move: You can rename a file or move it to a different directory (or both), using AccuRev
commands. Other users will continue to see the file at its original pathname in their workspaces.

* Defunct: You can remove a file from your workspace with the AccuRev command Defunct. Other
users will continue to see the file in their workspaces.

The Fine Print

We said earlier that AccuRev “retains all the versions that you Keep”. But where? Each time you Keep
a file, its current contents are copied to the AccuRev repository, located on the machine where the
AccuRev Server runs. You do not need to care about the name and precise location of this copy. Each
version you create has a version-ID, such as talon_dvt_john/12 (“the 12th version of this file created
in workspace talon_dvt_john”).

AccuRev keeps track of the status of each file in a workspace. After you Keep a file, the Status column
in the AccuRev File Browser contains the indicator (kept). It also contains the indicator (member),
meaning that the file belongs to the set of files you are actively working on. (See Active and Inactive
Files for more information.) The Version column displays the version-ID.

Do kB B%S A% BRCS|E| X8 DCF
Marne & |Status |'-.-'ersiu:|n |

brass.c (backed) hawl) 3

brass.h (backed) hawk_dwti11

commands.c (backed) hawk_dwth7

A change to the data within a file, recorded by Keep, is termed a content change; the change made by
Rename/ Move or Defunct is termed a namespace change. (Many SCM systems do not handle
namespace changes at all, or have very limited capabilities in this area.) As noted previously,

Day-to-Day Usage of AccuRev 3

AccuRev saves a new copy of the file in the repository whenever you make a content change. But it
does not need to copy the file when you make a namespace change; rather, the AccuRev Server just
records the change in its database.

To perform version control on directories, AccuRev only needs to keep track of namespace changes
— renaming, moving, or deleting a directory. Unlike some legacy SCM systems, AccuRev does not
need to record a new directory version when you make a content change — for example, adding a
new file to the directory.

Promote: Making Your Private Changes Public

At some point, after you have used Keep to create one

or more new, private versions of a file in your SESIRERN BN I B B &
workspace, you typically want to share the changes Narme z |Status lver
you have made with the other team members. To brass.c (hacked) ha

make your (most recent) new version “available to the hrass.h {backed ha

public”, you promote it. This figure shows how to B commands.c ke i

invoke the Promote command from a file’s context Open

(right-click) menu in the AccuRev File Browser. You Vg
. .] Save 4s...
can also invoke Promote with the toolbar button. o
Edit
Promoting your new version of a file does not >
automatically “push” it into the workspaces of the
other team members. When a user decides that she is B3 Keep

ready to incorporate versions of files that other team P
members have Promoted, she “pulls” them into her

workspace with the Update command. This process is
described in the following section.

- Promoke

Streams

The Promote
command sends data _
to — and the Update public ‘

data *
command gets data

from—an ACCU_ReV e 3 Py 3 vy ry {1 I 7 1] e 1 r 3 3 F 7 7 0B [7]

data structure called a private ‘ update

promote update
stream. The stream data P update
acts as a central data talon_dvt_akp

exchange for the set of talon_dvt_john

workspaces used by a - talon_dvt_mary| | oien_dvt_derek
development team. A
stream also has a bit
of “traffic controller” built in, preventing team members’ efforts from colliding and providing other
mechanisms to control the flow of data.

A stream is not, as you might initially suppose, a set of copies of promoted files. Rather, it is more like
a list of version-IDs.

* The 4th version created in workspace talon_dvt_akp of file command.c

* The 7th version created in workspace talon_dvt_mary of file talon.c

4 Day-to-Day Usage of AccuRev

* andsoon...

In SCM vernacular, a stream is a configuration of a collection of version-controlled files. The term
“stream” is apt, because it implies the ongoing changes happening in a development project. Each
time a user promotes a version of file brass.c, the stream configuration changes for that file — for
example, from “the 5th version created in workspace talon_dvt_derek” to “the 7th version created in
workspace talon_dvt_mary”.

Promotion and Parallel Development

Sometimes, AccuRev does not allow you to promote a file to the development team’s stream, because
another team member has already promoted the same file (after modifying it and performing a Keep
on it). AccuRev prevents you from overwriting your colleague’s change to the team’s shared stream.
This situation is called an overlap: two users working at the same time on the same goal, to create the
stream’s next version of a particular file.

Before you can promote your changes to the stream, you must first perform a merge on the file that
has an overlap. This command is described in Merge: When Changes Would Collide on page 7.

Active and Inactive Files

As you work with a file using the commands described above, AccuRev considers the file to alternate
between being active in your workspace and inactive:

* The file is initially inactive.

* When you create a new version in your workspace, using Keep, Rename/ Move, or Defunct, the file
becomes active.

* When you make your private version public, using the Promote command, the file becomes inac-
tive again.

Later, you might restart this cycle, making the file active again by creating another new version of it.
Alternatively, an update of your workspace might overwrite your inactive file with a newer version
that another team member promoted.

AccuRev keeps track of the set of active files in your workspace. Officially, this set is called the default

1o ¢

group. You might find it easier to think of it as the workspace’s “active group”.

The Fine Print

The Promote command does not copy the promoted version to the AccuRev repository. It does not
need to. Promotion just gives an additional name to a version that already exists in the repository —
having been placed there by a previous Keep command (or Rename/ Move or Defunct). For example,
promoting “the 7th version created in workspace talon_dvt_mary” might give that version the
additional name “the 3rd version promoted to stream talon_dvt”.

Just to emphasize the previous point: a stream does not reside in the file system, but in the database
used by the AccuRev Server. Promoting a version to a stream does not create a copy of a file; it just
creates an additional file-reference in the database.

It might seem strange at first that deleting a file with the Defunct command makes the file active. The
File Browser continues to list the file — with a (defunct) status — even though the file has been
removed from your workspace’s disk storage. This design feature enables AccuRev to implement the
file-deletion operation using the same private-change/public-change scheme as all other changes.

Day-to-Day Usage of AccuRev 5

‘We have discussed the stream that is the basis for a set of workspaces. But a typical development
project has many streams, organized into a hierarchy. Promoting a version to a higher-level stream
from a lower-level stream makes that version “even more public” — for example, available to users
outside your local development team.

Update: Incorporating Others’ Changes into Your Workspace

As users work independently of each other, the contents of their workspaces increasingly diverge.
Typically, some of the differences between workspaces are inconsistencies. For example, changes that
John makes in a report-library routine might cause errors in the report program that Mary is writing,.
To minimize the time and effort required to resolve inconsistencies during the integration phase of a
project, it makes sense to have users synchronize their workspaces on a regular basis.

With AccuRev, synchronization does not mean .

incorporating data into your workspace directly from ' *'-’?) "z Basis: hawk_dvt
one or more other workspaces. Instead, Update ' B _—
synchronization involves copying data into the command || SEEEET

workspace from the stream to which all team members :

Promote their changes. This operation is performed by n - E

the Update command. This figure shows the Update

toolbar button (ﬂi’). You can also invoke this
command as File > Update from the main menu.

Note: the stream’s role as a provider of data — through Updates — to a set of workspaces
motivates the term backing stream. Think of restocking a store’s shelves with merchandise
retrieved from “the back room”.
So an update operation on your workspace copies versions of certain files from the backing stream to
the workspace, overwriting/replacing the files currently in the workspace. But which files? Update
changes a file if:

» There is a newer version in the backing stream, and
» The file is not currently active in your workspace.

Update will not overwrite an active file, even if there is a new version of it in the backing stream. No
matter how good someone else’s code is, you don’t want his changes to wipe out the changes that you
have been making! This situation is another instance of an overlap, which we described in the Promote
section above. You can encounter an overlap during a promotion (if you are trying to make your
private changes public), or during an update (if you are trying to bring already-public changes into
your private workspace). In all such situations, AccuRev resolves the overlap situation with a merge
operation. See Merge: When Changes Would Collide, below.

Update handles namespace changes as well as content changes. Thus, if your colleague renamed a file
and promoted the change, an update will cause the file to be renamed in your workspace. And if your
colleague removed a file using the Defunct command, an update will cause the file to disappear from
your workspace.

The Fine Print

Here is how AccuRev prevents an update from overwriting your changes: the first thing Update does is
to analyze your workspace, determining whether each version-controlled file is “active” or “inactive”.

6 Day-to-Day Usage of AccuRev

Initially, all the files in a workspace are inactive — each one is a copy of some version in the
repository. (For each version-controlled file, AccuRev keeps track of which particular version.)

A file is deemed to be active in your workspace if you have created a new version of it, using the Keep,
Rename/ Move, or Defunct command. (There are other AccuRev commands that “activate” a file.)
When Update copies versions from the repository into your workspace, it skips over all active files.

Note: Update can tell if you have modified a file but have not yet stored the changes in the
repository as a new Keep version. It uses timestamps and checksums to determine this. The
presence of such files prevents the update from proceeding if updating would overwrite one or
more of them with the backing-stream version. You can use the Anchor command to activate
such files, enabling Update to do its work.

Merge: When Changes Would Collide

The preceding sections on the Promote and Update commands both discuss the situation in which two
users concurrently work on the same file. Their changes to the file are said to overlap. Both Promote
and Update decline to process a file with overlap status, because doing so would cause one user’s
changes to overwrite another’s changes.

For example:

* Team members John and Mary both Keep one or more new private versions of brass.c in their
respective workspaces.

* Mary Promotes her latest new version of brass.h to the backing stream.
» At this point, AccuRev will decline to do either of the following:
» Promote John’s version of brass.h to the backing stream.

* Opverwrite John’s copy of brass.h during an update. (The Update command skips over this file,
but continues its work on other files.)

To enable either a promotion or an update of brass.h, John must incorporate, or merge, the version in
the backing stream — which contains Mary’s changes — into his own copy of the file. The Merge
command is essentially a text editor, which combines the contents of two versions of a text file. The
resulting “merged version” replaces the file in John’s workspace.

Day-to-Day Usage of AccuRev 7

This figure shows how to invoke the Merge command
from a file’s context (right-click) menu in the File

Browser. You can also invoke Merge with the 2
toolbar button.

Often, a merge operation is unambiguous, and so can
be performed automatically. For example, suppose
Mary’s changes to file brass.h all occur in lines 1-50,
and all of John’s changes occur in lines 125-140. In this
case, merging the two versions involves replacing some
or all of John’s first 50 lines with Mary’s. Now, the
edited version of brass.h in John’s workspace contains
both users’ changes.

Note: We do not claim that the two sets of
changes are semantically consistent with each
other. That is what the build-and-test cycle is for!

20 TP 0R% N B

Marme

brass.c

B brass.h
commands.c

Open

Wig

Save 8s...
[% Edit
B Add to Depat
E Keep
B Anchor
M Promote

Merge

ﬁ..“'l' 1

Day-to-Day Usage of AccuRev

If both John and Mary have made changes to the same part of the file — say, lines 85-87 — then John
must decide how to resolve this conflict. The graphical Merge tool makes this easy:

Depcts ETETE
Nevigabely s 4b | 4P| B 0|5 2 3 @ @ (2ol10 | b3 A ENEES
IMpOrT Wi, CcRCringll al
! oimports frachers images as T
1 name of Tindowe oparating speces (o5 FHane
TINDOTS = "o
\ # spave bevweer edge oi:
' i * wpplframe (CuTer|
{ i 7 Frams (drmar)
EARGIN = 22
1 heighe of crack
o
¢ 4
{1l 000 s0Em, 68 [bathss_ dvliz) \droluboslipan B8 | bartsy_dhv johnil | | iwkstbarka 9t _lohridrO 1an0 sosm, i
|.‘\;E meapkt of LTACE -~ E':il Haight of TEasSE A I |‘:= naigie af Ty ack i
| 5o | - -] e pE
EG o _nor - Eo B |2oack nmor - S % roacic ot - Hoc
17| 14| L&
IEEI' hsdghes of fraszionm bare o ik (f heaghts of fyaseden bave ax 17| ¢ hedghes of frasviom bars and
ligFF.ﬁ.'-.'.EAI HGT = 315 Sl FREACEAR_HGT = 35 l]i??‘ GOAR_HGT = 15
.-'I':P.i.ll.‘_l-!l-'T = § % mast e A eve ATL_HGET = ¢ B must ke an ave I‘-’!-'AII._:-II"-T = |l T mu%t b an sve
A 15
=0
z
21
oo 24|
| | |
Z7|% width and height of Crame | Zi(# width and haight oI [rame | £3|F Wwidih and helght ol [raas (o
28 |# TEE - Eé;j IEE " EEEFU}I_DE = 1000 # everriden by,
£ | - | * []

After performing a merge, AccuRev automatically Keeps the merged version to preserve the results of
the merge operation. You can then Promote the merged version to the backing stream. After that,
other team members can use Update — or perhaps Merge — to bring all the changes into their
workspaces.

The Fine Print

The graphical Merge tool performs a “three-way merge”, which uses the common ancestor of the two
versions being merged. This algorithm helps to automate the merge operation, often completely
eliminating the need for human intervention. AccuRev performs merge operations on text files only.
Binary files are “merged” by choosing which version to take.

AccuRev keeps track of all merge operations. This greatly simplifies subsequent merge operations on
files that have been merged previously: you do not need to resolve the same conflicts over and over
again.

Day-to-Day Usage of AccuRev 9

The most common overlap situation happens when AccuRev prevents you from promoting a file,
because someone else “got there first” in creating a version in the backing stream. AccuRev can also

detect deep overlaps, in which another user “got there first” in creating a version in the parent of the
backing stream, or in other higher-level streams.

10 Day-to-Day Usage of AccuRev

Learning More About AccuReve ==

Now that you have had a chance to learn about the four commands Keep, Promote, Update, and Merge,
you will be able to work effectively in parallel development environments. To make full use of
AccuRev’s software configuration management capabilities, you will need to dig a bit deeper. But no
matter what your SCM challenges are, we think you will find that AccuRev meets them with an
architecture and user interface that are intuitive and easy to learn.

Day-to-Day Usage of AccuRev

11

	Copyright
	Day-to-Day Usage of AccuRev®
	The AccuRev® Usage Model
	Change and Synchronization: The Four Basic Commands
	Keep: Preserving Changes in Your Private Workspace
	The Fine Print

	Promote: Making Your Private Changes Public
	Streams
	Promotion and Parallel Development
	Active and Inactive Files
	The Fine Print

	Update: Incorporating Others’ Changes into Your Workspace
	The Fine Print

	Merge: When Changes Would Collide
	The Fine Print

	Learning More About AccuRev®

