IONA

fﬁl Orbix®
Security Guide

Version 6.2, December 2004

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third

party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2004 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 25-Jul-2005

Contents

List of Tables
List of Figures

Preface
What is Covered in this Book
Who Should Read this Book
Organization of this guide
Related Documentation
Additional Resources for Information
Security Alert Mailing List
Typographical Conventions
Keying Conventions

Part | Introducing Security

Chapter 1 Getting Started with Security
Creating a Secure Domain
Running a Secure CORBA Demonstration
Debugging with the openssl Utility
Where do | go from here?

Chapter 2 Orbix Security Framework
Introduction to the iSF
iSF Features
Example of an iSF System
Security Standards
Orbix Security Service
Orbix Security Service Architecture
iSF Server Development Kit
Secure Applications

Xiii

XV

Xix
Xix
Xix
Xix
XX
XX
XXi
XXi

Xxii

13
17
22

25
26
27
28
30
31
32
34
35

CONTENTS

ART Security Plug-Ins

Secure CORBA Applications
Administering the iSF

Overview of iSF Administration

Secure ASP Services

Chapter 3 Transport Layer Security

What does Orbix Provide?

How TLS Provides Security
Authentication in TLS
Certificates in TLS Authentication
Privacy of TLS Communications
Integrity of TLS Communications

Obtaining Credentials from X.509 Certificates
Obtaining Certificate Credentials from a File
Obtaining Certificate Credentials from a Smart Card

Chapter 4 Securing CORBA Applications
Overview of CORBA Security
Securing Communications with SSL/TLS
Specifying Fixed Ports for SSL/TLS Connections
Securing Two-Tier CORBA Systems with CSI
Securing Three-Tier CORBA Systems with CSI
X.509 Certificate-Based Authentication
Caching of Credentials

Chapter 5 Single Sign-On for CORBA Applications
SSO and the Login Service
Username/Password-Based SSO
Three Tier Example with Identity Assertion
X.509 Certificate-Based SSO
Enabling Re-Authentication at Each Tier
Optimising Retrieval of Realm Data
SSO Sample Configurations

36
38
40
41
43

45
46
48
49
51
52
53
54
55
58

63
64
66
76
78
84
91
97

99
100
103
111
115
123
127
133

CONTENTS

Part Il Orbix Security Framework Administration

Chapter 6 Configuring the Orbix Security Service 141
Configuring the File Adapter 142
Configuring the LDAP Adapter 144
Clustering and Federation 150

Federating the Orbix Security Service 151
Failover and Replication 156
Client Load Balancing 165
Additional Security Configuration 167
Configuring Single Sign-On Properties 168
Configuring the Log4J Logging 170
Chapter 7 Managing Users, Roles and Domains 173
Introduction to Domains and Realms 174
iSF Security Domains 175
iSF Authorization Realms 177
Example Domain and Realms 181
Domain and Realm Terminology 185
Managing a File Security Domain 187
Managing an LDAP Security Domain 190

Chapter 8 Managing Access Control Lists 191

CORBA ACLs 192
Overview of CORBA ACL Files 193
CORBA Action-Role Mapping ACL 194

Centralized ACL 198
Local ACL Scenario 199
Centralized ACL Scenario 201
Customizing Access Control Locally 207

Chapter 9 Securing Orbix Services 209
Introduction to Securing Services 210
File-Based and CFR Domains 211
Customizing a Secure Domain 215

Configuring a Typical Orbix Service 216

Configuring the Security Service 224

CONTENTS

Default Access Control Lists 227
Configuration Repository ACL 228
Locator ACL 233
Node Daemon ACL 235
Naming Service ACL 237
Trader Service ACL 238
Event Service ACL 241
Notification Service ACL 245
Basic Log Service ACL 253
Event Log Service ACL 255
Notify Log Service ACL 258

Part [Il SSL/TLS Administration

Chapter 10 Choosing an SSL/TLS Toolkit 269
Toolkit Replaceability 270
Baltimore Toolkit for C++ and Java 271
Schannel Toolkit for C+ + 272
JSSE/JCE Architecture 274

Chapter 11 Managing Certificates 281
What are X.509 Certificates? 282
Certification Authorities 284

Commercial Certification Authorities 285
Private Certification Authorities 286
Certificate Chaining 287
PKCS#12 Files 289
Using the Demonstration Certificates 290
Creating Your Own Certificates 292
Set Up Your Own CA 293
Use the CA to Create Signed Certificates 296
Deploying Certificates 299
Overview of Certificate Deployment 300
Providing a List of Trusted Certificate Authorities 301
Deploying Application Certificates 303
Deploying Certificates in Smart Cards 305

Deploying Orbix Service Certificates 307

Vi

CONTENTS

Deploying itadmin Certificates 310
Configuring Certificate Warnings 313
Deploying Certificates with Schannel 314
Schannel Certificate Store 315
Deploying Trusted Certificate Authorities 320
Deploying Application Certificates 321
Deploying Certificates in Smart Cards 324
Chapter 12 Configuring SSL/TLS Secure Associations 327
Overview of Secure Associations 328
Setting Association Options 330
Secure Invocation Policies 331
Association Options 332
Choosing Client Behavior 334
Choosing Target Behavior 336

Hints for Setting Association Options 338
Specifying Cipher Suites 343
Supported Cipher Suites 344
Setting the Mechanism Policy 346
Constraints Imposed on Cipher Suites 348
Caching TLS Sessions 351
Chapter 13 Configuring SSL/TLS Authentication 353
Requiring Authentication 354
Target Authentication Only 355
Target and Client Authentication 358
Specifying Trusted CA Certificates 361
Specifying an Application’s Own Certificate 363
Providing a Pass Phrase or PIN 367
Providing a Certificate Pass Phrase 368
Providing a Smart Card PIN 372
Advanced Configuration Options 374
Setting a Maximum Certificate Chain Length 375
Applying Constraints to Certificates 376
Delaying Credential Gathering 378
Chapter 14 Automatic Activation of Secure Servers 381

Managing Server Pass Phrases 382

vii

CONTENTS

Protecting against Server Imposters
How the KDM Activates a Secure Server
KDM Administration

Setting Up the KDM

Registering a Secure Server

Part IV CSlv2 Administration

Chapter 15 Introduction to CSiv2
CSlv2 Features
Basic CSIv2 Scenarios
CSIv2 Authentication over Transport Scenario
CSIv2 Identity Assertion Scenario
Integration with the Orbix Security Framework

Chapter 16 Configuring CSIv2 Authentication over Transport
CSIv2 Authentication Scenario
SSL/TLS Prerequisites
Requiring CSIlv2 Authentication
Providing an Authentication Service
Providing a Username and Password
Sample Configuration
Sample Client Configuration
Sample Server Configuration

Chapter 17 Configuring CSIv2 Identity Assertion

CSIv2 Identity Assertion Scenario

SSL/TLS Prerequisites

Enabling CSIv2 Identity Assertion

Sample Configuration
Sample Client Configuration
Sample Intermediate Server Configuration
Sample Target Server Configuration

viii

385
387
389
392
394

399
400
402
403
404
406

409
410
414
416
419
420
424
425
427

429
430
434
436
438
439
441
443

CONTENTS

Part V CORBA Security Programming

Chapter 18 Programming Policies 447
Setting Policies 448
Programmable SSL/TLS Policies 451

Introduction to SSL/TLS Policies 452
The QOPPolicy 454
The EstablishTrustPolicy 455
The InvocationCredentialsPolicy 456
Interaction between Policies 457
Programmable CSIv2 Policies 458

Chapter 19 Authentication 461

Using the Principal Authenticator 462
Introduction to the Principal Authenticator 463
Creating SSL/TLS Credentials 466
Creating CSlv2 Credentials 470

Using a Credentials Object 475

Retrieving Own Credentials 477
Retrieving Own Credentials from the Security Manager 478
Parsing SSL/TLS Own Credentials 480
Parsing CSIv2 Own Credentials 482

Retrieving Target Credentials 483
Retrieving Target Credentials from an Object Reference 484
Parsing SSL/TLS Target Credentials 487

Retrieving Received Credentials 489
Retrieving Received Credentials from the Current Object 490
Parsing SSL/TLS Received Credentials 492
Parsing CSIv2 Received Credentials 494

Chapter 20 Validating Certificates 499
Overview of Certificate Validation 500
The Contents of an X.509 Certificate 503
Parsing an X.509 Certificate 504
Controlling Certificate Validation 506

Certificate Constraints Policy 507

Certificate Validation Policy 511

CONTENTS

Obtaining an X.509 Certificate

Part VI iSF Programming

Chapter 21 Developing an iSF Adapter
iSF Security Architecture
iSF Server Module Deployment Options
iSF Adapter Overview
Implementing the IS2Adapter Interface
Deploying the Adapter
Configuring iSF to Load the Adapter
Setting the Adapter Properties
Loading the Adapter Class and Associated Resource Files

Appendix A Security
Applying Constraints to Certificates
initial_references
plugins:atli2_tls
plugins:csi
plugins:gsp
plugins:https
plugins:iiop_tls
plugins:kdm
plugins:kdm_adm
plugins:locator
plugins:schannel
plugins:security
policies
policies:csi
policies:https
policies:iiop_tls
policies:tls
principal_sponsor
principal_sponsor:csi
principal_sponsor:https

515

519
520
524
526
527
537
538
539
540

543
545
547
548
550
552
558
559
564
566
567
568
569
570
576
579
585
595
596
600
603

Appendix B iSF Configuration
Properties File Syntax
iSF Properties File
Cluster Properties File
logdj Properties File

Appendix C ASN.1 and Distinguished Names

ASN.1
Distinguished Names

Appendix D Association Options

Association Option Semantics
Appendix E Action-Role Mapping DTD

Appendix F OpenSSL Utilities
Using OpenSSL Utilities
The x509 Utility
The req Utility
The rsa Utility
The ca Utility
The OpenSSL Configuration File
[req] Variables
[ca] Variables
[policy] Variables
Example openssl.cnf File

Appendix G Security Recommendations
General Recommendations
Orbix Services

Appendix H License Issues
OpenSSL License

Index

CONTENTS

605
606
607
624
626

629
630
631

635
636

639

645
646
647
649
651
653
655
656
657
658
659

661
662
663

665
666

669

Xi

CONTENTS

Xii

List of Tables

Table 1: Terminology Describing Secure Client Sample Configurations 67
Table 2: Terminology Describing Secure Server Sample Configurations 68
Table 3: LDAP Properties in the com.iona.isp.adapter.LDAP.param Scope 148
Table 4: Domain and Realm Terminology Comparison 185
Table 5: Locator Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 233
Table 6: Node Daemon Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 235
Table 7: Naming Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 237
Table 8: Trader Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 239
Table 9: Event Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 243
Table 10: Notification Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 247
Table 11: Basic Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 254
Table 12: Event Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 256
Table 13: Notify Log Service Interfaces and Operations Accessible to the IONAUserRole and the
UnauthenticatedUserRole 261
Table 14: Demonstration Certificates and Passwords 290
Table 15: Demonstration Certificate for the Orbix Services 291
Table 16: Description of Different Types of Association Option 339
Table 17: Setting EstablishTrustinTarget and EstablishTrustinClient Association Options 340
Table 18: Setting Quality of Protection Association Options 340

Table 19: Setting the NoProtection Association Option 342

Xiii

LIST OF TABLES

Table 20:
Table 21:
Table 22:
Table 23:
Table 24
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:

Xiv

Cipher Suite Definitions

Association Options Supported by Cipher Suites
The kdm_adm Administration Command
The checksum Administration Command
Prefixes for KDM Configuration Variables
Policy Management Objects

Mechanism Policy Cipher Suites
Mechanism Policy Cipher Suites
Mechanism Policy Cipher Suites
Commonly Used Attribute Types
AssociationOptions for Client and Target

345
349
390
391
391
448
573
581
589
632
636

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure b5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:

The Orbix Configuration Welcome Dialog Box

The Domain Type Window

The Service Startup Window

The Security Window

The Fault Tolerance Window

The Select Services Window

The Confirm Choices Window

Configuration Summary

CORBA Secure Demonstration Overview

Example System with a Standalone Orbix Security Service
Security Plug-Ins in a CORBA Application

Creating Credentials for a Client Application Using PKCS#12
Using PKCS#12 Credentials to Authenticate a Client to a Server
Creating Credentials for a Client Application Using PKCS#11
Using PKCS#11 Credentials to Authenticate a Client to a Server
A Secure CORBA Application within the iSF

Two-Tier CORBA System in the iSF

Three-Tier CORBA System in the iSF

Overview of iSF Certificate-Based Authentication

Client Requesting an SSO Token from the Login Service
Overview of GSSUP Authentication without SSO

Overview of GSSUP Authentication with SSO

Single Sign-On Scenario with Piggybacking Roles and Realms
Overview of Certificate-Based Authentication without SSO
Overview of Certificate-Based Authentication with SSO

Single Sign-On Scenario without Piggybacking Roles and Realms

O 00 N O O

10

12
13
28
38
55
57
58
60
64
78
84
91
100
103
104
111
115
116
124

XV

LIST OF FIGURES

Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:

Xvi

Intermediate and Target Belong to Same Realm
Intermediate and Target Belong to Different Realms

An iSF Federation Scenario

Failover Scenario for a Cluster of Three Security Services
Replication of Data Caches in a Security Service Cluster
Architecture of an iSF Security Domain

Server View of iSF Authorization Realms

Role View of iSF Authorization Realms

Assignment of Realms and Roles to Users Janet and John
Local ACL Scenario

Centralized ACL scenario

Custom ClientAccessDecision in an Orbix Application
Overview of a Secure File-Based Domain

Overview of a Secure CFR Domain

A Certificate Chain of Depth 2

A Certificate Chain of Depth 3

Overview of Certificates in a Typical Deployed System
The Microsoft Management Console

The Add/Remove Snap-In Dialog Box

The Add Standalone Snap-In Dialog Box

Microsoft Management Console with Certificates Snap-In
Certificate Dialog Showing the Certificate’s Subject DN.
Configuration of a Secure Association

Constraining the List of Cipher Suites

Target Authentication Only

Target and Client Authentication

Elements in a PKCS#12 File

Java Dialog Window for Certificate Pass Phrase

Java Dialog Window for Certificate PIN

128
130
152
157
163
175
178
179
180
199
201
207
211
212
287
288
300
316
317
318
319
322
329
348
355
358
364
369
372

LIST OF FIGURES

Figure 56: Schannel Dialog Window for Certificate PIN 373
Figure 57: The KDM Architecture 383
Figure 58: Automatic Activation of a Secure Server 387
Figure 59: Using itadmin to Manage the KDM Server 389
Figure 60: Basic CSIv2 Authentication over Transport Scenario 403
Figure 61: Basic CSIv2 Identity Assertion Scenario 404
Figure 62: CSIv2 in the Orbix Security Framework 407
Figure 63: CSIv2 Authentication Over Transport Scenario 411
Figure 64: Java Dialog Window for GSSUP Username and Password 421
Figure 65: CSIv2 Identity Assertion Scenario 431
Figure 66: Validating a Certificate 500
Figure 67: Using a CertValidator Callback 502
Figure 68: Overview of the Orbix Security Service 521
Figure 69: iSF Server Module Deployed as a CORBA Service 524

xvii

LIST OF FIGURES

xviii

Preface

What is Covered in this Book

This book is a guide to administering and programming secure applications

in Orbix, covering both secure CORBA applications.
The IONA security framework (iSF) provides the underlying security
infrastructure for performing authentication and authorization.

Who Should Read this Book
This guide is intended for the following audience:

® Security administrators.
® CORBA C++ developers.
® CORBA Java developers.

A prior knowledge of CORBA is assumed.

Organization of this guide
This guide is divided into the following parts:

Part | “Introducing Security”

This part describes how TLS provides security, and how Orbix works.

Part Il “Orbix Security Framework Administration”

This part describes how to administer the Orbix Security Framework.

Part 11l “SSL/TLS Administration”
This part explains how to configure and manage Orbix in detail.

Part IV “CSlv2 Administration”
This part explains how to configure and manage CSIv2 in detail.

Xix

PREFACE

XX

Part V “CORBA Security Programming”

This part explains how to program the SSL/TLS and CSlv2 APlIs in your
security-aware CORBA applications.

Appendices

The appendices list further technical details.

Related Documentation

The CORBA Programmer’s Guide and CORBA Programmer’s Reference
provide details about developing Orbix applications in C+ + and Java.

The complete set of documentation for Orbix E2A ASP is available online at:
http://www.iona.com/docs/e2a/asp/6.0

The latest updates to the Orbix documentation can be found at http://
www.iona.com/docs.

Additional Resources for Information

The IONA knowledge base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles, written by IONA experts, about Orbix
and other products. You can access the knowledge base at the following
location:

The IONA update center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA products, contact IONA at
suppor t @ona. com Comments on IONA documentation can be sent to
docs-support@iona.com .

http://www.iona.com/docs
http://www.iona.com/docs
http://www.iona.com/support/knowledge_base/index.xml
http://www.iona.com/support/updates/index.xml
mailto:support@iona.com
http://www.iona.com/docs/e2a/asp/6.0

PREFACE

Security Alert Mailing List

There is a mailing list for customers to receive security alerts associated with
IONA's products. The mail alias is securi ty-al ert @ona. com

To subscribe, send an e-mail to | i st ser ver @ona. com Leave the email
Subj ect field blank and, in the body of the email, type:

subscri be security-alert YourEmailAddress

To unsubscribe, type:

unsubscri be security-alert YourEmailAddress

Note: Please do not try to post queries to this email alias; it has been set
up only to notify you of security alerts.

Typographical Conventions
This book uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of items
such as classes, functions, variables, and data
structures. For example, text might refer to the
QORBA: : (hj ect class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Italic Italic words in normal text represent emphasis and
new terms.

Italic words or characters in code and commands
represent variable values you must supply, such as
arguments to commands or path names for your
particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

XXi

PREFACE

Keying Conventions
This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, a prompt is not used.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell

prompt for a command that requires root privileges.

> The notation > represents the DOS, Windows NT,
Windows 95, or Windows 98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

(1 Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.

XXii

Part |

Introducing Security

In this part This part contains the following chapters:
Getting Started with Security page 3
Orbix Security Framework page 25
Transport Layer Security page 45
Securing CORBA Applications page 63
Single Sign-On for CORBA Applications page 99

In this chapter

CHAPTER 1

Getting Started
with Security

This chapter focuses on getting some security demonstrations
up and running quickly. The details and background of the
various security features are not discussed at this stage.

This chapter discusses the following topics:

Creating a Secure Domain page 4

Running a Secure CORBA Demonstration page 13
Debugging with the openssl Utility page 17
Where do | go from here? page 22

CHAPTER 1 | Getting Started with Security

Creating a Secure Domain

Overview This section describes how to create a secure configuration domain, secure,
which is required for the security demonstrations. This domain deploys a
minimal set of Orbix services.

WARNING: The secure domain created using this procedure is not fully
secure, because the X.509 certificates used in this domain are insecure
demonstration certificates. This secure domain must be properly
customized before deploying in a production environment.

Prerequisites Before creating a secure domain, the following prerequisites must be
satisfied:

® Your license allows you to use the security features of Orbix.
® Some basic system variables are set up (in particular, the
| T_PRCDUCT_DI R, | T_LI CENSE_FI LE, and PATH variables).

Fore more details, please consult the /nstallation Guide.

Licensing The location of the license file, | i censes. t xt, is specified by the
| T_LI CENSE_FI LE system variable. If this system variable is not already set
in your environment, you can set it now.

Steps To create a secure configuration domain, secur e, perform the following
steps:

Run itconfigure.

Choose the domain type.
Specify service startup options.
Specify security settings.
Specify fault tolerance settings.
Select services.

Confirm choices.

© N o o~ wN

Finish configuration.

Run itconfigure

Creating a Secure Domain

To begin creating a new configuration domain, enter it configure at a
command prompt. An Orbix Configuration Welcome dialog box appears, as
shown in Figure 1.

Select Create a new domain and click OK.

27 Orbix Configuration Welcome x|
Welcome to the Orbix Configuration toal. Please select an option:

@ |Create a new domain|
O Open an existing domain

O Go straight into itconfigure

" Ok ” | Cancel

Figure 1: The Orbix Configuration Welcome Dialog Box

CHAPTER 1 | Getting Started with Security

Choose the domain type

A Domain Type window appears, as shown in Figure 2.

In the Configuration Domain Name text field, type secure. Under
Configuration Domain Type, click the Select Services radiobutton.

Click Next> to continue.

{17 Create a Configuration Domain - Standard Mode

Steps

1. Domain Type
2 Service Startup
3. Security

4. Fault Talerance

. Canfitm Choices
7. Deploying ...

8. Summary

Domain Type
Configuration Identification

You can create many different configuration domains and
access thern by their unigue name.
What name doyou wish to give this configuration damain®

Configuration Domain Mame: |secure

Configuration Domain Type

The configuration toal can create configuration domains with
different cambinations of Orbix services.
Which Crbix serices doywou want to include in this domain®?

(D All Licensed Services

@ |Select Services

Storage Location

Configuration Directory: |c:10rbi}{_6 2_Aletc

Data Directory: |c:‘tOrbi}{_B 2_Awar

| <Back || _Mext-

|| Emisn H Cancel

Figure 2: The Domain Type Window

Creating a Secure Domain

Specify service startup options A Service Startup window appears, as shown in Figure 3.

You can leave the settings in this Window at their defaults.

Click Next> to continue.

{17 Create a Configuration Domain - Standard Mode x|
Steps Service Startup
1. Dormain Type Startup
2. Service Startup The serices you are configuring can be programrmed to run
3. Security when your computer starts up ar manually. All, except for a
4. Fault Tolerance minimal set, can start on demand. Da yvou want..
5. Select Services @ A minimal set of services launched by a script| can run.
. Zonfirm Choices O &l selected services launched on machine startup (as system services).
7. Deploying ... @ All selected services launched by a scriptl can run.
8. Bummary
Port

The services need pors to listen for connections.
The easiestwayto setthese potvalues is to set a base value.

Base Port:

| <pack || met- || Emisn || cancel

Figure 3: The Service Startup Window

CHAPTER 1 | Getting Started with Security

Specify security settings

A Security window appears, as shown in Figure 4.

Under Transports, click the Secure Communication (TLS/HTTPS)
radiobutton. Under Security Features, select the IONA Security Service
option and the Enable Access Control for Core Services option.

Click Next> to continue.

fﬁ'! Create a Configuration Domain - Standard Mode

Steps

=

e R A

. Domain Type

Service Startup
Security

Fault Tolerance
Select Services
Confirm Choices
Deploying ...

Summary

Security

Transports

What communication protocols do youswant enabled in the domain?
(0 Insecure Communication JIOPHTTF)

(2 5ecure and Insecure Communication

® Secure Communication (TLS/HTTPS)

Security Features

VWhat security features do you want enabled in the domain?

[I0MNA Security Service

[¥] Enable Ateess Control for Core Services

| <pack || met- || Finisn || cancel

Figure 4: The Security Window

Specify fault tolerance settings

Creating a Secure Domain

A Fault Tolerance window appears, as shown in Figure 5.
You can leave the settings in this Window at their defaults.
Click Next> to continue.

ﬁj-" Create a Configuration Domain - Standard Mode

Steps

—

o - @ h A L R

. Domain Type

. Senice Startup

. Security

. Fault Tolerance
. Belect Services

. Gonfirm Choices
. Deploying ...

. Summary

Fault Tolerance
Replication

You can run multiple replicas of the core Crbix serices to
make yvour systermn fault tolerant. The service instances an
the replica hosts act as backups.

Replication Hosts:

Host | Add
| Bemaove |
]
| <pack || met- || Eimisn || cancel

Figure 5: The Fault Tolerance Window

CHAPTER 1 | Getting Started with Security

Select services A Select Services window appears, as shown in Figure 6.

In the Select Services window, select the following services and components
for inclusion in the configuration domain: Location, Node daemon,
Management, CORBA Interface Repository, CORBA Naming, IONA
Security, and demos.

Click Next> to continue.

{17 Create a Configuration Domain - Standard Mode x|

Steps Select Services
1. Damain Type Infrastructure Messaging
2. Semice Startup [CORBA Motification
3. EEmui] CORBA Events
4. e TBRiEmEE [¥] Management] IMS (Java Messaging)
5. Select Services

[|Distributed Transaction [InSiMotification Bridge
. Confirm Choices

[Configuration :
7. Deplaying ... Security
8. Summary Directary O

[¥] CORBA Interface Repository

[¥] CORBA Maming R

] cORBA Trader M

CORBA Telco Logging

[Basic Logging

[] Event Lagging

[Motify Lagging

| selectall || clearal |
| =Back ‘ || Mext= || | Finish | | Cancel

Figure 6: The Select Services Window

10

Creating a Secure Domain

Confirm choices You now have the opportunity to review the configuration settings in the
Confirm Choices window, Figure 7. If necessary, you can use the <Back
button to make corrections.

Click Next> to create the secure configuration domain and progress to the
next window.

{17 Create a Configuration Domain - Standard Mode - x|
Steps Confirmation
1. Domain Type This is your chance to review the choices you have made.

Semice Startup To deploy the services on the local host, press Mext. To modify any of your choices, press Back.
: . Ifyou don'twant to deplay now but wish to sawve your choices for future use,
- Security press Save to store them in a deplovment descriptor, then press Cancel.

.Fault Talerance

management Service
Manual Activation

. Confirm Choices TLS Port= 53026

. Deplaying ... HTTPS Port= 53186

Location Service
Manual Activation —
TLS Port= 3077

Mode Daeman Service
Manual Activation
TLS Fort= 53080

CORBA Interface Repository Service

Autamatic Activation

TLS Fort= Enabled

CORBA Naming Service

Automatic Activation

TLS Fort= Enabled

| Save

2
3
4
5. Select Senvices
6
T
g

L Summary

11

| <pack || mew | | cancel

Figure 7: The Confirm Choices Window

11

CHAPTER 1 | Getting Started with Security

Finish configuration

The i tconfi gur e utility now creates and deploys the secur e configuration
domain, writing files into the OrbixInstallDir/ et c/ bi n,

OrbixInstallDirl et c/ domai n, OrbixInstallDirl et c/ 1 og, and

OrbixInstallDirl var directories.

If the configuration domain is created successfully, you should see a
Summary window with a message similar to that shown in Figure 8.

Click Finish to quit the i t confi gur e utility.

{l}) Create a Configuration Domain - Standard Mode x|

Steps

1

. Domain Type

. Serice Startup
Security

Fault Tolerance
Select Services
Confirm Choices

Deploying ...

B e o e W

Summary

Summary

Configuration is now complete, see details helow,

Configuration completed successfully.
ou canview the log in 'eOrhix_B2_Awansecurellogsisecure_2004_Cec_8_11_3_41.log"

Ta setyour environment far this configuration damain run;
cwOrbix_B2_Metchinisecure_env.hat

To startthe serices in this configuration dormain run:
cCrhix_62_Aletc\binistart_secure_services hat

To stop the services in this configuration domain run:
c0rhix_G2_Aletcibinistop_secure_serdces hat

| <gack || nmet- || _Emish || cance

12

Figure 8: Configuration Summary

Running a Secure CORBA Demonstration

Running a Secure CORBA Demonstration

Overview

Prerequisites

Demonstration location

Demonstration overview

Steps

This section describes how to run the secure CORBA demonstration, which
is a three-tier application that illustrates the SSL/TLS, username/password
authentication, and identity assertion features.

Before running this demonstration, you must have created a secure
configuration domain—see “Creating a Secure Domain” on page 4.

The secure CORBA demonstration is located in the following directory:
ASPInstallDirl asp/ Version/ demos/ common/ i s2
Where ASPInstallDir is the directory where Orbix is installed.

Figure 9 gives an overview of the secure CORBA demonstration.

propagate username/password propagate user identity

N
Login \ \
Client | Intermediate .| Target
IIOP/TLS | Server | IIOP/TLS Server

A

authenticate retrieve realms
user and roles

A

Orbix Security
Service

Figure 9: CORBA Secure Demonstration Overview

To build and run the secure CORBA demonstration, perform the following
steps:

1. Build the demonstration.
2. Start the Orbix services.

13

CHAPTER 1 | Getting Started with Security

Build the demonstration

Start the Orbix services

Run the target server

14

3. Run the target server.
4. Run the intermediate server.
5. Run the client.

To build the demonstration, open a new command prompt and enter the
following commands:

Windows

> ASPInstallDin et c\ bi n\ secur e_env. bat
> cd ASPInstallDin asp\ Version\ demos\ common\ i s2
> jtant

UNIX

% . ASPInstallDirl et c/ bi n/ secure_env. sh
% cd ASPInstallDirl asp/ Version/ demos/ common/ i s2
%itant

To start the Orbix services, enter the following command at the command
prompt:

Windows
> ASPInstallDir\ et c\ bi n\start_secure_servi ces. bat

UNIX
% ASPInstallDirl et c/ bi n/ start_secure_servi ces

To run the target server, open a new command prompt and enter the
following commands:

Windows and J2SE (JDK) 1.3.x

> ASPInstallDin et c\ bi n\ secur e_env. bat
> cd ASPInstallDin asp\ Version\ denmos\ common\ i s2
> java -classpath .\java\cl asses; " %LASSPATHA is2. Server

Windows and J2SE (JDK) 1.4.x

> ASPInstallDin et c\ bi n\ secur e_env. bat

> cd ASPInstallDin asp\ Version\ denos\ common\ i s2

> java -0 ava_endor sed. di rs="ASPInstallDin\ i b\\ art\\ ong\\ 5"
-classpath .\java\cl asses; " %LASSPATHA i s2. Server

UNIX and J2SE (JDK) 1.3.x

% . ASPInstallDirl et c/ bi n/ secure_env. sh
% cd ASPInstallDirl asp/ Version/ demos/ common/ i s2

Run the intermediate server

Run the client

Running a Secure CORBA Demonstration

%java -classpath ./javal/cl asses: $CLASSPATH i s2. Server

UNIX and J2SE (JDK) 1.4.x

% . ASPInstallDirl et c/ bi n/ secure_env. sh

% cd ASPInstallDirl asp/ Version/ demos/ common/ i s2

%j ava -0 ava_endor sed. di r s=ASPInstallDir/1ib/ art/ong/ 5 -cl asspat h
.ljaval cl asses: $CLASSPATH i s2. Ser ver

To run the intermediate server, open a new command prompt and enter the
following commands:

Windows and J2SE (JDK) 1.3.x

> ASPInstallDin et c\ bi n\ secur e_env. bat

> cd ASPInstallDir\ asp\ Version\ denmos\ common\ i s2

> java -cl asspath .\java\ cl asses; " %LASSPATH/A
i s2. I nternedi at eSer ver

Windows and J2SE (JDK) 1.4.x

> ASPInstallDin et c\ bi n\ secur e_env. bat

> cd ASPInstallDin asp\ Version\ demos\ conmon\ i s2

> java -0 ava_endor sed. di rs="ASPInstallDin\1i b\\ art\\ ong\\ 5"
-classpath .\java\cl asses; " %LASSPATHY i s2. | nt er medi at eSer ver

UNIX and J2SE (JDK) 1.3.x
% . ASPInstallDirl et c/ bi n/ secure_env. sh

% cd ASPInstallDirl asp/ Version/ demos/ conmon/ i s2
%java -classpath ./javalcl asses: $CLASSPATH i s2. | nt er nedi at eSer ver

UNIX and J2SE (JDK) 1.4.x

% . ASPInstallDirl et c/ bi n/ secure_env. sh

% cd ASPInstallDirl asp/ Version/ demos/ conmon/ i s2

%j ava -0 ava_endor sed. di r s=ASPInstallDir/1ib/ art/ong/ 5 -cl asspat h
.ljaval cl asses: $CLASSPATH i s2. | nt er nedi at eSer ver

Note: The intermediate server must run in the same directory as the
target server.

To run the client, open a new command prompt and enter the following
commands:

Windows and J2SE (JDK) 1.3.x

> ASPInstallDir\ et ¢\ bi n\ secur e_env. bat
> cd ASPInstallDir\ asp\ Version\ denmos\ common\ i s2

15

CHAPTER 1 | Getting Started with Security

16

> java -classpath .\java\cl asses; " %LASSPATHA is2.dient -user
alice

Windows and J2SE (JDK) 1.4.x

> ASPInstallDin et c\ bi n\ secur e_env. bat

> cd ASPInstallDin asp\ Version\ demos\ common\ i s2

> java -0 ava_endor sed. di r s="ASPInstallDir\\1i b\\ art\\ ong\\ 5"
-classpath .\java\cl asses; "%LASSPATHA is2.dient -user alice

UNIX and J2SE (JDK) 1.3.x

% . ASPInstallDirl et c/ bi n/ secure_env. sh
% cd ASPInstallDirl asp/ Version/ demos/ common/ i s2
%java -classpath ./javalcl asses: $CLASSPATH i s2. dient -user alice

UNIX and J2SE (JDK) 1.4.x

% . ASPInstallDirl et c/ bi n/ secure_env. sh

% cd ASPInstallDirl asp/ Version/ dermos/ common/ i s2

%j ava -0 ava_endor sed. di r s=ASPInstallDir/ 1ib/ art/ong/ 5 -cl asspat h
.ljaval cl asses: $CLASSPATH i s2. A ient -user alice

Note: The client must run in the same directory as the target and
intermediate servers.

Debugging with the openssl Utility

Debugging with the openssl Utility

Overview

References

Debugging example

Debugging steps

The openssl! utility included with Orbix provides two powerful tools for

debugging SSL/TLS client and server applications, as follows:

® openssl s_client—an SSL/TLS test client, which can be used to test
secure Orbix servers. The test client can connect to a secure port, while
providing a detailed log of the steps performed during the SSL/TLS
handshake.

® openssl s_server—an SSL/TLS test server, which can be used to test
secure Orbix clients. The test server can simulate a bare bones
SSL/TLS server (handshake only). Additionally, by supplying the - Wwwv
switch, the test server can also simulate a simple secure Web server.

For complete details of the openssl s_client and the openssl s_server
commands, see the following OpenSSL documentation pages:

® http://www.openssl.org/docs/apps/s_client.html
® http://www.openssl.org/docs/apps/s_server.html

Consider the i s2 demonstration discussed in the previous section, “Running
a Secure CORBA Demonstration” on page 13. This demonstration consists
of a client, an intermediate server and a target server.

To demonstrate SSL debugging, you can use the openssl test client to
connect directly to the target server.

The following table shows the steps required to debug a secure server by
connecting to that server using the openss| test client:

Step Action

1 | Convert the client certificate to PEM format.

2 | Run the target server.

3 | Obtain the target server's IP port.

17

http://www.openssl.org/docs/apps/s_client.html
http://www.openssl.org/docs/apps/s_server.html

CHAPTER 1 | Getting Started with Security

Convert the client certificate to
PEM format

18

Step Action

4 | Run the test client.

Certificates for Orbix applications are deployed in PKCS#12 format,
whereas the openssl! test client requires the certificate to be in PEM format
(a format that is proprietary to OpenSSL). It is, therefore, necessary to
convert the client certificate to the PEM format.

For example, given the certificate adm n. p12 (located in the
OrbixInstallDirl aspl Ver si on/ et ¢/ t1 s/ x509/ cert s/ denos directory), you
can convert the certificate to PEM format as follows.

1. Run the openssl pkcs12 command, as follows:

openssl pkcsl12 -in admn.pl2 -out adm n. pem

When you run this command you are prompted to enter, first of all, the
pass phrase for the admi n. p12 file and then to enter a pass phrase for
the newly created adni n. pemfile.

2. The adm n. pemfile generated in the previous step contains a CA
certificate, an application certificate, and the application certificate’s
private key. Before you can use the admi n. pemfile with the openssl
test client, however, you must remove the CA certificate from the file.
That is, the file should contain only the application certificate and its
private key.

For example, after deleting the CA certificate from the adni n. pemfile,
the contents of the file should look something like the following:

Bag Attributes
| ocal Keyl D 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C 91
Cl E1 FF 4A
friendl yNane: Adninistrator
subj ect =/ C=US/ ST=Massachuset t s/ O=ABi gBank -- no warranty -- deno
pur poses/ Q=Adm ni strati on/ ON=Adm ni st rat or/ emai | Addr ess=adm
ni strat or @bi gbank. com
i ssuer =/ C=US/ ST=Massachuset t s/ L=Bost on/ O=ABi gBank -- no warranty
-- deno purposes/ QkEDenonstrati on Section -- no warranty
--/ ONEABi gBank Certificate
Aut hori ty/ emai | Addr ess=i nf o@bi gbank. com
----- BEGA N CERTI FI CATE- - - - -
M | Ei TCCA/ KgAw BAgl BATANBgk ghki GBWOBAQUFADCBS; EL MAk GALUEBhMCVWIVK
Fj AUBgNVBAgTDULhc3NhY2h1c2VOodHVK Dz ANBgNVBAC TBkJve 3Rvbj EXMCBGALUE

Debugging with the openssl Utility

subj ect =/ C=US/ ST=Massachuset t s/ O=ABi gBank -- no warranty -- deno
pur poses/ QU=Adm ni st rat i on/ CN=Adni ni strat or/ enmai | Addr ess=adm
ni strat or @bi gbank. com

i ssuer =/ C=US ST=Massachuset t s/ L=Bost on/ O=ABi gBank -- no warranty
-- deno purposes/ QJ=Denonstration Section -- no warranty
--/ CN=ABi gBank Certificate

Aut hori ty/ emai | Addr ess=i nf o@bi gbank. com
----- BEA N CERTI FI CATE- - - - -
M | Ei TCCA/ KgAwl BAgl BATANBgk ghki GAWOBAQQFADCBS) EL MAk GATUEBhMOVWIVK
Fj AUBgNVBAgTDULhc3NhY2h1c2VOdHWKDz ANBgNVBAC TBkJvc3Rvbj EXMCBGALUE

19

CHAPTER 1 | Getting Started with Security

Run the target server

Obtain the target server’s IP port

20

ZgNt AB+XF9vr ASXZHNs UBRBeXWSr U OGzdVr Cnoj d6d8Be7Q7KBSHDVIXzZI PKp
7DYVn5Dy FSEQrkYs9dsaz5!l d5i NkMi scPp7AL2SIAWY! UF ENbgFnl Yi wXP1ckF
STTi g+B@BUPPNMBEG3KCYRZMZOI h7Dy SZuf bE24N r N74k XVOVF / RoxzN Mez/ PbLdG
6w ypa7\W¢/ 4QgxLv8Y! j GCEdYyaB/ Y7XEyE9ZL74Dc3CcuSvt A2f CBhUBcXj KBu7
YsVz/ Dg8Aw223o0wpZ0Qz2KU 9CLg/ hnYLAJt 1yL VoaGZuJ 1CWKdgX0dConDORBK
al alagy/ Gz2zys20N6WRK+s+HzqoBOvneOy4Z1Ss71H GAUem RTAl 8DXi zgyHYK
5nm6i SSBI61xAVYYI 583 YOGNLMXz| LmOUAY CChk| WEIFENAC ZBr kh506r +U4FcwhF
dvDoBu39Xi e5gHFr JUB6ghzxi 202h0s@@vexvuj SG/Ny009PICKEANIE OGta2Q
VBwulUZqo0z1 J6gUr W1LQAWM.7zFxyKaF5l i j FLCOKxt EKnmD393zag==

----- END RSA PRI VATE KEY-----

Run the target server, as described in “Running a Secure CORBA
Demonstration” on page 13.

In this demonstration, the server writes an IOR file, tar get _server.ior, to
the OrbixInstallDirl asp/ Version/ denmos/ common/ i s2 directory as it starts up.
You can extract the target server's IP port from this IOR file using the

i or dunp utility.

From a command prompt, use the i or dunp utility to parse the

target _server.ior file as follows:

iordunp target_server.ior

This dumps the parsed contents of the IOR to the console window. The
relevant portion of the output is the SSL_SEC TRANS tagged component,
which looks something like the following:

Conponent 1:
>> +108 [00] [00] [00] [14]
Tag: (20) SSL_SEC TRANS
>> +112 [00] [00] [00] [08]
Component | ength: 8 bytes
>> +116 [00]
Conponent Byte Order: (0) Big Endian
>> +117 [00]
(paddi ng)
>> +118 [00] [7€e]
Target supports: Integrity Confidentiality
Det ect Repl ay Det ect M sordering Establi shTrust | nTar get
Establ i shTrustI nd i ent
>> +120 [00] [5e]
Target requires: Integrity Confidentiality
Det ect Repl ay Det ect M sordering EstablishTrustlndient

Run the test client

Debugging with the openssl Utility

>> +122 [0b] [8b]
SSL port: 2955

In this example, the target server’s IP port is 2955.

To run the openssl test client, open a command prompt, change directory
to the directory containing the adm n. pemfile, and enter the following
command:

openssl s_client -connect |ocal host:2955 -ssl 3 -cert adm n. pem

When you enter the command, you are prompted to enter the pass phrase

for the adm n. pemfile.

The openssl| s_client command switches can be explained as follows:

- connect host: port
Open a secure connection to the specified host and port.

-ssl 3
This option configures the client to initiate the handshake using SSL v3
(the default is SSL v2). To see which SSL version (or versions) the
target server is configured to use, check the value of the
pol i ci es: nechani sm pol i cy: prot ocol _versi on variable in the Orbix
configuration file. Orbix servers can also be configured to use TLS v1,
for which the corresponding openssl command switch is -t s1.

-cert adn n. pem
Specifies adni n. pemas the test client’s own certificate. The PEM file
should contain only application certificate and the application
certificate’s private key. The PEM file should not contain a complete
certificate chain.
If your server is not configured to require a client certificate, you can
omit the - cert switch.

Other command switches
The openssl s_client command supports numerous other command
switches, details of which can be found on the OpenSSL document
pages (see “References” on page 17). Two of the more interesting
switches are - st at e and - debug, which log extra details to the
command console during the handshake.

21

CHAPTER 1 | Getting Started with Security

Where do | go from here?

Overview

| want to customize the sample
domain to make it fully secure

| want to security-enable a CORBA
application

| want to write a security-aware
CORBA application

| want to integrate a third-party
enterprise security system

22

To help you get started in the wide-ranging field of security, you might find it
helpful to focus on one of the following fundamental tasks:

® | want to customize the sample domain to make it fully secure.

® | want to security-enable a CORBA application.

® | want to write a security-aware CORBA application.

® | want to integrate a third-party enterprise security system.

® | want to replace the default SSL/TLS toolkit.

The sample configuration domains generated by the it confi gure utility are
not fully secure, because the X.509 certificates used by the Orbix services
are insecure demonstration certificates. To perform basic customization of a
secure configuration domain, see the following reference:

® “Securing Orbix Services” on page 209.

To security-enable a CORBA application, see the following reference:
® “Securing CORBA Applications” on page 63.

To write a security-aware CORBA application, see the following references:
® “Programming Policies” on page 447.

® “Authentication” on page 461.

® “Validating Certificates” on page 499.

The Orbix Security Framework provides a facility for integrating with
third-part enterprise security systems, such as LDAP, through a pluggable
system of security adapters. For details of how this works, see the following
reference:

® “Configuring the Orbix Security Service” on page 141.

For details of how to write your own custom adapter, see the following
reference:

® “Developing an iSF Adapter” on page 519.

| want to replace the default
SSL/TLS toolkit

Where do | go from here?

By default, Orbix uses the SSL/TLS toolkit from Baltimore Technologies.
IONA’s SSL/TLS toolkit replaceability feature enables you to replace the
underlying SSL/TLS toolkit used by an Orbix applications. For details, see
the following chapter:

® “Choosing an SSL/TLS Toolkit” on page 269.

23

CHAPTER 1 | Getting Started with Security

24

In this chapter

CHAPTER 2

Orbix Security
Framework

The Orbix Security Framework provides the common
underlying security framework for all types of applications in
Orbix, including CORBA and Web services applications. This
chapter provides an introduction to the main features of the
iSF.

This chapter discusses the following topics:

Introduction to the iSF page 26
Orbix Security Service page 31
Secure Applications page 35
Administering the iSF page 40

25

CHAPTER 2 | Orbix Security Framework

Introduction to

Overview

In this section

26

the iSF

This section provides a brief overview of and introduction to the Orbix
Security Framework, which provides a common security framework for all
components of Orbix.

This section contains the following subsections:

iSF Features page 27
Example of an iSF System page 28
Security Standards page 30

Introduction to the iSF

iISF Features

Overview

The Orbix Security Framework is a scalable, standards-based security
framework with the following features:

Pluggable integration with third-party enterprise security systems.
Out-of-the-box integration with flat file, or LDAP security systems.
Centralized management of user accounts.

Role-Based Access Control.

Role-to-permission mapping supported by access control lists.
Unified security platform works across CORBA and Web services.
Security platform is ART-based.

Logging.

27

CHAPTER 2 | Orbix Security Framework

Example of an iSF System

Overview Figure 10 shows an example of an iSF system that features a standalone
Orbix security service, which can service remote requests for security-related
functions.

CORBA
Server

N CORBA IIOP/TLS CORBA on

Services Server 0S/390
Container

E Web

Orbix Security Service

A 4

Enterprise Security Service

Figure 10: Example System with a Standalone Orbix Security Service

Orbix security service The Orbix security service is the central component of the Orbix Security
Framework, providing an authentication service, an authorization service
and a repository of user information and credentials. When the Orbix
security service is deployed in standalone mode, all kinds of application,
including CORBA applications and Web services, can call it remotely.

28

Enterprise security service

Propagating security credentials

Transport layer

Application layer

Introduction to the iSF

The Orbix security service is designed to integrate with a third-party
enterprise security service (ESS), which acts as the primary repository for
user information and credentials. Integration with an ESS is supported by a
variety of /iSF adapters. The following adapters are currently supported by
iSF:

® LDAP adapter.

The following adapter is provided for use in simple demonstrations (but is
not supported in production environments):

® File adapter.

In addition, it is possible to build your own adapters using the iSF Adapter
SDK—see “iSF Server Development Kit” on page 34.

The example in Figure 10 on page 28 assumes that a user’s credentials can
be propagated from one application to another. There are fundamentally two
different layers that can propagate security credentials between processes in
an iSF distributed system:

¢ Transport layer.

® Application layer.

Security at the transport layer enables security information to be exchanged
during the security handshake, which happens while the connection is being
established. For example, the SSL/TLS standard enables X.509 certificates

to be exchanged between a client and a server during a security handshake.

Security at the application layer enables security information to be
propagated after connection establishment, using a protocol layered above
the transport. For example, the CORBA common secure interoperability
v2.0 (CSIv2) protocol propagates security information by embedding
security data in [IOP messages, which are layered above TCP/IP.

The CSIv2 protocol can be used to propagate any of the following kinds of
credential:

® Username/password/domain.
® Username only.
® Single-sign on (SSO) token.

29

CHAPTER 2 | Orbix Security Framework

Security Standards

Overview One of the goals of the iSF is to base the security framework on established
security standards, thereby maximizing the ability of iSF to integrate and
interoperate with other secure systems. This section lists the security
standards currently supported by the iSF.

Standards supported by iSF The following security standards are supported by iSF:

® HTTP login mechanisms—that is, HTTP basic authentication and
HTTP form-based authentication.

® Secure Sockets Layer / Transport Layer Security (SSL/TLS), from the
Internet Engineering Task Force, which provides data security for
applications that communicate across networks.

® CCITT X.509, which governs the form of security certificates based on
public (asymmetric) key systems)

® OMG Common Secure Interoperability specification (CSIv2)

® The XML Key management Specification (XKMS), which specifies the
protocols for distributing and registering public keys. XKMS is
composed of the XML Key Information Service Specification (X-KISS),
and the XML Key Registration Service Specification (X-KRSS). XKMS
provides the Public Key Infrastructure (PKI) support in iSF.

® Security Assertion Markup Language (SAML) from the Organization for
the Advancement of Structured Information Standards (OASIS), which
is the XML security standard for exchanging authentication and
authorization information. The SAML specification provides bindings
for various transport protocols including HTTP/HTTPS and SOAP.

® Secure Multipurpose Internet Mail Extensions (S/MIME), which is a
specification for secure electronic mail, and is designed to add security
to e-mail messages in MIME format.

® WS-Security, which a proposed standard from Microsoft, IBM, and
VeriSign. It defines a standard set of SOAP extensions, or message
headers, that can be used to implement integrity and confidentiality in
Web services applications.

® Java Authentication and Authorization Service (JAAS)

30

Orbix Security Service

Orbix Security Service

Overview The Orbix security service is the central component of the Orbix Security
Framework. This section provides an overview of the main Orbix security
service features.

In this section This section contains the following subsections:
Orbix Security Service Architecture page 32
iSF Server Development Kit page 34

31

CHAPTER 2 | Orbix Security Framework

Orbix Security Service Architecture

iSF client API

Remote connections to the Orbix
security service

Standalone or embedded
deployment

iSF adapter API

iSF adapters

32

The GSP plug-in access the Orbix security service through the iSF client API,
which is a private IONA-proprietary API. This APl exposes general security
operations, such as authenticating a username and password, retrieving a
user's roles, and so on. Two language versions of the iSF client APl are used
internally by Orbix:

® C++.
® Java.

Orbix plug-ins can communicate with the Orbix security service through an
IIOP/TLS connection.

The iSF server module can be packaged in the following different ways:

® Standalone deployment (default)—the iSF server module is packaged
as a standalone server process, the Orbix security service, that services
requests through a CORBA interface (IIOP or [IOP/TLS).

® Embedded deployment—the iSF server module is packaged as a JAR
library that can be loaded directly into a Java application. In this case,
service requests are made as local calls.

Integration with third-party enterprise security systems is facilitated by the
iSF adapter API that enables the Orbix security service to delegate security
operations to other security systems.

IONA provides several ready-made adapters that are implemented with the
iSF adapter API. The following adapters are available:
® LDAP adapter.

® File adapter (demonstration only—not supported in production
environments).

Optional iSF components

Single sign-on

Orbix Security Service

The Orbix security service includes the following optional components that
can be enabled to provide additional security features:

® Single sign-on.

Single sign-on means that once an application has authenticated a
particular user, it is relatively easy for other secure applications to access
that user’s security data.

When single sign-on is enabled, the Orbix security service creates an
association between an SSO token and a user session. Any application that
has the user's SSO token can then use it to access the user’s session data.

33

CHAPTER 2 | Orbix Security Framework

iISF Server Development Kit

Overview

iSF adapter SDK

iSF client SDK

34

The iSF server development kit (SDK) enables you to implement custom
extensions to the iSF. The iSF SDK is divided into the following parts:

® iSF adapter SDK.
® iSF client SDK.

The iSF adapter SDK provides an APl implementing custom iSF adapters.

Using this API, you can integrate any enterprise security system with the
iSF.

This API is available in both C++ and Java.

The iSF client SDK provides an API for Orbix to access the iSF server
module’s core functionality directly (usually through remote calls).

This is a private APl intended only for internal use by Orbix.

Secure Applications

Secure Applications

Overview

In this section

This section explains how applications from various technology domains are
integrated into the Orbix Security Framework.

This section contains the following subsections:

ART Security Plug-Ins page 36

Secure CORBA Applications page 38

35

CHAPTER 2 | Orbix Security Framework

ART Security Plug-Ins

Overview

What is ART?

Security plug-ins

IIOP/TLS

HTTPS

CSiv2

36

To participate in the Orbix Security Framework, applications load one or
more of the ART security plug-ins. Because Orbix is built using a common
ART platform, an identical set of security plug-ins are used across the
different technology domains of CORBA and Web services. This has the
advantage of ensuring maximum security compatibility between these
different technology domains.

IONA’s Adaptive Runtime Technology (ART) is a modular framework for
constructing distributed systems, based on a lightweight core and an
open-ended set of p/lug-ins. ART is the underlying technology in Orbix.

An application can load any of the following security plug-ins to enable
particular security features and participate in the Orbix Security Framework:

* |IOP/TLS.
® HTTPS.
* (CSiv2.

* GSP.

The IIOP/TLS plug-in provides applications with the capability to establish
secure connections using [IOP over a TLS transport. Authentication is also
performed using X.509 certificates. For example, this plug-in is used by
CORBA applications.

The HTTPS plug-in provides the capability to establish secure connections
using HTTP over a TLS transport. Authentication is also performed using
X.509 certificates. For example, this plug-in is used by the Web container to
enable secure communications with Web clients.

The Common Secure Interoperability (CSIv2) plug-in provides support for
authentication based on a username and password. The CSIv2 plug-in also
enables applications to forward usernames or security tokens to other
applications over an I1IOP or [IOP/TLS connection.

GSP

Secure Applications

The GSP plug-in provides an authorization capability for the iISF—that is,
the capability to restrict access to certain methods, operations, or attributes,
based on the configuration values stored in an external action-role mapping
XML file. The GSP plug-in works in tandem with the Orbix security service to
realize a complete system of role-based access control.

37

CHAPTER 2 | Orbix Security Framework

Secure CORBA Applications

Overview

IIOP/TLS plug-in in CORBA a
application

CSIv2 plug-in in a CORBA
application

38

Figure 11 shows how the security plug-ins in a CORBA application
cooperate to provide security for the application.

CORBA Application

Action-role

1OP/ mapping file
TLs | CSlv2and Gsp

IIOP/TLS | | A
Q | I— Authorization —>

Authentication

Orbix Secure Service

Figure 11: Security Plug-Ins in a CORBA Application

The IIOP/TLS plug-in enables the CORBA application to establish
connections secured by SSL/TLS. This layer of security is essential for
providing data encryption.

The CSIv2 plug-in provides CORBA applications with the following features:

® The capability to log in with a username and password.

® Screening incoming IIOP invocations by making sure that the
username/password combination is correct.

® Transmission of a username/password/domain combination to other
applications.

® Transmission of a username or security token to other applications.

Secure Applications

GSP plug-in in a CORBA The GSP plug-in restricts access to a CORBA server's operations and
application attributes, only allowing user's with certain specified roles to proceed with
an invocation.

39

CHAPTER 2 | Orbix Security Framework

Administering the iSF

Overview This section provides an overview of the main aspects of configuring and
administering the iSF.

In this section This section contains the following subsections:
Overview of iSF Administration page 41
Secure ASP Services page 43

40

Administering the iSF

Overview of iSF Administration

Overview

Orbix configuration file

iSF properties file

Enterprise security service
administration

There are several different aspects of iSF administration to consider, as
follows:

® Orbix configuration file.

® iSF properties file.

® Enterprise security service administration.
® Access control lists.

The Orbix configuration file, DomainName. cf g (or, alternatively, the CFR

service), is used to configure the security policies for all of the applications

and services in a particular location domain. For example, the following

kinds of security policy are specified in the Orbix configuration file:

® The list of security plug-ins to be loaded by an application.

® Whether an application accepts both secure and insecure connections,
or secure connections only.

® The name of the iSF authorization realm to which an application
belongs.

These are just some of the security policies that can be configured—see
“Security” on page 543.

The iSF properties file is used to configure the core properties of the Orbix
security service. This file primarily configures the properties of an iSF
adapter that connects to an enterprise security backend. This file also
configures the optional single sign-on and authorization manager features.

See “iS2 Configuration” on page 513 for details.

Because the Orbix security service is capable of integrating with a
third-party enterprise security service, you can continue to use the native
third-party administration tools for your chosen enterprise security service.
These tools would be used to administer user accounts, including such data
as usernames, passwords, user groups, and roles.

41

CHAPTER 2 | Orbix Security Framework

Access control lists

42

To complete a system of role-based access control, it is necessary to provide
individual applications with an access control list (ACL) file that is
responsible for mapping user roles to particular permissions.

For example, the ACL associated with a CORBA server could specify that
only a specified set of roles are allowed to invoke a particular IDL operation.

There is one type of ACL file used within the iSF, as follows:

® Action-role mapping (proprietary format).

Administering the iSF

Secure ASP Services

Overview When you create a secure location domain, all of the standard ASP services
are secure by default. The default configuration can be used to test sample
applications, but is not genuinely secure. Before the ASP services can be
used in a real deployment, it is necessary to customize the security
configuration.

Customizing the security For a real deployment, certain aspects of the security configuration for ASP
configuration services would be customized, as follows:
® X.509 certificates associated with ASP services—the sample
certificates initially associated with the ASP services must all be
replaced, because they are not secure.
® Default security policies—for the ASP services might need to be
changed before deployment.

43

CHAPTER 2 | Orbix Security Framework

44

In this chapter

CHAPTER 3

Transport Layer
Security

Transport Layer Security provides encryption and
authentication mechanisms for your Orbix system.

This chapter discusses the following topics:

What does Orbix Provide? page 46
How TLS Provides Security page 48
Obtaining Credentials from X.509 Certificates page 54

45

CHAPTER 3 | Transport Layer Security

What does Orbix Provide?

Security plug-ins

Transport Layer Security

CORBA Security Level 2

Added-value policies and APIs

SSL/TLS toolkit replaceability

46

Orbix provides the core security infrastructure to a distributed system based
on IONA’s Adaptive Runtime Technology (ART). It is implemented as a
symmetric set of plug-ins for Orbix (C++ and Java). When the security
plug-ins are installed in an application, the communication layers consist of
the CORBA standard Internet Inter-ORB Protocol (IIOP), layered above TLS
and TCP/IP.

Transport Layer Security (TLS) is an IETF Open Standard. It is based on,
and is the successor to, Secure Sockets Layer (SSL), long the standard for
secure communications.

The TLS Protocol provides the most critical security features to help you

preserve the privacy and integrity of your system:

® Authentication (based on RSA with X.509v3 certificates).

® Encryption (based on DES, Triple DES, RC4, IDEA).

® Message integrity (based on SHAL, MD5).

® A framework that allows new cryptographic algorithms to be
incorporated into the TLS specification.

Orbix is based on the CORBA Security Level 2 policies and API's (RTF 1.7).
It implements a set of policies from the CORBA specification that enable you
to control encryption and authentication at a fine level.

Orbix also has added-value policies and APIs that provide more control for
SSL/TLS applications than provided by CORBA Security.

Orbix has an SSL/TLS toolkit replaceability feature that enables you to
replace completely the underlying toolkit that implements SSL/TLS in Orbix.
Currently, you have a choice between the Baltimore toolkit (all platforms)
and the Schannel toolkit (Windows only).

Security-unaware and
security-aware applications

What does Orbix Provide?

There are two basic approaches to using security in your applications:

Security-unaware applications—Modify the Orbix configuration to
enable and configure security for your application. This approach to
security is completely transparent to the application, requiring no code
changes or recompilation.

Security-aware applications—In addition to modifying the Orbix
configuration to enable security, you can customize application security
using both the standard CORBA security APl and the Orbix
added-value APlIs.

47

CHAPTER 3 | Transport Layer Security

How TLS Provides Security

Basic TLS security features TLS provides the following security for communications across TCP/IP
connections:

Authentication This allows an application to verify the identity of
another application with which it communicates.

Privacy This ensures that data transmitted between
applications can not be eavesdropped on or understood
by a third party.

Integrity This allows applications to detect if data was modified
during transmission.

In this section This section contains the following subsections:
Authentication in TLS page 49
Certificates in TLS Authentication page b1
Privacy of TLS Communications page 52
Integrity of TLS Communications page 53

48

How TLS Provides Security

Authentication in TLS

Public key cryptography

The TLS Handshake Protocol

TLS uses Rivest Shamir Adleman (RSA) public key cryptography for
authentication. In public key cryptography, each application has an
associated public key and private key. Data encrypted with the public key
can be decrypted only with the private key. Data encrypted with the private
key can be decrypted only with the public key.

Public key cryptography allows an application to prove its identity by
encoding data with its private key. As no other application has access to this
key, the encoded data must derive from the true application. Any
application can check the content of the encoded data by decoding it with
the application’s public key.

Consider the example of two applications, a client and a server. The client
connects to the server and wishes to send some confidential data. Before
sending application data, the client must ensure that it is connected to the
required server and not to an impostor.

When the client connects to the server, it confirms the server identity using
the TLS handshake protocol. A simplified explanation of how the client
executes this handshake in order to authenticate the server is as follows:

Stage Description

1 | The client initiates the TLS handshake by sending the initial
TLS handshake message to the server.

2 | The server responds by sending its certificate to the client. This
certificate verifies the server's identity and contains the
certificate’s public key.

3 | The client extracts the public key from the certificate and
encrypts a symmetric encryption algorithm session key with the

extracted public key.

49

CHAPTER 3 | Transport Layer Security

Optimized handshake

Client authentication

50

Stage

Description

The server uses its private key to decrypt the encrypted session
key which it will use to encrypt and decrypt application data
passing to and from the client. The client will also use the
shared session key to encrypt and decrypt messages passing to
and from the server.

The TLS protocol permits a special optimized handshake in which a
previously established session can be resumed. This has the advantage of
not needing expensive private key computations. The TLS handshake also
facilitates the negotiation of ciphers to be used in a connection.

The TLS protocol also allows the server to authenticate the client. Client
authentication, which is supported by Orbix, is optional in TLS
communications.

How TLS Provides Security

Certificates in TLS Authentication

Purpose of certificates

Certification authority

X.509 certificate format

Access to certificates

A public key is transmitted as part of a certificate. The certificate is used to
ensure that the submitted public key is, in fact, the public key that belongs
to the submitter. The client checks that the certificate has been digitally
signed by a certification authority (CA) that the client explicitly trusts.

A CA is a trusted authority that verifies the validity of the combination of
entity name and public key in a certificate. You must specify trusted CAs in
order to use Orbix.

The International Telecommunications Union (ITU) recommendation,
X.509, defines a standard format for certificates. TLS authentication uses
X.509 certificates to transfer information about an application’s public key.

An X.509 certificate includes the following data:

® The name of the entity identified by the certificate.

® The public key of the entity.

® The name of the certification authority that issued the certificate.

The role of a certificate is to match an entity name to a public key.

According to the TLS protocol, it is unnecessary for applications to have
access to all certificates. Generally, each application only needs to access its
own certificate and the corresponding issuing certificates. Clients and
servers supply their certificates to applications that they want to contact
during the TLS handshake. The nature of the TLS handshake is such that
there is nothing insecure in receiving the certificate from an as yet untrusted
peer. The certificate will be checked to make sure that it has been digitally
signed by a trusted CA and the peer will have to prove its identity during the
handshake.

51

CHAPTER 3 | Transport Layer Security

Privacy of TLS Communications

Establishing a symmetric key

Symmetric cryptography

52

Immediately after authentication, the client sends an encoded data value to
the server (using the server’s public key). This unique session encoded value
is a key to a symmetric cryptographic algorithm. Only the server is able to
decode this data (using the corresponding private key).

A symmetric cryptographic algorithm is an algorithm in which a single key is
used to encode and decode data. Once the server has received such a key
from the client, all subsequent communications between the applications
can be encoded using the agreed symmetric cryptographic algorithm. This
feature strengthens TLS security.

Examples of symmetric cryptographic algorithms used to maintain privacy in
TLS communications are the Data Encryption Standard (DES) and RC4.

How TLS Provides Security

Integrity of TLS Communications

Message authentication code

Guaranteeing message integrity

The authentication and privacy features of TLS ensure that applications can
exchange confidential data that cannot be understood by an intermediary.
However, these features do not protect against the modification of encrypted
messages transmitted between applications.

To detect if an application has received data modified by an intermediary,
TLS adds a message authentication code (MAC) to each message. This code
is computed by applying a function to the message content and the secret
key used in the symmetric cryptographic algorithm.

An intermediary cannot compute the MAC for a message without knowing
the secret key used to encrypt it. If the message is corrupted or modified
during transmission, the message content will not match the MAC. TLS
automatically detects this error and rejects corrupted messages.

53

CHAPTER 3 | Transport Layer Security

Obtaining Credentials from X.509 Certificates

Obtaining own credentials This section discusses how an application’s own credentials are initially
obtained from an X.509 certificate. An application’s own credentials are the
credentials that the application normally uses to identify itself to other

applications.
Comparison of PKCS#12 and Two mechanisms for obtaining own credentials are described in this section:
PKCS#11 ® PKCS#12—-credentials obtained from a PKCS#12 file.

® PKCS#11—credentials obtained from a smart card. Orbix uses the
PKCS#11 interface to communicate with the smart card.

In this section This section contains the following subsections:
Obtaining Certificate Credentials from a File page 55
Obtaining Certificate Credentials from a Smart Card page 58

54

Obtaining Credentials from X.509 Certificates

Obtaining Certificate Credentials from a File

Creating credentials using the The simplest way for a client to obtain certificate credentials is to configure

principal sponsor an SSL/TLS principal sponsor for the client application. This principal
sponsor can be initialized by editing the Orbix configuration—see
“Specifying an Application’s Own Certificate” on page 363.

Creating credentials from a Figure 12 illustrates how the principal sponsor creates credentials from a
PKCS#12 file PKCS#12 file.

PKCS#12

File
O
O—m
Client (@) |Load PKCS#12 file
ORB ® ;9_"1’[‘_9@_‘!?[‘2@_'5_"_3

Principal Authenticator | Creates | OWn credentials
(unci =

A
@ aut helntl cate()

1
E
! | private key cache
1
Principal Sponsor j |

Prompt user for
pass phrase

®

®

Config
File

Figure 12: Creating Credentials for a Client Application Using PKCS#12

55

CHAPTER 3 | Transport Layer Security

Steps for creating credentials

56

The principal sponsor automates the steps to create credentials, as follows:

1.

The principal sponsor reads the client configuration file to discover
which authentication method to use.

If the authentication method is PKCS#12, the principal sponsor
obtains the pass phrase to decrypt the client’s certificate chain and
private key. The pass phrase is obtained either by running a login
utility that prompts the user for the pass phrase, or by reading the
client configuration file—see “Providing a Certificate Pass Phrase” on
page 368.

The principal sponsor requests the principal authenticator to generate
credentials for the client by invoking the aut hent i cate() operation,
passing the following data as parameters:

. Pass phrase,

. PKCS#12 file name.

The principal authenticator loads the PKCS#12 file to obtain the client
identity. The PKCS#12 file contains an encrypted X.509 certificate
chain and an encrypted private key.

If the authentication step is successful, the principal authenticator
creates an own credentials object, of SecurityLevel 2:: Oredential s
type. The own credentials object is cached in memory along with its
private key.

Obtaining Credentials from X.509 Certificates

How PKCS#12 credentials are Figure 13 illustrates how PKCS#12 credentials are used during an SSL/TLS
used in an SSL/TLS handshake handshake, showing only the portion of the handshake where the server
verifies the client’s identity.

Client Server

)) SSL/TLS Secure Handshake
Own credentials list

| @ Send certificate chain G

own credentials

A 4

[smm]
@ i i (@) challenge client
Use private | , <
key to ! | private key cache| |
decrypt | E
challenge “----------------s
- == J
Figure 13: Using PKCS#12 Credentials to Authenticate a Client to a
Server
PKCS#12 handshake steps During an SSL/TLS handshake, the client authenticates itself to the server as
follows:

1. At a certain point during the SSL/TLS handshake, the client sends an
X.509 certificate chain (which has been cached in an own credentials
object) to the server.

2. The server sends a challenge message, encrypted using the client’s
public key.

3. Theclient uses the private key (cached in memory) to decrypt the
challenge message.

4. Having successfully answered the server challenge, the client proceeds
to the next stage of the handshake (not shown).

57

CHAPTER 3 | Transport Layer Security

Obtaining Certificate Credentials from a Smart Card

Creating credentials using the Figure 14 illustrates how the SSL/TLS principal sponsor creates certificate
PKCS#11 interface credentials using the PKCS#11 interface—see “Specifying an Application’s
Own Certificate” on page 363.

PKCS#11 Interface

1 1
1 1
1 1
1 1
1 1
| Smart Card E
1
! O ,
1 1
oo
1
, ,
S |
Client @ Load certificate chain
Own credentials lis
ORB ®, ,Qun credentias | .

Principal Authenticator | Creates

N
@ aut helntl cate()

Principal Sponsor j

©

password/PIN

@ ‘ Prompt user for

Config
File

Figure 14: Creating Credentials for a Client Application Using PKCS#1 1

58

Steps for creating credentials

Obtaining Credentials from X.509 Certificates

The principal sponsor automates the steps to create credentials, as follows:

1.

The principal sponsor reads the client configuration file to discover
which authentication method to use.

If the authentication method is PKCS#11, the principal sponsor
obtains the smart card’s PIN to gain access to the smart card. The PIN
is obtained either by running a login utility that prompts the user for
the PIN, or by reading the client configuration file—see “Providing a
Smart Card PIN” on page 372.

The principal sponsor requests the principal authenticator to generate
credentials for the client by invoking the aut hent i cat e() operation,
passing the following data:

. Provider name,

. Slot number,

. PIN or pass phrase.

The principal authenticator communicates with the smart card using
the PKCS#11 interface to obtain the client identity. The principal
authenticator uploads only the X.509 certificate chain. The private key
is left on the smart card.

If the authentication step is successful, the principal authenticator
creates an own credentials object, of SecuritylLevel 2:: Oredential s
type. The own credentials object is cached in memory but its private
key is not stored in memory.

59

CHAPTER 3 | Transport Layer Security

How PKCS#11 credentials are Figure 15 illustrates how PKCS#11 credentials are used during an SSL/TLS
used in an SSL/TLS handshake handshake, showing only the portion of the handshake where the server

verifies the client’s identity.

-
Client Server
. . SSL/TLS Secure Handshake
Own credentials list
\moomm ! e .
E own credentials E @ Send certificate chain -] -
| | =
1 1
T . J @ Challenge client
Delegate private key
operations to smart card.
-0

Figure 15: Using PKCS#11 Credentials to Authenticate a Client to a
Server

PKCS#11 handshake steps During an SSL/TLS handshake, the client authenticates itself to the server as

60

follows:

1. At a certain point during the SSL/TLS handshake, the client sends an
X.509 certificate chain (which has been cached in an own credentials
object) to the server.

2. The server sends a challenge message, encrypted using the client’s
public key.

Obtaining Credentials from X.509 Certificates

The client delegates the challenge message to the smart card, using
the PKCS#11 interface. The smart card uses the appropriate private
key to decrypt the challenge message. Because the smart card has a
built-in processor, it is able to perform the private key calculations in
place. The private key never leaves the smart card.

Having successfully answered the server challenge, the client proceeds
to the next stage of the handshake (not shown).

Note: At no point during the handshake is the smart card’s private
key loaded into memory.

61

CHAPTER 3 | Transport Layer Security

62

In this chapter

CHAPTER 4

Securing CORBA

Applications

This chapter describes how to enable security in the context
of the Orbix Security Framework for CORBA applications and

services.

This chapter discusses the following topics:

Overview of CORBA Security page 64
Securing Communications with SSL/TLS page 66
Specifying Fixed Ports for SSL/TLS Connections page 76
Securing Two-Tier CORBA Systems with CSI page 78
Securing Three-Tier CORBA Systems with CSI page 84
X.509 Certificate-Based Authentication page 91
Caching of Credentials page 97

63

CHAPTER 4 | Securing CORBA Applications

Overview of CORBA Security

Overview

CORBA applications and iSF

64

There are two main components of security for CORBA applications: 110P
over SSL/TLS (IIOP/TLS), which provides secure communication between
client and server; and the iSF, which is concerned with higher-level security
features such as authentication and authorization.

The following combinations are recommended:
® |IOP/TLS only—for a pure SSL/TLS security solution.

® |IOP/TLS and iSF—for a highly scalable security solution, based on
username/password client authentication.

Figure 16 shows the main features of a secure CORBA application in the
context of the iSF.

CORBA Application

Action-role
11OP/ mapping file
TLS CSlIv2 and GSP

| | ACL

IIOP/TLS
(—, | I— Authorization —>

Authentication

Orbix Secure Service

Figure 16: A Secure CORBA Application within the iSF

Security plug-ins

IHOP/TLS plug-in

CSIv2 plug-in

GSP plug-in

Overview of CORBA Security

Within the iSF, a CORBA application becomes fully secure by loading the
following plug-ins:

® |IOP/TLS plug-in

® CSIv2 plug-in

® GSP plug-in

The IIOP/TLS plug-in, iiop_tls, enables a CORBA application to transmit
and receive IIOP requests over a secure SSL/TLS connection. This plug-in
can be enabled independently of the other two plug-ins.

See “Securing Communications with SSL/TLS” on page 66 for details on
how to enable [IOP/TLS in a CORBA application.

The CSIv2 plug-in, csi, provides a client authentication mechanism for
CORBA applications. The authentication mechanism is based on a
username and a password. When the CSIv2 plug-in is configured for use
with the iSF, the username and password are forwarded to a central Orbix
security service to be authenticated. This plug-in is needed to support the
iSF.

Note: The IIOP/TLS plug-in also provides a client authentication
mechanism (based on SSL/TLS and X.509 certificates). The SSL/TLS and
CSlv2 authentication mechanisms are independent of each other and can
be used simultaneously.

The GSP plug-in, gsp, provides authorization by checking a user's roles
against the permissions stored in an action-role mapping file. This plug-in is
needed to support the iSF.

65

CHAPTER 4 | Securing CORBA Applications

Securing Communications with SSL/TLS

Overview

Configuration samples

66

This section describes how to configure an application to use SSL/TLS
security. In this section, it is assumed that your initial configuration comes
from a secure location domain (generated by the i t confi gure utility with
security enabled—see “Creating a Secure Domain” on page 4).

WARNING: The default certificates used in the CORBA configuration
samples are for demonstration purposes only and are completely insecure.
You must generate your own custom certificates for use in your own
CORBA applications.

If a location domain, DomainName, is generated with security enabled and
demonstration configurations enabled, the domain will include several
sample configurations that can be used as templates for configuring
SSL/TLS. Within the default domain configuration (either in the
DomainName. cf g file or in the CFR service), you can find the following
sample SSL/TLS configuration scopes:

d denos.tls.secure _client_wth _no_cert

d denos.tls.secure client_wth_cert

® denos.tls.sem _secure_client_with_cert

d denos.tls.sen _secure client_wth_no_cert

d denos. tls.secure_server_no_client_auth

® denvos.tls.secure_server_request_client_auth

d denos. tls. secure_server_enforce_client_auth

d denos. tls.seni_secure_server_no_client_auth

® denos.tls.senm _secure_server_request_client_auth

d denos. tls. seni _secure_server_enforce_client_auth

Secure client terminology

Securing Communications with SSL/TLS

The terminology used to describe the preceding client configuration scopes
is explained in Table 1.

Table 1: Terminology Describing Secure Client Sample Configurations

Scope Name
Prefix/Suffix

Description

secure_cl i ent

The client opens only secure SSL/TLS connections to the server. If the server does
not support secure connections, the connection attempt will fail.

sem _secure_client

The type of connection opened by the client depends on the disposition of the
server:

® |If the server is insecure (listening only on an insecure [IOP port), an insecure
connection is established.
® |f the server is secure (listening only on a secure [IOP/TLS port), a secure
SSL/TLS connection is established.
® If the server is semi-secure (listening on both an [IOP port and on an
IIOP/TLS port), the type of connection established depends on the client’s
bi ndi ng: cli ent_binding_list.
. If, in the client’s bi ndi ng: cl i ent _bi ndi ng_I i st, a binding with the
I 1 CP interceptor appears before a binding with the 11 GP_TLS
interceptor, an insecure connection is established.
. Conversely, if a binding with the |1 GP_TLS interceptor appears before a
binding with the 11 CP interceptor, a secure connection is established.

with_no_cert

No X.509 certificate is associated with the client (at least, not through
configuration).

with_cert

An X.509 certificate is associated with the client by setting the principal sponsor
configuration variables.

67

CHAPTER 4 | Securing CORBA Applications

Secure server terminology The terminology used to describe the preceding server configuration scopes
is explained in Table 2.

Table 2: Terminology Describing Secure Server Sample Configurations

Scope Name Description
Prefix/Suffix
secure_server The server accepts only secure SSL/TLS connection attempts. If a remote client

does not support secure connections, the connection attempt will fail.

sem _secure_server The server accepts both secure and insecure connection attempts by remote
clients.

no_client_auth The server does not support client authentication over SSL/TLS. That is, during an
SSL/TLS handshake, the server will not request the client to send an X.509
certificate.

request _client_auth The server allows a connecting client the option of either authenticating itself or

not authenticating itself using an X.509 certificate.

enforce_client_auth The server requires a connecting client to authenticate itself using an X.509
certificate.

68

Outline of a sample configuration
scope

Securing Communications with SSL/TLS

For example, the denos. t1s. secure_server_no_client _aut h configuration
defines a server configuration that is secured by SSL/TLS but does not
expect clients to authenticate themselves. This configuration has the
following outline:

Obix Configuration File
7.#. éeneral configuration at root scope.
denvs {
ths {
Common SSL/TLS configuration settings.

secure_server_no_client_auth {
Specific server configuration settings.

Three significant groups of configuration variables contribute to the

secure_server _no_client_aut h configuration, as follows:

1. General configuration at root scope—these configuration settings are
common to all applications, whether secure or insecure.

2. Common SSL/TLS configuration settings—specify the basic settings
for SSL/TLS security. In particular, the or b_pl ugi ns list defined in this
scope includes the iiop_t1s plug-in.

3. Specific server configuration settings—define the settings specific to
the secure_server_no_client _aut h configuration.

69

CHAPTER 4 | Securing CORBA Applications

Sample client configuration

70

For example, consider a secure SSL/TLS client whose configuration is

modelled on the denos. t1s. secure_client_w th_no_cert configuration.

Example 1 shows how to configure such a sample client.
Example 1: Sample SSL/TLS Client Configuration
Obix Configuration File
Ceneral configuration at root scope.
ny_secure_apps {

Common SSL/TLS configuration settings.

(copied from’denos.tls")

orb_plugins = ["local | og_streant, "iiop_profile", "giop",
"iiop_tls"];

bi ndi ng: client_binding_list =["Ors+PQA Col oc", "PQA Col oc",

"QOIS+TLS Col oc+PQA (ol oc", "TLS Col oc+PQA Col oc",
"OTS+d QP+l I OP', "A OGP+l I OGP, "OTS+d OP+l | CP_TLS',
"A CP+ | OP_TLS'];

policies:trusted ca list _policy =

"ASPInstallDin asp\ 6. 0\ et c\t 1 s\ x509\t rust ed_ca_l i sts\ca_li st 1.

pent’;

pol i ci es: mechani sm pol i cy: prot ocol _version = "SSL V3";
pol i ci es: mechani sm pol i cy: ci phersuites =
["RSA WTH RC4_128 SHA', "RSA WTH RC4_128 MX%"];

event log:filters = ["IT_ATLI _TLS=*", "IT_IlICOP=*",
"IT_IIOP_TLS=*", "IT_TLS="];
ny_client {

Specific SSL/TLS client configuration settings
(copied from’denos.tls.secure client_with_no cert’)
princi pal _sponsor: use_princi pal _sponsor = "fal se";

policies:client_secure_invocation_policy:requires
["Confidentiality", "EstablishTrustlnTarget"];
policies:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];
I8

Securing Communications with SSL/TLS

The preceding client configuration can be described as follows:

1. Make sure that the orb_pl ugi ns variable in this configuration scope
includes the iiop_tls plug-in.

Note: For fully secure applications, you should exclude the i i op
plug-in (insecure 110P) from the ORB plug-ins list. This renders the
application incapable of making insecure 110P connections.

For semi-secure applications, however, you should incl/ude thei i op
plug-in before the iiop_tls plug-in in the ORB plug-ins list.

If you plan to use the full Orbix Security Framework, you should
include the gsp plug-in in the ORB plug-ins list as well—see “Securing
Two-Tier CORBA Systems with CSI” on page 78.

2. Make sure that the bi ndi ng: cl i ent _bi ndi ng_l i st variable includes
bindings with the 11 GP_TLS interceptor. You can use the value of the
bi ndi ng: cl i ent _bi ndi ng_l i st shown here.

If you plan to use the full Orbix Security Framework, you should use
the bi ndi ng: cl i ent _bi nding_l i st as shown in “Client configuration”
on page 79 instead.

3. An SSL/TLS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from
other SSL/TLS applications. You must, therefore, edit the
policies:trusted_ca_list_policy variable to point at a list of trusted
certificate authority (CA) certificates. See “Specifying Trusted CA
Certificates” on page 361.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the policies:trusted ca_list_policy variable is ignored.
Within Schannel, the trusted root CA certificates are obtained from
the Windows certificate store.

4. The SSL/TLS mechanism policy specifies the default security protocol
version and the available cipher suites—see “Specifying Cipher Suites”
on page 343.

71

CHAPTER 4 | Securing CORBA Applications

Sample server configuration

72

5. This line enables console logging for security-related events, which is
useful for debugging and testing. Because there is a performance
penalty associated with this option, you might want to comment out or
delete this line in a production system.

6. The SSL/TLS principal sponsor is a mechanism that can be used to
specify an application’s own X.509 certificate. Because this client
configuration does not use a certificate, the principal sponsor is
disabled by setting pri nci pal _sponsor : use_pri nci pal _sponsor to
fal se.

7. The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

. Required options—the options shown here ensure that the client
can open only secure SSL/TLS connections.

+ Supported options—the options shown include all of the
association options, except for the Est abl i shTrust I nd i ent
option. The client cannot support Est abl i shTrustInd i ent,
because it has no X.509 certificate.

Generally speaking, it is rarely necessary to configure such a thing as a pure
server (that is, a server that never makes any requests of its own). Most real
servers are applications that act in both a server role and a client role.
Hence, the sample server described here is a hybrid of the following two
demonstration configurations:

d denos. tls. secure_server_request_client_auth

® denos.tls.secure_client_with_cert

Example 2 shows how to configure such a sample server.
Example 2: Sample SSL/TLS Server Configuration

Obix Configuration File

.#. éneral configuration at root scope.
;‘r;/._secure_apps {

Common SSL/TLS configuration settings.
(copied from’denos.tls")

o b w

Securing Communications with SSL/TLS

Example 2: Sample SSL/TLS Server Configuration

ny_server {
Specific SSL/TLS server configuration settings
(from’denos.tls. secure_server_request_client_auth’)
policies:target _secure_invocation_policy:requires =
["Confidentiality"];
policies:target_secure_invocation_policy:supports =
["EstablishTrustindient", "Confidentiality", "Integrity",
"Det ect Repl ay", "DetectM sordering",
"Establ i shTrust| nTarget"];

princi pal _sponsor: use_princi pal _sponsor = "true";

princi pal _sponsor:auth_nethod_id = "pkcs12_file";

princi pal _sponsor: auth_met hod_data =
["fil ename=ASPInstallDir\ asp\ 6. 0\ et c\ t | s\ x509\ cer t s\ denos\ bank
_server.pl2"];

Specific SSL/TLS client configuration settings
(copied from’denos.tls.secure_client_with_cert’)
policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustlnTarget"];
policies:client_secure_invocation_policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlndient",
"Establ i shTrust | nTarget"];
IE

The preceding server configuration can be described as follows:

1. You can use the same common SSL/TLS settings here as described in
the preceding “Sample client configuration” on page 70

2. The following two lines set the required options and the supported
options for the target secure invocation policy. In this example, the
policy is set as follows:
. Required options—the options shown here ensure that the server

accepts only secure SSL/TLS connection attempts.

. Supported options—all of the target association options are
supported.

73

CHAPTER 4 | Securing CORBA Applications

74

A server must always be associated with an X.509 certificate. Hence,
this line enables the SSL/TLS principal sponsor, which specifies a
certificate for the application.

This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 363.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the pri nci pal _sponsor : aut h_net hod_i d value must be
security | abel instead of pkcs12 file.

Replace the X.509 certificate, by editing the fi | enane option in the
princi pal _sponsor : aut h_net hod_dat a configuration variable to point
at a custom X.509 certificate. The i | enane value should be initialized
with the location of a certificate file in PKCS#12 format—see
“Specifying an Application’s Own Certificate” on page 363 for more
details.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), you would set the I abel option instead of the fi | enane option
in the pri nci pal _sponsor : aut h_net hod_dat a configuration variable.
The | abel specifies the common name (CN) from the application
certificate’s subject DN.

For details of how to specify the certificate’s pass phrase, see
“Providing a Pass Phrase or PIN” on page 367.

The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, the
policy is set as follows:

. Required options—the options shown here ensure that the
application can open only secure SSL/TLS connections to other
servers.

. Supported options—all of the client association options are
supported. In particular, the Est abl i shTrust I nQ i ent option is
supported when the application is in a client role, because the
application has an X.509 certificate.

Mixed security configurations

Customizing SSL/TLS security
policies

Key distribution management

Securing Communications with SSL/TLS

Most realistic secure server configurations are mixed in the sense that they
include both server settings (for the server role), and client settings (for the
client role). When combining server and client security settings for an
application, you must ensure that the settings are consistent with each
other.

For example, consider the case where the server settings are secure and the
client settings are insecure. To configure this case, set up the server role as
described in “Sample server configuration” on page 72. Then configure the
client role by adding (or modifying) the following lines to the

ny_secur e_apps. ny_server configuration scope:

orb_plugins = ["local |og_streant, "iiop_profile", "giop",
"iiop", "iiop_tls"];

policies:client_secure_invocation_policy:requires =
["NoProtection"];

policies:client_secure_invocation_policy:supports =
["NoProtection"];

The first line sets the ORB plug-ins list to make sure that the i i op plug-in
(enabling insecure 110P) is included. The NoPr ot ect i on association option,
which appears in the required and supported client secure invocation policy,
effectively disables security for the client role.

You can, optionally, customize the SSL/TLS security policies in various
ways. For details, see the following references:

® “Configuring SSL/TLS Secure Associations” on page 327.
® “Configuring SSL/TLS Authentication” on page 353.

It is possible to configure your CORBA server so that the certificate pass
phrase is supplied automatically by the key distribution management (KDM)
service. For details, see the following reference:

® “Automatic Activation of Secure Servers” on page 381.

75

CHAPTER 4 | Securing CORBA Applications

Specifying Fixed Ports for SSL/TLS

Connections

Overview

POA policies required for setting
fixed ports

Programming the required POA
policies

76

Orbix allows you to specify a fixed IP port on which a server listens for
SSL/TLS connections. This subsection provides an overview of the
programming and configuration requirements for setting I110P/TLS fixed
ports.

The main prerequisite for configuring fixed ports is that a CORBA developer

programs the application to create a POA instance with the following

policies:

® Portabl eServer:: Li f espanPol i cy—the value of this POA policy
should be set to PERSI STENT, indicating that the objects managed by
this POA can outlive the server process.

® | T_OCRBA : Wl | KnownAddr essi ngPol i cy—the value of this POA policy
is a string that defines a well-known addressing prefix, <wka_prefix>,
for host/port configuration variables that an administrator can edit in
the Orbix configuration.

® | T _Portabl eServer:: Persi st enceMbdePol i cy—the value of this POA
policy can be set to either of the following values:

. Dl RECT_PERSI STENCE, indicating that the POA is configured to
receive connection attempts directly from clients. The server
listens on the fixed port (well-known address) and exports IORs
containing its own host and fixed port.

. I NDI RECT_PERSI STENCE, indicating that connection attempts will
be redirected to the server by the locator service. The server
listens on the fixed port (well-known address), but exports IORs
containing the locator’s host and port.

For details of how to program POA policies, see the CORBA Programmer’s
Guide.

Fixed port configuration variables

Specifying Fixed Ports for SSL/TLS Connections

The following IIOP/TLS configuration variables can be set for a POA that
supports the well-known addressing policy with the <wka_prefix> prefix:
<wka_prefix>:iiop_tls:host = "<host>";
Specifies the hostname, <host>, to publish in the IIOP/TLS profile of
server-generated IORs.
<wka_prefix>:iiop_tls:port ="<port>";
Specifies the fixed IP port, <port>, on which the server listens for
incoming [IOP/TLS messages. This port value is also published in the
IIOP/TLS profile of generated I0Rs.
<wka_prefix>:iiop_tls:listen_addr = " <host>";
Restricts the 1IOP/TLS listening point to listen only on the specified
host, <host>. It is generally used on multi-homed hosts to limit
incoming connections to a particular network interface.
<wka_prefix>:iiop_tls:addr_list =
[" <optional plus_sign><host>: <port>", ... 1;
In the context of server clustering, this configuration variable specifies
a list of host and port combinations, <host>: <port>, for the
<wka_prefix> persistent POA instance.
One of the host and port combinations, <host>: <port> (lacking a +
prefix), specifies the POA’s own listening point. The other host and port
combinations, +<host>: <port> (including a + prefix), specify the
listening points for other servers in the cluster.

Note: The *:addr_Ii st variable takes precedence over the other
host/port configuration variables (*: host, *: port, and
*:|isten_addr).

77

CHAPTER 4 | Securing CORBA Applications

Securing Two-Tier CORBA Systems with CSI

Overview This section describes how to secure a two-tier CORBA system using the
iSF. The client supplies username/password authentication data which is
then authenticated on the server side. The following configurations are
described in detail:
® Client configuration.
® Target configuration.

Two-tier CORBA system Figure 17 shows a basic two-tier CORBA system in the iSF, featuring a
client and a target server.

[l" @ . Propag_ate . Apply access
User login @ authentication @

token control

u/p/d
Client | Request+ [ulpld] | 1aqet
Client 4
authentication . Retrieve user's
token @ aut hent i cat &() realms and roles
A4

Orbix Secure
Service

Figure 17: Two-Tier CORBA System in the iSF

78

Securing Two-Tier CORBA Systems with CSI

Scenario description The scenario shown in Figure 17 can be described as follows:

Stage Description

1 | The user enters a username, password, and domain name on
the client side (user login).

Note: The domain name can either be an empty string (acts
as a wildcard) or must match the value of the
policies:csi:auth_over_transport: server_domai n_nane
configuration variable set on the server side.

2 | When the client makes a remote invocation on the server, the
iSF transmits the username/password/domain authentication
data to the target along with the invocation request.

3 | The server authenticates the received username and password
by calling out to the external Orbix security service.

4 | If authentication is successful, the Orbix security service returns
the user’s realms and roles.

5 | The iSF controls access to the target's IDL interfaces by
consulting an action-role mapping file to determine what the
user is allowed to do.

Client configuration The CORBA client from Example 17 on page 78 can be configured as
shown in Example 3.

Example 3: Configuration of a CORBA client in the iSF
Obix Configuration File
CGeneral configuration at root scope.

ny_secure_apps {
1 # Common SSL/TLS configuration settings.

Common i SF configuration settings.

2 orb_plugins = ["local |og streant, "iiop_profile", "giop",
"iiop_tls", "ots", "gsp']:

79

CHAPTER 4 | Securing CORBA Applications

80

Example 3: Configuration of a CORBA client in the iSF

bi ndi ng: client_binding_list = ["A CP+EGM CP",

" OTS+TLS_Col oc+POA Col oc”, "TLS Col oc+PQA Col oc",

" OTS+PQA_Col oc”, "PQA Col oc”, "G CP+SHVI OP",

"CSl +OTS+A OP+l | CP_TLS', "OTS+d CP+l | CP_TLS",

"CSl +@ CP+ | CP_TLS', "Q P+l I CP_TLS', "CSl+OTS+d CP+ | O,
"OTS+A CP+ | CP', "CSI+Q OP+ I CP', "Q OP+ I CP'];

bi ndi ng: server_bi nding_list = ["CSI +GSP+OrSs*, "CSl +GsP',

"Csl +ors', "Csl"];

ny_client {
Specific SSL/TLS configuration settings.

Specific i SF configuration settings.
pl ugi ns: csi:al l ow csi _reply_without _servi ce_context =

"fal se";

policies:csi:auth over _transport:client_supports =

["EstablishTrustInQient"];

princi pal _sponsor: csi: use_princi pal _sponsor = "true";
princi pal _sponsor: csi: aut h_met hod_i d = "GSSUPMech";
princi pal _sponsor: csi:auth_net hod_data = [];

}s

The preceding client configuration can be explained as follows:

1.

The SSL/TLS configuration variables common to all of your applications
can be placed here—see “Securing Communications with SSL/TLS” on
page 66 for details of the SSL/TLS configuration.

Make sure that the orb_pl ugi ns variable in this configuration scope
includes both the iiop_t1s and the gsp plug-ins in the order shown.
Make sure that the bi ndi ng: cl i ent _bi ndi ng_I i st variable includes
bindings with the CSI interceptor. Your can use the value of the

bi ndi ng: cl i ent_bi nding_| i st shown here.

Make sure that the bi ndi ng: server _bi ndi ng_I i st variable includes
bindings with both the CSI and GsP interceptors. Your can use the
value of the bi ndi ng: server _bi ndi ng_I i st shown here.

The SSL/TLS configuration variables specific to the CORBA client can
be placed here—see “Securing Communications with SSL/TLS” on
page 66.

Target configuration

Securing Two-Tier CORBA Systems with CSI

6. This setting enforces strict checking of reply messages from the server,
to make sure the server actually supports CSIv2.

7. This configuration setting specifies that the client supports sending
username/password authentication data to a server.

8. The next three lines specify that the client uses the CSI principal
sponsor to obtain the user’s authentication data. With the configuration
as shown, the user would be prompted to enter the username and
password when the client application starts up.

For more details on the CSI principal sponsor, see “Providing a
Username and Password” on page 420.

The CORBA target server from Figure 17 on page 78 can be configured as
shown in Example 4.

Example 4: Configuration of a Second-Tier Target Server in the iSF
Obix Configuration File
CGeneral configuration at root scope.

ny_secure_apps {
Common SSL/TLS configuration settings.

Common i SF configuration settings.

orb_plugins =[..., "“iiop_tls", "gsp", ...];
binding:client_binding_list =[...];
bi ndi ng: server_binding list =[...];

ny_two_tier_target {
Specific SSL/TLS configuration settings.

Specific i SF configuration settings.

policies:csi:auth_over_transport:target supports
["EstablishTrustindient"];

policies:csi:auth_over_transport:target_requires
["EstablishTrustindient"];

pol i ci es: csi:auth_over_transport: server_domai n_nane =
" DEFAULT";

pl ugi ns: gsp: aut hori zati on_real m = "AuthzRealm";
pl ugi ns: gsp: acti on_rol e_mappi ng_file = "ActionRoleURL";

81

CHAPTER 4 | Securing CORBA Applications

82

Example 4: Configuration of a Second-Tier Target Server in the iSF

iSF client configuration settings.
pol i ci es: csi:auth_over_transport:client_supports =
["EstablishTrustInQient"];

princi pal _sponsor: csi: use_pri nci pal _sponsor = "true";
princi pal _sponsor: csi: aut h_method_i d = "GSSUPMech";
princi pal _sponsor: csi:auth_met hod _data = [];

Ik

The preceding target server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA target
server can be placed here—see “Securing Communications with
SSL/TLS” on page 66.

2. This configuration setting specifies that the target server supports
receiving username/password authentication data from the client.

3. This configuration setting specifies that the target server requires the
client to send username/password authentication data.

4. The server_domai n_nane configuration variable sets the server's CSlv2
authentication domain name. The domain name embedded in a
received CSlv2 credential must match the value of the
ser ver _donai n_name variable on the server side or could be an empty
string (acts as a wildcard).

5. This configuration setting specifies the iSF authorization realm,
AuthzRealm, to which this server belongs. For more details about iSF
authorization realms, see “iSF Authorization Realms” on page 177.

6. The action_rol e_mappi ng configuration variable specifies the location
of an action-role mapping that controls access to the IDL interfaces
implemented by the server. The file location is specified in an URL
format, for example:
file:///security adm n/action_rol e mappi ng. xm (UNIX) or
file:///c:/security admn/action_rol e mappi ng. xm (Windows).

For more details about the action-role mapping file, see “CORBA
Action-Role Mapping ACL"” on page 194.

Securing Two-Tier CORBA Systems with CSI

7. You should also set iSF client configuration variables in the server
configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and
the CORBA naming service.

Related administration tasks After securing your CORBA applications with iSF, you might need to perform
related administration tasks, for example:

® See “Managing Users, Roles and Domains” on page 173.
® See “CORBA Action-Role Mapping ACL” on page 194.

83

CHAPTER 4 | Securing CORBA Applications

Securing Three-Tier CORBA Systems with CSI

Overview This section describes how to secure a three-tier CORBA system using the

iSF. In this scenario there is a client, an intermediate server, and a target
server. The intermediate server is configured to propagate the client identity
when it invokes on the target server in the third tier. The following
configurations are described in detail:

® Intermediate configuration.

® Target configuration.

Three-tier CORBA system Figure 18 shows a basic three-tier CORBA system in the iSF, featuring a
client, an intermediate server and a target server.

@ Set own identity ; .
@ @ Obtain user's
> - realms and roles
g \\V Propagate identity
[u/p/d] !

Client | Reauest+ [u/p/d] Intermediate Request + Target

Server ‘ "l Server
A
Client

@ Apply access
authentication Identity token control
token v

Orbix Secure
Service

Figure 18: Three-Tier CORBA System in the iSF

84

Scenario description

Client configuration

Intermediate configuration

Securing Three-Tier CORBA Systems with CSI

The second stage of the scenario shown in Figure 18 (intermediate server
invokes an operation on the target server) can be described as follows:

Stage Description

1 | The intermediate server sets its own identity by extracting the
user identity from the received username/password credentials.
Hence, the intermediate server assumes the same identity as
the client.

2 | When the intermediate server makes a remote invocation on

the target server, the iSF also transmits the user identity data to
the target.

3 | The target server then obtains the user's realms and roles.

4 | The iSF controls access to the target's IDL interfaces by

consulting an action-role mapping file to determine what the
user is allowed to do.

The client configuration for the three-tier scenario is identical to that of the
two-tier scenario, as shown in “Client configuration” on page 79.

The CORBA intermediate server from Figure 18 on page 84 can be
configured as shown in Example 5.

Example 5: Configuration of a Second-Tier Intermediate Server in the iSF
Obix Configuration File
CGeneral configuration at root scope.

ny_secure_apps {
Common SSL/TLS configuration settings.

Common i SF configuration settings.

orb_plugins =[..., "iiop_tls", "gsp", ...];
binding:client_binding_list =[...];
bi ndi ng: server_binding list =[...];

85

CHAPTER 4 | Securing CORBA Applications

Example 5: Configuration of a Second-Tier Intermediate Server in the iSF

ny_three tier_internediate {
1 # Specific SSL/TLS configuration settings.

Specific i SF configuration settings.

2 pl ugi ns: csi:al l ow csi _reply_without _servi ce_context =
"fal se";
3 policies:csi:attribute_service:client_supports =

["IdentityAssertion"];

4 policies:csi:auth over _transport:target supports =
["EstablishTrustInQient"];

5 policies:csi:auth_over_transport:target_requires =
["EstablishTrustInQient"];

6 pol i ci es: csi : aut h_over _transport: server_donai n_name =
" DEFAULT";

7 pl ugi ns: gsp: aut hori zati on_real m = "AuthzRealm";

8 pl ugi ns: gsp: acti on_rol e_mappi ng_file = "ActionRoleURL";

9 # i SF client configuration settings.

pol i cies:csi:auth_over_transport:client_supports =
["EstablishTrustInQient"];

princi pal _sponsor: csi: use_pri nci pal _sponsor = "true";
princi pal _sponsor: csi:auth_met hod_id = " GSSUPMech";
princi pal _sponsor: csi: auth_net hod_data = [];

I

The preceding intermediate server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA
intermediate server can be placed here—see “Securing
Communications with SSL/TLS” on page 66.

2. This setting enforces strict checking of reply messages from the target,
to make sure the target actually supports CSIv2.

3. This configuration setting specifies that the intermediate server is
capable of propagating the identity it receives from a client. In other
words, the server is able to assume the identity of the client when
invoking operations on third-tier servers.

86

Target configuration

Securing Three-Tier CORBA Systems with CSI

This configuration setting specifies that the intermediate server
supports receiving username/password authentication data from the
client.

This configuration setting specifies that the intermediate server
requires the client to send username/password authentication data.

The server _domai n_nane configuration variable sets the server’'s CSIv2
authentication domain name. The domain name embedded in a
received CSIv2 credential must match the value of the

ser ver _donai n_name variable on the server side or could be an empty
string (acts as a wildcard).

This configuration setting specifies the iSF authorization realm,
AuthzRealm, to which this server belongs. For more details about iSF
authorization realms, see “iSF Authorization Realms” on page 177.

This configuration setting specifies the location of an action-role
mapping that controls access to the IDL interfaces implemented by the
server. The file location is specified in an URL format, for example:
file:///security adm n/action_rol e mappi ng. xm (UNIX) or
file:///c:/security_adm n/action_rol e_mappi ng. xm (Windows).

For more details about the action-role mapping file, see “CORBA
Action-Role Mapping ACL” on page 194.

You should also set iSF client configuration variables in the
intermediate server configuration scope, because a secure server
application usually behaves as a secure client of the core CORBA
services. For example, almost all CORBA servers need to contact both
the locator service and the CORBA naming service.

The CORBA target server from Figure 18 on page 84 can be configured as
shown in Example 6.

Example 6: Configuration of a Third-Tier Target Server in the iSF
Obix Configuration File
CGeneral configuration at root scope.

ny_secure_apps {

Common SSL/TLS configuration settings.

87

CHAPTER 4 | Securing CORBA Applications

Example 6: Configuration of a Third-Tier Target Server in the iSF

Common i SF configuration settings.

orb plugins =[..., "iiop_tls", "gsp", ...];
binding:client_binding list =[...];
bi ndi ng: server_binding_list =[...];

ny_three tier_target {
Specific SSL/TLS configuration settings.

[

policies:iiop_tls:target _secure_invocation_policy:requires
= ["Confidentiality", "DetectMsordering", "DetectReplay",
“Integrity", "EstablishTrustindient"];
3 policies:iiop_tls:certificate constraints policy =
[ConstraintStringl, ConstraintString2, ...1;

N

Specific i SF configuration settings.
4 policies:csi:attribute service:target_supports =
["IdentityAssertion"];

5 pl ugi ns: gsp: aut hori zati on_real m = "AuthzRealm";
6 pl ugi ns: gsp: acti on_rol e_mappi ng_file = "ActionRoleURL";
7 # i SF client configuration settings.

pol i cies:csi:auth_over_transport:client_supports =
["EstablishTrustInQient"];

princi pal _sponsor: csi: use_pri nci pal _sponsor = "true";
princi pal _sponsor: csi:auth_met hod_id = " GSSUPMech";
princi pal _sponsor: csi: auth_net hod_data = [];

I

The preceding target server configuration can be explained as follows:

1. The SSL/TLS configuration variables specific to the CORBA target
server can be placed here—see “Securing Communications with
SSL/TLS” on page 66.

2. ltis recommended that the target server require its clients to
authenticate themselves using an X.509 certificate. For example, the
intermediate server (acting as a client of the target) would then be
required to send an X.509 certificate to the target during the SSL/TLS
handshake.

88

Related administration tasks

Securing Three-Tier CORBA Systems with CSI

You can specify this option by including the Est abl i shTrust I nd i ent
association option in the target secure invocation policy, as shown here
(thereby overriding the policy value set in the outer configuration
scope).

3. In addition to the preceding step, it is also advisable to restrict access
to the target server by setting a certificate constraints policy, which
allows access only to those clients whose X.509 certificates match one
of the specified constraints—see “Applying Constraints to Certificates”
on page 376.

Note: The motivation for limiting access to the target server is that
clients of the target server obtain a special type of privilege:
propagated identities are granted access to the target server without
the target server performing authentication on the propagated
identities. Hence, the target server trusts the intermediate server to
do the authentication on its behalf.

4. This configuration setting specifies that the target server supports
receiving propagated user identities from the client.

5. This configuration setting specifies the iSF authorization realm,
AuthzRealm, to which this server belongs. For more details about iSF
authorization realms, see “iSF Authorization Realms” on page 177.

6. This configuration setting specifies the location of an action-role
mapping that controls access to the IDL interfaces implemented by the
server. The file location is specified in an URL format, for example:
file:///security_admn/action_role_mappi ng. xm .

For more details about the action-role mapping file, see “CORBA
Action-Role Mapping ACL"” on page 194.

7. You should also set iSF client configuration variables in the target
server configuration scope, because a secure server application usually
behaves as a secure client of the core CORBA services. For example,
almost all CORBA servers need to contact both the locator service and
the CORBA naming service.

After securing your CORBA applications with iSF, you might need to perform
related administration tasks, for example:

89

CHAPTER 4 | Securing CORBA Applications

® See “Managing Users, Roles and Domains” on page 173.
® See “CORBA Action-Role Mapping ACL"” on page 194.

90

X.509 Certificate-Based Authentication

X.509 Certificate-Based Authentication

Overview This section describes how to enable X.509 certificate authentication with
the iSF, based on a simple two-tier client/server scenario. In this scenario,
the Orbix security service authenticates the client’s certificate and retrieves
roles and realms based on the identity of the certificate subject. When iSF
certificate-based authentication is enabled, the X.509 certificate is
effectively authenticated twice, as follows:

® SSL/TLS-level authentication—this authentication step occurs during
the SSL/TLS handshake and is governed by Orbix configuration settings
and programmable SSL/TLS policies.

® [SF-level authentication and authorization—this authentication step
occurs after the SSL/TLS handshake and is performed by the Orbix
security service working in tandem with the gsp plug-in.

Certificate-based authentication Figure 19 shows an example of a two-tier system, where authentication of
scenario the client’s X.509 certificate is integrated with iSF.

@ SSL/TLS-level @ Apply access
authentication control

Target

"

A
) Retrieve user's
@ authenti cate() @ realms and roles

v

Orbix Security Service

®

Check certificate

Figure 19: Overview of iSF Certificate-Based Authentication

91

CHAPTER 4 | Securing CORBA Applications

Scenario description

92

The scenario shown in Figure 19 can be described as follows:

Stage

Description

1

When the client opens a connection to the server, the client

sends its X.509 certificate as part of the SSL/TLS handshake.

The server then performs SSL/TLS-level authentication,

checking the certificate as follows:

® The certificate is checked against the server's trusted CA
list to ensure that it is signed by a trusted certification
authority.

® |[f a certificate constraints policy is set, the certificate is
checked to make sure it satisfies the specified constraints.

® If a certificate validator policy is set (by programming),
the certificate is also checked by this policy.

The server then performs iSF-level authentication by calling
aut hent i cate() on the Orbix security service, passing the
client’s X.509 certificate as the argument.

The Orbix security service authenticates the client’'s X.509
certificate by checking it against a cached copy of the
certificate. The type of checking performed depends on the
particular third-party enterprise security service that is
plugged into the Orbix security service.

If authentication is successful, the Orbix security service returns
the user's realms and roles.

The iSF controls access to the target’s IDL interfaces by
consulting an action-role mapping file to determine what the
user is allowed to do.

Client configuration

X.509 Certificate-Based Authentication

Example 7 shows a sample client configuration that you can use for the iSF
certificate-based authentication scenario (Figure 19 on page 91).

Example 7: Client Configuration for iSF Certificate-Based Authentication

Obix Configuration File
corba_cert _auth

{

IE

orb_plugins = ["local _|og_streant, "iiop_profile", "giop",
"iiop_tls", "gsp"];

event log:filters = ["IT GSP=*", "IT_CSI=*", "IT TLS=*",
"IT_I1OP_TLS=*", "I T _ATLI2 TLS=*"];

bi nding: client_binding_list = ["Q CP+EGM CP",
"OTS+PQA Col oc", "PQA (ol oc", "OTS+TLS ol oc+PQA Col oc",
"TLS Col oc+PQA Col oc", "Q CP+SHM CP*, "CSI +OTS+ad CP+l | CP',
"CSl+@ CP+l | OP', "CSI +0TS+d P+l | CP_TLS',
"CSl+@ CP+l | CP_TLS', "A CP+l I CP', "A CP+l I CP_TLS'];

client_x509
{

policies:iiop_tls:client_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",

"Detect M sordering", "EstablishTrustlnTarget",
"EstablishTrustInQient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering"];

pri nci pal _sponsor: use_pri nci pal _sponsor = "true";
princi pal _sponsor:auth_nethod_id = "pkcs12_file";
princi pal _sponsor: aut h_net hod_data =
[“filename=W\art\etc\tls\x509\cert s\ denos\ bob. p12",
" passwor d=bobpass"] ;

IE

The preceding client configuration is a typical SSL/TLS configuration. The
only noteworthy feature is that the client must have an associated X.509
certificate. Hence, the pri nci pal _sponsor settings are initialized with the
location of an X.509 certificate (provided in the form of a PKCS#12 file).

93

CHAPTER 4 | Securing CORBA Applications

For a discussion of these client SSL/TLS settings, see “Sample client

configuration” on page 70 and “Deploying Application Certificates” on
page 303.

Target configuration Example 8 shows a sample server configuration that you can use for the iSF

certificate-based authentication scenario (Figure 19 on page 91).

Example 8: Server Configuration for iSF Certificate-Based Authentication

Obix Configuration File
corba_cert_auth
{
orb_plugins = ["local _|og_streant, "iiop_profile", "giop",
“iiop_tls", "gsp"];

event _log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

bi ndi ng: client_binding |ist = ["G CP+EGM CP',
" OrS+PQA Col oc", "PQOA Col oc", "OTS+TLS Col oc+PQA Col oc",
"TLS Col oc+PQA Col oc", "d OP+SHM CP*, " CSl +OTS+3 CP+l | OP',
"CSl+3@ CP+l I OP', "CSl +OTS+d P+l | CP_TLS',
"CSl+@ CP+l | CP_TLS', "A P+l ICP', "A CP+ | CP_TLS'];

server
{

pol i ci es: csi:auth_over_transport:authentication_service
= "com i ona. corba. security. csi.Authenticati onService";

pri nci pal _sponsor: use_pri nci pal _sponsor = "true";
princi pal _sponsor:auth_nethod_i d = "pkcsl2 file";
1 princi pal _sponsor: aut h_nethod_data =
["fil ename=0rbixInstallDin et c\t| s\ x509\ cer t s\ dermos\ bank_ser ver
. pl2", "password=bankserverpass"];

bi ndi ng: server_binding_list = ["CSI+GSP', "CSI",
"GP

initial_references: | S2Aut hori zati on: plugin =
"it_is2 authorization";

plugins:it_is2 authorization: dassName =
"comi ona. cor ba. security. aut hori zati on. | S2Aut hori zati onPl ugl n

94

X.509 Certificate-Based Authentication

Example 8: Server Configuration for iSF Certificate-Based Authentication

I

pl ugi ns: gsp: action_rol e _nmapping_file =
"file://W\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionro
| emappi ng_wi th_interfaces. xm";

aut h_x509
{

pl ugi ns: gsp: enabl e_security_servi ce_cert_authentication =
"true",;

policies:iiop_tls:target_secure_invocation_policy: supports
["Integrity", "Confidentiality", "DetectReplay",

"Det ect M sordering", "EstablishTrustlnTarget",
"EstablishTrustInQient"];

policies:iiop_tls:target_secure_invocation_policy:requires
["Integrity", "Confidentiality", "DetectReplay",
"Detect Msordering”, "EstablishTrustinQient"];
h
h

The preceding server configuration can be explained as follows:

1.

As is normal for an SSL/TLS server, you must provide the server with
its own certificate. The simplest way to do this is to specify the location
of a PKCS#12 file using the principal sponsor.

This configuration setting specifies the location of an action-role
mapping file, which controls access to the server’s interfaces and
operations.

The pl ugi ns: gsp: enabl e_security_servi ce_cert_authentication
variable is the key to enabling iSF certificate-based authentication. By
setting this variable to t rue, you cause the server to perform iSF-level
certificate authentication.

The IIOP/TLS target secure invocation policy must require

Est abl i shTrust I nd i ent . Evidently, if the client does not provide a
certificate during the SSL/TLS handshake, there will be no certificate
available to perform the iSF-level authentication.

95

CHAPTER 4 | Securing CORBA Applications

Related administration tasks

96

When using X.509 certificate-based authentication, it is necessary to add

the appropriate user data to your enterprise security system (which is

integrated with the Orbix security service through an iSF adapter), as

follows:

® File adapter (do not use in deployed systems)—see “Certificate-based
authentication for the file adapter” on page 189

® | DAP adapter—see “Certificate-based authentication for the LDAP
adapter” on page 190.

Caching of Credentials

Caching of Credentials

Overview

Cache time-out

Cache size

To improve the performance of servers within the Orbix Security Framework,
the GSP plug-in implements caching of credentials (that is, the
authentication and authorization data received from the Orbix security
service).

The GSP credentials cache reduces a server's response time by reducing the
number of remote calls to the Orbix security service. On the first call from a
given user, the server calls the Orbix security service and caches the
received credentials. On subsequent calls from the same user, the cached
credentials are used, thereby avoiding a remote call to the Orbix security
service.

The cache can be configured to time-out credentials, forcing the server to
call the Orbix security service again after using cached credentials for a
certain period.

The cache can also be configured to limit the number of stored credentials.

97

CHAPTER 4 | Securing CORBA Applications

Configuration variables The following variables configure the credentials cache in the context of the
Orbix Security Framework:

pl ugi ns: gsp: aut henti cati on_cache_si ze

The maximum number of credentials stored in the authentication
cache. If this size is exceeded the oldest credential in the cache is
removed.

A value of -1 (the default) means unlimited size. A value of 0 means
disable the cache.

pl ugi ns: gsp: aut henti cati on_cache_t i meout

98

The time (in seconds) after which a credential is considered stale.
Stale credentials are removed from the cache and the server must
re-authenticate with the Orbix security service on the next call from
that user. The cache timeout should be configured to be smaller than
the timeout set in the i s2. properti es file (by default, that setting is
i $2. ss0. sessi on. t i meout =600).

A value of -1 (the default) means an infinite time-out. A value of 0
means disable the cache.

In this chapter

CHAPTER

Single Sign-On for

CORBA

Applications

Single sign-on (SSO) is an Orbix security feature which
minimizes the exposure of usernames and passwords to
snooping. Afterinitially signing on, a client communicates with

other applications by passing an SSO token in place of the

original username and password.

5

This chapter discusses the following topics:

SSO and the Login Service page 100
Username/Password-Based SSO page 103
Three Tier Example with Identity Assertion page 111
X.509 Certificate-Based SSO page 115
Enabling Re-Authentication at Each Tier page 123
Optimising Retrieval of Realm Data page 127
SSO Sample Configurations page 133

99

CHAPTER 5 | Single Sign-On for CORBA Applications

SSO and the Login Service

Overview The SSO feature is implemented by the following elements of Orbix:
® [ogin service—a central service which can authenticate
username/password combinations and generate SSO tokens.
® GSP plug-in—the generic security plug-in, which is embedded in a
client application, is responsible for contacting the login service to
obtain an SSO token.

Advantages of SSO SSO greatly increases the security of an application in the Orbix Security
Framework, offering the following advantages:

® Password visibility is restricted to the Login Service.

® C(Clients use SSO tokens to communicate with servers.

® C(Clients can be configured to use SSO with no code changes.

® SSO tokens are configured to expire after a specified length of time.

® When an SSO token expires, the CORBA client automatically requests
a new token from the login service. No additional user code is required.

Embedded login service Figure 20 shows an overview of the login service which, by default, is
embedded in the same process as the Orbix security service. The client ORB
automatically requests an SSO token by sending a username and a
password to the login service. If the username and password are
successfully authenticated, the login service returns an SSO token.

. <t oken>
User login /
< % Login Orb|>_<
o Service Security
j‘l Service

/
| ogi n(<user nane>, <passwor d>)

Figure 20: Client Requesting an SSO Token from the Login Service

100

SSO token

SSO token expiry

Automatic token refresh

Connection to the login server

SSO and the Login Service

The SSO token is a compact key that the Orbix security service uses to
access a user's session details, which are stored in a cache.

The Orbix security service is configured to impose the following kinds of

timeout on an SSO token:

® SSO session timeout—this timeout places an absolute limit on the
lifetime of an SSO token. When the timeout is exceeded, the token
expires.

® SSO session idle timeout—this timeout places a limit on the amount
of time that elapses between authentication requests involving the SSO
token. If the central Orbix security service receives no authentication
requests in this time, the token expires.

For more details, see “Configuring Single Sign-On Properties” on page 168.

In theory, the expiry of SSO tokens could prove a nuisance to client
applications, because servers will raise a QORBA: : NO_PERM SSI ON exception
whenever an SSO token expires. In practice, however, when SSO is enabled,
the GSP plug-in catches the NO_PERM SSI ON exception on the client side and
contacts the login service again to refresh the SSO token automatically. The
GSP plug-in then automatically retries the failed operation invocation.

It is imperative that a connection to the login service is strongly protected by
SSL/TLS, in order to avoid exposing usernames and passwords to snooping.
Hence, by default, the client-to-login service connection is protected by
strong SSL/TLS security policies and the IIOP/TLS client secure invocation
policy requires the following association options:
["Integrity", "Confidentiality", "DetectReplay",

"Detect M sordering", "EstablishTrustlnTarget"];
This protection remains in force, irrespective of the association options set
explicitly by the SSL/TLS client secure invocation policy.

Note: The only way to reduce the level of protection on login service
connections is to set the
pl ugi ns: gsp: enf orce_secure_conms_t 0_sso_ser ver variable to false.

101

CHAPTER 5 | Single Sign-On for CORBA Applications

Standalone login service

102

It is possible, in principle, to reconfigure the login service as a standalone
server (that is, a standalone process that runs independently of the Orbix
security service). Currently, however, the i t confi gur e utility can only
generate domains with an embedded login service.

Please contact IONA Professional Services for more details:

http://www.iona.com/info/services/consulting/welcome.htm

http://www.iona.com/info/services/consulting/welcome.htm

Username/Password-Based SSO

Username/Password-Based SSO

Overview This section describes how to configure a client so that it transmits an SSO
token in place of a username and a password (that is, SSO is used in
conjunction with the CSI authentication over transport mechanism).

CSl layers The CSIv2 standard defines two layers for transmitting credentials:
® (CS/ authentication over transport (GSSUP authentication)—this layer
is used to transmit username, password, and domain data which can
then be authenticated on the server side.
® (Sl identity assertion—this layer is used to transmit just a username
(asserted identity). It is not needed for the scenarios in this section.

GSSUP authentication without Figure 21 gives an overview of Generic Security Service Username/Password

SSO (GSSUP) based authentication without SSO. In this case, the username,
<username>, and password, <password>, are passed directly to the
target server, which then contacts the Orbix security service to authenticate
the username/password combination.

username = <username>
User login password = <password>
\

Client N Target
. CSl auth layer 9
A
Authenticate username Retrieve user's
and password realms and roles

Y

Orbix Secure
Service

Figure 21: Overview of GSSUP Authentication without SSO

103

CHAPTER 5 | Single Sign-On for CORBA Applications

GSSUP authentication with SSO Figure 22 gives an overview of username/password-based (GSSUP)
authentication when SSO is enabled.

username = _SSO TOKEN_
password = <token>

N
CSl auth layer Target

A

Authenticate username Retrieve user's
and password realms and roles

A
Orbix

Security
Service

Login

| ogi n(<user name>, <passwor d>)
Y T Service

Figure 22: Overview of GSSUP Authentication with SSO

Prior to contacting the target server for the first time, the client ORB sends
the username, <username>, and password, <password>, to the login
server, getting an SSO token, <token> in return. The client ORB then
includes a CSIv2 service context in the next request to the target server,
sending the special string, _SSO TOKEN , instead of a username and the SSO
token, <token>, instead of a password. The target server's ORB contacts
the Orbix security service to authenticate the username/password
combination and to obtain the user's authorization data.

Note: The target server is not aware whether the client has used the login
service or not. It is the Orbix security service that knows to treat the
SSO TOKEN username in a special way.

104

Related configuration variables

Client configuration

Username/Password-Based SSO

The following variables are relevant to username/password-based SSO:

pl ugi ns: gsp: enabl e_gssup_sso

Enables SSO with a username and a password (that is, GSSUP) when
set to true.

pl ugi ns: gsp: sso_server_certificate_constraints

A special certificate constraints policy that applies only to the SSL/TLS
connection between the client and the SSO login server. This policy is
used to ensure that sensitive password information is seen only by a
specific login server. For details on the syntax of certificate constraints,
see “Applying Constraints to Certificates” on page 376.

Example 9 shows a typical configuration for an SSO client that employs
GSSUP authentication.

Example 9: Client Configuration for Username/Password-Based SSO

Obix Configuration File
corba_l ogi n_server_test_with_tls

{

orb_plugins = ["local | og_strean, "iiop_profile", "giop",
“iiop_tls", "gsp"];

event_log:filters = ["IT_GSP=*", "IT_CSl=*", "IT_TLS=*",
"I T_I1OP_TLS=*", "IT_ATLI2_TLS=*"];

bi nding:client_binding |ist = ["Ad CP+EGM CP",
"OrS+PQA Col oc", "PQOA (ol oc", "OTS+TLS Col oc+PQA Col oc",
"TLS Col oc+PQA Col oc", "A CP+SHM CP', "CSl +OTS+d CP+l | CP*,
"CSI+Q@ CP+l I OP', "CSlI +0OTS+3 CP+l | CP_TLS",
"CSI+@ CP+l | OP_TLS', "ACP+l I CP", "Q CP+ | CP_TLS'];

pl ugi ns: gsp: sso_server_certificate_constraints =
[" C=US, ST=Massachuset t s, O=ABi gBank*, CN=Qr bi x2000 | ONA
Servi ces*"];

sso_cl i ent _gssup

{

princi pal _sponsor: use_princi pal _sponsor = "fal se";

105

CHAPTER 5 | Single Sign-On for CORBA Applications

Example 9: Client Configuration for Username/Password-Based SSO

policies:iiop_tls:client_secure_invocation_policy:supports
[“Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

policies:iiop_tls:client_secure_invocation_policy:requires =
[“Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

4 pl ugi ns: csi:all ow csi_reply wi thout_service _context =
"fal se";

5 pol i ci es: csi:auth_over_transport:client_supports =
["EstablishTrustInQient"];

6 princi pal _sponsor: csi: use_pri nci pal _sponsor = "true";
princi pal _sponsor: csi:auth_met hod_id = " GSSUPMech";
princi pal _sponsor: csi: aut h_nmet hod_data =

[" user name=paul h", "passwor d=password", "donmai n=PCGROFP"] ;

7 pl ugi ns: gsp: enabl e_gssup_sso = "true";
H

The preceding client configuration can be described as follows:

1. The pl ugins: gsp: sso_server_certificate_constraints variable
specifies certificate constraints that apply only to the X.509 certificate
from the login server. If the login server's certificate fails to match
these constraints, a CORBA : NO_PERM SSI ON exception is thrown on the
client side.

2. In this example, the SSL/TLS principal sponsor is not used (the
SSL/TLS principal sponsor is used to specify an application’s own
X.5009 certificate credentials).

106

Username/Password-Based SSO

3. In this example, the client requires a secure SSL/TLS connection and
requires the target server to authenticate itself with an X.509
certificate.

Note: Irrespective of the level of security required by the these
configuration settings, the SSO client always requires the login server
connection to be secure and authenticated by an X.509 certificate.
The only way you can reduce the level of security required by the
login server connection is by setting the

pl ugi ns: gsp: enf or ce_secure_coms_t 0_sso_ser ver variable to

fal se.

4. This setting enforces strict checking of reply messages from the server,
to make sure the server actually supports CSIv2.

5. The CSI authentication over transport policy must support
Est abl i shTrust I nd i ent to enable the sending of usernames and
passwords in CSIv2 service contexts.

6. The CSI principal sponsor, which specifies an application’s own CSI
credentials, can be enabled as shown here (alternatively, you could
specify CSI credentials by programming; see “Creating CSIv2
Credentials” on page 470).

In a deployed system, it is better to omit the password entry from the
princi pal _sponsor : csi : aut h_nmet hod_dat a setting. When omitted,
the principal sponsor will prompt the user to enter a username and
password as the client application starts up. The domain must be set
to match the value of the

pol i ci es: csi:auth_over _transport:server_domai n_nane variable on
the server side.

Note: Alternatively, you can specify the domain as an empty string,
which would match any domain on the server side.

7. The pl ugi ns: gsp: enabl e_gssup_sso variable is set to t r ue to enable
the GSSUP single sign-on behavior.

107

CHAPTER 5 | Single Sign-On for CORBA Applications

Target configuration Example 10 shows a typical configuration for a target server that accepts
connections from clients that authenticate themselves using GSSUP.

Example 10: Target Configuration for Username/Password-Based SSO

Obix Configuration File

corba_l ogi n_server_test_with_ tls

{
orb_plugins = ["local | og_streant, "iiop_profile", "giop",
“iiop_tls", "gsp"];

event _log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

bi ndi ng: client_binding_list = ["A CP+EGM COP",
" OTS+PQA Col oc", "PQA Col oc", "OTS+TLS Col oc+PQA Col oc",
"TLS_Col oc+PQA Col oc", "Q CP+SHM CP*, "CSI +OTS+Q CP+l | OP',
"CSl+d CP+l | OP', "CSl +OTS+@ P+l | CP_TLS",
"CSl +3@ CP+l | CP_TLS", "A CP+ I CP', "A CP+Hl | CP_TLS'];

pl ugi ns: gsp: sso_server_certificate_constraints =
[" C=US, ST=Massachuset t s, O=ABi gBank*, CN=Qr bi x2000 | ONA
Services*"];

server
{

pol i ci es: csi:auth_over_transport:authentication_service =
"comiona. corba. security.csi.AuthenticationService";

princi pal _sponsor: use_pri nci pal _sponsor = "true";
princi pal _sponsor:auth_nethod_id = "pkcsl2 file";
1 princi pal _sponsor: auth_met hod_data =
[“filename=W\art\etc\tls\x509\cert s\denos\ bank_server. pl2",
" passwor d=bankser ver pass"] ;

bi ndi ng: server_binding list = ["CSI+GP*, "CS ", "GSP'];

initial_references: | S2Aut hori zation: plugi n =
"it_is2 authorization";

plugins:it_is2 authorization: dassName =
"comi ona. cor ba. security. aut hori zati on. | S2Aut hori zati onPl ugl n

",
’

108

Username/Password-Based SSO

Example 10: Target Configuration for Username/Password-Based SSO

I

pl ugi ns: gsp: action_rol e_mapping file =
"file://W\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionro
| emappi ng_wi th_interfaces. xm";

pl ugi ns: gsp: aut hori zati on_real m = "AuthzRealm";

pol i ci es: csi:auth_over_transport: server_donai n_name =
" POGROP";

aut h_csi

{

policies:iiop_tls:target_secure_invocation_policy: supports
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering"];

pol i ci es: csi:auth_over_transport:target_requires
["EstablishTrustinQient"];
pol i ci es: csi:auth_over_transport:target_supports
["EstablishTrustIndient"];
h

}s

The preceding target configuration can be described as follows:

1.

As usual for an SSL/TLS server, the SSL/TLS principal sponsor is used
to specify the location of the server's own X.509 certificate.

The act i on_rol e_mappi ng configuration variable specifies the location
of an action-role mapping that controls access to the IDL interfaces
implemented by the server.

In this example, the server requires a secure SSL/TLS connection, but
does not require the client to authenticate itself with an X.509
certificate.

It is essential for the target server to require and support the

Est abl i shTrust I nd i ent option for CSI authentication over transport.
This ensures that the server receives a username and a password from
the client in a CSIv2 service context.

109

CHAPTER 5 | Single Sign-On for CORBA Applications

Related administration tasks For details of how to configure SSO token timeouts, see “Configuring Single
Sign-On Properties” on page 168.

110

Three Tier Example with Identity Assertion

Three Tier Example with Identity Assertion

Overview This section describes what happens when the two-tier
username/password-based SSO example is extended by a third tier, which
uses the CSI identity assertion mechanism.

This scenario has the following essential features:

® C(Client to second tier—the CSI authentication over transport
mechanism (GSSUP authentication) is enabled and the client is
configured to use single sign-on.

® Second tier to third tier—the CSI identity assertion mechanism is
enabled between these tiers. SAML data (containing details of the
client user’s roles and realms) is propagated between these tiers.

Three-tier scenario with Figure 23 shows the outline of a single sign-on scenario where SAML role

piggybacking and realm data is piggybacked between the second and third tiers.
Received Effective Received
credentials credentials

credentials

®
CSl identity layer +

il

@
CSl auth layer: ,_T_| SAML

A1)

u/p/d

®

Authenticate Retrieve user's
SSO token realms and roles

Y

Login TOrbix Security Service

Service

Figure 23: Single Sign-On Scenario with Piggybacking Roles and Realms

111

CHAPTER 5 | Single Sign-On for CORBA Applications

Steps

112

The operation invocations performed on behalf of the client shown in
Figure 23 on page 111 can be described as follows:

Stage Description

1 | When single sign-on is enabled, the client calls out to the login
service, passing in the client’'s GSSUP credentials, u/ p/ d, in
order to obtain a single sign-on token, t.

2 | When the client invokes an operation on the second-tier server,
the SSO token, t, is sent as the password in the GSSUP
authentication data. The GSSUP username has the reserved
value _SSO TCKEN .

The client SSO token, t, is now accessible through the
| T_CCRBASEC. : Ext endedRecei vedOredent i al s interface.

3 | When the SSO token is received by the middle-tier server, it
calls out to the Orbix security service to authenticate the client
token and retrieve the SAML authorization data containing the
user's complete role and realm data.

4 | If the second tier now invokes an operation on the third tier, the

effective credentials for the invocation are constructed as

follows:

® The client username is used as the asserted identity (to be
propagated through the CSI identity assertion
mechanism).

® The client SSO token, t, from the received credentials is
inserted into an IONA-proprietary service context.

Configuration notes

Three Tier Example with Identity Assertion

Stage Description

5 | When the request message is sent to the third tier, the asserted
identity is sent through the CSI identity layer, and the single
sign-on token, t, is sent in an IONA-proprietary service context,
accompanied by the SAML role and realm data.

In the third tier, no call-out to the Orbix Security Service is
required, because the SAML data includes all of the
information needed for an authorization check.

WARNING: It is essential that an adequate degree of trust is
established between the third-tier server and the second-tier
server. In this scenario, the third tier is completely dependent
on the second tier to perform authentication on its behalf.

The most important policy settings for this three-tier scenario with SAML
piggybacking are briefly described here.

Client to Second Tier

The client is configured to support CSI authentication over transport and
single sign-on with the following configuration settings (the

sso_server _certificate_constraints setting would have to be
customised to match your login server's X.509 certificate):

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInQient];

pl ugi ns: gsp: enabl e_gssup_sso = "true";

pl ugi ns: gsp: sso_server_certificate_constraints =
[" C=US, ST=Massachuset t s, O=ABi gBank*, CN=Qr bi x2000 | ONA
Servi ces*"];

The second tier is configured to support CSI authentication over transport
from incoming connections with the following settings:

policies:csi:auth_over_transport:target supports
["EstablishTrustindient];

policies:csi:auth_over_transport:target_requires
["EstablishTrustindient];

113

CHAPTER 5 | Single Sign-On for CORBA Applications

Second Tier to Third Tier

The second tier is configured to support CSI identity assertion for outgoing
connections with the following configuration settings:

policies:csi:attribute _service:client_supports =
["ldentityAssertion"];

The third tier is configured to support CSI identity assertion from incoming
connections with the following settings:

policies:csi:attribute_service:target_supports =
["ldentityAssertion];

114

X.509 Certificate-Based SSO

X.509 Certificate-Based SSO

Overview

Certificate-based authentication
without SSO

Normally, during certificate-based authentication, a client transmits its
X.509 certificate during the SSL/TLS handshake. This certificate is then
used for the authentication step with the Orbix security service (see “X.509
Certificate-Based Authentication” on page 91).

In contrast to this, in the SSO case a client transmits an SSO token through
the CSI security layer (using CSI authentication over transport), having
previously obtained the SSO token by authenticating its own certificate with
the login server. The client’s certificate might also be propagated directly to
the target, in addition to the SSO token, but this would not be the usual
case.

Figure 24 gives an overview of ordinary certificate-based authentication
without SSO. In this case, the client’s X.509 certificate is passed directly to
the target server (during the SSL/TLS handshake). The target server then
contacts the Orbix security service to authenticate the certificate.

Target

SSL/TLS layer
A

Retrieve user's

aut henti cat e(<X509Cert >) realms and roles

Orbix Security Service

Figure 24: Overview of Certificate-Based Authentication without SSO

115

CHAPTER 5 | Single Sign-On for CORBA Applications

Certificate-based authentication

with SSO

Difference between
username/password-based SSO
and certificate-based SSO

116

Figure 25 gives an overview of certificate-based authentication when SSO is
enabled.

username = _SSO TOKEN_
password = <token>
\

\

N
CSl auth Iayerﬂ Target

A

Authenticate Retrieve user's
SSO token realms and roles

A
| ogi n() Orbix

Login A
\ Service | Security

Service

Figure 25: Overview of Certificate-Based Authentication with SSO

Prior to contacting the target server for the first time, the client ORB invokes
the 1 ogi n() operation on the login server. The login server retrieves the
client's X.509 certificate from the SSL/TLS received credentials,
authenticates the certificate, and sends back an SSO token, <token> in
return.

The client then sends a request to the target server, including the special
username, _SSO TCKEN , and the password, <token>, in a CSIv2 service
context. The target server contacts the Orbix security service to authenticate
the username/password combination and to retrieve the user’s authorization
data (realms and roles).

The key difference between username/password-based SSO (Figure 22 on
page 104) and certificate-based SSO (Figure 25) lies in the communication
with the login server. In the username/password-based case, the client
sends GSSUP data to be authenticated to the login service; whereas in the
certificate-based case, the client sends an X.509 certificate to be
authenticated to the login service.

There is no difference in the nature of the communication between the client

and the target, however. In both cases, an SSO token is transmitted through
the CSI authorization over transport layer.

Related configuration variables

Typical scenario

Client configuration

X.509 Certificate-Based SSO

The following variables are relevant to certificate-based SSO:

pl ugi ns: gsp: enabl e_x509_sso
Enables certificate-based SSO when set to true.

pl ugi ns: gsp: sso_server_certificate_constraints
A special certificate constraints policy that applies only to the SSL/TLS
connection between the client and the SSO login server. For details on

the syntax of certificate constraints, see “Applying Constraints to
Certificates” on page 376.

The most likely scenario where you might need certificate-based SSO is
where an existing server is configured to require username/password
credentials, but you want to connect to the server using clients that have
only X.509 certificate credentials. By enabling SSO on the client side, the
clients acquire username/password credentials which the target server can
then use for the purpose of authentication and authorization.

Example 11 shows a typical configuration for an SSO client that employs
certificate-based authentication.

Example 11: C/ient Configuration for Certificate-Based Authentication

Obix Configuration File

corba_l ogi n_server_test_with_tls

{
orb_plugins = ["local | og_strean, "iiop_profile", "giop",
“iiop_tls", "gsp"l;

event_log:filters = ["IT_GSP=*", "IT_CSl=*", "IT_TLS=*",
"I T_I1OP_TLS=*", "IT_ATLI2 TLS=*"];

bi nding:client_binding |ist = ["Ad CP+EGM CP",
"OrS+PQA Col oc", "PQOA (ol oc", "OTS+TLS Col oc+PQA Col oc",
"TLS Col oc+PQA Col oc", "A CP+SHM CP', "CS| +OTS+d CP+l | CP*,
"CSI+Q@ CP+l I OP', "CSI +OTS+3 CP+l | CP_TLS",
"CSI+@ CP+l | OP_TLS', "ACP+l I CP", "Q CP+ | CP_TLS'];

pl ugi ns: gsp: sso_server_certificate_constraints =
[" C=US, ST=Massachuset t s, O=ABi gBank*, CN=Qr bi x2000 | ONA
Servi ces*"];

117

CHAPTER 5 | Single Sign-On for CORBA Applications

Example 11: Client Configuration for Certificate-Based Authentication

sso_cl i ent _x509

{

policies:iiop_tls:client_secure_invocation_policy:supports
[“Integrity", "Confidentiality", "DetectReplay",

"Det ect M sordering", "EstablishTrustlnTarget",
"EstablishTrustindient"];

policies:iiop_tls:client_secure_invocation_policy:requires
[“Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

3 pl ugi ns: csi:all ow csi_reply without _service context =
"fal se";

4 princi pal _sponsor: use_princi pal _sponsor = "true";
princi pal _sponsor:auth_nmethod_id = "pkcsl2 file";
princi pal _sponsor: aut h_net hod_data =

["“filename=W\art\etc\tls\x509\cert s\denos\ bob. p12",
" passwor d=bobpass"] ;

5 pol i cies:csi:auth_over_transport:client_supports =
["EstablishTrustindient"];

6 pl ugi ns: gsp: enabl e_x509_sso = "true";

}s
Ik

118

X.509 Certificate-Based SSO

The preceding client configuration can be described as follows:

1.

The pl ugi ns: gsp: sso_server _certificate_constraints variable
specifies certificate constraints that apply only to the X.509 certificate
from the login server. If the login server's certificate fails to match
these constraints, a CORBA : NO_PERM SSI ON exception is thrown on the
client side.

In this example, the client requires a secure SSL/TLS connection and
requires the target server to authenticate itself with an X.509
certificate. The client also supports the SSL/TLS

Est abl i shTrust I nd i ent option.

Note: Irrespective of the level of security required by the these
configuration settings, the SSO client always requires the login server
connection to be secure and authenticated by an X.509 certificate.
The only way you can reduce the level of security required by the
login server connection is by setting the

pl ugi ns: gsp: enf or ce_secure_coms_t 0_sso_ser ver variable to

fal se.

This setting enforces strict checking of reply messages from the server,
to make sure the server actually supports CSIv2.

The client must have its own X.509 certificate to authenticate itself to
the target. In this example, the SSL/TLS principal sponsor is used to
specify the location of a PKCS#12 file containing the client’s
certificate.

The CSI authentication over transport policy must support

Est abl i shTrust I nd i ent to enable the sending of usernames and
passwords in CSIv2 service contexts.

The pl ugi ns: gsp: enabl e_x509 _sso variable is set to true to enable
the X.509 single sign-on behavior.

119

CHAPTER 5 | Single Sign-On for CORBA Applications

Target configuration Example 12 shows the configuration for a target server that requires GSSUP
username/password credentials, but can also accept connections from
clients that use X.509 certificate-based SSO.

Example 12: Target Configuration for Certificate-Based Authentication

Obix Configuration File

corba_l ogi n_server_test_with_ tls

{
orb_plugins = ["local | og_streant, "iiop_profile", "giop",
“iiop_tls", "gsp"];

event _log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

bi ndi ng: client_binding_list = ["A CP+EGM COP",
" OTS+PQA Col oc", "PQA Col oc", "OTS+TLS Col oc+PQA Col oc",
"TLS_Col oc+PQA Col oc", "Q CP+SHM CP*, "CSI +OTS+Q CP+l | OP',
"CSl+@ CP+l | COP', "CSI +OTS+d CP+l | CP_TLS',
"CSl +3@ CP+l | CP_TLS", "A CP+ I CP', "A CP+Hl | CP_TLS'];

pl ugi ns: gsp: sso_server_certificate_constraints =
[" C=US, ST=Massachuset t s, O=ABi gBank*, CN=Qr bi x2000 | ONA
Services*"];

server
{

pol i ci es: csi:auth_over_transport:authentication_service =
"comiona. corba. security.csi.AuthenticationService";

1 princi pal _sponsor: use_pri nci pal _sponsor = "true";
princi pal _sponsor:auth_nethod_id = "pkcsl2 file";
princi pal _sponsor: auth_met hod_data =
[“filename=W\art\etc\tls\x509\cert s\denos\ bank_server. pl2",
" passwor d=bankser ver pass"] ;

bi ndi ng: server_binding list = ["CSI+GP*, "CS ", "GSP'];

initial_references: | S2Aut hori zation: plugi n =
"it_is2 authorization";

plugins:it_is2 authorization: dassName =
"comi ona. cor ba. security. aut hori zati on. | S2Aut hori zati onPl ugl n

",
’

120

X.509 Certificate-Based SSO

Example 12: Target Configuration for Certificate-Based Authentication

The

pl ugi ns: gsp: action_rol e_mapping file =
"file://W\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionro
| emappi ng_wi th_interfaces. xm";

pl ugi ns: gsp: aut hori zati on_real m = "AuthzRealm";

pol i ci es: csi:auth_over_transport: server_donai n_name =
" POGROP";

requi re_gssup_support_x509_wi t h_sso

{

policies:iiop_tls:target_secure_invocation_policy: supports
["Integrity", "Confidentiality", "DetectReplay",

"Detect M sordering”, "EstablishTrustlnTarget",

"Establ i shTrustInQient"];

policies:iiop_tls:target secure_invocation_policy:requires
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering"];

policies:csi:auth_over_transport:target_requires =
["EstablishTrustIndient"];

pol i ci es: csi:auth_over_transport:target_supports
["EstablishTrustIndient"];

ki

}s

preceding target configuration can be described as follows:

As usual for an SSL/TLS server, the SSL/TLS principal sponsor is used
to specify the location of the server's own X.509 certificate.

The act i on_r ol e_mappi ng configuration variable specifies the location
of an action-role mapping that controls access to the IDL interfaces
implemented by the server.

The server requires a secure SSL/TLS connection, but does not require
the client to authenticate itself with an X.509 certificate.

Because the target server requires the Est abl i shTrust I nd i ent option
for CSI authentication over transport, clients must supply GSSUP
username/password credentials. This condition is also satisfied by
clients that use X.509 certificate-based SSO, because this results in
the generation of GSSUP username/password credentials.

121

CHAPTER 5 | Single Sign-On for CORBA Applications

Related administration tasks For details of how to configure SSO token timeouts, see “Configuring Single
Sign-On Properties” on page 168.

122

Enabling Re-Authentication at Each Tier

Enabling Re-Authentication at Each Tier

Overview

Advantages of enabling
re-authentication

Disabling SAML piggybacking

This section describes a three-tier SSO scenario where piggybacking of
SAML data (containing details of the client user’s roles and realms) is
disabled. This forces an SSO token to be re-authenticated at each tier in a
multi-tier system, because the servers in each tier need to contact the Orbix
security service to obtain the SAML data.

Re-enabling authentication at each tier has the following potential

advantages:

® If your distributed application crosses different security domains, it
might be necessary to re-authenticate credentials in a new domain.

® Sometimes, if the quantity of SAML data is very large, it might be more
efficient for servers to retrieve the SAML data directly from the Orbix
security service.

There are two configuration variables that control SAML piggybacking.

pl ugi ns: gsp: assert _aut hori zati on_i nfo

If f al se, SAML data is not sent on outgoing connections. Default is t r ue.

pl ugi ns: gsp: accept _asserted_aut hori zation_info

If fal se, SAML data is not read from incoming connections. Default is t r ue.

123

CHAPTER 5 | Single Sign-On for CORBA Applications

Three-tier scenario without
piggybacking

Steps

124

Figure 26 shows the outline of a single sign-on scenario where the
propagation of SAML role and realm data is disabled.

/@v CSl identity layer
CSl auth layer t

Received Effective Received
credentials credentials credentials

®

SAML

®

A 4

Login TOrbix Security Service

Service

Figure 26: Single Sign-On Scenario without Piggybacking Roles and

Realms

The operation invocations performed on behalf of the client shown in
Figure 26 on page 124 can be described as follows:

Stage Description

1 | When single sign-on is enabled, the client calls out to the login
service, passing in the client’'s GSSUP credentials, u/ p/ d, in
order to obtain a single sign-on token, t.

2 | When the client invokes an operation on the second-tier server,
the SSO token, t, is sent as the password in the GSSUP
username/password credentials.

3 | The second tier re-authenticates the client's SSO token, t, by

calling out to the Orbix Security Service. The return value
contains the SAML role and realm data for the token.

Configuration notes

Enabling Re-Authentication at Each Tier

Stage Description

4 | If the second tier now invokes an operation on the third tier, the

effective credentials for the invocation are constructed as

follows:

® The client username is used as the asserted identity (to be
propagated through the CSI identity assertion
mechanism).

® The client SSO token, t, from the received credentials is
inserted into an IONA-proprietary service context.

5 | When the request message is sent to the third tier, only the
asserted identity and the single sign-on token, t, are included.
Propagation of the SAML authorization data is disabled.

6 | The third tier re-authenticates the client’s SSO token, t, by
calling out to the Orbix Security Service. The return value
contains the SAML role and realm data for the token.

The most important policy settings for this three-tier scenario without SAML
piggybacking are briefly described here.

Client to Second Tier

The client is configured to support CSI authentication over transport and
single sign-on without SAML piggybacking, with the following configuration
settings (the sso_server _certificate constraints setting would have to
be customised to match your login server's X.509 certificate):

policies:csi:auth_over_transport:client_supports =
["EstablishTrustInQient];

pl ugi ns: gsp: enabl e_gssup_sso = "true";

pl ugi ns: gsp: sso_server_certificate_constraints =
[" C=US, ST=Massachuset t s, O=ABi gBank*, CN=Qr bi x2000 | ONA
Servi ces*"];

pl ugi ns: gsp: assert _aut horization_info = "fal se";

125

CHAPTER 5 | Single Sign-On for CORBA Applications

126

The second tier is configured to support CSI authentication over transport
from incoming connections, but not to accept SAML data, with the following
settings:

pol i ci es: csi:auth_over_transport:target_supports
["EstablishTrustindient];

pol i ci es: csi:auth_over_transport:target_requires
["EstablishTrustindient];

pl ugi ns: gsp: accept _asserted_aut hori zation_info = "fal se";

Second Tier to Third Tier

The second tier is configured to support CSI identity assertion for outgoing
connections, but not to send SAML data, with the following configuration
settings:

policies:csi:attribute _service:client_supports =
["ldentityAssertion"];
pl ugi ns: gsp: assert _aut hori zati on_info = "fal se";

The third tier is configured to support CSI identity assertion from incoming
connections, but not to accept SAML data, with the following settings:

policies:csi:attribute _service:target_supports =
["IdentityAssertion"];
pl ugi ns: gsp: accept _asserted_aut hori zation_info = "fal se";

Optimising Retrieval of Realm Data

Optimising Retrieval of Realm Data

Overview

Enabling realm filtering

By default, when the GSP plug-in connects to the security service to
authenticate a user's security credentials, it retrieves all of the realm and
role data for that user. For example, if a user has security data for realms, A,
B, and C, the authentication step would return realm and role data for each
of the three realms, A, B, and C.

In an enterprise system, the amount of realm data assocated with each user
might become very large. In such systems, it is desirable to optimize the
authentication step by returning only the realm data that is needed at a
particular point in the system, rather than retrieving all of the realm data at
once. Orbix enables you to restrict the amount of realm data returned at the
authentication step by enabling a feature known as realm filtering.

To enable realm filtering, set the following configuration variable to f al se:
pl ugi ns: gsp:retrieve_isf_auth_principal _info for_all_realns

By default, the GSP plug-in would retrieve a user’s role and realm data for
all realms when contacting the security service. When realm filtering is
enabled in an Orbix server, however, the GSP plug-in checks to see whether
the following configuration variable is set:

pl ugi ns: gsp: aut hori zati on_real m

If the preceding variable is set to a specific realm, the GSP plug-in proceeds
to retrieve realm and role data for that realm only.

127

CHAPTER 5 | Single Sign-On for CORBA Applications

Same-realm scenario Figure 27 shows an example of realm filtering applied to a three-tier system,
where the intermediate server and the target server both belong to the same
realm, A. In this case, the realm filtering optimization works effectively,
because the target server can re-use the role and realm data (SAML-A data)
obtained by the intermediate server.

@ Target Server

CSil identity layer SAML-A

Client

A 4

Logfn TOrbix Security Service
Service

Figure 27: Intermediate and Target Belong to Same Realm

Same-realm stages The same-realm scenario shown in Figure 27 can be described as follows:

Stage Description

1 | The client calls out to the login service, passing in the client’s
GSSUP credentials, u/ p/ d, in order to obtain a single sign-on
token, t.

2 | When the client invokes an operation on the intermediate
server, the SSO token, t, is included with the request message
(in the CSI authentication layer).

128

Same-realm configuration

Optimising Retrieval of Realm Data

Stage Description

3 | The intermediate server re-authenticates the client’'s SSO
token, t, by calling out to the Orbix Security Service.

Because the intermediate server is configured to use realm
filtering, it requests SAML role and realm data for realm A only.

4 | The intermediate server invokes an operation on the target
server. The request message includes the client SSO token, t,
and the SAML data for realm A, SAM.- A.

Because the target server also belongs to realm A, it can use
the SAML data received from the intermediate server to make
an access decision. It does not need to re-authenticate the
token.

Example 13 shows an outline of the configuration required for the
same-realm scenario. The intermediate server is configured to use realm
filtering by setting the

pl ugi ns: gsp:retrieve_i sf_auth_principal _info_for_all_real ns
variable to f al se. Both the intermediate and the target are configured to
belong to realm A.

Example 13: Same-Realm Scenario Configuration

Obix Configuration File
client {

H
i ntermedi at e_server {

plugins: gsp:retrieve_isf_auth_principal _info for_all_real ns
= "fal se";
pl ugi ns: gsp: aut hori zati on_realm= "A";

IE
target_server {

pl ugi ns: gsp: aut hori zati on_real m= "A";

I

129

CHAPTER 5 | Single Sign-On for CORBA Applications

Different-realm scenario Figure 28 shows an example of realm filtering applied to a three-tier system,
where the intermediate server and the target server belong to different
realms, A and B. In this case, realm filtering does not provide an
optimization and the target server must be configured to re-authenticate any
incoming tokens.

®

Sl identity layer

Client

et v

—S e =~

A 4

Login

i Orbix Security Serwce}

Figure 28: Intermediate and Target Belong to Different Realms

Different-realm stages The different-realm scenario shown in Figure 28 can be described as
follows:
Stage Description

1 | The client calls out to the login service, passing in the client’s
GSSUP credentials, u/ p/ d, in order to obtain a single sign-on
token, t.

2 | When the client invokes an operation on the intermediate
server, the SSO token, t, is included with the request message
(in the CSI authentication layer).

130

Different-realm configuration

Optimising Retrieval of Realm Data

Stage Description

3 | The intermediate server re-authenticates the client’'s SSO
token, t, by calling out to the Orbix Security Service.

Because the intermediate server is configured to use realm
filtering, it requests SAML role and realm data for realm A only.

4 | The intermediate server invokes an operation on the target
server. The request message includes the client SSO token, t,
and the SAML data for realm A, SAM.- A.

The SAML data for realm A is of no use to the target server,
which belongs to realm B. Therefore, the target server is
configured to reject the transmitted realm data (that is,

pl ugi ns: gsp: accept _asserted_aut hori zati on_i nf o is set to
fal se).

5 | The target server re-authenticates the client’s SSO token, t, to
obtain the SAML role and realm data for realm B.

Example 14 shows an outline of the configuration required for the
different-realm scenario. Both the intermediate server and the target server
are configured to use realm filtering by setting the

pl ugi ns: gsp:retrieve_i sf_auth_principal _info_for_all_real ns
variable to f al se. The intermediate and the target belong, however, to
different realms: while the intermediate belongs to realm A, the target
belongs to realm B. To force the target server to re-authenticate incoming
tokens (and thus retrieve the necessary SAML data for realm B), the target
server configuration sets

pl ugi ns: gsp: accept _asserted_aut hori zati on_i nfo to fal se.

Example 14: Different-Realm Scenario Configuration

Obix Configuration File
client {

H
i ntermedi at e_server {

pl ugi ns: gsp:retrieve_isf_auth_principal _info_for_all_real ns
= "fal se";

131

CHAPTER 5 | Single Sign-On for CORBA Applications

Example 14: Different-Realm Scenario Configuration

pl ugi ns: gsp: aut hori zati on_realm= "A";

iE
target _server {

pl ugi ns: gsp:retrieve_isf_auth_principal _info for_all_real ns
= "fal se";

pl ugi ns: gsp: aut hori zati on_real m= "B";
pl ugi ns: gsp: accept _asserted_aut hori zati on_info = "fal se";

IE

132

SSO Sample Configurations

SSO Sample Configurations

Overview This section provides SSO sample configurations that show how to configure
the client side and the server side in a variety of different ways.

Client SSO configurations The following client configurations appear in Example 15:

® sso_client_x509—configuration for an SSO client that uses X.509
certificate-based SSO credentials to authenticate itself to the server.

® sso_client_gssup—configuration for an SSO client that provides
username and password (GSSUP)-based SSO credentials to
authenticate itself to the server.

® sso_client_gssup_x509—configuration for an SSO client that can
authenticate itself to a server using either username/password-based
SSO credentials or X.509 certificate-based SSO credentials, depending
on the requirements of the server.

Server SSO configurations The following server configurations appear in Example 15:

® aut h_csi —configuration for a server that requires the client to provide
credentials over CSI. Three client scenarios are supported by this server
configuration, as follows:
. Client with username/password credentials (SSO not enabled).
. Client with username/password-based SSO credentials.
B Client with X.509 certificate-based SSO credentials.

® auth_csi _and_x509—configuration for a server that requires both
X.509 certificate credentials (over SSL/TLS) and username/password
credentials (over CSIv2). The following client scenarios are supported
by this server configuration:

. Client with both X.509 certificate credentials and
username/password credentials (SSO not enabled).

. Client with X.509 certificate-based SSO credentials.

. Client with both X.509 certificate credentials and
username/password-based SSO credentials.

133

CHAPTER 5 | Single Sign-On for CORBA Applications

. Client with both X.509 certificate-based SSO credentials and
username/password-based SSO credentials (for example, the
sso_client_gssup_x509 configuration scope). In this case, the
client would store three different kinds of credentials: X.509
certificate credentials, X.509 certificate-based SSO credentials,
and username/password-based SSO credentials. Only two of the
stored credentials would actually be used when communicating
with the server (X.509 certificate credentials over SSL/TLS, and
one of the SSO credentials over CSIv2).

SSO configuration examples Example 15 shows a series of sample configurations suitable for SSO clients

and SSO servers, supporting either GSSUP authentication, or X.509
certificate authentication, or both.

Example 15: SSO Client and Server Configuration Examples

Obix Configuration File
corba | ogin_server test with tls
{

princi pal _sponsor: use_princi pal _sponsor = "fal se";

orb_plugins = ["local | og_streant, "iiop_profile", "giop",
“iiop_tls", "gsp"];

event _log:filters = ["IT_GSP=*", "IT_CSI=*", "IT_TLS=*",
"IT_IIOP_TLS=*", "IT_ATLI2_TLS=*"];

bi ndi ng: client_binding_list = ["A CP+EGM COP",
" OTS+PQA Col oc", "PQA Col oc", "OTS+TLS Col oc+PQA Col oc",
"TLS_Col oc+PQA Col oc", "Q CP+SHM CP*, "CSI +OTS+Q CP+l | OP',
"CSl +@ CP+l 1 OP', "CSI +0TS+@ OP+l | CP_TLS',
"CSl +3@ CP+l | CP_TLS", "A CP+ I CP', "A CP+Hl | CP_TLS'];

pl ugi ns: gsp: sso_server_certificate_constraints =
[" C=US, ST=Massachuset t s, O=ABi gBank*, CN=Qr bi x2000 | ONA
Services*"];

sso_cl i ent _x509

{

134

SSO Sample Configurations

Example 15: SSO Client and Server Configuration Examples

policies:iiop_tls:client_secure_invocation_policy:supports
["Integrity", "Confidentiality", "DetectReplay",

"Det ect M sordering", "EstablishTrustlnTarget",

"Establ i shTrustInQient"];

policies:iiop_tls:client_secure_invocation_policy:requires
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering"];

princi pal _sponsor: use_princi pal _sponsor = "true";
princi pal _sponsor:auth_nethod_id = "pkcs12_file";
princi pal _sponsor: auth_met hod_data =

["fil ename=W\art\etc\tls\x509\certs\denos\bob. p12",

" passwor d=bobpass"] ;

pl ugi ns: csi:al l ow csi_reply_without_service_context =
"fal se";

policies:csi:auth over _transport:client_supports =
["EstablishTrustIndient"];

pl ugi ns: gsp: enabl e x509 sso = "true";

}s

sso_cl i ent_gssup

{

policies:iiop_tls:client_secure_invocation_policy:supports
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

policies:iiop_tls:client_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering"];

pl ugi ns: csi:al l ow csi_reply_without_service_context =
"fal se";

policies:csi:auth_over_transport:client_supports =
["EstablishTrustIndient"];

princi pal _sponsor: csi: use_princi pal _sponsor = "true";
princi pal _sponsor: csi:auth_met hod_i d = "GSSUPMech";
princi pal _sponsor: csi: aut h_met hod_data =

[" user name=paul h", "passwor d=password", "domai n=PCGROUP'];

135

CHAPTER 5 | Single Sign-On for CORBA Applications

Example 15: SSO Client and Server Configuration Examples

pl ugi ns: gsp: enabl e_gssup_sso = "true";

};

sso_cl i ent_gssup_x509

{

policies:iiop_tls:client_secure_invocation_policy:supports =
[“Integrity", "Confidentiality", "DetectReplay",

"Det ect M sordering", "EstablishTrustlnTarget",
"EstablishTrustinQient"];

policies:iiop_tls:client_secure_invocation_policy:requires =
[“Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering"];

princi pal _sponsor: use_princi pal _sponsor = "true";
princi pal _sponsor:auth_nethod_id = "pkcsl2 file";
princi pal _sponsor: aut h_net hod_data =
[“filename=W\art\etc\tls\x509\cert s\denos\ bob. p12",
" passwor d=bobpass"] ;

pl ugi ns: csi:all ow csi_reply wi thout_service context =
"fal se";

pol i cies:csi:auth_over_transport:client_supports =
["EstablishTrustInQient"];

princi pal _sponsor: csi: use_pri nci pal _sponsor = "true";
princi pal _sponsor: csi:auth_method_id = " GSSUPMech";
princi pal _sponsor: csi: aut h_nmet hod_data =

[" user name=paul h", "passwor d=password", "donmai n=PCGROFP"'];

pl ugi ns: gsp: enabl e_gssup_sso = "true";
pl ugi ns: gsp: enabl e_x509_sso = "true";

}s

server
{

pol i ci es: csi:auth_over_transport:authenti cati on_service =
"comiona. corba. security.csi.AuthenticationService";

princi pal _sponsor: use_princi pal _sponsor = "true";

princi pal _sponsor:auth_nethod_id = "pkcsl2 file";

princi pal _sponsor: auth_met hod_data =
["“filename=W\art\etc\tls\x509\cert s\denos\ bank_server. p12",
" passwor d=bankser ver pass"] ;

136

SSO Sample Configurations

Example 15: SSO Client and Server Configuration Examples

bi ndi ng: server_binding_list = ["CSI+GSP', "CSI", "GSP'];

initial_references: | S2Aut hori zati on: plugin =
"it_is2_authorization";

plugins:it_is2 authorization: dassNanme =
"comiona. corba. security. aut hori zati on. | S2Aut hori zat i onPl ugl n

n.
’

pl ugi ns: gsp: action_rol e_mappi ng_file =
"file://W\art\etc\tls\x509\..\..\..\..\art_svcs\etc\actionro
| emappi ng_wi th_i nterfaces. xm";

pl ugi ns: gsp: aut hori zati on_real m= "AuthzRealm";

pol i cies:csi:auth_over_transport:server_donai n_name =
" PCGROP";

aut h_csi

{

policies:iiop_tls:target_secure_invocation_policy: supports
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

policies:iiop_tls:target secure_invocation_policy:requires
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering"];

policies:csi:auth_over_transport:target_requires =
["EstablishTrustIndient"];

pol i ci es: csi:auth_over_transport:target_supports
["EstablishTrustIndient"];

b

aut h_csi _and_x509

{

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",

"Det ect M sordering", "EstablishTrustlnTarget",

"Establ i shTrustInQient"];

137

CHAPTER 5 | Single Sign-On for CORBA Applications

Example 15: SSO Client and Server Configuration Examples

policies:iiop_tls:target_secure_invocation_policy:requires =
[“Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustindient"];

pol i cies:csi:auth_over_transport:target_requires
["EstablishTrustIndient"];

pol i ci es: csi:auth_over_transport:target_supports
["EstablishTrustInQient"];

}

};
Ik

138

Part ||

Orbix Security Framework
Administration

In this part This part contains the following chapters:
Configuring the Orbix Security Service page 141
Managing Users, Roles and Domains page 173
Managing Access Control Lists page 191
Securing Orbix Services page 209

In this chapter

CHAPTER 6

Configuring the
Orbix Security
Service

This chapter describes how to configure the properties of the
Orbix security service and, in particular, how to configure a
variety of adapters that can integrate the Orbix security service
with third-party enterprise security back-ends (for example,
LDAP).

This chapter discusses the following topics:

Configuring the File Adapter page 142
Configuring the LDAP Adapter page 144
Clustering and Federation page 150
Additional Security Configuration page 167

141

CHAPTER 6 | Configuring the Orbix Security Service

Configuring the File Adapter

Overview

File locations

File adapter properties

142

The iSF file adapter enables you to store information about users, roles, and
realms in a flat file, a security information file. The file adapter is easy to
set up and configure, but is appropriate for demonstration purposes only.
This section describes how to set up and configure the iSF file adapter.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

The following files configure the iSF file adapter:

® is2 properties file—the default location of the iSF properties file is as
follows:
ASPInstallDirl et c/ domai ns/ DomainName/ i s2. properti es
See “iS2 Properties File” on page 515 for details of how to customize
the default iSF properties file location.

® Security information file—this file's location is specified by the
comiona.isp.adapter.file.paramfil ename property in the
i s2. properties file.

Example 16 shows the properties to set for a file adapter.
Example 16: Sample File Adapter Properties

comiona.isp.adapters=file

#t
Deno File Adapter Properties
#t

comiona.isp.adapter.file.class=comiona.security.is2adapter.fil
e. Fi | eAut hAdapt er

comiona.isp. adapter.file. param fil enane=ASPInstallDirl et c/ donai n
s/ DomainName/ i s2_user _password_rol e_fil e.txt

Configuring the File Adapter

Example 16: Sample File Adapter Properties

R
CGeneral O bix Security Service Properties

...

Generic properties not shown here ...

The necessary properties for a file adapter are described as follows:

1.

Set comi ona. i sp. adapt er s=fi | e to instruct the Orbix security service
to load the file adapter.

The comiona. i sp. adapter.file.class property specifies the class
that implements the iSF file adapter.

The comiona. i sp. adapter.file. paramfil ename property specifies
the location of the security information file, which contains information
about users and roles.

See “Managing a File Security Domain” on page 187 for details of how
to create or modify the security information file.

(Optionally) You might also want to edit the general Orbix security
service properties.

See “Additional Security Configuration” on page 167 for details.

143

CHAPTER 6 | Configuring the Orbix Security Service

Configuring the LDAP Adapter

Overview The IONA security platform integrates with the Lightweight Directory Access
Protocol (LDAP) enterprise security infrastructure by using an LDAP adapter.
The LDAP adapter is configured in an i s2. properti es file. This section
discusses the following topics:

Prerequisites

File location.

Minimal LDAP configuration.
Basic LDAP properties.
LDAP.param properties.
LDAP server replicas.

Logging on to an LDAP server.

Prerequisites Before configuring the LDAP adapter, you must have an LDAP security
system installed and running on your system. LDAP is not a standard part of
Orbix E2A Application Server Platform, but you can use the Orbix security
service's LDAP adapter with any LDAP v.3 compatible system.

File location The following file configures the LDAP adapter:

144

i s2. properti es file—the default location of the iSF properties file is as
follows:

ASPInstallDirl et ¢/ domai ns/ DomainName/ i s2. properti es

See “iS2 Properties File” on page 515 for details of how to customize
the default iSF properties file location.

Minimal LDAP configuration

Configuring the LDAP Adapter

Example 17 shows the minimum set of iSF properties that can be used to
configure an LDAP adapter.

Example 17: A Sample LDAP Adapter Configuration File

com i ona. i sp. adapt er s=LDAP

T S R R T

#

LDAP Adapter Properties

i

R

com i ona. i sp. adapt er. LDAP. cl ass=com i ona. securi ty. i s2adapt er. | da
p. LdapAdapt er

com i ona. i sp. adapt er. LDAP. par am host . 1=10. 81. 1. 400
com i ona. i sp. adapt er. LDAP. par am port . 1=389

com i ona. i sp. adapt er. LDAP. par am User NaneAt t r =ui d

com i ona. i sp. adapt er. LDAP. par am User BaseDN=dc=i ona, dc=com

com i ona. i sp. adapt er. LDAP. par am User Cbj ect A ass=or gani zat i onal Pe
rson

com i ona. i sp. adapt er. LDAP. par am User Sear chScope=SUB

com i ona. i sp. adapt er. LDAP. par am User Rol eDNAt t r =nsr ol edn
com i ona. i sp. adapt er. LDAP. par am Rol eNarreAt t r =cn

com i ona. i sp. adapt er. LDAP. par am G oupNarmeAt t r =cn

com i ona. i sp. adapt er. LDAP. par am G oup(hj ect A ass=gr oupof uni quena
nes

com i ona. i sp. adapt er. LDAP. par am G oupSear chScope=SUB

com i ona. i sp. adapt er. LDAP. par am G oupBaseDN=dc=i ona, dc=com

com i ona. i sp. adapt er. LDAP. par am Menber DNAL t r =uni queMenber

com i ona. i sp. adapt er. LDAP. par am ver si on=3

The necessary properties for an LDAP adapter are described as follows:

1. Setcomiona.isp. adapt er s=LDAP to instruct the IONA Security
Platform to load the LDAP adapter.

2. Thecomiona.isp.adapter.file.class property specifies the class
that implements the LDAP adapter.

145

CHAPTER 6 | Configuring the Orbix Security Service

146

3. For each LDAP server replica, you must specify the host and port
where the LDAP server can be contacted. In this example, the host and
port parameters for the primary LDAP server, host. 1 and port. 1, are
specified.

4. These properties specify how the LDAP adapter finds a user name
within the LDAP directory schema. The properties are interpreted as

follows:

User NanmeAt t r The attribute type whose corresponding value
uniquely identifies the user.

User BaseDN The base DN of the tree in the LDAP directory
that stores user object class instances.

User (bj ect d ass The attribute type for the object class that
stores users.

User Sear chScope The user search scope specifies the search

depth relative to the user base DN in the
LDAP directory tree. Possible values are:
BASE, ONE, or SUB.

See “iS2 Properties File” on page 515 for more details.

5. The following properties specify how the adapter extracts a user’s role
from the LDAP directory schema:

User Rol eDNAt t r The attribute type that stores a user’s role DN.

Rol eNanreAt t r The attribute type that the LDAP server uses
to store the role name.

6. These properties specify how the LDAP adapter finds a group name
within the LDAP directory schema. The properties are interpreted as

follows:

Q oupNaneAt t r The attribute type whose corresponding
attribute value gives the name of the user
group.

Q@ oupBaseDN The base DN of the tree in the LDAP directory
that stores user groups.

QG oupQbj ect d ass The object class that applies to user group

entries in the LDAP directory structure.

Basic LDAP properties

Configuring the LDAP Adapter

Q oupSear chScope The group search scope specifies the search
depth relative to the group base DN in the
LDAP directory tree. Possible values are:
BASE, ONE, or SUB.

Menber DNAL t r The attribute type that is used to retrieve
LDAP group members.

See “iS2 Properties File” on page 515 for more details.

7. The LDAP version number can be either 2 or 3, corresponding to
LDAP v.2 or LDAP v.3 respectively.

The following properties must always be set as part of the LDAP adapter
configuration:

com i ona.i sp. adapt er s=LDAP
comiona.isp. adapt er. LDAP. cl ass=com i ona. security. i s2adapter.| dap
. LdapAdapt er

In addition to these basic properties, you must also set a number of LDAP
parameters, which are prefixed by com i ona. i sp. adapt er . LDAP. par am

147

CHAPTER 6 | Configuring the Orbix Security Service

LDAP.param properties

LDAP server replicas

Logging on to an LDAP server

148

Table 3 shows all of the LDAP adapter properties from the
com i ona. i sp. adapt er . LDAP. par amscope. Required properties are shown

in bold:
Table 3: LDAP Properties in the com.iona.isp.adapter.LDAP.param
Scope
LDAP Server Properties LDAP User/Role Configuration
Properties

host . </ndex> User NaneAt t r

port. <Index> User BaseDN

SSLEnabl ed. </ndex> User (j ect A ass

SSLCACert Dir. </ndex> User Sear chScope

SSLA i ent Cert Fi |l e. </ndex>
SSLd i ent Cert Passwor d. </ndex>
Pri nci pal User DN </ndex >

Pri nci pal User Passwor d. </ndex>

User Sear chFi | ter
User Rol eDNAL t r
Rol eNaneAt t r
User Cert At t r Name

LDAP Group/Member
Configuration Properties

Other LDAP Properties

G oupNaneAt t r

G oupChj ect d ass
Q@ oupSear chScope
G oupBaseDN
Menber DNAL t r
Menber Fi | ter

MaxConnect i onPool Si ze
versi on

Use@ oupAsRol e

Retri eveAut hl nfo
CacheSi ze

CacheTi neTolLi ve

The LDAP adapter is capable of failing over to one or more backup replicas
of the LDAP server. Hence, properties such as host . </ndex> and
port. <Index> include a replica index as part of the parameter name.

For example, host. 1 and port. 1 refer to the host and port of the primary
LDAP server, while host . 2 and port . 2 would refer to the host and port of an

LDAP backup server.

The following properties can be used to configure login parameters for the

<Index> LDAP server replica:

Pri nci pal User DN. </ndex>
Pri nci pal User Passwor d. </ndex>

Secure connection to an LDAP
server

iSF properties reference

Configuring the LDAP Adapter

The properties need only be set if the LDAP server is configured to require
username/password authentication.

The following properties can be used to configure SSL/TLS security for the
connection between the Orbix security service and the </ndex> LDAP
server replica:

SSLEnabl ed. </ndex>

SSLCACertDir. </ndex>

SSLd i ent Cert Fi | e. </ndex>

SSLA i ent Cert Passwor d. </ndex>

The properties need only be set if the LDAP server requires SSL/TLS mutual
authentication.

For more details about the Orbix security service properties, see “iS2
Configuration” on page 513.

149

CHAPTER 6 | Configuring the Orbix Security Service

Clustering and Federation

Overview

In this section

150

Clustering and federation are two distinct, but related, features of the Orbix

security service. Briefly, these features can be described as follows:

® Clustering—involves running several instances of the Orbix security
service to provide what is effectively a single service. By running
multiple security service instances as a cluster, Orbix enables you to
support fault tolerance and replication features. Typically, in this case
all of the security services in a cluster are integrated with a single
authentication database back-end.

® Federation—enables SSO tokens to be recognized across multiple
security domains. Each security domain is served by a distinct security
service instance and each security service is integrated with a different
database back-end.

This section contains the following subsections:

Federating the Orbix Security Service page 151
Failover and Replication page 156
Client Load Balancing page 165

Clustering and Federation

Federating the Orbix Security Service

Overview

Federation is not clustering

Example federation scenario

Federation is meant to be used in deployment scenarios where there is more
than one instance of an Orbix security service. By configuring the Orbix
security service instances as a federation, the security services can talk to
each other and access each other's session caches. Federation frequently
becomes necessary when single sign-on (SSO) is used, because an SSO
token can be verified only by the security service instance that originally
generated it.

Federation is not the same thing as clustering. In a federated system, user
data is not replicated across different security service instances and there
are no fault tolerance features provided.

Consider a simple federation scenario consisting of two security domains,

each with their own Orbix security service instances, as follows:

® First LDAP security domain—consists of an Orbix security service
(with i s2. current. server.id property equal to 1) configured to store
user data in an LDAP database. The domain includes any Orbix
applications that use this Orbix security service (ID=1) to verify
credentials.

In this domain, a login server is deployed which enables clients to use
single sign-on.

® Second LDAP security domain—consists of an Orbix security service
(with i s2. current. server.id property equal to 2) configured to store
user data in an LDAP database. The domain includes any Orbix
applications that use this Orbix security service (ID=2) to verify
credentials.

The two Orbix security service instances are federated, using the
configuration described later in this section. With federation enabled, it is
possible for single sign-on clients to make invocations that cross security
domain boundaries.

151

CHAPTER 6 | Configuring the Orbix Security Service

Federation scenario Figure 29 shows a typical scenario that illustrates how iSF federation might
be used in the context of an Orbix system.

First LDAP Security Domain ® Second LDAP Security Domain

Client Target A Target B

®

Authenticate
SSO token

Authenticate
SSO token

4

A 4

Log!n Orbix Security Service
Service D=1

@

Orbix Security Service
ID=2

i
|
\ 2

User data store

Figure 29: An iSF Federation Scenario

152

Clustering and Federation

Federation scenario steps The federation scenario in Figure 29 can be described as follows:

Stage

Description

1

With single sign-on (SSO) enabled, the client calls out to the
login service, passing in the client's GSSUP credentials, u/ p/ d,
in order to obtain an SSO token, t.

The login service delegates authentication to the Orbix security
server (ID=1), which retrieves the user's account data from the
LDAP backend.

The client invokes an operation on the Target A, belonging to
the first LDAP security domain. The SSO token, t, is included
in the message.

Target A passes the SSO token to the Orbix security server
(ID=1) to be authenticated. If authentication is successful, the
operation is allowed to proceed.

Subsequently, the client invokes an operation on the Target B,
belonging to the second LDAP security domain. The SSO token,
t, obtained in step 1 is included in the message.

Target B passes the SSO token to the second Orbix security
server (ID=2) to be authenticated.

The second Orbix security server examines the SSO token.
Because the SSO token is tagged with the first Orbix security
server's ID (ID=1), verification of the token is delegated to the
first Orbix security server. The second Orbix security server
opens an IIOP/TLS connection to the first Orbix security service
to verify the token.

153

CHAPTER 6 | Configuring the Orbix Security Service

Configuring the is2.properties files

154

Each instance of the Orbix security service should have its own

i s2. properties file. Within each i s2. properti es file, you should set the
following:

® is2. current.server.id—a unique ID for this Orbix security service

instance,

is2.cluster.properties.fil enane—a shared cluster file.

i s2. sso. renot e. t oken. cached—a boolean property enables caching
of remote token credentials in a federated system.

With caching enabled, the call from one federated security service to
another (step 7 of Figure 29 on page 152) is only necessary to
authenticate a token for the first time. For subsequent authentications,

the security service (with ID=2) can obtain the token’s security data
from its own token cache.

For example, the first Orbix security server instance from Figure 29 on
page 152 could be configured as follows:

i1S2 Properties File, for Server |D=1

R
i SF federation rel ated properties
R
is2.current. server.id=1

is2.cluster.properties.filenane=C /is2_config/cluster.properties
i s2. sso. renot e. t oken. cached=t r ue

And the second Orbix security server instance from Figure 29 on page 152
could be configured as follows:

1S2 Properties File, for Server |D=2

A
1 SF federation rel ated properties

BB R R R R R R R
is2.current. server.id=2

is2.cluster.properties.filename=C /is2 config/cluster.properties
i S2. sso. renot e. t oken. cached=t r ue

Configuring the cluster properties
file

Clustering and Federation

All the Orbix security server instances within a federation should share a
cluster properties file. For example, the following extract from the
cluster. properties file shows how to configure the pair of embedded
Orbix security servers shown in Figure 29 on page 152.

Advertise the locations of the security services in the cluster.
com i ona. security. common. securitylnstanceURL. 1=corbal oc:it _iiops: 1. 2@ecurity_| dapl: 5001/ T _Secu

rityService

com i ona. security. common. securityl nstanceURL. 2=corbal oc:it _iiops: 1. 2@ecurity_| dap2: 5002/ | T_Secu

rityService

Sample cluster properties file

This assumes that the first security service (ID=1) runs on host

security_ | dapl and IP port 5001; the second security service (ID=2) runs
on host security_| dap2 and IP port 5002. To discover the appropriate host
and port settings for the security services, check the

pl ugi ns: security:iiop_tls settings in the relevant configuration scope in
the relevant Orbix configuration file for each federated security service.

The securityl nst anceURL. ServerlD variable advertises the location of a
security service in the cluster. Normally, the most convenient way to set
these values is to use the corbal oc URL format.

If you have generated a secure configuration domain, DomainName, on a
host, HostName, you can then find a sample cl ust er . properti es file in the
following directory:

OrbixinstallDiri et c/ domai ns/ DomainName/ securi ty_HostName/

155

CHAPTER 6 | Configuring the Orbix Security Service

Failover and Replication

Overview

156

To support high availability of the Orbix security service, Orbix implements

the following features:

® Failover—the security service is contacted using an IOR that contains
the address of every security service in a cluster. Hence, if one of the
services in the cluster crashes, or otherwise becomes unavailable, an
application can automatically try one of the alternative addresses listed
in the IOR.

® Replication—the data cache associated with single sign-on (SSO)
sessions can be replicated to other security services in the cluster. This
ensures that SSO session data is not lost if one member of the cluster
should become unavailable.

This subsection describes how to configure failover and replication by hand.

Clustering and Federation

Failover scenario Example 30 shows a scenario for a highly available Orbix security service
that consists of a cluster of three security services, each with an embedded
login service. The security and login services run on separate hosts,
security01, security02, and security03 respectively, and all of the
services rely on the same third-party LDAP database to store their user data.

Initial Reference for Security Service

| OR: [secur ityo1: 5001] [secur ity02: 5002] [secur ity03: 5003] ‘

Initial Reference for Login Service

| OR: [securl ty0ol: 5001] [securl ty02: 5002] [securl ty03: 5003] ‘

Client Target A

Authenticate

upld SSO token
A I = Security Service
_o— 7 seewiyorbost Tl Cluster
o | : e
- : v | ™~
// : [SLOQ."] I Security Service] i AN
L ! ervice a | \
\ ID=1 !
/ | i \
, 2 \
/

{ securityo2Host . |securityo3 Host . \\
\ i [Log_in I Security Service] i i [Log?n I Security Service] i /
\ ! Service : ! Service ; ,
N : ID=2 P ID=3 ; ,
~ -

SO 7
~ . //,

- -

Figure 30: Failover Scenario for a Cluster of Three Security Services

In this scenario, it is assumed that both the client and the target application
are configured to perform random load balancing over the security services
in the cluster (see “Client Load Balancing” on page 165 for details). Each of
the security services in the cluster are configured for failover and replication.

157

CHAPTER 6 | Configuring the Orbix Security Service

Failover scenario steps

Configuring the is2.properties file

158

The interaction of the client and target with the security service cluster
shown in Example 30 on page 157 can be described as follows:

Stage Description

1 | Assuming the client is configured to use single sign-on (SSO), it
will automatically contact the login service (which is part of the
security service) to obtain an SSO token.

Because the client is configured to perform random load
balancing, it chooses one of the addresses from the I T_Logi n
IOR at random and opens a connection to that login service.

2 | The client invokes an operation on the target, sending the SSO
token obtained in the previous step with the request.

3 | The target server checks the SSO token received from the client
by sending an invocation to the security service cluster. If the
target server already has an existing connection with a service
in the cluster, it re-uses that connection. Otherwise, the target
randomly picks an address from the list of addresses in the

I T_SecurityService IOR.

Each instance of the Orbix security service should have its own
i s2. properties file. Within each i s2. properti es file, you should set the
following:

® is2. current.server.id—a unique ID for this Orbix security service
instance,

® is2.cluster.properties.filename—a shared cluster file.

® js2.replication.requi red—must be set to true.

® is2.replica.selector.cl assname—you must set this variable as
shown in the example.

Clustering and Federation

For example, the first Orbix security server instance from Figure 30 on
page 157 could be configured as follows:

1S2 Properties File, for Server |D=1

R R R R R
1 SF federation rel ated properties
R R R R R
is2.current.server.id=1

is2.cluster.properties.filename=C /is2 config/cluster.properties
is2.replication.required=true
is2.replication.interval =20

is2.replica. sel ector.classname=com i ona. security.replicate. Stati
cRepl i caSel ect or

The second and third Orbix security services from Figure 30 on page 157
should be configured similarly, except that the i s2. current.server.id
property should be set to 2 and 3 respectively.

Configuring the cluster properties For the three-service cluster shown in Figure 30 on page 157, you could
file configure the cl uster. properti es file as follows:

Advertise the locations of the security services in the cluster.
com i ona. security. common. securitylnstanceURL. 1=cor bal oc:it_iiops: 1. 2@ecurity01: 5001/ | T_Security

Servi ce

com i ona. security. common. securityl nstanceURL. 2=corbal oc: it _iiops: 1. 2@ecurity02: 5002/ T_Security
Servi ce

com i ona. security. common. securityl nstanceURL. 3=corbal oc:it _iiops:1. 2@ecurity03:5003/1T Security
Servi ce

Configure replication between security services.

com i ona. security. common. replicaURL. 1=corbal oc:it _iiops: 1. 2@ecurity02:5002/1T_SecurityService,c
orbal oc:it_iiops:1. 2@ecurity03:5003/1T_SecurityService

com i ona. security. common. replicaURL. 2=corbal oc: it _iiops: 1. 2@ecurity03:5003/1T_SecurityService,c
orbaloc:it_iiops:1. 2@ecurity0l: 5001/ T SecurityService

com i ona. security.common. repli caURL. 3=corbal oc: it _iiops: 1. 2@ecurity01: 5001/ T_SecurityService,c
orbal oc:it_iiops: 1. 2@ecurity02:5002/1T SecurityService

There are two groups of settings in this file:

® securityl nstanceURL. Server/D—advertises the location of a security

service in the cluster. Normally, the most convenient way to set these
values is to use the cor bal oc URL format.

159

CHAPTER 6 | Configuring the Orbix Security Service

Orbix configuration for the first
security service

160

® replicaURL. ServerlD—a list of URLs for the other security services to
which this service replicates its data.

For example, the repl i caURL. 1 setting lists URLs for the security
service with ID=2 and the security service with ID=3. Hence, the first
service in the cluster is configured to replicate its data to the second
and third services. Normally, each security service should replicate to
all of the other services in the cluster.

Example 18 shows the details of the Orbix configuration for the first Orbix
security service in the cluster. To configure this security service to support
failover, you must ensure that the security service's IOR contains a list
addresses for all of the services in the cluster.

Example 18: Orbix Security Service Configuration for Failover

Obix Configuration File

initial _references:| T SecurityService:reference =
"1 CR 010000002400000049444c3a696f 6e612e636f 6d2f 49545f 53656375
726974792f 5365727665723a312e300001000000000000009200000001010
2000800000066626f 6¢74616e0000000000220000003a3e02333109536563
7572697479001249545f 53656375726974795365727669636500000400000
0140000000800000001007e005e0078cf 000000000800000001000000415f
5449010000001c00000001000000010001000100000001000105090101000
1000000000101000600000006000000010000000e00" ;

initial _references:|T_Login:reference =
"1 CR 010000002300000049444c3a696f 6e612e636f 6d2f 49545f 53656375
726974792f 4c6f 67696€3a312e30000001000000000000008600000001010
2000800000066626f 6¢74616e0000000000180000003a3e02333109536563
7572697479000849545f 4c6f 67696e04000000140000000800000001007€0
01e0078cf 000000000800000001000000415f 5449010000001c0000000100
0000010001000100000001000105090101000100000000010100060000000
6000000010000000€00";

i ona_services {

princi pal _sponsor: use_princi pal _sponsor = "true";

princi pal _sponsor:auth_nethod_id = "pkcs12_file";

princi pal _sponsor: aut h_net hod_data = ["fi | ename=PKCS12File",
"passwor d_fi | e=CertPasswordFile"] ;

pol i cies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustlnTarget",
"Det ect M sordering", "DetectReplay", "Integrity"];

Clustering and Federation

Example 18: Orbix Security Service Configuration for Failover

policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustlnQient",
"EstablishTrustlnTarget", "DetectM sordering",

"Det ect Repl ay", "Integrity"];

security {
Hostname {

plugins:security cluster:iiop_tls:addr_list =
["+security0l: 5001", "+security02: 5002", "+security03:5003"];

pl ugi ns: security:iiop_tls:host "5001";

plugi ns: security:iiop_tls:port "security0l";

policies:iiop_tls:target_secure_invocation_policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustindient"];

policies:iiop_tls:target_secure_invocation_policy: supports
["Integrity", "Confidentiality", "DetectReplay",

"Detect M sordering”, "EstablishTrustlnTarget",

"Establ i shTrustInQient"];

%
Ik

The preceding Orbix configuration can be explained as follows:

1. TheIT_SecurityService initial reference is read by Orbix applications
to locate the cluster of Orbix security services. Embedded in this IOR is
a list of addresses for all of the security services in the cluster.

This IOR is generated by the Orbix security service when it is run in
pr epar e mode—alternatively, you can use the it confi gur e utility to
create a domain with an Orbix security service cluster.

Note: You can parse the contents of the stringified IOR using the
i or dunp tool.

161

CHAPTER 6 | Configuring the Orbix Security Service

Orbix configuration for other
services in the cluster

162

2. The Orbix security service picks up most of its SSL/TLS security
settings from the i ona_servi ces scope. In particular, the default
configuration of the security service uses the X.509 certificate specified
by the princi pal _sponsor settings in this scope.

3. Theplugins:security cluster:iiop_tls:addr_|ist variable lists
the addresses for all of the security services in the cluster. Each
address in the list is preceded by a + sign, which indicates that the
service embeds the address in its generated I0ORs.

Note: The plugins:security_cluster:iiop_tls:addr_|ist setting
also configures the embedded login service.

4. The plugins:security:iiop_tls:host and
pl ugi ns: security:iiop_tls:port settings specify the address where
the security service listens for incoming [IOP/TLS request messages.

The configuration for other services in the cluster is similar, except that the
pl ugi ns:security:iiop_tls:host and plugins:security:iiop_tls:port
variables should be changed to the appropriate host and port for each of the
replicas.

Clustering and Federation

Replication Example 31 on page 163 shows how replication works in a cluster of three
Orbix security services. If replication is enabled (that is,
is2.replication.required is set to true in the i s2. properti es file), a
security service pushes its data cache to the other services in the cluster
every 30 seconds (default replication interval).

o o Security Service

o~ secwriyOlMost B Cluster
_ — -] ~ -
- i = BN
- i ogin : . ~
e ! : Security Service S
! Service
, 4 H ID=1 AN
’ i \

/ b UIN .
/ \
(/ security02 Host security03 Host \
--)

| b ! !
\\ | Login : | Login ! /
: :] : :]
\ ! Service Security Service I ' ! Service Security Service ' ,
\ 1 ID=2 ! 1 ID=3 ! ’
N | H ! H /
N ! i ! i .
S e

Figure 31: Replication of Data Caches in a Security Service Cluster

Security service replication has the following characteristics:

® The security service pushes the following data to the other services:
. SSO tokens that have been added since the last replication.
‘. Realm and role data for each of the new SSO tokens.

®* Note, however, that the security service does not replicate username
and password data. Therefore, replication is only relevant to
applications that use the SSO feature.

163

CHAPTER 6 | Configuring the Orbix Security Service

Modifying the replication interval

164

You can modify the replication interval by setting the
is2.replication.interval propertyintheis.properties file for the
relevant service. If this variable is not set, the default replication interval is
30 seconds.

For example, to configure the security service with ID=1 to replicate data
once every 10 seconds, its i s2. properti es file would be configured as
follows:

1S2 Properties File, for Server |D=1

A
i SF federation rel ated properties

ITRTR TR R TR RT R TR N TN TR TR TR TR TR TN TN TR TR T NI TN TN TN TR TR TR TN TN TN TR TR TRT R TN TN TN IRTRTOT]

i s2.current. server.id=1

is2.cluster.properties.fil ename=C./is2_config/cluster.properties

is2.replication.required=true

is2.replication.interval =10

i s2.replica.sel ector.cl assnane=com i ona. security.replicate. Stati
cRepl i caSel ect or

Clustering and Federation

Client Load Balancing

Overview When you use a clustered security service, it is important to configure all of
the other applications in the system (clients and servers) to perform client
load balancing (in this context, client means a client of the Orbix security
service and thus includes ordinary Orbix servers as well). This ensures that
the client load is evenly spread over all of the security services in the cluster.

Client load balancing is enabled by default.

Configuration for load balancing Example 19 shows an outline of the configuration for a client of a security
service cluster. Such clients must be configured to use random load
balancing to ensure that the load is spread evenly over the servers in the
cluster. The settings highlighted in bold should be added to the application’s
configuration scope.

Example 19: Configuration for Client of a Security Service Cluster
Obix Configuration File
i .o.ad_bal anced_app {

pI ngi ns: gsp: use_client _| oad_bal ancing = "true";

policies:iiop_tls:|oad_bal anci ng_nechani sm= "randoni;

I

165

CHAPTER 6 | Configuring the Orbix Security Service

Client load balancing mechanism

166

The client load balancing mechanism is selected by setting the

policies:iiop_tls:load bal anci ng_nechani smvariable. Two mechanisms

are supported, as follows:

® random—choose one of the addresses embedded in the IOR at random
(this is the default).

Note: This is the only mechanism suitable for use in a deployed
system.

® sequenti al —choose the first address embedded in the IOR, moving
on to the next address in the list only if the previous address could not
be reached.

In general, this mechanism is not recommended for deployed systems,
because it usually results in all of the client applications connecting to
the first cluster member.

Additional Security Configuration

Additional Security Configuration

Overview This section describes how to configure optional features of the Orbix
security service, such as single sign-on and the authorization manager.
These features can be combined with any iSF adapter type.

In this section This section contains the following subsections:
Configuring Single Sign-On Properties page 168
Configuring the Log4J Logging page 170

167

CHAPTER 6 | Configuring the Orbix Security Service

Configuring Single Sign-On Properties

Overview The Orbix Security Framework provides an optional single sign-on (SSO)
feature. If you want to use SSO with your applications, you must configure
the Orbix security service as described in this section. SSO offers the
following advantages:

® User credentials can easily be propagated between applications in the

form of an SSO token.

® Performance is optimized, because the authentication step only needs
to be performed once within a distributed system.

® Because the user's session is tracked centrally by the Orbix security
service, it is possible to impose timeouts on the user sessions and
these timeouts are effective throughout the distributed system.

SSO tokens The login service generates an SSO token in response to an authentication
operation. The SSO token is a compact key that the Orbix security service
uses to access a user's session details, which are stored in a cache.

SSO properties Example 20 shows the iSF properties needed for SSO:
Example 20: Single Sign-On Properties
1 SF Properties File

FHEHH T T
Single S gn Oh Session |Info

B R
i s2. sso. enabl ed=yes

i s2. ss0. sessi on. ti meout =6000

i s2. sso. sessi on. idl e. ti meout =300

i s2. sso. cache. si ze=10000

A WN =

The SSO properties are described as follows:
1. Setting this property to yes enables single sign-on.

2. The SSO session timeout sets the lifespan of SSO tokens, in units of
seconds. Once the specified time interval elapses, the token expires.

168

Additional Security Configuration

3. The SSO session idle timeout sets the maximum length of time for
which an SSO session can remain idle, in units of seconds. If the Orbix
security service registers no activity against a particular session for this
amount of time, the session and its token expire.

4. The size of the SSO cache, in units of number of sessions.

Related administration tasks For details of how to configure CORBA applications to use SSO, see “Single
Sign-On for CORBA Applications” on page 99.

169

CHAPTER 6 | Configuring the Orbix Security Service

Configuring the Log4J Logging

Overview

log4j documentation

Enabling log4j logging

In the system_properties list

In the SECURITY_CLASSPATH

170

log4j is a third-party toolkit from the Jakarta project,
http://jakarta.apache.org/log4j, that provides a flexible and efficient system
for capturing logging messages from an application. Because the Orbix
security service's logging is based on log4j, it is possible to configure the
output of Orbix security service logging using a standard log4] properties file.

For complete log4j documentation, see the following Web page:
http://jakarta.apache.org/log4j/docs/documentation.htmi

To enable log4j logging, you can specify the location of the log4j properties
file in either of the following ways:

® In the system_properties list.
® Inthe SECURITY_CLASSPATH.

You can specify the location of the log4j properties file by setting the

com i ona. conmon. | 0g4j . Log4JWils. fil enanme property in the

pl ugi ns: j ava_ser ver: system properti es list in the security service
configuration. For example, to use the /i s2_confi g/ | og4j . properti es file,
modify the security service configuration by extending its system properties
list as follows:

Obix Configuration File

In the security service configurati on scope:

pl ugi ns: j ava_server: systemproperties = [...,
"comi ona. common. | og4j . Log4JWils.filenane=/is2 config/l og4j.
properties"];

You can specify the location of the log4j properties file by adding it to the
SECUR TY_CLASSPATH variable in the Orbix configuration file (the separator
between items in the classpath is ; on Windows platforms and : on UNIX
platforms).

http://jakarta.apache.org/log4j/docs/documentation.html
http://jakarta.apache.org/log4j

Additional Security Configuration

Configuring the logdj properties The following example shows how to configure the log4j properties to
file perform basic logging. In this example, the lowest level of logging is
switched on (DEBUG) and the output is sent to the console screen.

logdj Properties File
| 0g4j . r oot Cat egor y=DEBUG Al

Al is set to be a Consol eAppender .
| og4j . appender . Al=or g. apache. | og4j . Consol eAppender

Al uses PatternLayout.

| og4j . appender . Al. | ayout =or g. apache. | og4j . Pat t er nLayout

| 0g4j . appender . Al. | ayout . Conversi onPattern=%4r [%] %5p % %
- Y%

171

CHAPTER 6 | Configuring the Orbix Security Service

172

In this chapter

CHAPTER 7

Managing Users,
Roles and
Jomains

The Orbix security service provides a variety of adapters that
enable you to integrate the IONA Security Framework with
third-party enterprise security products. This allows you to
manage users and roles using a third-party enterprise security
product.

This chapter discusses the following topics:

Introduction to Domains and Realms page 174
Managing a File Security Domain page 187
Managing an LDAP Security Domain page 190

173

CHAPTER 7 | Managing Users, Roles and Domains

Introduction to Domains and Realms

Overview This section introduces the concepts of an iSF security domain and an iSF
authorization realm, which are fundamental to the administration of the
IONA Security Framework. Within an iSF security domain, you can create
user accounts and within an iSF authorization realm you can assign roles to

users.

In this section This section contains the following subsections:
iSF Security Domains page 175
iSF Authorization Realms page 177
Example Domain and Realms page 181
Domain and Realm Terminology page 185

174

Introduction to Domains and Realms

ISF Security Domains

Overview This subsection introduces the concept of an iSF security domain.

iSF security domain An iSF security domain is a particular security system, or namespace within
a security system, designated to authenticate a user.

Here are some specific examples of iSF security domains:

® LDAP security domain—authentication provided by an LDAP security
backend, accessed through the Orbix security service.

Domain architecture Figure 32 shows the architecture of an iSF security domain. The iSF security
domain is identified with an enterprise security service that plugs into the
Orbix security service through an iSF adapter. User data needed for
authentication, such as username and password, are stored within the
enterprise security service. The Orbix security service provides a central
access point to enable authentication within the iSF security domain.

Web CORBA CORBA on
Services _ Server 0S/390

authenticate authenticate authenticate
|

: I
|
| | |
! i v
Orbix Security Service

iSF Security Domain

(Enterprise Security Service

1
Authentication data

Figure 32: Architecture of an iSF Security Domain

175

CHAPTER 7 | Managing Users, Roles and Domains

Creating an iSF security domain

Creating a user account

176

Effectively, you create an iSF security domain by configuring the Orbix
security service to link to an enterprise security service through an iSF
adapter (such as an LDAP adapter). The enterprise security service is the
implementation of the iSF security domain.

Because user account data is stored in a third-party enterprise security
service, you use the standard tools from the third-party enterprise security
product to create a user account.

For a simple example, see “Managing a File Security Domain” on page 187.

Introduction to Domains and Realms

iISF Authorization Realms

Overview

iSF authorization realm

Role-based access control

This subsection introduces the concept of an iSF authorization realm and
role-based access control, explaining how users, roles, realms, and servers
are interrelated.

An iSF authorization realm is a collection of secured resources that share a
common interpretation of role names. An authenticated user can have
different roles in different realms. When using a resource in realm R, only
the user's roles in realm R are applied to authorization decisions.

The IONA security framework supports a role-based access control (RBAC)
authorization scheme. Under RBAC, authorization is a two step process, as
follows:

1.

User-to-role mapping—every user is associated with a set of roles in
each realm (for example, guest, adni ni strator, and so on, in a realm,
Engi neer i ng). A user can belong to many different realms, having a
different set of roles in each realm.

The user-to-role assignments are managed centrally by the Orbix
security service, which returns the set of realms and roles assigned to a
user when required.

Role-to-permission mapping (or action-role mapping)—in the RBAC
model, permissions are granted to roles, rather than directly to users.
The role-to-permission mapping is performed locally by a server, using
data stored in local access control list (ACL) files. For example, CORBA
servers in the iSF use an XML action-role mapping file to control access
to IDL interfaces, operation, and attributes.

177

CHAPTER 7 | Managing Users, Roles and Domains

Servers and realms From a server's perspective, an iSF authorization realm is a way of grouping
servers with similar authorization requirements. Figure 33 shows two iSF
authorization realms, Engi neering and Fi nance, each containing a
collection of server applications.

IONAGIlobalRealm

Figure 33: Server View of iSF Authorization Realms

Adding a server to a realm To add a server to a realm, add or modify the
pl ugi ns: gsp: aut hori zat i on_r eal mconfiguration variable within the
server's configuration scope (either in the DomainName. cf g file or in the
CFR server).

For example, if your server’s configuration is defined in the ny_server _scope
scope, you can set the iSF authorization realm to Engi neeri ng as follows:

Obix configuration file

ny_server _scope {
pl ugi ns: gsp: aut hori zat i on_real m = "Engi neeri ng";

Ik

178

Introduction to Domains and Realms

Roles and realms From the perspective of role-based authorization, an iSF authorization realm
acts as a namespace for roles. For example, Figure 34 shows two iSF
authorization realms, Engi neeri ng and Fi nance, each associated with a set

of roles.

IONAGIlobalRealm

[TTTTTTTTTTTTTTTTTTTToTToTToomoomoooomoooooooooooooooooooooooooo !

E Engineering Finance E

V..

' ! | T 1 '

' | 1 H ' |
1 1 1

E E guest E E guest i E

1 1 1

I | ! I ' !

i i adni n E i adni n E i

' | ! ' '

' ' ! ' 1 '

P L L

1 1

I | ! 1 ! !

I | ! I ! !

I 1 ' | ! !

o L o

1 1 1

i] 1 E

Figure 34: Role View of iSF Authorization Realms

Creating realms and roles Realms and roles are usually administered from within the enterprise
security system that is plugged into the Orbix security service through an
adapter. Not every enterprise security system supports realms and roles,
however.

For example, in the case of a security file connected to a file adapter (a
demonstration adapter provided by IONA), a realm or role is implicitly
created whenever it is listed amongst a user’s realms or roles. See also
“Assigning realms and roles to the example users” on page 181.

Assigning realms and roles to The assignment of realms and roles to users is administered from within the
users enterprise security system that is plugged into the Orbix security service. For
example, Figure 35 shows how two users, Janet and John, are assigned
roles within the Engi neering and Fi nance realms.
® Janet works in the engineering department as a developer, but
occasionally logs on to the Fi nance realm with guest permissions.

179

CHAPTER 7 | Managing Users, Roles and Domains

Special realms and roles

180

® John works as an accountant in finance, but also has guest
permissions with the Engi neeri ng realm.

iSF Security Domain (users)

__

IONAGIlobalRealm

Engineering Finance

devel oper

Figure 35: Assignment of Realms and Roles to Users Janet and John

The following special realms and roles are supported by the IONA Security

Framework:

® | ONAQ obal Real mrealm—a special realm that encompasses every iSF
authorization realm. Roles defined within the | ONA@ obal Real mare
valid within every iSF authorization realm.

® Unaut henti cat edUser Rol e—a special role that can be used to specify
actions accessible to an unauthenticated user (in an action-role
mapping file). An unauthenticated user is a remote user without
credentials (that is, where the client is not configured to send GSSUP
credentials).

Actions mapped to the Unaut hent i cat edUser Rol e role are also
accessible to authenticated users.

The Unaut hent i cat edUser Rol e can be used only in action-role
mapping files.

Introduction to Domains and Realms

Example Domain and Realms

Overview This subsection presents an example of how to set up an iSF security
domain using a file domain. Sample iSF authorization realms, roles, and
users are created, and the authorization process is explained by example.

File domain In this example, the iSF security domain is configured to be a file domain. A
file domain is a simple file-based security domain that can be used for tests
or demonstrations. The user data is then stored in an XML security file.

For details of how to configure a file domain, see “Managing a File Security
Domain” on page 187.

Example users The following users are created in the file domain for this example:
® Janet—with username, Janet , and password, Janet Pass.
® John—with username, John, and password, JohnPass.
® SuperUser—with username, Super User, and password, Bi gSecr et .

Assigning realms and roles to the The following realms and roles are assigned to the users, Janet , John, and
example users Super User (where realms and roles are notated in the format RealmA {
roleAl, roleA2, ..., roleAn}):

® Janet —is assigned the following realms and roles:
. Engi neeri ng {devel oper, adm n}
. | ONAQ obal Real m {guest }
® John—is assigned the following realms and roles:
. Fi nance {account ant}
. | ONAQ obal Real m {guest }
® Super User —is assigned the following realm and role:
. | ONAQ obal Real m {adnmi n}

181

CHAPTER 7 | Managing Users, Roles and Domains

Sample security file for the file Within a file domain, you specify the user authentication data (username

domain and password) as well as the realm/role assignments within the same XML
security file. The preceding user data can be specified in a security file as
follows:

<?xm version="1.0" encodi ng="utf-8" ?>
<ns: securityl nfo xm ns: ns="ur n: ww xm bus- com si npl e-security">
<user s>
<user nane="Janet" password="Janet Pass"
descri pti on="Devel oper">
<r eal m nane="Engi neeri ng" >
<rol e nane="devel oper"/>
<rol e name="adm n"/>
</real n»
<real m name="| ONAGQ obal Real MY description="Al| real ns">
<rol e nane="guest"/ >
</real n»
</ user >
<user nane="John" passwor d="JohnPass"
descri pti on="Account ant ">
<r eal m nane="Fi nance" >
<rol e name="accountant"/>
</real n»
<r eal m nane="| ONAQ obal Real i description="A| real ns">
<rol e nane="guest"/>
</real n»
</ user >
<user nane="Super User" password="Bi gSecret"
description="A| powerful user!">
<r eal m nane="| ONAQ obal Real mf description="A| real ns">
<rol e nane="adm n" description="Al actions"/>
</real n»
</ user >
</ user s>
</ ns:securityl nf o>

182

Introduction to Domains and Realms

Sample server configuration Consider, for example, the CORBA naming service in the Engi neeri ng iSF
authorization realm. To configure this naming service, edit the variables in
the i ona_servi ces. nani ng scope in the DomainName. cf g configuration
file. Set the authorization realm to Engi neeri ng and specify the location of
the action-role mapping file, as follows:

Obix configuration file
i ona_services {
nam ng {
pl ugi ns: gsp: aut hori zati on_real m = "Engi neeri ng";

pl ugi ns: i s2_aut hori zati on: acti on_rol e _nmappi ng =
"file:///security/eng_namng_arm xm";

Sample ACL file The eng_nam ng_ar m xm action-role mapping file, which specifies
permissions for the naming service in the Engi neeri ng domain, could be
defined as follows:

<?xm versi on="1.0" encodi ng="UTF- 8" 2>
<! DOCTYPE secur e- syst em SYSTEM
"actionrol emappi ng_wi th_i nterfaces. dtd">
<secur e- syst en»
<al | owunli sted-interfaces>true</allow unlisted-interfaces>
<acti on-r ol e- mappi ng>
<server - nane>i ona_ser vi ces. nam ng</ ser ver - name>
<i nterface>
<nane>| DL: ong. or g/ CosNam ng/ Nam ngCont ext : 1. 0</ name>
<action-rol e>
<acti on- name>* </ act i on- nane>
<r ol e- nanme>devel oper </ r ol e- narme>
</ action-rol e>
<action-rol e>
<act i on- name>r esol ve</ act i on- nane>
<acti on- name>l i st </ act i on- nane>
<r ol e- name>guest </ r ol e- nane>
</ action-rol e>
</interface>
</ acti on-rol e- mappi ng>
</ secur e- syst en>

183

CHAPTER 7 | Managing Users, Roles and Domains

Authorization process When user John attempts to invoke an operation on the CORBA naming
service in the Engi neer i ng domain, authorization proceeds as follows:

Stage Description

1 | The naming service contacts the Orbix security service remotely
to authenticate John's username and password.

2 | If authentication is successful, the Orbix security service returns
the complete list of realms and roles assigned to John. In the
current example, the following realms and roles would be
returned:

b Fi nance {account ant}
® | ONAQ obal Real m {guest}

3 | The naming service determines which roles are applicable to
John in the current iSF authorization realm. Because the
naming service belongs to the Engi neeri ng realm, only the
guest role from the | ONAQ obal Real mis applicable here.

4 | The naming service now checks the eng_nani ng_ar m xn
action-role mapping file and finds that only the resol ve and
I'i st actions are permitted on the CosNani ng: : Nam ngCont ext
IDL interface for the guest role.

On the other hand, if the user, John, attempts to call an
operation (or attribute) on any other naming service interface,
the call would be permitted, because the

<al | owunl i st ed-i nterfaces>option istrue in the action-role
mapping file.

Note: The special <al | owunli sted-interfaces>tagis a
useful shortcut, but you should use it carefully to avoid opening
a security hole.

184

Introduction to Domains and Realms

Domain and Realm Terminology

Overview

Comparison of terminology

J2EE security technology domain

The terms domain and realm appear in several security technology
specifications with different (and sometimes contradictory) meanings. This
subsection attempts to clarify some of the domain and realm terminology
and provides a comparison with the IONA Security Framework terms.

To clarify the terminology used by different technology specifications (all of
which are embraced by the iSF) Table 4 lists the generic iSF terms against
their technology-specific equivalents:

Table 4: Domain and Realm Terminology Comparison

Generic iSF Term Technology-Specific Equivalents

iSF security domain J2EE security technology domain
J2EE security policy domain (1)
J2EE realm (2)

JAAS authentication realm
CSIv2 authentication domain

HTTP login realm

iSF authorization realm J2EE security policy domain (1)
J2EE realm (2)

1. The term, J2EE security policy domain, appears in both rows because
it is a general term that embodies both an authentication domain and
an authorization domain.

2. J2EE realm means the same thing as J2EE security policy domain.

The J2EE specification defines a J2EE security technology domain as
follows:

The scope over which a single security mechanism is used to enforce a
security policy. Multiple security policy domains can exist within a single
technology domain.

185

CHAPTER 7 | Managing Users, Roles and Domains

J2EE security policy domain

J2EE realm

JAAS authentication realm

CSIv2 authentication domain

HTTP login realm

186

The J2EE specification defines a J2EE security policy domain as follows:

A realm, also called a security policy domain or security domain in the J2EE
specification, is a scope over which a common security policy is defined and
enforced by the security administrator of the security service

A J2EE realm is the same thing as J2EE security policy domain.

A Java Authentication and Authorization Service (JAAS) authentication
realm is a namespace for JAAS principals.

A CSIv2 authentication domain is a named domain in which CSlv2
authentication data (for example, username and password) is authenticated.

When a user logs on to a Web client through a standard HTTP login
mechanism (for example, HTTP basic authentication or HTTP form-based
authentication), the user is prompted for a username, password, and login
realm name. The login realm name, along with the user’s username and
password, is the sent to the Web server.

Managing a File Security Domain

Managing a File Security Domain

Overview

Location of file

Example

1
2
3

4

The file security domain is active if the Orbix security service has been
configured to use the iSF file adapter (see “Configuring the File Adapter” on
page 142). The main purpose of the iSF file adapter is to provide a
lightweight security domain for demonstration purposes. A realistic deployed
system, however, would use one of the other adapters (LDAP or custom)
instead.

WARNING: The file adapter is provided for demonstration purposes only.
IONA does not support the use of the file adapter in a production
environment.

The location of the security information file is specified by the
comiona.isp.adapter.file.param fil ename property in the Orbix security
service's i s2. properti es file.

Example 21 is an extract from a sample security information file that shows
you how to define users, realms, and roles in a file security domain.

Example 21: Sample Security Information File for an iSF File Domain
<?xm versi on="1.0" encodi ng="utf-8" ?>

<ns: securi tyl nfo xm ns: ns="ur n: ww+ xm bus- com si npl e-security">
<user s>
<user nanme="| ONAAdm n" passwor d="adm n"
description="Default |ONA adm n user">

<real m name="1 ONA" description="Al| |CNA applications"/>
</ user >
<user nare="adm n" password="adm n" description="ad admn
user; will not have the sane default privileges as
| ONAAdm n. ">

<r eal m nane=" Cor por at " >

<rol e name="Adninistrator"/>

</real n»
</ user >
<user nane="al i ce" password="dost 1234" >

187

CHAPTER 7 | Managing Users, Roles and Domains

188

Example 21: Sample Security Information File for an iSF File Domain

<r eal m nane="Fi nanci al s"
descri ption="Fi nanci al Departnent">
<rol e name="Manager" descri ption="Departnent Manager" />
<rol e name="d erk"/>
</real n»
</ user >
<user nane="bob" password="dost 1234" >
<r eal m nane="Fi nanci al s" >
<rol e name="d erk"/>
</real n
</ user >

</ user s>
</ ns:securityl nfo>

The <ns: securi t yl nf 0> tag can contain a nested <user s> tag.
The <user s> tag contains a sequence of <user > tags.

Each <user > tag defines a single user. The <user > tag's name and
password attributes specify the user's username and password. Within
the scope of the <user > tag, you can list the realms and roles with
which the user is associated.

When a <real n» tag appears within the scope of a <user > tag, it
implicitly defines a realm and specifies that the user belongs to this
realm. A <real m> must have a name and can optionally have a
descri pti on attribute.

A realm can optionally be associated with one or more roles by
including <r ol e> elements within the <r eal n» scope.

Certificate-based authentication
for the file adapter

Managing a File Security Domain

When performing certificate-based authentication, the file adapter compares
the certificate to be authenticated with a cached copy of the user's
certificate.

To configure the file adapter to support X.509 certificate-based
authentication, perform the following steps:

1.

Cache a copy of each user’s certificate, CertFile.pem, in a location that
is accessible to the file adapter.

Make the following type of entry for each user with a certificate:

Example 22: File Adapter Entry for Certificate-Based Authentication

<user name="CNfromSubjectDN" certificate="_CertFile. pemt
descri ption="User certificate">
<r eal m name="RealmName" >

<Ireal
</ user >
The user's name, CNfromSubjectDN, is derived from the certificate by
taking the Common Name (CN) from the subject DN of the X.509
certificate (for DN terminology, see “ASN.1 and Distinguished Names”

on page 629). The certi fi cat e attribute specifies the location of this
user's X.509 certificate, CertFile. pem

189

CHAPTER 7 | Managing Users, Roles and Domains

Managing an LDAP Security Domain

Overview

Configuring the LDAP adapter

Certificate-based authentication
for the LDAP adapter

190

The Lightweight Directory Access Protocol (LDAP) can serve as the basis of
a database that stores users, groups, and roles. There are many
implementations of LDAP and any of them can be integrated with the Orbix
security service by configuring the LDAP adapter.

Please consult documentation from your third-party LDAP implementation
for detailed instructions on how to administer users and roles within LDAP.

A prerequisite for using LDAP within the IONA Security Framework is that
the Orbix security service be configured to use the LDAP adapter.

See “Configuring the LDAP Adapter” on page 144.

When performing certificate-based authentication, the LDAP adapter
compares the certificate to be authenticated with a cached copy of the
user’s certificate.

To configure the LDAP adapter to support X.509 certificate-based

authentication, perform the following steps:

1. Cache a copy of each user's certificate, CertFile.pem, in a location that
is accessible to the LDAP adapter.

2. The user's name, CNfromSubjectDN, is derived from the certificate by
taking the Common Name (CN) from the subject DN of the X.509
certificate (for DN terminology, see “ASN.1 and Distinguished Names”
on page 629).

3. Make (or modify) an entry in your LDAP database with the username,
CNfromSubjectDN, and specify the location of the cached certificate.

In this chapter

CHAPTER 8

Managing
Access Control
Lists

The Orbix Security Framework defines access control lists
(ACLs) for mapping roles to resources. The ACLs are specific
to particular technology domains, such as CORBA, and thus
are not stored centrally in the Orbix security service.

This chapter discusses the following topics:

CORBA ACLs page 192

Centralized ACL page 198

191

CHAPTER 8 | Managing Access Control Lists

CORBA ACLs

Overview

In this section

192

This section discusses the ACL files that control access to IDL operations
and attributes in a CORBA server. The ACL files for CORBA servers provide
role-based access control with granularity down to the level of IDL
operations, and attributes.

This section contains the following subsections:

Overview of CORBA ACL Files page 193

CORBA Action-Role Mapping ACL page 194

CORBA ACLs

Overview of CORBA ACL Files

Action-role mapping file

GSP plug-in

The action-role mapping file is an XML file that specifies which user roles
have permission to perform specific actions on the server (that is, invoking
specific IDL operations and attributes).

The GSP plug-in is a component of the iSF that provides support for
action-role mapping. This plug-in must be loaded in order to use the
action-role mapping ACL file (see “Security Configuration” on page 485 for
details of how to configure the GSP plug-in).

193

CHAPTER 8 | Managing Access Control Lists

CORBA Action-Role Mapping ACL

Overview

File location

Example IDL

194

This subsection explains how to configure the action-role mapping ACL file
for CORBA applications. Using an action-role mapping file, you can specify
that access to IDL operations and attributes is restricted to specific roles.

In your Orbix configuration file, the

pl ugi ns: gsp: acti on_rol e_nappi ng_fi | e configuration variable specifies
the location URL of the action-role mapping file, acti on_r ol e_mappi ng. xm
for a CORBA server. For example:

Obix Configuration File

ny_server _scope {
pl ugi ns: gsp: action_rol e mapping_file =
“"file:///security adm n/action_rol e_mappi ng. xm ";

For example, consider how to set the operation and attribute permissions for
the IDL interface shown in Example 23.

Example 23: Sample IDL for CORBA ACL Example

/1 1D
nmodul e S npl e
{
interface Sinpl e ect
{
void call _ne();
attribute string foo;
I8

Example action-role mapping

N

oo b w

CORBA ACLs

Example 24 shows how you might configure an action-role mapping file for
the Si npl e: : Si npl e(j ect interface given in the preceding Example 23 on
page 194.

Example 24: CORBA Action-Role Mapping Example

<?xm versi on="1.0" encodi ng="UTF-8" 2>
<! DOCTYPE secur e- syst em SYSTEM
" InstallDirl et ¢/ domai ns/ Domain/ act i onr ol emappi ng. dt d" >
<secur e- syst en»
<al | ow unli sted-interfaces>fal se</al | owunlisted-interfaces>

<acti on-r ol e- mappi ng>
<server - nane>gsp_basi c_t est . server </ ser ver - nane>
<interface>
<nane>| DL: S npl e/ Si npl e(yj ect : 1. 0</ nane>
<action-rol e>
<act i on- name>cal | _me</ act i on- nane>
<r ol e- name>cor ba- devel oper </ r ol e- nane>
<r ol e- name>guest </ r ol e- nane>
</ action-rol e>
<action-rol e>
<acti on- name>_get _f oo</ acti on- name>
<r ol e- name>cor ba- devel oper </ r ol e- nane>
<r ol e- name>guest </ r ol e- nane>
</ action-rol e>
</interface>

</ action-rol e- mappi ng>
</ secur e- syst en»

The preceding action-role mapping example can be explained as follows:

1. If the directory containing the acti onr ol emappi ng. dt d file includes
spaces, the spaces should be replaced by %20 in the <! DOCTYPE> tag.
2. The <al l owunli st ed-int erfaces> tag specifies the default access
that applies to interfaces not explicitly listed in the action-role mapping
file. The tag contents can have the following values:
+ true—for any interfaces not listed, access is allowed for all roles.
If the remote user is unauthenticated (in the sense that no GSSUP
credentials are sent by the client), access is also allowed.

195

CHAPTER 8 | Managing Access Control Lists

196

. fal se—for any interfaces not listed, access is denied for all roles.
Unauthenticated users are also denied access. This is the default.

The <acti on-rol e- mappi ng> tag contains all of the permissions that
apply to a particular server application.

The <ser ver - nane> tag specifies the ORB name that is used by the
server in question. The value of this tag must match the ORB name
exactly.

Note: The ORB name also determines which configuration scopes
are read by the server. See the Administrator’s Guide for details.

The <i nt er f ace> tag contains all of the access permissions for one
particular IDL interface.

The <nane> tag identifies the IDL interface using the interface’s OMG
repository ID. The repository ID normally consists of the characters

I DL: followed by the fully scoped name of the interface (using /
instead of : : as the scoping character), followed by the characters
:1.0. Hence, the Sinpl e: : Si npl ebj ect IDL interface is identified by
the I DL: Si npl e/ Si npl eQyj ect : 1. 0 repository ID.

Note: The form of the repository ID can also be affected by various
#pragma directives appearing in the IDL file. A commonly used
directive is #pragma prefi x.

For example, the CosNami ng: : Nam ngCont ext interface in the naming
service module, which uses the ong. or g prefix, has the following
repository ID: | DL: ong. or g/ CosNani ng/ Nam ngCont ext : 1. 0

The cal | _ne action name corresponds to the cal | _ne() operation in
the Si npl e: : Si npl e(yj ect interface. The action name corresponds to
the GIOP on-the-wire form of the operation name (usually the same as
it appears in IDL).

The _get _f oo action name corresponds to the f oo attribute accessor.
In general, any read/write attribute, AttributeName, has the following
action names:

¢ _get_AttributeName—for the attribute accessor, and
¢+ _set_AttributeName—for the attribute modifier.

CORBA ACLs

In general, the accessor or modifier action names correspond to the
GIOP on-the-wire form of the attribute accessor or modifier.

Action-role mapping DTD The syntax of the action-role mapping file is defined by the action-role
mapping DTD. See “Action-Role Mapping DTD” on page 533 for details.

197

CHAPTER 8 | Managing Access Control Lists

Centralized ACL

Overview

In this section

198

By default, a secure Orbix application is configured to store its ACL file
locally. Hence, in a large deployment, ACL files might be scattered over
many hosts, which could prove to be a nuisance for administrators.

An alternative approach, as described in this section, is to configure your
secure applications to use a centralized ACL repository. This allows you to
administer all of the ACL data in one place, making it easier to update and
maintain.

This section contains the following subsections:

Local ACL Scenario page 199
Centralized ACL Scenario page 201
Customizing Access Control Locally page 207

Centralized ACL

Local ACL Scenario

Overview This section briefly describes the behavior of a secure server whose
operations are protected by a local ACL file (see, for example, “Target
configuration” on page 81 for details of such a configuration).

Local ACL scenario Figure 36 shows an outline of the local ACL scenario, where the ACL file is
stored on the same host as the target server. You configure the server to
load the ACL file from the local file system by setting the
pl ugi ns: gsp: acti on_rol e_mappi ng_fi | e variable in the target server's
configuration scope.

Target Host

ClientAccessDecision Access

object Control
Figure 36: Local ACL Scenario
Scenario description The local ACL scenario shown in Figure 36 can be described as follows:
Stage Description

1 | The client invokes an operation on the secure target server,
requiring an access decision to be made on the server side.

2 | The GSP plug-in calls a function on the internal
d i ent AccessDeci si on object to check whether the current
user has permission to invoke the current operation.

199

CHAPTER 8 | Managing Access Control Lists

200

Stage

Description

If this is the first access decision required by the target server,
the Ai ent AccessDeci si on object reads the contents of the
local ACL file (as specified by the

pl ugi ns: gsp: acti on_rol e_mappi ng_fil e variable) and stores
the ACL data in a cache.

For all subsequent access decisions, the
d i ent AccessDeci si on object reads the cached ACL data for
efficiency.

Centralized ACL

Centralized ACL Scenario

Overview From an administrative point of view, it is often more convenient to gather
ACL files onto a central host, rather than leaving them scattered on different
hosts. The centralized ACL feature enables you to create such a central
repository of ACL files. The ACL files are stored on the same host as the
Orbix security service, which serves up ACL data to remote Orbix servers on
request.

Centralized ACL scenario Figure 37 shows an outline of a centralized ACL scenario, where the ACL
files are stored on the same host as the Orbix security service.

Target Host

y
Security Service I‘i @
i
H ACL File Repository

“ ACL ACL ACL

User data store

Figure 37: Centralized ACL scenario

201

CHAPTER 8 | Managing Access Control Lists

Scenario description The centralized ACL scenario shown in Figure 37 can be described as
follows:
Stage Description

1 | The client invokes an operation on the secure target server,
requiring an access decision to be made on the server side.

2 | The GSP plug-in calls a function on the internal
d i ent AccessDeci si on object to check whether the current
user has permission to invoke the current operation.

3 | If this is the first access decision required by the target server,
the i ent AccessDeci si on object contacts the Orbix security
service to obtain the ACL data.

For all subsequent access decisions, the
d i ent AccessDeci si on object reads the cached ACL data for
efficiency.

4 | When the security service is requested to provide ACL data, it
selects the appropriate ACL file from its repository of ACL files.

By default, the Orbix security service selects the ACL file whose
ORB name (as specified in the <ser ver - name> tag) matches
that of the request.

5 | The security service returns the ACL data in the form of an XML
string, which is then cached by the A i ent AccessDeci si on
object.

Modify the Orbix configuration file To configure an application (such as the target server shown in Figure 37 on
page 201) to use a centralized ACL, you must modify its configuration scope
as shown in Example 25. In this example, it is assumed that the
application’s ORB name is ny_secure_apps. ny_two_tier_target.

Example 25: Configuration of a Second-Tier Target Server in the iSF
Obix Configuration File
Ceneral configuration at root scope.

ny_secure_apps {

202

Modify the is2.properties file

[

Centralized ACL

Example 25: Configuration of a Second-Tier Target Server in the iSF

ny_two_tier_target {

pl ugi ns: gsp: aut hori zati on_real m = "AuthzRealm";
pl ugi ns: gsp: action_rol e_mappi ng_fil e = "ActionRoleURL";
pl ugi ns: gsp: aut hori zati on_pol i cy_store_type =
"centralized";
pl ugi ns: gsp: aut hori zati on_pol i cy_enf or cement _poi nt =
"l ocal *;

}s
Ik

The preceding Orbix configuration can be described as follows:

1. The pl ugi ns: gsp: acti on_rol e_nmappi ng_fil e setting is ignored when
you have centralized ACL enabled. You can either comment out this
line, as shown here, or delete it.

2. Setting the pl ugi ns: gsp: aut hori zati on_pol i cy_st ore_t ype variable
to central i zed configures the application to retrieve its ACL data from
the Orbix security service (which is then stored in a local cache).

3. Setting the pl ugi ns: gsp: aut hori zati on_pol i cy_enf or cenent _poi nt
variable to I ocal specifies that the ACL logic is implemented locally (in
the target server). Currently, this is the only option that is supported.

To configure the Orbix security service to support centralized ACL, you
should edit its i s2. properties (normally located in the

OrbixInstallDirl et c/ domai ns/ DomainName directory) to add or modify the
following settings:

is2.properties File for the Obix Security Service

comiona.isp. aut hz. adapters=fil e

comiona.isp.authz. adapter.file.class=comiona.security.is2AzAda
pter.multifile. MiltiFileAzAdapter

comiona.isp. aut hz. adapter.file.paramfil elist=ACLFileListFile;

The ACLFileListFile is the name of a file (specified in the local file format)
which contains a list of the centrally stored ACL files.

203

CHAPTER 8 | Managing Access Control Lists

Create an ACL file list file

Selecting the ACL file

Selection by ORB name

204

The ACL file list file is a list of filenames, each line of which has the
following format:

[ACLKey=]ACLFileName

A file name can optionally be preceded by an ACL key and an equals sign,
ACLKey=, if you want to select the file by ACL key (see “Selection by ACL
key” on page 206). The ACL file, ACLFileName, is specified using an
absolute pathname in the local file format.

Note: On Windows, you should replace backslashes by forward slashes
in the pathname.

For example, on Windows you could specify a list of ACL files as follows:

U/ orbi x_security/etc/acl _files/server A xm
U/ orbi x_security/etc/acl _files/server B.xm
U /orbi x_security/etc/acl _files/server_C xm

When the Orbix security service responds to a request to provide ACL data,
it chooses an ACL file using one of the following selection criteria:

® Selection by ORB name.
® Selection by override value.
® Selection by ACL key.

The default selection criterion is selection by ORB name. The target
application includes its ORB name in the request it sends to the security
service. The security service then selects the data from the ACL file which
includes a <ser ver - name> tag with the specified ORB name.

Note: The security service reads and returns all of the data from the
selected ACL file. Even if the ACL file contains multiple <ser ver - name>
tags labelled by different ORB names, the data from the enclosing
<acti on-r ol e- mappi ng> tags with non-matching ORB names are also
returned.

Selection by override value

Centralized ACL

For example, if the application’s ORB name is
ny_secur e_apps. ny_two_ti er_tar get, the security service will select the
data from the ACL file containing the following <ser ver - nane> tag:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE secur e- syst em SYSTEM " DTDFileForOrbixACL" >
<secur e- syst en»
<acti on-r ol e- mappi ng>
<server - nane>ny_secure_apps. ny_two_ti er_t ar get </ ser ver - nane>

</ acti on-rol e- mappi ng>

</ secur e- syst en>

Alternatively, you can use selection by override value to override the value
of the ORB name sent to the Orbix security service. The override value must
be set in the Orbix configuration using the

pl ugi ns: gsp: acl _pol i cy_dat a_i d variable.

For example, suppose you want to select ACL data that has the ORB name,
ny_secure_apps.ny_two_tier_target.alt_acl. You would specify the
override value using the pl ugi ns: gsp: acl _pol i cy_dat a_i d variable as
follows:

Obix Configuration File
Add this line to the application’s configuration scope

pl ugi ns: gsp: acl _policy data id =
"ny_secure_apps.ny_two tier_target.alt_acl"”;

The security service would then select the data from the ACL file containing
the following <ser ver - nane> tag:
<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE secur e- syst em SYSTEM " DTDFileForOrbixACL" >
<secur e- syst enp
<acti on-r ol e- mappi ng>

<server - name>ny_secure_apps. ny_two_tier_target.alt_acl </ serve
r- name>

</ acti on-rol e- mappi ng>

</ secur e- syst en»

205

CHAPTER 8 | Managing Access Control Lists

Selection by ACL key

206

A more flexible system of selection is selection by ACL key. In this case, the
application specifies an ACL key in its Orbix configuration and the security
service matches this key to an entry in the ACL file list file.

For example, consider an application that defines an ACL key, bank_dat a, in
its configuration scope. You would specify the key using the
pl ugi ns: gsp: acl _pol i cy dat a_i d variable as follows:

Obix Configuration File

Add this line to the application's configuration scope
pl ugi ns: gsp: acl _policy data id = "acl key: bank_dat a";

The security service then selects the entry from the ACL file list labelled with
the bank_dat a key:

U /orbi x_security/etc/acl _fil es/server_A xm
U/ orbi x_security/etc/acl _fil es/server_B. xm
bank_dat a=U: / or bi x_security/etc/acl _files/server_C xn

Centralized ACL

Customizing Access Control Locally

Overview Orbix allows you to customize access control locally by implementing a
plug-in that overrides the implementation of the Qi ent AccessDeci si on
object. This gives you complete control over the access decision logic in an
Orbix application.

Note: Detailed instructions on how to implement a

d i ent AccessDeci si on plug-in are not provided here. Because this task
requires a detailed understanding of Orbix plug-ins, we recommend that
you contact IONA Professional Services for further assistance.

Custom ClientAccessDecision in Figure 38 shows an outline of an ACL scenario, where the default
an Orbix application d i ent AccessDeci si on object is replaced by a customized implementation.

Target Host

Custom

n
=
=1
_|

o

«Q

—» @

>

A

Custom ClientAccessDecision
object

ACL Repository

User data store

Figure 38: Custom ClientAccessDecision in an Orbix Application

207

http://www.iona.com/info/services/

CHAPTER 8 | Managing Access Control Lists

Scenario variants

208

Replacing the A i ent AccessDeci si on object with a customized
implementation effectively gives you complete control over the access
decision logic in an Orbix application. The system shown in Figure 38 can
be adapted to a variety of scenarios, as follows:

® Storing the ACL data locally, but using a customized file format.

® Customizing both the 4 i ent AccessDeci si on object and the

Server AccessDeci si on object to implement a centralized ACL with
custom features. In particular, this approach would enable you to store
and transmit ACL data in a custom format.

Retrieving ACL data from a custom server. In this case, you could have
a centralized ACL repository that bypasses the Orbix security service.

In this chapter

CHAPTER 9

Securing Orbix
Services

This chapter describes how to enable security in the context
of the Orbix Security Framework for the Orbix services.

This chapter discusses the following topics:

Introduction to Securing Services page 210
File-Based and CFR Domains page 211
Customizing a Secure Domain page 215
Default Access Control Lists page 227

209

CHAPTER 9 | Securing Orbix Services

Introduction to Securing Services

Overview In a secure system, all Orbix services should be capable of servicing secure
connections. A typical secure system includes an Orbix security service and
enables SSL/TLS on all of the Orbix services.

Configuring the Orbix services Before deploying the Orbix services in a live system, you must customize the
security configuration, replacing demonstration certificates by custom
certificates and so on. The procedure for securing Orbix services is similar to
the procedure for securing regular CORBA applications (see “Securing
CORBA Applications” on page 63).

Configuring the Orbix security The Orbix security service is a special case because, in addition to setting
service configuration variables in the Orbix configuration, you also need to perform
the following basic administration tasks:
® Edit the properties in the i s2. properti es file—see “Configuring the
Orbix Security Service” on page 141.
® Change the secure user data (usernames, passwords, and so on)
stored in the Orbix security service's user database—see “Managing
Users, Roles and Domains” on page 173.

Access control lists for Orbix Fine-grained access to the Orbix services is controlled by the access control

services lists (ACLs) in the Orbix action-role mapping files. Default ACLs are
generated automatically when you run it confi gure to create a secure
domain. See “Default Access Control Lists” on page 227 for a detailed
discussion of the default ACLs for the Orbix services.

210

File-Based and CFR Domains

File-Based and CFR Domains

Overview

File-based domain overview

This section provides an overview and comparison of a secure file-based
domain and a secure CFR domain. There are some significant differences

between the two types of domain. In particular, a secure CFR domain is

designed in such a way as to avoid creating a circular dependency between

the Orbix security service and the CFR service.

Figure 39 shows an overview of a secure file-based domain. In this
example, the Orbix security service runs on a host, S1, and the other core
Orbix services run on a different host, S2.

Host S1

Host S2

[Loca{or} [Node J {Naming
Daemon

Config

Domain.cfg

Host B

Host C

Domain.cfg

Server B1 -, -> Server B2
<
1
1
1
1
1

Config

Domain.cfg

,{ Client CZ}

[Cliem Cl}n

Config

Domain.cfg

Figure 39: Overview of a Secure File-Based Domain

211

CHAPTER 9 | Securing Orbix Services

Domain.cfg in a file-based domain

CFR domain overview

212

In a secure file-based domain, the Orbix configuration file, Domain. cf g,
contains all of the configuration data for the CORBA system. In particular,
the Domain. cf g file can contain security credentials for your applications
and the core Orbix services (for example, certificate locations and password
file locations).

When deploying a domain across multiple hosts (as, for example, in
Figure 39), it is advisable to customize the Domain. cf g file on each host.
Each copy of Domain. cf g should include security credentials only for the
applications running on that particular host.

WARNING: Any domain configuration files containing security-related
data must be stored securely by the operating system.

Figure 40 shows an overview of a secure CFR domain. In this example, the
Orbix security service runs on a host, S1, and the other core Orbix services
run on a different host, S2.

Host S1 Host S2

i Node Namin,
! Daemon 9
i
1
% A
P 3 | |
v i i H 1 i
Config 8 ACL Config | ___|_LConfig ea i
= 1
,,,,,,,,,,,,,,,,,,,, i

cfr-Domain.cfg CFR Data Domain.cfg secure-Domain.cfg

>
9
=]
@
1]
2]

Control
Host A Host B Host C
[Server Bl}f: :f{Server BZJ [Client C1 }f: 17{ Client CZ}

Config Config

Config

Domain.cfg Domain.cfg Domain.cfg

Figure 40: Overview of a Secure CFR Domain

Secure CFR domain files

Domain.cfg in a CFR domain

secure-Domain.cfg

File-Based and CFR Domains

A secure CFR domain uses the following different kinds of domain
configuration files:

® Domain.cfg in a CFR domain.
® secure-Domain.cfg.
® cfr-Domain.cfg.

In a secure CFR domain, the Domain. cf g file contains just enough

configuration information to bootstrap an application and enable it to

retrieve the rest of its configuration from the CFR service.The following kinds

of settings are contained in this file:

® Generic security settings—for example, basic settings for theiiop_tls
and gsp plug-ins.

® CFR handler plug-in settings—these settings tell the application to
retrieve its configuration from the CFR service.

® Credentials used by an internal ORB—the internal ORB settings
enable the Orbix management service to monitor the status of a server
application.

The secur e- Domain. cf g file is used only by the core Orbix services (except

the Orbix security service and the CFR service). It is generated only if the

CFR and the Orbix security service are both deployed. Hence, in Figure 40

on page 212, the secure-Domain. cf g file appears only on the host where

the Orbix services are deployed. The secur e- Domain. cf g contains the

following:

® All of the settings in Domain. cf g—the contents of the Domain. cf g are
included using an i ncl ude directive.

® Credentials for the core services—this includes credentials set by the
IIOP/TLS principal sponsor and the CSIv2 principal sponsor.

WARNING: The secure- Domain. cf g file contains sensitive data and
therefore it must be stored securely by the operating system.

213

CHAPTER 9 | Securing Orbix Services

cfr-Domain.cfg

CFR action-role mapping

214

The cfr-Domain. cf g file is used only by the Orbix security service and the
CFR service (see Figure 40 on page 212) and it contains the complete
configuration details for these two services. It is necessary to leave the
configuration of these two services entirely file-based in order to avoid
creating a circular dependency.

In a typical deployment, you need to customize the credentials for the Orbix
security service and the CFR service, which are set in cfr-Domain. cf g.

WARNING: The cfr-Domain. cf g file contains sensitive data and
therefore it must be stored securely by the operating system.

Like any of the other Orbix services, in a secure or semi-secure domain the
CFR has an associated action-role mapping file. It is usually necessary to
customize this action-role mapping in order to define which configuration
scopes are accessible to ordinary users and which configuration scopes are
reserved for the administrator.

For more details, see “Configuration Repository ACL" on page 228.

Customizing a Secure Domain

Customizing a Secure Domain

Overview

In this section

This section describes how to customize the configuration of secure domains
generated using the i t confi gure utility. When generating a domain, the

i t confi gur e utility allows you to choose between two different levels of
security:

® Secure—only secure connections are accepted.
® Semi-secure—both secure and insecure connections are accepted.

In the subsections that follow, the differences between a secure domain and
a semi-secure domain are described in detail.

The i t confi gur e utility also allows you to choose between a file-based
domain and a CFR-based domain. The examples in this section are all
based on a file domain. Similar comments apply, though, to the analogous
settings in a CFR domain.

WARNING: It is essential to customize a secure domain generated by the
i t confi gure utility. The secure domain created using it confi gur e is not
fully secure, because the X.509 certificates used by the domain are

demonstration certificates, which are identical for all installations of Orbix.

This section contains the following subsections:

Configuring a Typical Orbix Service page 216

Configuring the Security Service page 224

215

CHAPTER 9 | Securing Orbix Services

Configuring a Typical Orbix Service

Overview

Configuration settings for the
application ORB

216

This section describes how to configure a typical Orbix service—such as
naming, trading, events, and so on—running in a domain with an Orbix
security service. Details of the Orbix security service configuration are
discussed in the next subsection “Configuring the Security Service” on
page 224.

To configure a typical Orbix service, there are two groups of configuration
settings that are relevant:

Configuration settings for the application ORB—these settings
configure the behavior of Orbix at the application level.
Configuration settings for the internal ORB—these settings configure

an internal ORB that allows the server process to be monitored by the
Orbix management service.

Example 26 shows the configuration settings for a typical Orbix service (not
the security service itself). These settings configure the application ORB—

that is, these settings determine the ordinary runtime behavior of the
service.

Example 26: Typical Service Configuration for the Application ORB
Obix Configuration File

Ceneral configuration at root scope.
bi ndi ng: client_binding_list = ["Q CP+EGM G,
"QOIS+TLS Col oc+PQA (ol oc", "TLS Col oc+PQA Col oc",
" OTS+PQA Col oc", "PQA Col oc", "d CP+SHM CP',
"CSl +OrS+@ CP+l | CP_TLS', "Ors+@ CP+l | CP_TLS",
"CSl +3 CP+l | OP_TLS', "d CP+l | CP_TLS', "CSl+OTS+@ CP+l | OP',
"OrS+@ CP+l 1 CP', "CSI+@ CP+HI I CP', "A CP+l I OP'];

pol i ci es: mechani sm pol i cy: protocol _version = "SSL_V3";
pol i ci es: mechani sm pol i cy: ci phersuites =
["RSA WTH RC4 128 SHA', "RSA WTH RC4 128 MX%"];

policies:trusted ca list_policy =
"/vob/art/etc/tls/x509/trusted ca_lists/ca_listl. pent;

Customizing a Secure Domain

Example 26: Typical Service Configuration for the Application ORB

i ona_servi ces

{

(&,]

10

11

12

Common SSL/TLS security settings.

pri nci pal _sponsor: use_princi pal _sponsor = "true";

princi pal _sponsor: auth_nethod_id = "pkcs12_file";

princi pal _sponsor: aut h_net hod_data =

["fil ename=/vob/art/etc/tls/x509/certs/services/adm ni strat or
. p12",

"password_fil e=/vob/art/etc/tls/x509/certs/services/adm nistr
ator. pwf"];

policies:target_secure_invocation_policy:requires =
["Confidentiality", "DetectMsordering", "DetectReplay",
"Integrity"];

polici es:target _secure_invocation_policy: supports =
["Confidentiality", "EstablishTrustlnTarget",

"Establ i shTrustInQient", "DetectMsordering",

"Det ect Repl ay", "Integrity"];

policies:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustlnTarget",
"Det ect M sordering", "DetectReplay", "Integrity"];
policies:client_secure_invocation_policy:supports =
["Confidentiality", "EstablishTrustlnQient",
"Establ i shTrust | nTarget", "DetectM sordering",
"Det ect Repl ay", "Integrity"];

bi ndi ng: server_bi nding_|list = ["CSI +GSP+OrSs*, "CS| +GSP',
"Csl +0rs', "Csl"];

Service {
Service-specific security configuration.

orb _plugins = ["local | og_strean’, "iiop_profile",

"giop", "iiop_tls", "ots", "gsp"];
pl ugi ns: Service:iiop_tls:port = "0";
pl ugi ns: Service:iiop_tls:host = "ServiceHost";

Configuration of CSI and GSP pl ug-ins.

policies:csi:auth_over_transport:target_requires =
"EstablishTrustInQient";

policies:csi:auth_over_transport:target supports
"EstablishTrustInQient";

217

CHAPTER 9 | Securing Orbix Services

218

13

14

15

Example 26: Typical Service Configuration for the Application ORB

Ik

pol i ci es:csi:auth_over_transport: server_domai n_nane =
"1 ONAY

pol i cies: csi:auth_over_transport:client_supports =
"EstablishTrustIndient";

princi pal _sponsor: csi: use_pri nci pal _sponsor = "true";
princi pal _sponsor: csi:auth_met hod_id = " GSSUPMech";
princi pal _sponsor: csi: aut h_nmet hod_data =

[" user name=l ONASer vi ceAdm n", "passwor d=servi ce",

"domai n=l ONA"] ;

pl ugi ns: gsp: acti on_rol e_mappi ng_file =
"file:///vob/art/etc/donains/fil edomai n-secure-is2-tls/allow_

al | _authenticated clients_action_rol e_nappi ng. xm";

pl ugi ns: gsp: aut hori zati on_real m= "1 ONAQ obal Real nt';

The preceding service configuration can be explained as follows:

1.

Make sure that the bi ndi ng: cl i ent _bi ndi ng_I i st variable includes
bindings with the 11 GP_TLS and CSI interceptors. You can use the
value of the bi ndi ng: cl i ent _bi ndi ng_l i st shown here.

The SSL/TLS mechanism policy specifies the default security protocol
version and the available cipher suites—see “Specifying Cipher Suites”
on page 343.

An SSL/TLS application needs a list of trusted CA certificates, which it
uses to determine whether or not to trust certificates received from
other SSL/TLS applications. You should edit the
policies:trusted_ca list_policy variable to point at a list of trusted
certificate authority (CA) certificates. See “Specifying Trusted CA
Certificates” on page 361.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the policies:trusted_ca_list_policy variable is ignored.
Within Schannel, the trusted root CA certificates are obtained from
the Windows certificate store.

Customizing a Secure Domain

The Orbix services all require an X.509 certificate. Hence, this line
enables the SSL/TLS principal sponsor, which specifies a certificate for
the application.

This line specifies that the X.509 certificate is contained in a
PKCS#12 file. For alternative methods, see “Specifying an
Application’s Own Certificate” on page 363.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), the pri nci pal _sponsor : aut h_net hod_i d value must be
security | abel instead of pkcs12 file.

Replace the X.509 certificate, by editing the fi | enane option in the
princi pal _sponsor : aut h_net hod_dat a configuration variable to point
at a custom X.5009 certificate. The fi | enane value should be initialized
with the location of a certificate file in PKCS#12 format—see
“Specifying an Application’s Own Certificate” on page 363 for more
details.

Note: If using Schannel as the underlying SSL/TLS toolkit (Windows
only), you would set the | abel option instead of the fi | enane option
in the pri nci pal _sponsor : aut h_net hod_dat a configuration variable.
The | abel specifies the common name (CN) from the application
certificate’s subject DN.

The following two lines set the required options and the supported
options for the target secure invocation policy. In this example, which
is a secure domain, the target policies specify that the application will
accept secure connections only.

Alternatively, in a semi-secure domain the target secure invocation
policy would be set as follows:

pol i ci es: target _secure_invocati on_pol i cy: requires
["NoProtection"];

policies:target _secure_invocation_policy:supports =
["NoProtection", "Confidentiality",
"Establi shTrust|nTarget", "EstablishTrustindient",
"Det ect M sordering", "DetectReplay", "Integrity"];

219

CHAPTER 9 | Securing Orbix Services

220

10.

11.

12.

The following two lines set the required options and the supported
options for the client secure invocation policy. In this example, which
is a secure domain, the client policies require the connection to open
secure connections only.

Alternatively, in a semi-secure domain the client secure invocation
policy would be set as follows:

policies:client_secure_invocation_policy:requires
["NoProtection"];

policies:client_secure_invocation_policy: supports
["NoProtection", "Confidentiality",
"EstablishTrustlnTarget", "EstablishTrustindient",
"Detect M sordering", "DetectReplay", "Integrity"];

Make sure that the bi ndi ng: server _bi ndi ng_I i st variable includes
bindings with the CSI and GSP interceptors. You can use the value of
the bi ndi ng: server_bi ndi ng_l i st shown here.

Make sure that the orb_pl ugi ns variable in this configuration scope
includes both the iiop_tIs plug-in and the gsp plug-in.

Note: For fully secure applications, you should exc/ude theii op
plug-in (insecure 110P) from the ORB plug-ins list. This renders the
application incapable of making insecure 1IOP connections.

For semi-secure applications, however, you should inc/ude the i i op
plug-in before the i i op_tls plug-in in the ORB plug-ins list.

The [IOP/TLS IP port is set to 0 in this example, because the node
daemon is responsible for allocating the port dynamically (on demand
activation). Services that are not activated on demand (for example,
the locator) will be allocated a specific IP port.

In this example (secure domain), the CSI policies are set up in such a
way that clients are required to provide a username and password to
log on to the service.

Alternatively, in a semi-secure domain the

pol i ci es: csi:auth_over_transport:target requires variable is set

13.

14.

Customizing a Secure Domain

to an empty string, "", implying that clients are not required to provide
a username and password to the service. For example:

pol i ci es: csi:auth_over_transport:server_domai n_nane =
"1 ONAY;

policies:csi:auth_over_transport:target_supports
"EstablishTrustIndient";

pol i ci es: csi:auth_over transport:target requires

policies:csi:auth_over_transport:client_supports
"EstablishTrustindient";

The CSI principal sponsor sets a username, a password and a domain,
which the server uses when acting in a client role to connect to other
applications. The pri nci pal _sponsor: csi : aut h_net hod_dat a variable
is set as follows:

. username—-has the value | ONASer vi ceAdmi n. When using the
default ACLs (see “Default Access Control Lists” on page 227),
the | ONASer vi ceAdni n user enjoys unrestricted access to all of the
core Orbix services.

. password—in this example, the CSI password is provided directly
in the configuration file. For alternative ways of specifying the CSI
password, see “Providing a Username and Password” on
page 420.

. domain—nhas the value | ONA. The CSI authentication domain
must match the target server's domain name, as specified by the
pol i ci es: csi:auth_over_transport: server_domai n_nane
configuration variable, or could be an empty string (acts as a
wildcard).

The act i on_rol e_mappi ng configuration variable specifies the location
of an action-role mapping that controls access to the IDL interfaces
implemented by the server. The file location is specified in an URL
format, for example:

file:///security admn/action_rol e _mapping. xmi (UNIX) or
file:///c:/security_adm n/action_rol e_mappi ng. xm (Windows).

For more details about the action-role mapping file, see “CORBA
Action-Role Mapping ACL” on page 194.

221

CHAPTER 9 | Securing Orbix Services

15. This configuration setting specifies the iSF authorization realm,
AuthzRealm, to which this server belongs (the default is
| ONAG obal Real m. For more details about iSF authorization realms,
see “iSF Authorization Realms” on page 177.

Configuration settings for the Example 27 shows the configuration settings for the internal ORB. These

internal ORB settings enable the management service to monitor the Orbix services. All of
the settings for the internal ORB are intended to configure the server end of
a connection. The internal ORB does not open any connections to other
processes.

Example 27: Typical Service Configuration for the Internal ORB
Obix Configuration File

| T_PQAI nt er nal CRB

{
pri nci pal _sponsor: use_pri nci pal _sponsor = "true";
princi pal _sponsor:auth_nethod_id = "pkcsl2 file";
1 princi pal _sponsor: aut h_net hod_data =

" 0§ SERVI CES_AUTH_METHCD DATA}";

policies:target_secure_invocation_policy:requires =
["Confidentiality", "DetectM sordering", "DetectReplay",
"Integrity"];
policies:target_secure_invocation_policy: supports
["Confidentiality", "EstablishTrustlnTarget",
"EstablishTrustIndient", "DetectM sordering",

"Det ect Repl ay", "Integrity"];

pol i cies:client_secure_invocation_policy:requires
["Confidentiality", "EstablishTrustlnTarget",
"Det ect M sordering", "DetectReplay", "Integrity"];
pol i ci es: client_secure_invocation_policy: supports
["Confidentiality", "EstablishTrustindient",
"EstablishTrust|nTarget", "DetectM sordering",
"Det ect Repl ay", "Integrity"];

bi ndi ng: server_bi nding_list = ["CSI +GSP+OrSs*, "CSl +GsP',
"Csl +ors', "Csl"];

pol i cies:csi:auth over transport:target requires =
"EstablishTrustIndient";

222

Customizing a Secure Domain

Example 27: Typical Service Configuration for the Internal ORB
pol i ci es: csi:auth_over_transport:target supports =

"EstablishTrustInQient";
pol i ci es: csi :aut h_over_transport: server_donai n_name =

"1 ONAY;
i ona_servi ces
{ .
Service
{
orb_plugins = ["local | og_streant, "iiop_profile",
"giop", "iiop_tls", "ots", "gsp"];

plugins:local _|og streamfilenane =
"/vob/art/var/fil edonai n-secure-is2-tls/logs/|T_PQA nternal CR

Bifr.log";

pl ugi ns: gsp: acti on_rol e_mappi ng_file =
"file:///vob/art/etc/donains/fil edomai n-secure-is2-tls/allow_
all _authenticated clients_action_rol e _mappi ng. xm";

h
IE
ik
The preceding internal ORB configuration can be explained as follows:

1. The internal ORB’s principal sponsor should be configured with an
X.5009 certificate suitable for a secure Orbix service.

Note: Instead of using the principal sponsor here, you could set the
pl ugi ns: security: share_credential s_across_orbs configuration
variable instead. See “Security Configuration” on page 485.

2. Make sure that the orb_pl ugi ns variable in this configuration scope
includes both the iiop_tls plug-in and the gsp plug-in.

3. The internal ORB uses the
allow all _authenticated clients_action_rol e mappi ng. xm file for

access control. This configuration gives unrestricted access to all
authenticated clients.

223

CHAPTER 9 | Securing Orbix Services

Configuring the Security Service

Overview This section describes how to configure the Orbix security service. This
service is configured somewhat differently from the others. For example,
because the gsp plug-in contacts the security service to perform
authentication, the gsp plug-in must be exc/uded from the security service’s
own or b_pl ugi ns list in order to avoid a circular dependency.

Configuration settings for Example 28 shows the configuration settings for the Orbix security service.
application ORB These settings configure the application ORB—that is, these settings
determine the ordinary runtime behavior of the service.

Example 28: Security Service Configuration for the Application ORB
Obix Configuration File
1 # CGeneral configuration at root scope.

2 initial _references:|T SecurityService:reference = "I R

i ona_services {

3 # Common SSL/TLS security settings.
security
{
iS2Host {
4 plugi ns: security:iiop_tls:port = "53112";
pl ugi ns: security:iiop_tls:host = "iS2Host";
5 orb _plugins = ["local | og_streant, "iiop_profile",

"giop", "iiop_tls"];

policies:iiop_tls:target_secure_invocation_policy:requires =
[“Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustindient"];

224

Customizing a Secure Domain

Example 28: Security Service Configuration for the Application ORB

Ik

policies:iiop_tls:target_secure_invocation_policy:supports =
["Integrity", "Confidentiality", "DetectReplay",

"Detect M sordering", "EstablishTrustlnTarget",

"Establ i shTrustInQient"];

server

{

orb_plugins = ["local _| og_streant, "iiop_profile",

"giop", "iiop_tls", "it_servlet bindi ng_manager",
"it_deployer", "it_servlet_context", "it_http_sessions",
"it_servliet filters", "http", "https", "it_servlet_di spatch",
"it_exception_mappi ng", "it_nam ng_context",
"it_web_security", "it_web_app_activator",
"it_default_servlet_binding", "it_character_encodi ng",
"it_locale", "it_classl oader_mappi ng"];

iE

b

The preceding security service configuration can be explained as follows:

1.

The security service’s root configuration settings are the same as in
Example 26 on page 216.

The I T_Securi tyServi ce initial reference specifies the IOR that
CORBA applications use to talk to the security service.

The common configuration settings (in the i ona_ser vi ces scope) are
the same as in Example 26 on page 216.

The pl ugi ns: security:iiop_tls:port variable specifies the IP port
where the security service listens for secure connections.

Note: If you want to change the security service’s listening port, you
would also have to update the IOR in the

initial _references: T _SecurityService:reference setting. You
could regenerate the IOR by re-running the i t confi gur e utility.

225

CHAPTER 9 | Securing Orbix Services

226

This or b_pl ugi ns setting is required here for technical reasons.
Specifically, the Orbix security service is bootstrapped in two stages, as
follows:

i. In the first stage, the generic server (implemented in C++)
instantiates an ORB with the i ona_servi ces. securi ty. iS2Host
configuration scope, loading a minimal set of ORB plug-ins (this
orb_pl ugi ns setting).

ii. Inthe second stage, the generic server spawns a Java process,
which instantiates an ORB with the
i ona_servi ces. security. iS2Host. server configuration scope,
loading the full set of ORB plug-ins.

The 1IOP/TLS target secure invocation policy requires a strong quality

of protection for incoming connections.

Make sure that the or b_pl ugi ns variable in this configuration scope

includes theiiop_tls plug-in.

Note: For fully secure applications, you should exc/ude theii op
plug-in (insecure 110P) and the ht t p plug-in (insecure HTTP) from the
ORB plug-ins list. This renders the application incapable of making
insecure [IOP connections and insecure HTTP connections.

For semi-secure applications, however, you should inc/ude the i i op
plug-in before the iiop_tls plug-in in the ORB plug-ins list.

Default Access Control Lists

Default Access Control Lists

Overview When you use the i t confi gure utility to generate a secure domain,
SecureDomain, a collection of default action-role mapping files are
generated in the et ¢/ domai ns/ SecureDomain directory. Each of the core
Orbix services, Service, is associated with an action-role mapping file as
follows:

® Service_action_rol e_mappi ng. xm —for a secure domain.
® Service_sem _secure_action_rol e_mappi ng. xm —for a semi-secure
domain.

Two basic levels of access are defined in these ACLs: | ONAUser Rol e for
ordinary users; and | ONASer vi ceRol e for administrators.

Note: It is recommended that you check whether the default ACLs
provide the level of security you need before deploying the core Orbix
services in a real system.

In this section This section contains the following subsections:
Configuration Repository ACL page 228
Locator ACL page 233
Node Daemon ACL page 235
Naming Service ACL page 237
Trader Service ACL page 238
Event Service ACL page 241
Notification Service ACL page 245
Basic Log Service ACL page 253
Event Log Service ACL page 255
Notify Log Service ACL page 258

227

CHAPTER 9 | Securing Orbix Services

Configuration Repository ACL

Overview The configuration repository (CFR) ACL is a special case, because it requires

access control of parameter values in the IDL operations. To enable
parameter-based access control, the CFR includes a special subsystem, a
request to action mapper, which is responsible for parsing the operation

parameters. In the CFR, the following kinds of parameter can be subjected
to access control:

® Configuration scopes.

® Namespaces.

Note: It is recommended that you check whether the default

configuration repository ACL provides the level of security you need before
deploying it in a real system.

Configuration scopes Similarly to a file domain, the CFR uses a configuration scope to group

together related configuration settings. Configuration scopes can be nested
as shown in the following example:

Obix Configuration File

denos {
tls {
secure_client_with_cert {
IE
IE
IH

To reference a nested configuration scope, the period character (.) is used
as a delimiter. For example, denos. t1s. secure_client_with cert refers to
the innermost configuration scope of the preceding example.

228

Default Access Control Lists

Namespaces The CFR uses namespaces to represent compound variable names. For
example, the princi pal _sponsor : csi : aut h_met hod_i d variable name is
built up as follows:
princi pal _sponsor Namespace.
princi pal _sponsor: csi Namespace.

princi pal _sponsor:csi:auth nethod_id Variable name.

To represent compound names composed of namespaces, the colon
character (:) is used as a delimiter.

IT_CFR module The I T_CFR module defines some of the CFR'’s remotely accessible
interfaces and operations (the CFR also implements the IDL modules
defined in cfr_replication.idl). The IDL for the | T_CFR module is
available in the following file:

OrbixInstallDirl aspl/ Version/ i dl / or bi x_pdk/ cfr.idl

For example, the i t admi n utility calls operations from the | T_CFR module in
order to read from and update the configuration repository. Example 29
shows an overview of the interfaces defined in the | T_CFR module.

Example 29: The IT_CFR Module
/1 1DL

modul e | T_CFR {

interface ConfigScope { ... };
interface Nanespace { ... };
interface GonfigRepository { ... };
interface Listener { ... };
interface ListenerRegistration { ... };
IH
CompoundName type The | T_CFR : ConpoundNane type is defined as follows:
/1 1DL

modul e I T_CFR {
typedef sequence<string> ConpoundNare;
b

229

CHAPTER 9 | Securing Orbix Services

Parameter-based access control

230

The ConpoundNane type represents configuration scopes and namespaces as
follows:
® (Configuration scope—is converted into a ConpoundNare by recognizing
the period character (.) as a delimiter. For example, the
denos. tls.secure_client_with_cert scope is converted to the
following sequence of strings: denws, tl's, secure_client_with_cert.
® Namespace—is converted into a ConpoundNane by recognizing the
colon character (:) as a delimiter. For example, the
princi pal _sponsor: csi : aut h_net hod_i d variable name is converted
to the following sequence of strings: pri nci pal _sponsor, csi ,
aut h_met hod_i d.

In order to provide a meaningful level of access control for the CFR, it is
necessary to control access at the level of operation parameters;
operation-based access control would not be sufficient.

For example, consider the following dest r oy_subscope() operation from the
| T_CFR module:

/1 1DL
modul e I T_CFR {
i nterface ConfigScope

{
Conf i gScope destroy_subscope(
i n ConpoundNane narme
) raises (CFRException);
IE

Ik

Ordinary users should not have permission to destroy critical configuration
scopes such as i ona_ser vi ces (which holds the configuration settings for
the core Orbix services). But ordinary users do need full access to at least
one scope, for example denws, in order to configure their own applications.
Parameter-based access control enables you to control access based on the
value of the nane parameter in the preceding operation.

Default Access Control Lists

To control access based on the dest roy_scope() operation’s nane
parameter, you could use the following fragment in an action-role mapping
file:

<i nterface>
<nane>| DL: i ona. conml | T_CFR/ Conf i gScope: 1. 0</ nane>

<action-rol e>
<act i on- nane>dest r oy_subscope</ act i on- nane>
<par aret er - cont r ol >
<par anet er name="nane" val ue="denos. *"/>
<r ol e- name>l ONAUser Rol e</ r ol e- narme>
</ par anet er - cont r ol >

<r ol e- nane>l ONASer vi ceRol e</ r ol e- nane>
</ action-rol e>
</interface>

This ensures that ordinary users (represented by | ONAUser Rol e) can only
destroy the denos scope and its subscopes.

ACL for configuration scope Example 30, which is extracted from the default
operations cfr_action_rol e_mappi ng. xm file, shows how access control is configured
for the | T_CFR : Confi gScope interface.

Example 30: ACL for the IT_CFR::ConfigScope Interface

<interface>
<nane>| DL: i ona. coml | T_CFR/ Conf i gScope: 1. 0</ nane>
<action-rol e>
<act i on- name>*get *</ act i on- nane>
<r ol e- name>l ONAUser Rol e</ r ol e- narme>
</ action-rol e>
<action-rol e>
<act i on- name>scope_| ookup</ act i on- nanme>
<r ol e- name>l ONAUser Rol e</ r ol e- narme>
</ action-rol e>
<action-rol e>
<acti on- name>cr eat e_subscope</ act i on- nane>
<par anet er - contr ol >
<par armet er nane="name"
val ue="_it_cfr_root_scope.*"/>
<r ol e- name>| ONAUser Rol e</ r ol e- nane>
</ par anet er - cont rol >
<par anet er - contr ol >

231

CHAPTER 9 | Securing Orbix Services

Example 30: ACL for the IT_CFR::ConfigScope Interface

<par anet er name="nane" val ue="denos. *"/>
<r ol e- nane>l ONAUser Rol e</ r ol e- name>
</ par anet er - cont r ol >
<par arret er - cont r ol >
<par armet er name="name" val ue="mul ti cast _deno. *"/>
<r ol e- nane>l ONAUser Rol e</ r ol e- name>
</ par anet er-control >
<r ol e- nane>l ONASer vi ceRol e</ r ol e- nane>
</ action-rol e>
<action-rol e>
<act i on- nane>dest r oy_subscope</ act i on- nane>
<par aret er - cont r ol >
<par anet er nanme="nane" val ue="denos. *"/>
<r ol e- nane>l ONAUser Rol e</ r ol e- name>
</ par anet er - cont r ol >
<par arret er - cont r ol >
<par armet er name="name" val ue="mul ti cast _deno. *"/>
<r ol e- nane>l ONAUser Rol e</ r ol e- name>
</ par anet er-control >
<r ol e- nane>l ONASer vi ceRol e</ r ol e- nane>
</ action-rol e>
<action-rol e>
<act i on- name>* </ act i on- name>
<r ol e- nane>l ONASer vi ceRol e</ r ol e- nane>
</action-rol e>
</interface>

232

Default Access Control Lists

Locator ACL

Overview

IONAServiceRole

IONAUserRole and
UnauthenticatedUserRole

This subsection describes which interfaces and operations are accessible
through the default locator ACL. The following alternative ACL files are
generated by i t confi gur e for the locator service:

® |ocator_action_rol e_mappi ng. xm (secure domain).

® |ocator_senm _secure_action_rol e_nappi ng. xm (semi-secure
domain).
Note: It is recommended that you check whether the default locator ACL

provides the level of security you need before deploying it in a real system.

The | ONASer vi ceRol e can access all interfaces and operations in both
secure and semi-secure domains.

The | ONAUser Rol e can access the locator interfaces and operations shown
in Table 5 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
Unaut hent i cat edUser Rol e in the action-role mapping file) can access the
interfaces and operations shown in Table 5 in semi-secure domains only.

Table 5: Locator Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole
IDL Interface IONAUserRole UnauthenticatedUserRole
Accessible Operations Accessible Operations
(Secure and semi-secure) (Semi-secure only)

I T_Locati on: : Locat or All All

I T_I MRADm n: : Process All All

| T_I MRAdmi n: : ProcessRegi stry All All

| T_I MRAdmi n: : Process All All

I T_I MRADm n: : CRBRegi stry All All

233

CHAPTER 9 | Securing Orbix Services

Table 5:

Locator Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations
(Semi-secure only)

| T_I MRAi n: : ORB All All
| T_NamedKey: : NanedKeyRegi stry All All
| T_PQAI MRAdNi n: : PQA All All
| T_PQAI MRAdNI n: : POARegi stry All All
I T_Locat or Admi n: : Acti veCRBRegi stry All All
I T_Locat or Adnmi n: : Act i vePr ocessRegi stry All All
| T_PQALocat or Adni n: : Act i vePQARegi stry All All
| T_PQAI MRAdNI n: : Act i vePQA All All
| T_PQAI MRAdNI n: : PQAACt | veCRB All All
| T_PQAI MRAdNI n: : CachedPQA All All
| T_PQAI MRAdNI n: : POA All All
| T_PQAI MRAdNi n: : POACache All All
I T_NodeDaenon: : NodeDaenonRegi stry All All
I T_NodeDaenon: : NodeDaenon None None
| T_NodeDaenon: : Dynani cSt at eRegi stry None None
I T_Server Locat i on: : Server Val i dat or None None
I T_Server Locat i on: : Endpoi nt Cache None None
I T _Locat or Adni n: : Act i vePr ocess None None

234

Default Access Control Lists

Node Daemon ACL

Overview

IONAServiceRole

IONAUserRole and
UnauthenticatedUserRole

This subsection describes which interfaces and operations are accessible
through the default node daemon ACL. The following alternative ACL files
are generated by it confi gur e for the node daemon service:

® node_daenon_action_rol e_nappi ng. xn (secure domain).

® node_daenon_seni _secure_action_rol e_mappi ng. xm (semi-secure

domain).

Note: It is recommended that you check whether the default node
daemon ACL provides the level of security you need before deploying it in a
real system.

The | ONASer vi ceRol e can access all interfaces and operations in both
secure and semi-secure domains.

The | ONAUser Rol e can access the node daemon interfaces and operations
shown in Table 6 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
Unaut hent i cat edUser Rol e in the action-role mapping file) can access the
interfaces and operations shown in Table 6 in semi-secure domains only.

Table 6: Node Daemon Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations
(Semi-secure only)

| T_NodeDaenon: : NodeDaenon

shut down
shut down_conpl et e
regi st er_process

shut down
shut down_conpl et e
regi st er_process

| T_NodeDaenon: : CRBSt at eRegi stry None None
| T_NodeDaenon: : Endpoi nt Regi stry None None
I T_NodeDaenon: : ProcessRegi stry None None

235

CHAPTER 9 | Securing Orbix Services

Table 6: Node Daemon Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole UnauthenticatedUserRole
Accessible Operations Accessible Operations
(Secure and semi-secure) (Semi-secure only)
| T_NodeDaenon: : Dynani cSt at eRegi stry All All

236

Default Access Control Lists

Naming Service ACL

Overview

IONAServiceRole

IONAUserRole and
UnauthenticatedUserRole

This subsection describes which interfaces and operations are accessible

through the default naming service ACL. The following alternative ACL files

are generated by i t confi gur e for the naming service:

® namng_action_rol e_mappi ng. xm (secure domain).

® namng_seni_secure_action_rol e_mappi ng. xm (semi-secure
domain).

Note: It is recommended that you check whether the default naming ACL
provides the level of security you need before deploying it in a real system.

The | ONASer vi ceRol e can access all interfaces and operations in both
secure and semi-secure domains.

The | ONAUser Rol e can access the naming service interfaces and operations
shown in Table 7 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
Unaut hent i cat edUser Rol e in the action-role mapping file) can access the
interfaces and operations shown in Table 7 in semi-secure domains only.

Table 7: Naming Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole
IDL Interface IONAUserRole UnauthenticatedUserRole
Accessible Operations Accessible Operations
(Secure and semi-secure) (Semi-secure only)

I T_Nami ng: : | T_Nani ngCont ext Ext All All

I T_Nam ngRepl i cation: : | T_Mast er Nam ngAd | shut down shut down

mn

| T_Nam ngAdni n: : Nam ngAdm n shut down shut down

CosNani ng: : Nani ngCont ext Ext None None

CosNani ng: : Bi ndi ngl t er at or All All

237

CHAPTER 9 | Securing Orbix Services

Trader Service ACL

Overview

Secure domain

238

The default action-role mappings for the trader service are designed to
protect the service by differentiating between non-intrusive operations (for
example, read operations) and intrusive operations that might threaten the
integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

® Secure domain—both intrusive and non-intrusive access to the trader
service is restricted to authenticated applications only.

® Semi-secure domain—non-intrusive access to the trader service is
available to both authenticated and unauthenticated applications.
Intrusive access is limited to authenticated applications only.

Note: It is recommended that you check whether the default trader ACL
provides the level of security you need before deploying it in a real system.

In a secure domain, the trader’s action-role mapping file is:
et ¢/ DomainName/ t r ader _acti on_r ol e_mappi ng. xm

Only authorized applications can add service types and service offers. This
ensures that unauthorized peers will not be able to add to the repository
references to malicious applications designed to mimic the behavior and
appearance of expected service offers.

Applications that need to obtain references to existing service offers must
also be authenticated. This prevents unauthorized client applications from
looking up services they are not allowed to use.

Note: This precaution alone is not sufficient to protect server applications
from unauthorized access, because querying the trader service is not the
only way to obtain references to server applications. Sensitive applications
must incorporate their own security mechanisms, or be protected by the
security service as well.

Access to administrative operation that could endanger the integrity of the
database if accessed by unauthorized parties is restricted to roles normally
used by administrators (that is, | ONASer vi ceRol e and | ONAAdNi nRol e).

Semi-secure domain

IONAServiceRole

IONAUserRole and
UnauthenticatedUserRole

Default Access Control Lists

In a semi-secure domain, the trader’s action-role mapping file is:
et ¢/ DomainName/ t rader _seni _secure_acti on_rol e_nappi ng. xm
This mapping relaxes the settings from the secure domain, so that

unauthenticated users (using either secure or insecure transports) are
allowed to invoke any operations that perform read only queries.

Only authenticated users are allowed to invoke operations that require write
access to the Trader's database. This ensures that no malicious application
will be able to export unauthorized service types or offers (for example,
server applications that mimic legitimate service offers, but instead collect
information passed to them by client applications).

The | ONASer vi ceRol e can access all interfaces and operations in both
secure and semi-secure domains.

The | ONAUser Rol e can access the trader service interfaces and operations
shown in Table 8 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
Unaut hent i cat edUser Rol e in the action-role mapping file) can access the
interfaces and operations shown in Table 8 in semi-secure domains only.

Table 8: Trader Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface

UnauthenticatedUserRole
Accessible Operations
(Semi-secure only)

IONAUserRole
Accessible Operations
(Secure and semi-secure)

CosTr adi ngRepos: : Ser vi ceTypeReposi t ory

add_type

list_types

descri be_type
fully_describe_type

list_types
descri be_type

fully_describe_type

CosTr adi ngDynami ¢: : Dynam cPr opEval All All
I T_Tradi ng: : | T_LookupExt All All
| T_Tradi ngAdni n: : Tr adi ngAdm n None None
CosTr adi ng: : Lookup All All

239

CHAPTER 9 | Securing Orbix Services

Table 8:

Trader Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole UnauthenticatedUserRole
Accessible Operations Accessible Operations
(Secure and semi-secure) (Semi-secure only)
CosTr adi ng: : Regi st er expor t None
wi t hdr aw
descri be
modi fy
wi t hdr aw_usi ng_const rai nt
CosTradi ng: : Li nk None None
CosTr adi ng: : Proxy All None
CosTr adi ng: : Admi n None None
CosTrading: : Ciferlterator All All
CosTrading: : Cfferldlterator None None

240

Default Access Control Lists

Event Service ACL

Overview

Secure domain

The default action-role mappings for the event service are designed to
protect the service by differentiating between non-intrusive operations (for
example, read operations) and intrusive operations that might threaten the
integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

® Secure domain—intrusive access to the event service is restricted to
authenticated applications only.

® Semi-secure domain—intrusive access to the event service is available
to both authenticated and unauthenticated applications.

Note: It is recommended that you check whether the default events ACL
provides the level of security you need before deploying it in a real system.

In a secure domain, the event service's action-role mapping file is:
et ¢/ DomainName/ event _acti on_r ol e_nappi ng. xn

Only authenticated applications can connect to the event service for the
purpose of sending or receiving events. With this security scheme in place,
consumers connected to the service can trust that the events they receive
are legitimate (because they are known to originate from authenticated
suppliers). Suppliers that send events through the event service can trust
that their events reach only legitimate consumers (because consumers are
also authenticated).

241

CHAPTER 9 | Securing Orbix Services

Semi-secure domain

IONAServiceRole

242

In a semi-secure domain, the event service’s action-role mapping file is:

et ¢/ DomainName/ event _sem _secure_action_rol e_nappi ng. xm

The security scheme for the semi-secure domain is very permissive, because
all applications have full access to the service by default. The scheme could
be made more secure by restricting the role of unauthenticated applications
to simple listeners (by denying them the privilege of connecting suppliers to
event channels).

WARNING: The semi-secure scheme should not be used if events can
carry security-sensitive information, because the identity of neither the
suppliers nor the consumers can be guaranteed.

The | ONASer vi ceRol e can access all interfaces and operations in both
secure and semi-secure domains.

Default Access Control Lists

IONAUserRole and
UnauthenticatedUserRole

The | ONAUser Rol e can access the event service interfaces and operations
shown in Table 9 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
Unaut hent i cat edUser Rol e in the action-role mapping file) can access the
interfaces and operations shown in Table 9 in semi-secure domains only.

Table 9:

Event Service Interfaces and Operations Accessible to the

IONAUserRole and the UnauthenticatedUserRole

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations
(Semi-secure only)

| T_Event Channel Adm nl nternal ::
Event Channel Fact ory

_get _nane

_get _host

shut down

creat e_channel
find_channel
find_channel _by id
l'i st_channel s

creat e_typed_channel
find_typed_channel
find_typed_channel by id
l'i st _typed_channel s

_get_nane

_get _host

shut down

creat e_channel

fi nd_channel
find_channel _by id
l'i st_channel s

creat e_t yped_channel
find_typed_channel
find_typed_channel _by id
l'i st_typed_channel s

create create
find find
fi ndByRef fi ndByRef
list list
creat eTyped creat eTyped
findTyped fi ndTyped
fi ndBy TypedRef fi ndByTypedRef
|i st Typed l'i st Typed
CosEvent Channel Adni n: : Event Channel All All
CosTypedEvent Channel Adnin: : All All
TypedEvent Channel
CosEvent Channel Adni n: : Suppl i er Adm n All All
CosTypedEvent Channel Adni n: : All All
TypedSuppl i er Adm n
CosEvent Channel Adni n: : Consuner Adm n All All

243

CHAPTER 9 | Securing Orbix Services

Table 9:

Event Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUserRole

Accessible Operations
(Semi-secure only)

CosTypedEvent Channel Adni n: : All All
TypedConsurrer Adm n

CosEvent Channel Adni n: : ProxyPushConsuner | All All

CosTypedEvent Channel Adni n: : All All
TypedPr oxyPushConsurer

CosEvent Channel Adni n: : ProxyPushSupplier | All All

CosEvent Channel Adni n: : ProxyPul | Supplier | All All

CosEvent Channel Adni n: : ProxyPul | Consurer | All All

244

Default Access Control Lists

Notification Service ACL

Overview

Secure domain

The default action-role mappings for the notification service are designed to
protect the service by differentiating between non-intrusive operations (for
example, read operations) and intrusive operations that might threaten the
integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

® Secure domain—hboth intrusive and non-intrusive access to the
notification service are restricted to authenticated applications only.
Semi-secure domain—non-intrusive access to the notification service
is available to both authenticated and unauthenticated applications.
Intrusive access is limited to authenticated applications only.

Note: It is recommended that you check whether the default notification
ACL provides the level of security you need before deploying it in a real
system.

In a secure domain, the event service's action-role mapping file is:
et ¢/ DomainNamel noti fy_acti on_r ol e_mappi ng. xm

Only authenticated applications can connect to the notification service for
the purpose of sending or receiving notifications. With this security scheme
in place, consumers connected to the service can trust that the events they
receive are legitimate (because they are known to originate from
authenticated suppliers). Suppliers that send events through the notification
service can trust that their events reach only legitimate consumers (because
consumers are also authenticated).

Authenticated applications are allowed to create and apply event filters and
mapping filters, as normal.

Authenticated applications are allowed to alter the behavior of the
notification service by setting Quality of Service properties at any level of the
service. The operations that administer the notification service are also
protected by access control. Hence, these adminstration operations can only
be called by authenticated applications and utilities.

245

CHAPTER 9 | Securing Orbix Services

Semi-secure domain

IONAServiceRole

246

In a semi-secure domain, the event service’s action-role mapping file is:

et ¢/ DomainName/ notify_sen _secure_action_rol e_mappi ng. xm

The security scheme for the semi-secure domain forces all event suppliers to
authenticate with the notification service. However any consumer, even
non-authenticated consumers, can connect to the service and receive
events.

Under this security model, consumers can trust the notifications they receive
to be legitimate (because they are known to originate from authenticated
applications only). On the other hand, suppliers do not know whether the
events they send will reach authenticated or unauthenticated consumers.

WARNING: The semi-secure scheme should not be used if notifications
can carry security-sensitive information, because suppliers have no way of
knowing the identity of consumers. Also, an insecure transport might be
used to carry events to the consumers.

Operations that could potentially compromise the integrity or the
functionality of the notification service are restricted to authenticated
applications only.

Only authenticated peers are allowed to apply filters to objects other than
proxy consumers or suppliers, since filters set at any other level could
potentially be used by malicious applications to prevent events from
reaching they legitimate targets.

Unauthenticated consumers have the right to decide which events they
want to receive: they can still apply filters to their proxy supplier. Similarly,
they have read-only access to filters set at the channel administration level
(so that they can interpret the filtration logic of the events they receive).

The | ONASer vi ceRol e can access all interfaces and operations in both
secure and semi-secure domains.

Default Access Control Lists

IONAUserRole and
UnauthenticatedUserRole

The | ONAUser Rol e can access the notification service interfaces and
operations shown in Table 10 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
Unaut hent i cat edUser Rol e in the action-role mapping file) can access the
interfaces and operations shown in Table 10 in semi-secure domains only.

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations
(Semi-secure only)

IT NotifyFilterinternal ::Filter All All

IT_NotifyFilterlnternal:: MppingFilter All All

IT NotifyFilterlnternal ::FilterFactory All All

I T_NotifyConm : G oupNot i fyPublish None None

I T_Not i f yConm : G oupPushConsurrer All All

I T_NotifyComm: All All
Q oupSt ruct ur edPushConsurner

I T_NotifyComm: All All
Q@ oupSequencePushConsuner

I T_NotifyChannel Admin::1T_ProxySupplier | All All

I T_Not i f yChannel Adnin: : All All
Not i f yProxySuppl i er

I T_Not i f yChannel Adnin: : All All
Pr oxyPushSuppl i er

I T_Not i f yChannel Adnin: : All All
St ruct ur edPr oxyPushSuppl i er

I T_Not i f yChannel Adnin: : All All
SequencePr oxyPushSuppl i er

I T_Not i f yChannel Adnin: : All All

Pr oxyPul | Suppl i er

247

CHAPTER 9 | Securing Orbix Services

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole UnauthenticatedUserRole
Accessible Operations Accessible Operations
(Secure and semi-secure) (Semi-secure only)
I T_Not i f yChannel Admin: : All All
St ruct ur edPr oxyPul | Suppl i er
I T_Not i f yChannel Admin: : All All
SequencePr oxyPul | Suppl i er
I T_Not i f yChannel Admi n: : 1 T_ProxyConsuner | All All
I T_Not i f yChannel Admi n: : All All
Not i f yPr oxyConsuner
I T_Not i f yChannel Admi n: : All All
Pr oxyPushConsuner
I T_Not i f yChannel Admi n: : All All
St r uct ur edPr oxyPushConsurrer
I T_Not i f yChannel Admin: : All All
SequencePr oxyPushConsuner
I T_Not i f yChannel Admin: : All All

Pr oxyPul | Consuner

I T_Not i f yChannel Admin: : All All
St ruct ur edPr oxyPul | Consurrer

I T_Not i f yChannel Admin: : All All
SequencePr oxyPul | Consuner

248

Default Access Control Lists

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations
(Semi-secure only)

I T_Not i f yChannel Adm n: : Consurrer Adm n

get _bri dge_proxy_supplier
obt ai n_subscri ption_types

_for_admn
_get_bridge_pull _supplier
s
_get _bridge_push_supplier
s

get _proxy_suppl i er

obtain_notification_pull_
suppl i er

obtai n_notification_push_
suppl i er

_get_M/ID

_get _M/Channel

_get _M/Qper at or

_get_priority filter

_get_lifetine filter

_get_pull _suppliers

_get_push_suppliers

get _qos

val i dat e_qgos

get _filter

get_all _filters

obt ai n_push_suppl i er

obt ai n_pul | _suppl i er

dest roy

_set_priority filter

_set_lifetine_filter

set _gos

subscri pti on_change

add_filter

renove_filter

renove_all _filters

get _bri dge_proxy_suppl i er
obt ai n_subscri ption_types

_for_admn
_get_bridge_pull _supplier
s
_get _bridge_push_supplier
s

get _proxy_suppli er

obtai n_notification_pull _
suppl i er

obtai n_noti fication_push_
suppl i er

_get_M/ID

_get _M/Channel

_get _M/Qper at or

_get_priority filter

_get_lifetine_filter

_get_pull _suppliers

_get_push_suppliers

get _qos

val i dat e_qos

get _filter

get_all _filters

obt ai n_push_suppl i er

obt ai n_pul | _suppl i er

subscri pti on_change

249

CHAPTER 9 | Securing Orbix Services

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations
(Semi-secure only)

I T_Not i f yChannel Adm n: : Suppl i er Adm n

get _bri dge_proxy_consurer

obtai n_of fered_types_for_
adm n

_get_bridge_pul | _consuner
S

_get _bri dge_push_consurrer
S

_get_M/ID

_get _M/Channe

_get _M/Qper at or

get _qos

val i dat e_qos

get_filter

get_all _filters

obt ai n_typed_notification
_pul | _consuner

obt ai n_typed_notification
_push_consurrer

get _proxy_consuner

obtai n_notification_pull_
consurrer

obtai n_notification_push_
consurrer

destroy

_get_pul | _consuners

_get_push_consuners

set_qos

of f er _change

add_filter

renove_filter

renmove_all _filters

obt ai n_push_consuner

obt ai n_pul | _consuner

get _bri dge_pr oxy_consurer

obtai n_offered types_for_
adm n

_get_bridge_pul | _consuner
S

_get _bridge_push_consurer
s

_get_M/ID

_get _M/Channel

_get _M/Qper at or

get _qos

val i dat e_qgos

get _filter

get_all _filters

I T_Not i f yChannel Adm n: : Manager

None

None

I T_Noti fyChannel Adni n:
@ oupPr oxyPushSuppl i er

All

All

250

Default Access Control Lists

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations
(Semi-secure only)

I T_Not i f yChannel Admi n: :

Q@ oupSt ruct ur edPr oxyPushSuppl i er

All

All

I T_Not i f yChannel Admi n: :

Q@ oupSequencePr oxyPushSuppl i er

All

All

I T_Not i f yChannel Adm nl nternal ::

Event Channel

All

obt ai n_of f ered_t ypes

obt ai n_subscri bed_t ypes

_get_event _info

get _consuner adm n

get _suppl i eradm n

get _al | _consurer adm ns

get _al | _suppl i eradm ns

_get _M/Factory

_get _def aul t_consuner_adm
in

_get _defaul t_supplier_adm
in

_get_default_filter_facto
ry

get _qos

val i dat e_qgos

get _adnin

for_consurers

new f or _consurrer s_del egat
e

new f or _consurrer s

I T_Not i fyChannel Adm nl nternal ::
Event Channel Fact ory

All

_get_default_filter_facto
ry

find_channel

find_channel _by id

i st_channel s

_get _manager

get _al | _channel s

get _event _channel

creat e_named_channel

creat e_channel

251

CHAPTER 9 | Securing Orbix Services

Table 10: Notification Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole UnauthenticatedUserRole
Accessible Operations Accessible Operations
(Secure and semi-secure) (Semi-secure only)
I T_Noti fyChannel Admi ninternal :: All None

Bri dgePr oxyPushSuppl i er

I T_Noti fyChannel Admi ninternal :: All None
Bri dgePr oxyPushConsuner

252

Default Access Control Lists

Basic Log Service ACL

Overview

Secure domain

Semi-secure domain

The default action-role mappings for the basic log service are designed to

protect the service by differentiating between non-intrusive operations (for
example, read operations) and intrusive operations that might threaten the
integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

® Secure domain—intrusive access to the basic log service is restricted
to authenticated applications only.

® Semi-secure domain—intrusive access to the basic log service is
available to both authenticated and unauthenticated applications.

Note: It is recommended that you check whether the default basic log
ACL provides the level of security you need before deploying it in a real
system.

In a secure domain, the basic log service’s action-role mapping file is:

et ¢/ DomainName/ basi c_| og_acti on_r ol e_nmappi ng. xm

Only authenticated applications can connect to the basic log service.
Authenticated applications can create new logs, retrieve existing logs, or
delete logs. They also have unlimited access to all of the operations related
to records.

Authenticated applications also have full access to the administrative
functions of the logs (for example, setting the quality of service properties on
the log, changing the maximum log size, disabling a log, and so on).

In a semi-secure domain, the basic log service's action-role mapping file is:
et ¢/ DomainName/ basi c_| og_semi _secure_acti on_rol e_mappi ng. xm

The security scheme for the semi-secure domain is very permissive, because
all applications have full access to the service by default. The scheme could
be made more secure by denying unauthenticated peers access to some of
the write operations of the services (such as log creation or deletion).

253

CHAPTER 9 | Securing Orbix Services

IONAServiceRole The | ONASer vi ceRol e can access all interfaces and operations in both

secure and semi-secure domains.

IONAUserRole and
UnauthenticatedUserRole

The | ONAUser Rol e can access the basic log service interfaces and operations
shown in Table 11 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
Unaut hent i cat edUser Rol e in the action-role mapping file) can access the
interfaces and operations shown in Table 11 in semi-secure domains only.

Table 11: Basic Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole UnauthenticatedUserRole
Accessible Operations Accessible Operations
(Secure and semi-secure) (Semi-secure only)

| T_Basi cLogAdni n: : Basi cLogFact ory _get _manager _get _nanager
create create
create with_id create with_ id
l'ist_Iogs l'ist_logs
find_l og find_l og
list_logs_by_ id list_logs_by_ id

| T_Messagi ngAdni n: : Manager _get _name _get _name
_get _host _get _host
shut down shut down

DsLogAdni n: : Basi cLog All AllR

DsLogAdm n: : | terat or get get
destroy destroy

a. Security could be tightened at this level by removing access to the destroy operation, for example, or to some of the
operations used to access log records (see operations inherited from the DsLogAdmin::Log interface).

254

Default Access Control Lists

Event Log Service ACL

Overview

Secure domain

The default action-role mappings for the event log service are designed to

protect the service by differentiating between non-intrusive operations (for

example, read operations) and intrusive operations that might threaten the
integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

® Secure domain—intrusive access to the event log service is restricted
to authenticated applications only.

® Semi-secure domain—intrusive access to the event log service is
available to both authenticated and unauthenticated applications.

Note: It is recommended that you check whether the default event log
ACL provides the level of security you need before deploying it in a real
system.

In a secure domain, the event log service’s action-role mapping file is:
et ¢/ DomainName/ event _| og_acti on_rol e_nappi ng. xm

Only authenticated applications can connect to the event log service. With
this security scheme in place, consumers connected to the built-in event
channel can trust that the events they receive are legitimate (because they
are known to originate from authenticated suppliers). Event suppliers can
trust that their events will be sent only to legitimate consumers (because
consumers are also authenticated).

Authenticated applications can create new logs, retrieve existing logs, or
delete logs.

Authenticated applications also have full access to the administrative
functions of the logs (for example, setting the quality of service properties on
the log, changing the maximum log size, disabling a log, and so on).

255

CHAPTER 9 | Securing Orbix Services

Semi-secure domain

IONAServiceRole

IONAUserRole and
UnauthenticatedUserRole

In a semi-secure domain, the event log service’s action-role mapping file is:
et ¢/ DomainName/ event _| og_sem _secure_acti on_rol e_mappi ng. xm

The security scheme for the semi-secure domain is very permissive, since by
default all applications have full access to the service. This scheme could be
made more secure by restricting the role of unauthenticated applications to
simple listeners (by denying them the privilege of connecting suppliers to the
event channel as well as restricting write access to the logs and log records).

The semi-secure scheme should not be used if events carry
security-sensitive information, because the identity of neither the suppliers
or the consumer can be guaranteed. The integrity of the logs cannot be
guaranteed since unauthenticated peers have access to all of the write
operations and can alter the content of the logs.

The | ONASer vi ceRol e can access all interfaces and operations in both
secure and semi-secure domains.

The | ONAUser Rol e can access the event log service interfaces and
operations shown in Table 12 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
Unaut hent i cat edUser Rol e in the action-role mapping file) can access the
interfaces and operations shown in Table 12 in semi-secure domains only.

Table 12: Event Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations
(Semi-secure only)

I T_Event LogAdni n: : Event LogFact ory

_get _manager

create

create with_id
l'ist_logs

find_l og

list_logs_ by id

obt ai n_push_suppl i er
obt ai n_pul | _supplier

_get _nmanager

create

create with_id
l'ist_logs

find_|l og
list_logs_by_ id

obt ai n_push_suppl i er
obtai n_pul | _supplier

256

Default Access Control Lists

Table 12: Event Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations
(Semi-secure only)

| T_Messagi ngAdni n: : Manager _get _nane _get_nane
_get _host _get _host
shut down shut down
DsEvent LogAdmi n: : Event Log All All
DsLogAdm n: : I terator get get
destroy destr oy
CosEvent Channel Adni n: : Consumner Adm n All All
CosEvent Channel Adni n: : Suppl i er Adm n All All
CosEvent Channel Adni n: : ProxyPushSupplier | All All
CosEvent Channel Adni n: : ProxyPul | Consurer | All All
CosEvent Channel Adni n: : ProxyPul | Supplier | All All
CosEvent Channel Adni n: : ProxyPushConsuner | All All

257

CHAPTER 9 | Securing Orbix Services

Notify Log Service ACL

Overview

Secure domain

258

The default action-role mappings for the notify log service are designed to
protect the service by differentiating between non-intrusive operations (for
example, read operations) and intrusive operations that might threaten the
integrity of the service (for example, write operations).

Two different action-role mappings are provided, as follows:

® Secure domain—both intrusive and non-intrusive access to the notify
log service are restricted to authenticated applications only.

® Semi-secure domain—non-intrusive access to the notify log service is
available to both authenticated and unauthenticated applications.
Intrusive access is limited to authenticated applications only.

Note: It is recommended that you check whether the default notify log
ACL provides the level of security you need before deploying it in a real
system.

In a secure domain, the notify log service’s action-role mapping file is:
et c/ DomainName/ noti fy_| og_acti on_rol e_nappi ng. xm

Only authenticated applications can connect to the notify log service. With
this security scheme in place, consumers connected to the built-in event
channel can trust that the events they receive are legitimate (because they
are known to originate from authenticated suppliers). Suppliers that send
events through the notification service can trust that their events will reach
only legitimate consumers (because consumers are also authenticated).

Authenticated applications can create new logs, retrieve existing logs, or
delete logs.

Authenticated applications also have full access to the administrative
functions of the logs (for example, setting the quality of service properties on
the log, changing the maximum log size, disabling a log, and so on).

Authenticated applications are allowed to create and apply both types of
filters supported by the service: log filters (which decide which events get
logged) and notification-style filters (which decide which kind of events pass
through the built-in event channel).

Semi-secure domain

IONAServiceRole

Default Access Control Lists

In a semi-secure domain, the notify log service’s action-role mapping file is:
et ¢/ DomainName/ notify_| og_seni _secure_action_rol e_mappi ng. xm
The security scheme for the semi-secure domain requires event suppliers
(applications that create logs or write log records) to authenticate with the
notify log service. Any consumer (even if unauthenticated) can connect to
the service, however, in order to receive events and access the logs.

Only authenticated applications (normally event suppliers) can create new
logs or alter the list of existing logs (for example, by removing logs). This
ensures that unauthenticated applications are not able to interfere with the
logging logic or alter critical information by tampering with the service's
database (by removing log entries, for example).

With this semi-secure scheme, consumers are able to trust the notifications
they receive from the built-in event channel to be legitimate (because the
events must have originated from an authenticated application). Consumers
can also trust all logs to be genuine. On the other hand, suppliers do not
know whether the events they send and/or the logs they create will reach
authenticated and/or unauthenticated consumers.

Unauthenticated applications have unlimited read-only access to all the
properties of the service and the logs. They can receive events from the
built-in channel, access the list of existing logs and obtain records from any
existing log. Unauthenticated applications can also examine, but not
change, the filtering logic applied to the service. However, even
unauthenticated consumers can decide which events they want to receive
by applying filters to their proxy supplier.

Note: This semi-secure scheme allows unauthenticated applications to
create filters. This is a safe policy, because the unauthenticated
applications cannot apply the newly created filters in places they are not
supposed to.

The | ONASer vi ceRol e can access all interfaces and operations in both
secure and semi-secure domains.

259

CHAPTER 9 | Securing Orbix Services

IONAUserRole and
UnauthenticatedUserRole

260

The | ONAUser Rol e can access the notify log service interfaces and
operations shown in Table 13 in both secure and semi-secure domains.

Unauthenticated users (represented by the special
Unaut hent i cat edUser Rol e in the action-role mapping file) can access the
interfaces and operations shown in Table 13 in semi-secure domains only.

Default Access Control Lists

Table 13: Notify Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface

IONAUserRole
Accessible Operations

(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations
(Semi-secure only)

I T_NotifyLogAdm n:: NotifylLog

All

_non_exi stent

obt ai n_of fered_t ypes

obt ai n_subscri bed_t ypes

get _filter

ny_factory

id

get _| og_gos

get_max_record_life

get _max_si ze

get _current_si ze

get _n_records

get _log_full_action

get _adninistrative_state

get _forwarding_state

get _operational _state

get _interval

get _availability_status

get _capacity_alarmthresh
ol ds

get _week_mask

query

retrieve

nmat ch

get _record_attribute

get _consuneradm n

get _suppl i eradm n

get _al | _consurer adm ns

get _al | _suppl i eradm ns

_get _M/Factory

_get _def aul t_consuner_adm
in

_get _defaul t_supplier_adm
in

_get_default_filter_facto
ry

get _qos

val i dat e_qgos

get _adnin

for_consurers

new f or _consurrer s

261

CHAPTER 9 | Securing Orbix Services

Table 13: Notify Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUserRole
Accessible Operations
(Semi-secure only)

I T_NotifyLogAdm n:: Noti fyLogFact ory

_get_default _filter_facto
ry

_get_manager

create

create with_id

l'ist_Iogs

find_l og

list_logs_ by id

get _proxy_suppl i er

obtain_notification pull_
suppl i er

obtai n_notification_push_
suppl i er

_get_M/ID

_get _M/Channel

_get _M/Qper at or

_get_priority filter

_get_lifetine filter

_get_pull _suppliers

_get_push_suppliers

get _qos

val i dat e_qos

get _filter

get_all _filters

obt ai n_push_suppl i er

obt ai n_pul | _supplier

destroy

_set_priority filter

_set_lifetine filter

set_qos

subscri ption_change

add_filter

renove_filter

renmove_al |l _filters

_get_default_filter_facto
ry
_get _manager

l'ist_logs
find_l og
list_logs_by_ id

get _proxy_suppl i er

obtain_notification_pull_
suppl i er

obtai n_notification_push_
suppl i er

_get_M/ID

_get _M/Channel

_get _M/Qper at or

_get_priority filter

_get_lifetine filter

_get_pull _suppliers

_get_push_suppliers

get _qos

val i dat e_gos

get _filter

get_all _filters

obt ai n_push_suppl i er

obtai n_pul | _supplier

subscri ption_change

| T_Messagi ngAdm n: : Manager All None
DsLogAdm n: : | terat or get get
destroy destr oy

262

Default Access Control Lists

Table 13: Notify Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface

(Secure and semi-secure)

IONAUserRole
Accessible Operations

UnauthenticatedUserRole
Accessible Operations
(Semi-secure only)

I T_Not i f yChannel Adm n: : Consurrer Adm n

All

get _bri dge_proxy_suppl i er
obt ai n_subscri ption_types

_for_admn
_get_bridge_pull _supplier
s
_get _bridge_push_supplier
s

get _proxy_supplier

obtai n_notification_pull _
suppl i er

obtai n_noti fication_push_
suppl i er

_get_M/ID

_get _M/Channel

_get _M/Qper at or

_get_priority filter

_get_lifetine_filter

_get_pull _suppliers

_get_push_suppliers

get _qos

val i dat e_qos

get _filter

get_all filters

obt ai n_push_suppl i er

obt ai n_pul | _suppl i er

subscri pti on_change

263

CHAPTER 9 | Securing Orbix Services

Table 13: Notify Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface IONAUserRole UnauthenticatedUserRole
Accessible Operations Accessible Operations
(Secure and semi-secure) (Semi-secure only)

I T_Not i f yChannel Adm n: : Suppl i er Adni n All get _bri dge_proxy_consuner

obtain_offered types_for_
adm n

_get_bridge_pul | _consuner
s

_get _bridge_push_consurrer
s

_get_M/ID

_get _M/Channel

_get _M/Qper at or

get _qos

val i dat e_qgos

get _filter

get_all _filters

I T_Noti fyChannel Admin: : All All
ProxyPushSuppl i er

I T_Not i f yChannel Admin: : All All
St ruct ur edPr oxyPushSuppl i er

I T_Not i f yChannel Admin: : All All
SequencePr oxyPushSuppl i er

I T_Not i f yChannel Admin: : All All
ProxyPul | Suppl i er

I T_Not i fyChannel Admin: : All All
St ruct ur edPr oxyPul | Suppl i er

I T_Not i fyChannel Admin: : All All
SequencePr oxyPul | Suppl i er

I T_Not i f yChannel Admin: : All All
Pr oxyPushGonsuner

I T_Not i f yChannel Admin: : All All

St ruct ur edPr oxyPushConsurner

264

Default Access Control Lists

Table 13: Notify Log Service Interfaces and Operations Accessible to the
IONAUserRole and the UnauthenticatedUserRole

IDL Interface

IONAUserRole
Accessible Operations
(Secure and semi-secure)

UnauthenticatedUserRole

Accessible Operations
(Semi-secure only)

I T_Not i f yChannel Adnin: : All All
SequencePr oxyPushConsuner
I T_Not i f yChannel Adnin: : All All
Pr oxyPul | Consurrer
I T_Not i f yChannel Adnin: : All All
St ruct ur edPr oxyPul | Consurer
I T_Not i f yChannel Adnin: : All All
SequencePr oxyPul | Consuner
I T_Not i f yChannel Adnin: : All All
Q@ oupPr oxyPushSuppl i er
I T_Not i f yChannel Adnin: : All All
Q@ oupSt ruct ur edPr oxyPushSuppl i er
I T_Not i f yChannel Adnin: : All All
Q@ oupSequencePr oxyPushSuppl i er
IT NotifyFilterinternal:: All All
Filter
IT NotifyFilterinternal:: All All
Mappi ngFi | ter
IT NotifyFilterinternal:: All All

FilterFactory

265

CHAPTER 9 | Securing Orbix Services

266

Part 11l

SSL/TLS Administration

In this part This part contains the following chapters:
Choosing an SSL/TLS Toolkit page 269
Managing Certificates page 281
Configuring SSL/TLS Secure Associations page 327
Configuring SSL/TLS Authentication page 353
Automatic Activation of Secure Servers page 381

In this chapter

CHAPTER 10

Choosing an
SSL/TLS Toolkit

This chapter describes the SSL/TLS toolkit replaceability
feature, which enables you to replace the underlying
third-party toolkit that implements the SSL/TLS protocol for
Orbix applications.

This chapter contains the following sections:

Toolkit Replaceability page 270
Baltimore Toolkit for C++ and Java page 271
Schannel Toolkit for C+ + page 272
JSSE/JCE Architecture page 274

269

CHAPTER 10 | Choosing an SSL/TLS Toolkit

Toolkit Replaceability

Overview

Toolkits for C+ + applications

JSSE/JCE architecture for Java
applications

Custom toolkit plug-in for C+ +

270

In Orbix, the underlying SSL/TLS security layer is provided by a third-party
security toolkit. The Orbix security configuration variables and programming
APIs wrap the third-party toolkit in order to integrate it with CORBA
technology.

Orbix provides a toolkit replaceability feature by exploiting IONA’s Adaptive
Runtime Technology (ART) to encapsulate third-party SSL/TLS toolkits in an
ART plug-in. Using this modular approach, you can replace the SSL/TLS
security layer underlying Orbix by specifying a different ART plug-in to load
at runtime.

The following SSL/TLS toolkits are currently available for use with Orbix
C++ applications:

® “Baltimore Toolkit for C++ and Java” on page 271.
® “Schannel Toolkit for C++" on page 272.

To replace the SSL/TLS toolkit underlying your Orbix Java applications, you
can configure Orbix to use the JSSE toolkit option. For details, see:

® “JSSE/JCE Architecture” on page 274.

Orbix also provides an option to develop a custom toolkit plug-in for C+ +
applications, using the Orbix plug-in development kit (PDK). You can use
this feature to integrate any third-party SSL/TLS toolkit with Orbix.

Please contact IONA Professional Services for more details:
http://www.iona.com/info/services/consulting/welcome.htm

http://www.iona.com/info/services/consulting/welcome.htm

Baltimore Toolkit for C++ and Java

Baltimore Toolkit for C++ and Java

Overview

Default SSL/TLS toolkit

Choosing the Baltimore toolkit for
C+ + applications

Choosing the Baltimore toolkit for
Java applications

References

This section describes how to configure Orbix to use the SSL/TLS toolkit
from Baltimore technologies.

Orbix applications use the Baltimore SSL/TLS toolkit by default. Hence,
there is no need to alter your Orbix configuration to use this toolkit.

To ensure that Orbix uses the Baltimore toolkit for C++ applications, you
can optionally add the settings shown in Example 31 to your Orbix
configuration. These settings are not necessary, however, because the
Baltimore toolkit is used by default.

Example 31: Configuring Orbix to use the Baltimore Toolkit in C+ +
Obix configuration file

initial _references:|T_TLS Tool kit:plugin = "bal timore_tool kit";
pl ugi ns: bal ti nore_t ool kit:shlib_nane = "it_tls_baltinore";

To ensure that Orbix uses the Baltimore toolkit for Java applications, you
can optionally add the setting shown in Example 32 to your Orbix
configuration. This setting is not necessary, however, because the Baltimore
toolkit is used by default.

Example 32: Configuring Orbix to use the Baltimore Toolkit in Java

Obix configuration file
plugins:atli2_tls:use_jsse tk = "fal se";

You can find out more about Baltimore Technologies’ security products from
their Web site: http://www.baltimore.com/.

271

http://www.baltimore.com/

CHAPTER 10 | Choosing an SSL/TLS Toolkit

Schannel Toolkit for C+ +

Overview

Smart cards

Schannel certificate stores

Choosing the Schannel toolkit

272

This section describes how to configure Orbix to use the Schannel toolkit
from Microsoft. Schannel is a software implementation of the SSL/TLS
security protocol which uses the Microsoft Crypto APl (MS CAPI) to
implement the cryptographic functionality required by SSL/TLS.

Note: The Schannel toolkit is available only on Windows platforms for the
purpose of securing C++ applications.

The following special features are available to C++ applications that use
the Schannel toolkit:

® Smart cards.
® Schannel certificate stores.

Because almost all smart card hardware vendors make their devices
available as an MS CAPI Cryptographic Service Provider (CSP), applications

that use Schannel can access a very wide range of cyptographic devices and
smart cards.

With Schannel, application certificates and trusted CA certificates are stored
in the standard Windows certificate store, thus simplifying the
administration of certificates on Windows platforms.

You can specify that Orbix uses the Schannel toolkit by adding the settings
shown in Example 31 to your Orbix configuration.

Example 33: Configuring Orbix to use the Schannel Toolkit
Obix configuration file

initial _references:|T_TLS Tool kit:plugin = "schannel _tool kit";
pl ugi ns: schannel _t ool ki t:shlib_name = "it_tls_schannel *;

Administration impact of
switching to Schannel

Programming impact of switching
to Schannel

Schannel Toolkit for C+ +

Orbix toolkit replaceability is designed to be as transparent as possible to
the user. Nevertheless, there are some aspects of administration that are
affected by the switch to using Schannel, as follows:

® “Deploying Trusted Certificate Authorities” on page 320.

® “Deploying Application Certificates” on page 321.

® “Deploying Certificates in Smart Cards” on page 324.

® “Providing a Pass Phrase or PIN” on page 367.

The following aspects of security programming are affected by the switch to
using Schannel:

® “Creating SSL/TLS Credentials” on page 466.

273

CHAPTER 10 | Choosing an SSL/TLS Toolkit

JSSE/JCE Architecture

Overview

Prerequisites

Using JSSE/JCE with Orbix

274

The Java Cryptography Extension (JCE) is a pluggable framework that
allows you to replace the Java security implementation with arbitrary
third-party toolkits, known as security providers.

By default, Orbix does not use the JSSE/JCE framework (it accesses the
Baltimore toolkit directly instead). It is possible, however, to configure Orbix
to use the JSSE/JCE architecture, as described in this section.

The following prerequisites must be satisfied to use the JSSE/JCE

architecture with Orbix:

1. Install J2SE (JDK) 1.4.x—the JSSE API used internally by Orbix has
changed between J2SE 1.3 and 1.4. To support the existing Orbix TLS
functionality, it is necessary to use the newer JSSE/TLS API from J2SE
1.4. Security providers must support this new API in order to be
compatible with Orbix.

Note: Security providers that implement custom APIs might not
work with Orbix.

2. Install the unlimited strength JCE policy files—these files allow you to
use security providers that implement strong cryptography. See the
following reference:

http://java.sun.com/products/jce/#UnlimitedDownload

To use the JSSE/JCE architecture with your Orbix Java applications and to
install a third-party security provider, perform the following steps:

Step Action

1 | Configure Orbix to use JSSE/JCE.

2 | Configure the java.security file.

3 | Install the provider JAR files.

http://java.sun.com/products/jce/#UnlimitedDownload

Configure Orbix to use JSSE/JCE

Configure the java.security file

Install the provider JAR files

JSSE/JCE Architecture

To configure Orbix to use JSSE/JCE, add the setting shown in Example 34 to
your Orbix configuration.

Example 34: Configuring Orbix to use JSSE/JCE

Obix configuration file
plugins:atli2 tls:use_jsse tk = "true";

JCE security providers are selected by specifying a list of security provider
classes in the j ava. securi ty file, which is found at the following location:

JAVA_HOME/ i bl security/java. security

For example, to use the Sun JSSE security implementation you would
configure j ava. security as shown in Example 35.

Example 35: Sample Java Security File

security. provider.1=sun. security. provi der. Sun

security. provi der.2=com sun. net . ssl .internal . ssl.Provider
security. provi der. 3=com sun. rsaj ca. Provi der

security. provider.4=com sun. crypt o. provi der. SunJCE
security. provi der. 5=sun. security.j gss. SunProvi der

The properties in Example 35 are organized as a prioritized list. When JCE
looks for the implementation of a Java security interface, it first checks the
class specified by security. provi der. 1 and then proceeds to the higher
positions until it finds an interface implementation. Hence, it is possible for
different aspects of security to be implemented by different security
providers.

For more details, see Configuring the Provider
(http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#
Configuring).

Generally, you need to add the third-party JAR files to your CLASSPATH to
make a security provider accessible to Orbix. Please follow the installation
instructions provided by your third-party security provider.

For more details about installing the provider classes, see:

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#I
nstallProv

275

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#Configuring
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#InstallProv
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#InstallProv

CHAPTER 10 | Choosing an SSL/TLS Toolkit

Add a provider by programming

Using a third-party certificate
store

276

The JCE architecture provides an API that enables you to add a security
provider by programming—see Configuring the Provider
(http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#I
nstallProv). The java. security. Security API can be used instead of or in
addition to configuring the j ava. securi ty file.

java.security.Security.addProvider()
Add a security provider to the next available position.

java.security.Security.insertProviderAt()

Add a security provider to the specified position. The succeeding security
providers are shifted down by one position.

For more details, see the j ava. security. Security reference page:
http://java.sun.com/j2se/1.4.2/docs/api/java/security/Security.html

By default, Orbix continues to use its built-in certificate storage mechanism

(that is, using the principal sponsor to specify certificates) even if you install

a third-party security provider that is capable of storing certificates.

You can get an Orbix application to use a third-party certificate store by

configuring it as follows:

1. A basic prerequisite is to configure the third-party security provider as
described in “Using JSSE/JCE with Orbix” on page 274.

2. Configure Orbix to check for a third-party certificate store by adding the
following setting to your application’s configuration:

O bix Configuration File
policies:tls:use external cert_store = "true";

3. Specify the name of the security provider and the name of the security
protocol to use with the certificates. For example, to select the Sun
JSSE security provider and the SSLv3 protocol, add the following lines
to your application’s configuration:

O bix Configuration File
plugins:atli2 tls:cert_store_provider
plugins:atli2 tls:cert_store_protocol

" SunJSSE';
"SSLv3";

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#InstallProv
http://java.sun.com/j2se/1.4.2/docs/api/java/security/Security.html

JSSE/JCE Architecture

Internally, Orbix passes the provider and protocol values as arguments
to the j avax. net . ssl . SSLCont ext . get | nst ance() method. To find out
the appropriate values for these settings, consult your third-party
security provider documentation.

4. Specify the key manager factory algorithm and the trust manager
factory algorithm. There are two alternative approaches to setting these
properties, as follows:

¢+ java.security properties file—the security provider uses these
settings by default. For example, if you are using the Sun JSSE
security provider, you can add the following settings to the
j ava. security properties file:

ssl . KeyManager Fact ory. al gori t hmeSunx509
ssl . Trust Manager Fact ory. al gori t hmeSunX509

. Orbix configuration file—Orbix uses these settings to override the
default values appearing in the j ava. securi ty file. You would
only use these configuration variables, if your j ava. security file
is shared by multiple applications that need different settings.

For example, if you are using the Sun JSSE security provider, you
can add the following settings to the Orbix configuration file:

plugins:atli 2 tls:knf_al gorithm = "SunX509";
plugins:atli2 tls:tnf_algorithm= "SunX509";

Internally, Orbix passes the key manager factory algorithm to the

j avax. net . ssl . KeyManager Fact ory. get | nst ance() method and the
trust manager factory algorithm to the

j avax. net . ssl . Trust Manager Fact ory. get | nst ance() method. To
find out the appropriate values for these settings, consult your
third-party security provider documentation.

Logging When using the JSSE/JCE architecture with Orbix, the log records which
security provider performs an action. This is a useful debugging aid when
multiple security providers are installed.

277

CHAPTER 10 | Choosing an SSL/TLS Toolkit

Troubleshooting

References

278

For example, the following is a log extract for an application that uses the
Bouncy Castle security provider to read PKCS#12 files (PkCS12 BC) and the
IAIK security provider to read PKCS#11 smart card credentials (PKCS11

| Al K PKCS#11: 1).

11: 24: 15 2/ 20/ 2003
[_it_orb_id 1@ogi bear. dublin. enea. i ona. conl 10. 2. 3. 6]

(I T_ATLI _TLS: 250) | - "Using the fol | owi ng provider: PKCS12
BC'

11: 24: 21 2/ 20/ 2003
[_it_orb_id 1@ogi bear. dublin. enea. i ona. conl 10. 2. 3. 6]
(IT_TLS:201) | - Authentication succeeded using the
I T_TLS AUTH METH PKCS12_FI LE net hod

11:24: 15 2/20/2003 [_it_orb_i d_1@ogi bear/ 10. 2. 3. 58]
(I T_ATLI _TLS: 250) | - "Using the fol | owi ng provider: PKCS11
| Al K PKCS#11: 1"
11:24: 15 2/20/2003 [_it_orb_i d_1@ogi bear/ 10. 2. 3. 58]
(I T_TLS:201) | - Authentication succeeded using the
| T_TLS AUTH METH PKCS11 net hod

At the time of writing, the JSSE/JCE architecture is a relatively new
technology and some of the third-party security providers have specific
limitations or bugs. One approach to working around these problems is by
using a combination of security providers, with different security providers
implementing different aspects of security.

For example, the following general security features could be implemented
by distinct security providers:

® PKCS#12 functionality—loading credentials from PKCS#12 files.
® PKCS#11 functionality—loading credentials from a smart card.
® SSL/TLS encryption.

For more information about Sun’s JSSE/JCE architecture, see the following

links:

® Java Cryptography Extension
(http://java.sun.com/products/jce/index-14.html).

® J2SE (JDK) 1.4.2 Security
(http://java.sun.com/j2se/1.4.2/docs/guide/security/).

http://java.sun.com/products/jce/index-14.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/

JSSE/JCE Architecture

JCE Reference Guide
(http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.ht
ml).

How to implement a security provider

(http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/HowTolmplAJC
EProvider.html).

Installing JCE providers

(http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.ht
ml#InstallProvider).

279

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/HowToImplAJCEProvider.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html#InstallProvider

CHAPTER 10 | Choosing an SSL/TLS Toolkit

280

In this chapter

CHAPTER 11

Managing
Certificates

TLS authentication uses X.509 certificates—a common,
secure and reliable method of authenticating your application
objects. This chapter explains how you can create X.509
certificates that identify your Orbix applications.

This chapter contains the following sections:

What are X.509 Certificates? page 282
Certification Authorities page 284
Certificate Chaining page 287
PKCS#12 Files page 289
Using the Demonstration Certificates page 290
Creating Your Own Certificates page 292
Deploying Certificates page 299
Deploying Certificates with Schannel page 314

281

CHAPTER 11 | Managing Certificates

What are X.509 Certificates?

Role of certificates An X.509 certificate binds a name to a public key value. The role of the
certificate is to associate a public key with the identity contained in the
X.509 certificate.

Integrity of the public key Authentication of a secure application depends on the integrity of the public
key value in the application’s certificate. If an impostor replaced the public
key with its own public key, it could impersonate the true application and
gain access to secure data.

To prevent this form of attack, all certificates must be signed by a
certification authority (CA). A CA is a trusted node that confirms the
integrity of the public key value in a certificate.

Digital signatures A CA signs a certificate by adding its digital signature to the certificate. A
digital signature is a message encoded with the CA's private key. The CA’s
public key is made available to applications by distributing a certificate for
the CA. Applications verify that certificates are validly signed by decoding
the CA’s digital signature with the CA's public key.

WARNING: Most of the demonstration certificates supplied with Orbix are
signed by the CA abi gbank_ca. pem This CA is completely insecure
because anyone can access its private key. To secure your system, you
must create new certificates signed by a trusted CA. This chapter
describes the set of certificates required by an Orbix application and shows
you how to replace the default certificates.

The contents of an X.509 An X.509 certificate contains information about the certificate subject and

certificate the certificate issuer (the CA that issued the certificate). A certificate is
encoded in Abstract Syntax Notation One (ASN.1), a standard syntax for
describing messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In
more detail, a certificate includes:

® X.509 version information.

282

What are X.509 Certificates?

® Aserial number that uniquely identifies the certificate.

® Asubject DN that identifies the certificate owner.

® The public key associated with the subject.

® Anssuer DN that identifies the CA that issued the certificate.

® The digital signature of the issuer.

® Information about the algorithm used to sign the certificate.

® Some optional X.509 v.3 extensions. For example, an extension exists
that distinguishes between CA certificates and end-entity certificates.

Distinguished names A distinguished name (DN) is a general purpose X.500 identifier that is
often used in the context of security.

See “ASN.1 and Distinguished Names” on page 629 for more details about
DNs.

283

CHAPTER 11 | Managing Certificates

Certification Authorities

Choice of CAs

In this section

284

A CA must be trusted to keep its private key secure. When setting up an
Orbix system, it is important to choose a suitable CA, make the CA
certificate available to all applications, and then use the CA to sign
certificates for your applications.

There are two types of CA you can use:

® A commercial CA is a company that signs certificates for many
systems.

® A private CA is a trusted node that you set up and use to sign
certificates for your system only.

This section contains the following subsections:

Commercial Certification Authorities page 285

Private Certification Authorities page 286

Certification Authorities

Commercial Certification Authorities

Signing certificates There are several commercial CAs available. The mechanism for signing a
certificate using a commercial CA depends on which CA you choose.

Advantages of commercial CAs An advantage of commercial CAs is that they are often trusted by a large
number of people. If your applications are designed to be available to
systems external to your organization, use a commercial CA to sign your
certificates. If your applications are for use within an internal network, a
private CA might be appropriate.

Criteria for choosing a CA Before choosing a CA, you should consider the following criteria:

® What are the certificate-signing policies of the commercial CAs?

® Are your applications designed to be available on an internal network
only?

® What are the potential costs of setting up a private CA?

285

CHAPTER 11 | Managing Certificates

Private Certification Authorities

Choosing a CA software package

OpenSSL software package

Setting up a private CA using
OpenSSL

Choosing a host for a private
certification authority

Security precautions

286

If you wish to take responsibility for signing certificates for your system, set
up a private CA. To set up a private CA, you require access to a software
package that provides utilities for creating and signing certificates. Several
packages of this type are available.

One software package that allows you to set up a private CA is OpenSSL,
htt p: // wav. openssl . or g. OpenSSL is derived from SSLeay, an
implementation of SSL developed by Eric Young (eay@cryptsoft.com).
Complete license information can be found in Appendix H on page 557. The
OpenSSL package includes basic command line utilities for generating and
signing certificates and these utilities are available with every installation of
Orbix. Complete documentation for the OpenSSL command line utilities is
available from htt p: // www openssl . or g/ docs.

For instructions on how to set up a private CA, see “Creating Your Own
Certificates” on page 292.

Choosing a host is an important step in setting up a private CA. The level of
security associated with the CA host determines the level of trust associated
with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Orbix
applications, use any host that the application developers can access.
However, when you create the CA certificate and private key, do not make
the CA private key available on hosts where security-critical applications
run.

If you are setting up a CA to sign certificates for applications that you are
going to deploy, make the CA host as secure as possible. For example, take
the following precautions to secure your CA:

® Do not connect the CA to a network.

® Restrict all access to the CA to a limited set of trusted users.

® Protect the CA from radio-frequency surveillance using an RF-shield.

Certificate Chaining

Certificate Chaining

Certificate chain A certificate chain is a sequence of certificates, where each certificate in
the chain is signed by the subsequent certificate.

Self-signed certificate The last certificate in the chain is normally a self-signed certificate—a
certificate that signs itself.

Example Figure 41 shows an example of a simple certificate chain.
Peer |, Signs CA | signs
Certificate | Certificate |

I

Figure 41: A Certificate Chain of Depth 2

Chain of trust The purpose of certificate chain is to establish a chain of trust from a peer
certificate to a trusted CA certificate. The CA vouches for the identity in the
peer certificate by signing it. If the CA is one that you trust (indicated by the
presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

287

CHAPTER 11 | Managing Certificates

Certificates signed by multiple
CAs

Trusted CAs

Maximum chain length policy

288

A CA certificate can be signed by another CA. For example, an application
certificate may be signed by the CA for the finance department of IONA
Technologies, which in turn is signed by a self-signed commercial CA.
Figure 42 shows what this certificate chain looks like.

Peer signs Finance signs Commercial signs
Certificate < CA CA
Certificate Certificate

Figure 42: A Certificate Chain of Depth 3

An application can accept a signed certificate if the CA certificate for any CA
in the signing chain is available in the certificate file in the local root
certificate directory.

See “Providing a List of Trusted Certificate Authorities” on page 301.

You can limit the length of certificate chains accepted by your applications,
with the maximum chain length policy. You can set a value for the
maximum length of a certificate chain with the
policies:iiop_tls:nmax_chain_|ength_policy and

pol i ci es: htt ps: max_chai n_| engt h_pol i cy configuration variables for
IIOP/TLS and HTTPS respectively.

PKCS#12 Files

PKCS#12 Files

Contents of a PKCS#12 file

Creating a PKCS#12 file

Viewing a PKCS#12 file

Importing and exporting
PKCS#12 files

A PKCS#12 file contains the following:

® An X.509 peer certificate (first in a chain).

® All the CA certificates in the certificate chain.
® A private key.

The file is encrypted with a password.

PKCS#12 is an industry-standard format and is used by browsers such as
Netscape and Internet Explorer. They are also used in Orbix. Orbix does not
support . pemformat certificate chains, however.

To create a PKCS#12 file, see “Use the CA to Create Signed Certificates” on
page 296.

To view a PKCS#12 file, CertName. p12:
openssl pkcs12 -in CertName. p12

The generated PKCS#12 files can be imported into browsers such as IE or
Netscape. Exported PKCS#12 files from these browsers can be used in
Orbix.

Note: Use OpenSSL v0.9.2 or later; Internet Explorer 5.0 or later;
Netscape 4.7 or later.

289

CHAPTER 11 | Managing Certificates

Using the Demonstration Certificates

Location of the demonstration
certificates

Default CA certificate

Certificates for demonstration
programs

Untrusted demonstration
certificate

290

The Orbix certificates directory contains a set of demonstration certificates
that enable you to run the Orbix example applications. The certificates are

contained in this directory:

ASPInstallDirl asp/ 6. 0/ etc/ t1 s/ x509/ certs

The CA used to sign the demonstration certificates is the default Orbix CA:
® The CA certificate is x509/ cert s/ ca/ abi gbank_ca. pem
® The list of trusted CA’s is contained in
x509/ certs/trusted ca_lists/ca_listl. pem This initially contains
only the abi gbank_ca. pemCA, but other CAs can be appended.

Note: No whitespace or text is allowed in this file outside the BEG N END

statements.

The PKCS#12 certificates in Table 14 are used by the Orbix demonstration
programs. These certificates are located in the x509/ cert s/ dermos directory
and signed by the x509/ cer t s/ ca/ abi gbank_ca. pemCA certificate.

Table 14: Demonstration Certificates and Passwords

Demonstration Certificate Password
cert s/ dermos/ adm n. p12 admi npass
certs/denos/ al i ce. p12 al i cepass

cert s/ demos/ bankser ver. p12

bankser ver pass

cert s/ dermos/ bob. p12

bobpass

cert s/ demos/ CertName. p12

CertNamepass

In the demonstration programs, the following certificate, bad_guy. p12, is
used to represent a certificate from an untrusted CA:

cert s/ demos/ bad_guy. p12

Using the Demonstration Certificates

[REVISIT - What is the password for bad_guy.p12? | don't think it is
bad_guypass.]

Certificates for the Orbix services The Orbix services all use the same certificate, as shown in Table 15.

Table 15: Demonstration Certificate for the Orbix Services

Services Demonstration Certificate Password

certs/services/adm ni strator. pl2 admi ni strat or pass

291

CHAPTER 11 | Managing Certificates

Creating Your Own Certificates

Overview This section describes the steps involved in setting up a CA and signing
certificates.
OpenSSL utilities The steps described in this section are based on the OpenSSL

command-line utilities from the OpenSSL project,

htt p: // wav. openssl . or g—see Appendix F on page 537. Further
documentation of the OpenSSL command-line utilities can be obtained from
htt p: // www. openssl . or g/ docs.

Sample CA directory structure For the purposes of illustration, the CA database is assumed to have the
following directory structure:
X509CA/ ca
X509CA/ certs
X509CA/I newcerts
X509CA/ crl

Where X509CA is the parent directory of the CA database.

In this section This section contains the following subsections:
Set Up Your Own CA page 293
Use the CA to Create Signed Certificates page 296

292

Creating Your Own Certificates

Set Up Your Own CA

Substeps to perform

Step 1—Add the bin directory to
your PATH

Step 2—Create the CA directory
hierarchy

Step 3—Copy and edit the
openssl.cnf file

This section describes how to set up your own private CA. Before setting up
a CA for a real deployment, read the additional notes in “Choosing a host for
a private certification authority” on page 286.

To set up your own CA, perform the following substeps:

® Step 1—Add the bin directory to your PATH

® Step 2—Create the CA directory hierarchy

® Step 3—Copy and edit the openssl.cnf file

® Step 4—Initialize the CA database

® Step 5—Create a self-signed CA certificate and private key

On the secure CA host, add the Orbix bi n directory to your path:
Windows

> set PATH=ASPInstallDir\ asp\ 6. O\ bi n; %PATHY%

UNIX

% PATH=ASPInstallDirl asp/ 6. 0/ bi n: $PATH export PATH

This step makes the openssl utility available from the command line.

Create a new directory, X509CA, to hold the new CA. This directory will be
used to hold all of the files associated with the CA. Under the X509CA
directory, create the following hierarchy of directories:

X509CA/ ca

X509CA/ certs

X509CA/I newcerts

X509CA/ crl

Copy the openssl . cnf file to the X509CA directory, as follows:
Windows

copy ASPInstallDir\ asp\ 6. 0\ et c\t | s\ x509\ openss| . cnf
X509CA\ openssl . cnf

UNIX

293

CHAPTER 11 | Managing Certificates

Step 4—lnitialize the CA database

294

cp ASPinstallDirl asp/ 6. 0/ et ¢/ t| s/ x509/ openssl . cnf
X509CA/ openssl . cnf

Edit the openssl . cnf to reflect the directory structure of the X509CA
directory and to identify the files used by the new CA.

Edit the [CA_defaul t] section of the openssl . cnf file to make it look like
the following:

R R R
[CA default]

dir = X509CA # Wiere CA files are kept
certs = $dir/certs # Were issued certs are kept

crl_dir = &dir/crl # Where the issued crl are kept
dat abase = $dir/index. txt # Database index file

new certs_dir = $dir/newcerts # Default place for new certs

certificate = $dir/ca/new ca.pem# The CA certificate

seri al = $dir/serial # The current serial nunber
crl = &dir/crl.pem # The current CRL
private_key = $dir/ca/ new ca_pk.pem # The private key

RANDFI LE = $dir/ca/.rand # Private random nunber file

x509_extensions = usr_cert # The extensions to add to the cert

You might like to edit other details of the OpenSSL configuration at this
point—for more details, see “The OpenSSL Configuration File” on page 547.

In the X509CA directory, initialize two files, seri al and i ndex. t xt .
Windows

> echo 01 > serial

To create an empty file, i ndex. t xt, in Windows start a Windows Notepad at
the command line in the X509CA directory, as follows:

> notepad index. txt

In response to the dialog box with the text, Cannot find the text.txt
file. Do you want to create a new file?, click Yes, and close Notepad.
UNIX

% echo "01" > serial
%t ouch i ndex.txt

Step 5—Create a self-signed CA
certificate and private key

Creating Your Own Certificates

These files are used by the CA to maintain its database of certificate files.

Note: The index.txt file must initially be completely empty, not even
containing white space.

Create a new self-signed CA certificate and private key:

openssl req -x509 -new -config
X509CA/ openssl . cnf -days 365 -out X509CA/ ca/ new _ca. pem
-keyout X509CA/ cal/ new ca_pk. pem

The command prompts you for a pass phrase for the CA private key and
details of the CA distinguished name:

Using configuration fromX509CA/ openssl . cnf

Cenerating a 512 bit RSA private key

R

At

witing new private key to 'new ca pk. pen

Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

Wiat you are about to enter is what is called a D stinguished
Name or a DN There are quite a few fields but you can | eave
sone bl ank. For sone fields there will be a default val ue,

If you enter '.', the field will be left blank.

Country Narme (2 letter code) []:IE

State or Province Nanme (full nanme) []:Co. Dublin

Locality Nanme (eg, city) []:Dublin

O gani zati on Name (eg, conpany) []:1QNA Technol ogi es PLC
Organi zational Unit Name (eg, section) []:Finance

Conmon Nane (eg, YOUR nane) []: Gordon Brown

Emai | Address []: gbrown@ ona.com

Note: The security of the CA depends on the security of the private key
file and private key pass phrase used in this step.

You should ensure that the file names and location of the CA certificate and
private key, new ca. pemand new ca_pk. pem are the same as the values
specified in openssl . cnf (see the preceding step).

You are now ready to sign certificates with your CA.

295

CHAPTER 11 | Managing Certificates

Use the CA to Create Signed Certificates

Substeps to perform If you have set up a private CA, as described in “Set Up Your Own CA” on
page 293, you are now ready to create and sign your own certificates.

To create and sign a certificate in PKCS#12 format, CertName. p12,
perform the following substeps:

® Step 1—Add the bin directory to your PATH

® Step 2—Create a certificate signing request

® Step 3—Sign the CSR

® Step 4—Concatenate the files

® Step 5—Create a PKCS#12 file

® Step 6—Repeat steps as required

Step 1—Add the bin directory to If you have not already done so, add the Orbix bi n directory to your path:
your PATH Windows

> set PATHEASPInstallDir\ asp\ 6. O\ bi n; %PATHY%

UNIX

% PATH=ASPInstallDirl asp/ 6. 0/ bi n: $PATH export PATH

This step makes the openssl utility available from the command line.

Step 2—Create a certificate Create a new certificate signing request (CSR) for the CertName. p12
signing request certificate:

openss| req -new -config X509CA/ openssl . cnf
-days 365 -out X509CA/ cert s/ CertName_csr. pem - keyout
X509CA/ cert s/ CertName_pk. pem

This command prompts you for a pass phrase for the certificate’s private key
and information about the certificate’s distinguished name.

Some of the entries in the CSR distinguished name must match the values
in the CA certificate (specified in the CA Policy section of the openssl . cnf
file). The default openssl . cnf file requires the following entries to match:

® Country Name
® State or Province Name
® Organization Name

296

Step 3—Sign the CSR

Creating Your Own Certificates

The Common Name must be distinct for every certificate generated by
OpenSSL.

Using configuration fromX509CA/ openssl . cnf

Cenerating a 512 bit RSA private key

At

At

witing new private key to ' X509CA/ certs/ CertName_pk. pem
Enter PEM pass phrase:

Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.

Wiat you are about to enter is what is called a D stinguished
Nane or a DN There are quite a few fields but you can | eave
sone bl ank. For sone fields there will be a default val ue,

If you enter '.', the field will be left blank.

Country Narme (2 letter code) []:IE

State or Province Nane (full name) []:Co. Dublin

Locality Nane (eg, city) []:Dublin

O gani zati on Name (eg, conpany) []:1QNA Technol ogi es PLC
Organi zational Unit Name (eg, section) []:Systens

Common Nare (eg, YOUR nare) []: O bix

Emai| Address []:info@ona.com

Pl ease enter the following 'extra' attributes
to be sent with your certificate request

A chal | enge password []: password

An optional conpany name []:1ONA

Sign the CSR using your CA:

openssl ca -config X509CA/ openssl . cnf -days 365 -in
X509CA/ cert s/ CertName_csr. pem - out
X509CA/ cert s/ CertName. pem

This command requires the pass phrase for the private key associated with

the new ca. pemCA certificate:

Usi ng configuration fromX509CA/ openssl . cnf

Enter PEM pass phrase:

Check that the request matches the signature

Si gnat ure ok

The Subj ects Distingui shed Nanme is as foll ows

count ryNane :PRINTABLE ' | E
stateQ Provi nceNane : PRI NTABLE: ' Co. Dublin'
| ocal i t yName : PRINTABLE: ' Dubl i n'

297

CHAPTER 11 | Managing Certificates

Step 4—Concatenate the files

Step 5—Create a PKCS#12 file

Step 6—Repeat steps as required

298

or gani zat i onName : PRINTABLE: ' | ONA Technol ogi es PLC
organi zat i onal Uni t Name: PR NTABLE: ' Syst ens'

comonName : PRINTABLE: ' Bank Server Certificate'
emai | Addr ess 1 ABSTRING ' i nfo@ona. com

Certificate is to be certified until My 24 13:06: 57 2000 GVI' (365
days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commt? [y/n]y

Wite out database with 1 new entries

Dat a Base Updat ed

To sign the certificate successfully, you must enter the CA private key pass
phrase—see “Set Up Your Own CA” on page 293.

Concatenate the CA certificate file, CertName certificate file, and
CertName_pk. pemprivate key file as follows:

Windows

copy X509CA\ ca\ new ca. pem +
X509CA\ cer t s\ CertName. pem +
X509CA\ cert s\ CertName_pk. pem
X509CA\ cert s\ CertName_| i st. pem

UNIX

cat X509CA/ cal new_ca. pem
X509CA/ cert s/ CertName. pem
X509CA/ cert s/ CertName_pk. pem >
X509CA/ certs/ CertName_| i st . pem

Create a PKCS#12 file from the CertName _| i st . pemfile as follows:

openss| pkcs12 -export -in X509CA/ certs/ CertName_|i st. pem - out
X509CA/ certs/ CertName. p12 -name "New cert"

Repeat steps 2 to 5, creating a complete set of certificates for your system.
A minimum set of Orbix certificates must include a set of certificates for the
secure Orbix services.

Deploying Certificates

Deploying Certificates

Overview This section provides an overview of deploying X.509 certificates in a typical
secure Orbix system, with detailed instructions on how to deploy certificates
for different parts of the Orbix system.

In this section This section contains the following subsections:
Overview of Certificate Deployment page 300
Providing a List of Trusted Certificate Authorities page 301
Deploying Application Certificates page 303
Deploying Certificates in Smart Cards page 324
Deploying Orbix Service Certificates page 307
Deploying itadmin Certificates page 310
Configuring Certificate Warnings page 313

299

CHAPTER 11 | Managing Certificates

Overview of Certificate Deployment

Overview Figure 43 provides an overview of the certificates used in a typical
deployment of Orbix.
Trusted CA Lists Application Certificates
- —_——
CA Cert List 1 PKCS#12 PKCS#12 PKCS#12
‘ File File File ‘
- _1

CA Cert List 2

‘ Service Certificates

]
|
|

PKCS#12 PKCS#12 PKCS#12
File File File

|

itadmin Certificates
—

S

PKCS#12 PKCS#12 PKCS#12 cee
File File File

]

Figure 43: Overview of Certificates in a Typical Deployed System

Sample deployment directory For the purposes of illustration, the examples in this section deploy
structure certificates into the following sample directory structure:

X509Deploy/ trusted_ca_lists
X509Deploy/ certs/ appl i cati ons
X509Deployl cert s/ servi ces
X509Deploy/ certs/ adnin

Where X509Deploy is the parent directory for the deployed certificates.

300

Deploying Certificates

Providing a List of Trusted Certificate Authorities

Configuration variable

Choosing a configuration domain

Choosing a deployment directory

Deploying

You can specify the list of root trusted certificates authorities by setting the
policies:iiop_tls:trusted ca_|ist_policy and
policies:https:trusted_ca_list_policy configuration variables for
IIOP/TLS and HTTPS respectively.

This variable contains a list of strings, each of which provides the filename
and path of a file containing one or more trusted CA certificates. For
example:
policies:iiop_tls:trusted_ca list_policy =
["ASPInstallDir! asp/ 6.0/ et c/t1s/x509/ certs/trusted _ca lists/ca_
listl. pen];
The directory containing the trusted CA certificate lists (for example,
ASPInstallDirl asp/ 6. 0/ et c/ t1s/x509/ certs/trusted_ca_|ists/) should
be a secure directory.

Note: If an application supports authentication of a peer, that is a client
supports Est abl i shTrust | nTar get, then a file containing trusted CA
certificates must be provided. If not, a NO RESQURCES exception is raised.

Before deploying the CA certificate on a target host, you must have access
to a secure configuration domain or you can create a new domain—see the
Administrator’s Guide.

For example, if you create a secure file-based configuration domain,
SecureDomain, you could view or modify the configuration by editing the
corresponding ASPInstallDirl et ¢/ domai ns/ SecureDomain. cf g file.

CA certificates are deployed as concatenated lists. These CA list files can be
stored in any location; however, it is convenient to store them under a
common deployment directory, for example:

X509Deployl trusted_ca_lists

To deploy a trusted CA certificate, perform the following steps:

301

CHAPTER 11 | Managing Certificates

302

Step Action

1 | If you have access to an existing secure domain,
SecureDomain, you can append the CA certificate contents to
one of the files specified in the
policies:iiop_tls:trusted ca list_policy configuration
variable for IIOP/TLS or in the
policies:https:trusted_ca_|list_policy configuration
variable for HTTPS.

For example, consider how to configure the 1IOP/TLS protocol.
Ifpolicies:iiop tls:trusted ca_ list_policy lists the file,
X509Deployl trusted_ca_lists/ca_listl. pem you can add
your new CA to the ca_l i st 1. pemfile as follows:
Windows
copy X509Deploy\trusted_ca_lists\ca_listl. pem+
X509CA\ ca\ new ca. pem
X509Deploy\trusted_ca_| i sts\ca_listl. pem
UNIX
cat X509CA/ cal new ca. pem >>
X509Deploy/ trusted_ca lists/ca_listl. pem
The CA certificate is now deployed; hence you can skip steps 2
and 3.

2 | Alternatively, you can create a new CA list file to hold your CA
certificate. Copy the new ca. pemcertificate to the
X509Deploy! trust ed_ca_l i st s directory. Rename new_ca. pem
to ca_list. pem to remind you that this file is actually a list of
certificates that happens to contain one certificate.

Do not copy the CA private key to the target host.
3 | Add the ca_li st. pemfile to your list of trusted CA files. For

example, in the case of IIOP/TLS:

policies:iiop_tls:trusted_ca list_policy =
["X509Deployl trusted_ca_l i sts/exi sting_list.pent,
"X509Deploy/ trusted_ca_lists/ca_list.pem];

Deploying Certificates

Deploying Application Certificates

Choosing a deployment directory

Deploying

Application certificates are stored as PKCS#12 files (with . p12 suffix). The
certificates can be stored in arbitrary locations; however, it is usually
convenient to store the application certificates under a common deployment
directory, for example:

X509Deploy! cert s/ appl i cati ons

To deploy an application certificate, CertName. p12, for an application that
uses the SampleApp ORB name in the DomainName domain, perform the
following steps:

Step

Action

1

Copy the application certificate, CertName. p12, to the
certificates directory—for example,
X509Deploy! cert s/ appl i cat i ons—on the deployment host.

The certificates directory should be a secure directory that is
accessible only to administrators and other privileged users.

Edit the DomainName configuration file (usually
ASPInstallDirl et ¢/ domai ns/ DomainName. cf g). In the
SampleApp scope, change the principal sponsor configuration
to specify the CertName. p12 certificate, as follows:

Obix Configuration File
SampleApp {

princi pal _sponsor: use_princi pal _sponsor = "true";
princi pal _sponsor:auth_method_i d = "pkcsl12 file";
princi pal _sponsor: aut h_net hod_data =
["fil ename=X509DeployI cert s/ appl i cati ons/ CertName
.pl2"];
¥

By default, the application will prompt the user for the
certificate pass phrase as it starts up. To choose another option
for providing the pass phrase, see “Providing a Certificate Pass
Phrase” on page 368.

303

CHAPTER 11 | Managing Certificates

304

Step

Action

If you are using the KDM to enable automatic activation of your
secure servers, make sure you update the KDM database with
the new certificate passwords. See “Automatic Activation of

Secure Servers” on page 381.

Deploying Certificates

Deploying Certificates in Smart Cards

Overview

Prerequisites

Deploying the certificates

Deployment constraints

Configuring an application to use
the smart card

Orbix supports an option to store credentials (that is, an X.509 certificate
chain and private key) on a smart card.

Before deploying your certificates in a smart card, you must have the

following third-party products installed:

® Baltimore smart card toolkit—a software library that supports the
PKCS#11 interface and enables Orbix to communicate with the smart
card (see http://www.baltimore.com). This library is bundled with
Orbix.

® Tools and utilities to administer the smart card (usually bundled with
the hardware).

Smart card hardware is normally delivered with drivers and utilities that
enable you to deploy X.509 certificate chains and private keys to the smart
card. Consult the third-party documentation that accompanies your
smart-card hardware for details.

Please note the following constraints when deploying the certificates:

® You must deploy the certificate chain and private key to slot 0. This is
currently the only supported smart card slot.

® The slot 0 should contain only one certificate chain and public/private
key pair.

To configure an application to use the smart card, edit the configuration for
your domain (usually ASPInstallDir! et ¢/ domai ns/ DomainName. cf g). In
the SmartCardApp scope, ensure that the principal sponsor is configured to
use the smart card, as follows:

Obix Configuration File
SmartCardApp {

princi pal _sponsor: use_princi pal _sponsor = "true";
princi pal _sponsor:auth_method_i d = "pkcs11";

305

http://www.baltimore.com

CHAPTER 11 | Managing Certificates

princi pal _sponsor: aut h_net hod_data = ["provi der =dkck132.dl | ",
"slot=0"];
b

By default, the application will prompt the user for the smart card PIN as it

starts up. To choose another option for providing the PIN, see “Providing a
Smart Card PIN” on page 372.

306

Deploying Certificates

Deploying Orbix Service Certificates

Orbix services requiring
certificates

Choosing a deployment directory

Deploying

In a secure system, all Orbix services should be capable of servicing secure
connections; hence, all of the services require certificates. A minimal system
typically includes the following secure services:

® Locator,

® Node daemon,

® Naming service,

® |Interface repository (IFR),
® Management service.

® Security service.

Additionally, your system might also require certificates for the events,
notification, and OTS services.

Orbix service certificates are stored as PKCS#12 files. The service
certificates are similar to application certificates and, like application
certificates, can be stored in arbitrary locations. It is usually convenient to
store the service certificates in their own subdirectory—for example:

X509Deploy! cert s/ ser vi ces

To deploy a service certificate, CertName. p12, for a service that uses the
Service ORB name in the DomainName domain, perform the following
steps:

Step Action

1 | Copy the service certificate, CertName. p12, to the service
certificates directory X509Deploy/ cert s/ servi ces on the
deployment host.

The service certificates directory should be a secure directory
that is accessible only to administrators and other privileged
users.

307

CHAPTER 11 | Managing Certificates

Providing pass phrases for Orbix
services

308

Step

Action

Edit the DomainName configuration file (usually
ASPInstallDirl et ¢/ domai ns/ DomainName. cf g). In the Service
scope, change the principal sponsor configuration to specify the
CertName. p12 certificate, as follows:

Obix Configuration File
Service {

princi pal _sponsor:use_princi pal _sponsor = "true";
princi pal _sponsor:auth_method_id = "pkcsl2 file";
princi pal _sponsor: aut h_met hod_data =

["fil ename=X509DeployI cert s/ servi ces/ CertName. p12
"1
h

By default, the application will prompt the user for the
certificate pass phrase as it starts up. To choose another option
for providing the pass phrase, see “Providing a Certificate Pass
Phrase” on page 368.

If you are using the KDM to enable automatic activation of the
Orbix service, make sure you update the KDM database with
the new certificate pass phrase. See “Automatic Activation of
Secure Servers” on page 381.

It is possible to combine the different ways of providing pass phrases to the
Orbix services. For example, some of the alternatives for setting up the Orbix
services are:

Use a password file for all Orbix services.

Provide the pass phrase from a dialog prompt for all Orbix services.

Use a password file for the locator and the node daemon. Use the
KDM for all other Orbix services.

Provide the pass phrase from a dialog prompt for the locator and the
node daemon. Use the KDM for all other Orbix services.

Deploying Certificates

Example configuration The default configuration of the Orbix services specifies that all services use
the admi ni strat or. p12 certificate. The principal sponsor for services is
configured as follows:

Obix Configuration File
i ona_servi ces

{

princi pal _sponsor: use_pri nci pal _sponsor = "true";

princi pal _sponsor:auth_met hod_id = "pkcsl12 file";

princi pal _sponsor: aut h_net hod_data =
["fil enanme=ASPInstallDir\ asp\ 6. 0\ et c\t | s\ x509\ cert s\ servi ces\ a
dm ni strator. pl2",
"passwor d_f i | e=ASPInstallDin asp\ 6. O\ et c\ t | s\ x509\ cert s\ servi ¢
es\adm ni strator. pwf"];

ServiceA {
/1 Inherit principal sponsor settings fromouter scope.
}.

ServiceB {
/1 Inherit principal sponsor settings fromouter scope.

o

The sub-scopes, ServiceA, ServiceB and so on, use the principal sponsor
settings from the outer scope, i ona_ser vi ces. Hence, all of the Orbix
services use the same certificate, adm ni strat or. p12.

It is possible to override settings from the i ona_ser vi ces outer scope by
configuring the principal sponsor in a local scope—for example, within the
ServiceA scope.

309

CHAPTER 11 | Managing Certificates

Deploying itadmin Certificates

Overview

Specifying a deployment directory
for administrator certificates

310

The Orbix command-line administration utility, i t admi n, requires a

certificate when used in a secure domain. Two categories of certificate can

be used with i t admi n, as follows:

® Ordinary certificates—for users with ordinary privileges who want to
perform routine administration tasks such as checking the status of
servers and administering the naming service.

® Administrator certificates—for users with administrator privileges who
need to administer pass phrases and security checksums stored in the
KDM—see “KDM Administration” on page 389.

Before deploying i t adm n certificates for the first time, you can edit the
Orbix configuration file to specify the directory that will contain the
administrator certificates. You can specify the administrator certificates
deployment directory using the i t adm n_x509_cert _root configuration
variable.

For example, if you choose the following deployment directory for your
i t adm n certificates:

X509Deploy! cert s/ admi n
you should then set i t adm n_x509_cert_root as follows:

Obix Configuration File
i tadm n_x509_cert_root = "X509Deploy/ certs/adnin";

Deploying an ordinary certificate
for itadmin

Deploying Certificates

To deploy an ordinary certificate for i t adm n, OrdinaryCert. p12, in the
DomainName domain, perform the following steps:

Step

Action

1

Copy the ordinary certificate, OrdinaryCert. p12, to the service
certificates directory X509Deploy/ cert s/ servi ces on the
deployment host.

The service certificates directory should be a secure directory
that is accessible only to administrators and other privileged
users.

Edit the DomainName configuration file (usually
ASPInstallDirl et ¢/ domai ns/ DomainName. cf g). In the
ItadminUltility scope, change the principal sponsor
configuration to specify the OrdinaryCert. p12 certificate, as
follows:

Obix Configuration File
ltadminUtility {

princi pal _sponsor: use_princi pal _sponsor = "true";
princi pal _sponsor:auth_nethod_i d = "pkcsl12 file";
princi pal _sponsor: aut h_net hod_data =
["fil ename=X509Deploy/ cert s/ servi ces/ OrdinaryCert. p
12",
b

By default, the i t admi n utility would prompt the user for the
certificate pass phrase as it starts up. A more convenient
option, however, is to store the pass phrase in a secure
password file—see “Providing a Certificate Pass Phrase” on
page 368 for details of how to configure this.

311

CHAPTER 11 | Managing Certificates

Deploying an administrator To deploy an administrator certificate for i t admi n, AdminCert. p12, perform
certificate for itadmin the following step:
Step Action

1 | Copy the administrator certificate, AdminCert. p12, to the
i t admi n certificates directory specified by the
i tadm n_x509_cert _root configuration variable.

The i t admi n certificates directory should be a secure directory
that is accessible only to administrators and other privileged
users.

Overriding the ordinary certificate To perform administrator tasks requiring special privileges, such as
with the administrator certificate = administering the KDM, you must override the ordinary certificate with the
administrator certificate using the i t admi n admi n_| ogon subcommand.

See “KDM Administration” on page 389 for details.

312

Deploying Certificates

Configuring Certificate Warnings

Overview

Certificate expiration warning

Own credentials warning

Orbix enables you to configure the following kinds of certificate warning:
® C(Certificate expiration warning.
® Own credentials warning.

Normally, an X.509 certificate would be defined to expire after a certain
date. You can arrange to send a warning message to the Orbix log, if
certificate expiration is imminent, thus helping to avoid unexpected failure.

To configure a certificate expiration warning, add the configuration variables
from Example 36 to your application’s configuration scope.

Example 36: Configuring a Certificate Expiration Warning

#Orbi x Configuration File

pl ugi ns:iiop_tls:enabl e warning_f or_approachi ng_cert_expiration
= "true";

plugins:iiop_tls:cert_expiration warning _days = "31";

The configuration in Example 36 would send a warning to the Orbix log, if
the application’s own certificate is less than 31 days away from expiry. Only
an application’s own certificate is checked, not the peer certificates.

You can also configure Orbix to log a warning, if the subject DN from an
application’s own certificate matches a certain pattern. This can be useful,
for example, if you want to ensure that demonstration certificates are not
accidentally deployed in a production system.

Example 37 shows how to configure the own credentials warning. If the
specified certificate constraints match the subject DN of an application’s
own certificate, a warning is issued to the Orbix log. For details of the
constraint language, see “Applying Constraints to Certificates” on page 545.

Example 37: Configuring an Own Credentials Warning
#O bi x Configuration File

plugins:iiop_tls:own_credentials warning cert_constraints =
[" C=US, ST=Massachusetts"];

313

CHAPTER 11 | Managing Certificates

Deploying Certificates with Schannel

Overview This section describes how to deploy X.509 certificates into the Schannel
certificate store. This method of deployment is used only for C++
applications that use the Schannel SSL/TLS toolkit on the Windows
platform—see “Choosing an SSL/TLS Toolkit” on page 269 for more details.

In this section This section contains the following subsections:
Schannel Certificate Store page 315
Deploying Trusted Certificate Authorities page 320
Deploying Application Certificates page 321
Deploying Certificates in Smart Cards page 324

314

Deploying Certificates with Schannel

Schannel Certificate Store

Overview

Prerequisites

Managing the certificate store

Internet Explorer

Microsoft Management Console

This subsection describes how to manage certificates in the Schannel
certificate store (Windows C++ applications only).

The Schannel certificate store is only available to C++ applications on the
Windows platform when you have selected Schannel as the underlying
SSL/TLS toolkit. See “Choosing an SSL/TLS Toolkit” on page 269 for details.

Windows makes the Schannel certificate store accessible through the
following O/S utilities:

® Internet Explorer.
® Microsoft Management Console.

To access the certificate store from Internet Explorer:

1. Choose the Tools| Internet Options... menu option to open the Internet
Options dialog box.

2. Click on the Content tab.
3. Click Certificates... to open the Certificates dialog box.

Use the Certificates dialog box to manage the certificate store.

You can also access the certificate store from within the Microsoft
Management Console (MMC), using the certificate snap-in. The MMC is
general-purpose, customizable management tool for the Windows operating
system. The functionality of the MMC can be customized by adding,
removing and configuring a variety of different MMC snap-ins.

315

CHAPTER 11 | Managing Certificates

You can add the certificate snap-in to the MMC as follows:

1. Start the MMC from the start menu by selecting Start|Run and then
entering the command nmc. The MMC opens as shown in Figure 44.

'fii Console1 - [Console Root]

Jﬁ] Console indow Help

=10l x|

DS E| @ |=lslx]

|J Action View Favorites |J = =

w2

Tree I Favarites |

Marne |

Figure 44: The Microsoft Management Console

316

Deploying Certificates with Schannel

2. From the MMC, select the Console | Add/Remove Snap-In... menu
option. The Add/Remove Snap-In dialog opens as shown in Figure 45.

Add,/Remove Snap-in 2=l

Standalane | Extensions I

Use thiz page to add or remove a standalone Snap-in fram the console.

Shap-ing added to:

— Description

Add... Femowe About. |

0K I Cancel

Figure 45: The Add/Remove Snap-In Dialog Box

317

CHAPTER 11 | Managing Certificates

3. Click Add... to open the Add Standalone Snap-In dialog box, as shown
in Figure 46.

Add Standalone Snap-in 2=l

Available Standalone Snap-ins:

Shap-in | ‘Wendar |A
Epctiw% Control

Microgoft Corporation

([ClearCase Administration
[ClearCase Host [
[CleaCase Network Browser
[(dClearCase on the wWeb
CACleaCase Feqizsty Administration
D Component Services

& Computer M anagement
[(dDevice M anager

— Description

The Certificates snap-in allows pou to browsze the contents of the
cerlificate stores for yourself, a service, or a computer.

Add Cloze

Figure 46: The Add Standalone Snap-In Dialog Box

4. From the snap-in list box, select the Certificates snap-in and then click
Add.

5. A wizard utility starts up to guide you through the process of adding

the Certificates snap-in. Follow the instructions in the wizard to add
the snap-in.

318

Deploying Certificates with Schannel

6. After finishing the certificate snap-in wizard, close the dialog boxes.
The console window should now look similar to Figure 47.

:m Consolel - [Console Root',Certificates - Current User' Personal',Certificates] - |EI|5|
J% Consale Window Help |J D Bq E | ‘_l— _IE il‘
“ Action Wiew Favorites |J o= | | [] | | @ ‘
Tree I Favorites I Issued To 7 | Issued By | Expiration Date | Inten
] Consols Roct E administrator Administrator 19/06/2101 File: R
£ Certificates - Current L | =dadministrator Administrator 10/02(z101 File R
ED Persanal = administratar Administrakor 09/0z/2101 Filz R,
38 = sdministrator Administratar 30/12/2100 File: P

-7 Trusted Rook Certif = sdministrator Administrator 261212100 File R

[:l Enterprise Trust
23 Intermediate Certif
I:l Active Directory Us
-1 REQUEST

K [E— | K1 | i

|F‘ersu:una| skore contains 5 certificates, | |

Figure 47: Microsoft Management Console with Certificates Snap-In

7. To save the current console configuration for future use, select
Console|Save As... and save the customized console in a convenient
location.

References For more details about the MMC utility, see the following white paper from
Microsoft:

® Microsoft Management Console: Overview
(http://www.microsoft.com/windows2000/docs/_Toc463917037).

319

http://www.microsoft.com/windows2000/docs/_Toc463917037

CHAPTER 11 | Managing Certificates

Deploying Trusted Certificate Authorities

Overview This subsection describes how to deploy trusted certificate authority (CA)
certificates to the Schannel certificate store (Windows C+ + applications
only). Your Orbix application must be configured to use Schannel as its
underlying SSL/TLS toolkit.

CA certificate format A trusted CA certificate is distributed as a plain certificate without a private
key (the private key is known only to the certification authority). For
example, trusted CA certificates might be distributed in PEM format, but not
in PKCS#12 format (which includes a private key).

Deploying To deploy a trusted CA certificate to the Schannel certificate store, perform
the following steps:

1. Launch an MMC utility that has been configured with a certificates
snap-in (see “Schannel Certificate Store” on page 315).

2. From the MMC console tree, select the Console
Root\Certificates\Trusted Root Certification Authorities\Certificates
directory.

3. Right-click the Certificates directory and select the All Tasks|Import...
option. A Certificate Import Wizard launches.

4. Follow the instructions in the Certificate Import Wizard to add a
trusted CA certificate to the certificate store.

Note: The Orbix policies:iiop tls:trusted ca list_policy
configuration variable is ignored when your C+ + application is configured
to use the Schannel SSL/TLS toolkit.

320

Deploying Certificates with Schannel

Deploying Application Certificates

Overview

Deploying

This subsection describes how to deploy application certificates in the
Schannel certificate store (Windows C++ applications only). Your Orbix
application must be configured to use Schannel as its underlying SSL/TLS
toolkit.

To deploy an application certificate to the Schannel certificate store, perform
the following steps:

1.

Launch an MMC utility that has been configured with a certificates
snap-in (see “Schannel Certificate Store” on page 315).

From the MMC console tree, select the Console
Root\Certificates\Personal\Certificates directory.

Note: Currently, Orbix can load application certificates from the
personal certificate directory only.

Right-click the Certificates directory and select the All Tasks | Import...
option. A Certificate Import Wizard launches.

Follow the instructions in the Certificate Import Wizard to add an
application certificate to your personal certificate store.

To configure an Orbix application to use the certificate, you need to
know the common name (CN) from the certificate’s subject DN.

If you do not already know the certificate’s common name, you can
easily find out by double-clicking the certificate entry in the Console
Root\Certificates\Personal\Certificates directory of the MMC console.
In the Certificate dialog, click the Details tab and then select the

321

CHAPTER 11 | Managing Certificates

Subject field from the scrollbox. Figure 48 shows the Certificate dialog
at this point.

Certificate e |

General Details |Certificati0n Path I

Show: | <All= j

I Field | Value -
E Version V3
E Serial number 10EF
E Signature algorithm mdSRSA
Elssuer info@abighank.com, ABigBark...
E\falid from 04 Cctober 2000 16:01:05
E\falid to 03 September 2005 16:01:05

A igh. ce, Fir...
RSA {1024 Bits)

E Public key

E = alice@abigbank. com

CH = Alice

0L = Finance

(0 = ABigBank -- no warranty -- demo purposes
5 = Massachusetts

C=U3

Edit Properties. .. | Copy ko File... |

Figure 48: Certificate Dialog Showing the Certificate’s Subject DN.

The lower pane shows the AVA settings from the certificate’s subject
DN (for an explanation of X.509 certificate terminology, see “ASN.1
and Distinguished Names” on page 629). From Figure 48, you can see
that the common name (CN) of this certificate is Al i ce.

322

Importing PKCS#12 files

Deploying Certificates with Schannel

6. Edit the Orbix configuration for your domain (usually
ASPInstallDirl et c/ domai ns/ DomainName. cf g). In your application’s
configuration scope, MyApp, ensure that the principal sponsor is
configured to use the new certificate, as shown in Example 38.

O bix Configuration File

MyApp {
princi pal _sponsor: use_princi pal _sponsor = "true";
princi pal _sponsor:auth _nmethod_id = "security_ | abel";

princi pal _sponsor: aut h_net hod_data =
["1 abel =CommonName"];

}s

Where CommonName is the common name (CN) from the new
certificate’s subject DN. For example, if using the certificate shown in
Figure 48 on page 322, the CommonName would be Al i ce.

Note: When Orbix is configured to use Schannel, you cannot use
PKCS#12 files directly. Hence, the pkcs12_fil e value of
princi pal _sponsor: aut h_net hod_i d cannot be used with Schannel.

7. When you start an Orbix application that uses the new certificate,
Schannel might or might not prompt you for a private key password.
The behavior at runtime depends on whether or not you chose the
Enable strong private key protection option when importing the
certificate with the Certificate Import Wizard.

If you want to import a PKCS#12 certificate (. p12 file suffix) into the
certificate store, there is an easy short cut available: double-click the
PKCS#12 file and follow the instructions in the Certificate Import Wizard
to add the certificate to your personal certificate store.

323

CHAPTER 11 | Managing Certificates

Deploying Certificates in Smart Cards

Overview Orbix supports an option to store credentials (that is, an X.509 certificate
chain and private key) on a smart card.

This subsection describes how to deploy certificates in a smart card which is
accessible through the Schannel certificate store (Windows C+ +
applications only). Your Orbix application must be configured to use
Schannel as its underlying SSL/TLS toolkit.

Prerequisites Before deploying your certificates in a smart card, you must have the
following third-party products installed:
® Third-party smart card toolkit—a software library that integrates the
smart card hardware with the Schannel toolkit and certificate store.
® Tools and utilities to administer the smart card (usually bundled with
the hardware).

Deploying the certificates Smart card hardware is normally delivered with drivers and utilities that
enable you to deploy X.509 certificate chains and private keys to the smart
card. Consult the third-party documentation that accompanies your
smart-card hardware for details.

Smart card transparency in As soon as a smart card is inserted into the card reader, the smart card

Schannel credentials automatically appear in the Schannel certificate store. The
credentials are then accessible in just the same way as any other certificate
in the store.

Configuring an application to use To configure an Orbix application to use the smart card through Schannel,
the smart card edit the configuration for your domain (usually
ASPInstallDirl et c/ domai ns/ DomainName. cf g). In your application’s

324

Supplying the smart card PIN

Deploying Certificates with Schannel

configuration scope, SmartCardApp, ensure that the principal sponsor is
configured to use the smart card, as shown in Example 38.

Example 38: Configuring an Application to Use a Smart Card in Schannel
Obix Configuration File

S}ﬁartCardApp {

pri nci pal _sponsor: use_pri nci pal _sponsor = "true";
princi pal _sponsor:auth_nethod_id = "security | abel ";
princi pal _sponsor : aut h_met hod_dat a = ["| abel =CommonName"];

b

Where CommonName is the common name (CN) from the smart card
certificate’s subject DN (see “ASN.1 and Distinguished Names” on
page 629).

By default, Schannel will prompt the user for the smart card PIN as it starts
up. There is currently no alternative to supplying the smart card PIN in
Schannel.

325

CHAPTER 11 | Managing Certificates

326

In this chapter

CHAPTER 12

Configuring
SSL/TLS Secure
Associations

You can govern the behavior of client-server connections by
setting configuration variables to choose association options
and to specify cipher suites.

This chapter discusses the following topics:

Overview of Secure Associations page 328
Setting Association Options page 330
Specifying Cipher Suites page 343
Caching TLS Sessions page 351

327

CHAPTER 12 | Configuring SSL/TLS Secure Associations

Overview of Secure Associations

Secure association

TLS session

Colocation

Configuration overview

328

Secure association is the CORBA term for any link between a client and a
server that enables invocations to be transmitted securely. In practice, a
secure association is often realized as a TCP/IP network connection
augmented by a particular security protocol (such as TLS) but many other
realizations are possible.

In the context of Orbix, secure associations always use TLS.

A TLS session is the TLS implementation of a secure client-server
association. The TLS session is accompanied by a session state that stores
the security characteristics of the association.

A TLS session underlies each secure association in Orbix.

For colocated invocations, that is where the calling code and called code
share the same address space, Orbix supports the establishment of
colocated secure associations. A special interceptor, TLS Col oc, is provided
by the security plug-in to optimize the transmission of secure, colocated
invocations.

The security characteristics of an association can be configured through the

following CORBA policy types:

® Client secure invocation policy—enables you to specify the security
requirements on the client side by setting association options. See
“Choosing Client Behavior” on page 334 for details.

® Target secure invocation policy—enables you to specify the security
requirements on the server side by setting association options. See
“Choosing Target Behavior” on page 336 for details.

® Mechanism policy—enables you to specify the security mechanism
used by secure associations. In the case of TLS, you are required to
specify a list of cipher suites for your application. See “Specifying
Cipher Suites” on page 343 for details.

Overview of Secure Associations

Figure 49 illustrates all of the elements that configure a secure association.
The security characteristics of the client and the server can be configured
independently of each other.

_ A Secure Association A
Client Server 1]

I I
TCIient ConfigurationT rServer ConfigurationT
Client Invocation - . Target Invocation - .
" Association Options . Association Options
Policy Policy
Mechanism Policy Specified Cipher Suites Mechanism Policy Specified Cipher Suites ‘

Figure 49: Configuration of a Secure Association

329

CHAPTER 12 | Configuring SSL/TLS Secure Associations

Setting Association Options

Overview This section explains the meaning of the various SSL/TLS association
options and describes how you can use the SSL/TLS association options to
set client and server secure invocation policies for both SSL/TLS and HTTPS
connections.

In this section The following subsections discuss the meaning of the settings and flags:
Secure Invocation Policies page 331
Association Options page 332
Choosing Client Behavior page 334
Choosing Target Behavior page 336
Hints for Setting Association Options page 338

330

Setting Association Options

Secure Invocation Policies

Secure invocation policies

OMG-defined policy types

Configuration example

You can set the minimum security requirements of objects in your system

with two types of security policy:

® Client secure invocation policy—specifies the client association
options.

® Target secure invocation policy—specifies the association options on a
target object.

These policies can only be set through configuration; they cannot be
specified programmatically by security-aware applications.

The client and target secure invocation policies correspond to the following
policy types, as defined in the OMG security specification:

® Security::Secdient Securel nvocation

d Security:: SecTarget Secur el nvocation

These policy types are, however, not directly accessible to programmers.

For example, to specify that client authentication is required for [IOP/TLS
connections, you can set the following target secure invocation policy for
your server:

Obix Configuration File
secure_server_enforce_client_auth

{

policies:iiop_tls:target_secure_invocation_policy:requires
["EstablishTrustInQient", "Confidentiality"];

policies:iiop_tls:target_secure_invocation_policy:supports =
["EstablishTrustInQient", "Confidentiality", "Integrity",
"Det ect Repl ay", "DetectM sordering",

"Establ i shTrust| nTarget"];

/] Qher settings (not shown)...

331

CHAPTER 12 | Configuring SSL/TLS Secure Associations

Association Options

Available options

NoProtection

Integrity

Confidentiality

DetectReplay

DetectMisordering

332

You can use association options to configure Orbix. They can be set for
clients or servers where appropriate. These are the available options:

® NoProtection

® Integrity

® (onfidentiality

® DetectRepl ay

® DetectMsordering

® EstablishTrust!nTarget
® EstablishTrustindient

Use the NoPr ot ect i on flag to set minimal protection.This means that
insecure bindings are supported, and (if the application supports something
other than NoProtection) the object can accept secure and insecure
invocations. This is the equivalent to SEMI_SECURE servers in OrbixSSL.

Use the I ntegrity flag to indicate that the object supports
integrity-protected invocations. Setting this flag implies that your TLS cipher
suites support message digests (such as MD5, SHA1).

Use the Confidenti al ity flag if your object requires or supports at least
confidentiality-protected invocations. The object can support this feature if
the cipher suites specified by the Mechani sniol i cy support
confidentiality-protected invocations.

Use the Det ect Repl ay flag to indicate that your object supports or requires
replay detection on invocation messages. This is determined by
characteristics of the supported TLS cipher suites.

Use the Det ect M sorderi ng flag to indicate that your object supports or
requires error detection on fragments of invocation messages. This is
determined by characteristics of the supported TLS cipher suites.

EstablishTrustIinTarget

EstablishTrustinClient

Setting Association Options

The Est abl i shTrust I nTar get flag is set for client policies only. Use the flag
to indicate that your client supports or requires that the target authenticate
its identity to the client. This is determined by characteristics of the
supported TLS cipher suites. This is normally set for both client support s
and requi r es unless anonymous cipher suites are supported.

Use the Est abl i shTrust I nd i ent flag to indicate that your target object
requires the client to authenticate its privileges to the target. This option
cannot be required as a client policy.

If this option is supported on a client’s policy, it means that the client is
prepared to authenticate its privileges to the target. On a target policy, the
target supports having the client authenticate its privileges to the target.

Note: Examples of all the common cases for configuring association
options can be found in the default Orbix configuration file—see the
denos. t | s scope of the ASPInstallDirl et c/ domai ns/ DomainName. cf g
configuration file.

333

CHAPTER 12 | Configuring SSL/TLS Secure Associations

Choosing Client Behavior

Client secure invocation policy The Security:: Secd i ent Secur el nvocat i on policy type determines how a
client handles security issues.

IIOP/TLS configuration You can set this policy for IIOP/TLS connections through the following
configuration variables:
policies:iiop_tls:client_secure_invocation_policy:requires
Specifies the minimum security features that the client requires to
establish an IIOP/TLS connection.

policies:iiop_tls:client_secure_invocation_policy:supports
Specifies the security features that the client is able to support on
IIOP/TLS connections.

HTTPS configuration You can set this policy for HTTPS connections through the following
configuration variables:
policies:https:client_secure_invocation_policy:requires
Specifies the minimum security features that the client requires to
establish a HTTPS connection.

policies:https:client_secure_invocation_policy:supports
Specifies the security features that the client is able to support on
HTTPS connections.

Association options In both cases, you provide the details of the security levels in the form of
Associ ati onQpt i on flags—see “Association Options” on page 332 and
Appendix D on page 635.

Default value The default value for the client secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,
Det ect M sorderi ng, EstablishTrustlnTarget

requires Integrity, Confidentiality, DetectReplay,
Det ect M sorderi ng, EstablishTrust!nTarget

334

Setting Association Options

In the default configuration file, the denos. t1's. bank_cl i ent scope specifies

Example
the following association options:
Obix Configuration File
In 'denos.tls’ scope
bank_client {

policies:iiop_tls:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustlnTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

}

335

CHAPTER 12 | Configuring SSL/TLS Secure Associations

Choosing Target Behavior

Target secure invocation policy

IIOP/TLS configuration

HTTPS configuration

Association options

Default value

336

The Security: : SecTar get Secur el nvocat i on policy type operates in a
similar way to the Security:: SecQ i ent Secur el nvocat i on policy type. It
determines how a target handles security issues.

You can set the target secure invocation policy for IIOP/TLS connections

through the following configuration variables:

policies:iiop_tls:target_secure_invocation_policy:requires
Specifies the minimum security features that your targets require,
before they accept an IIOP/TLS connection.

policies:iiop_tls:target_secure_invocation_policy:supports
Specifies the security features that your targets are able to support on
IIOP/TLS connections.

You can set the target secure invocation policy for HTTPS connections
through the following configuration variables:
policies: https:target_secure_invocation_policy:requires
Specifies the minimum security features that your targets require,
before they accept a HTTPS connection.
policies: https:target_secure_invocation_policy: supports
Specifies the security features that your targets are able to support on
HTTPS connections.

In both cases, you can provide the details of the security levels in the form of
Associ ati onQpt i on flags—see “Association Options” on page 332 and
Appendix D on page 635.

The default value for the target secure invocation policy is:

supports Integrity, Confidentiality, DetectReplay,
Det ect M sorderi ng, EstablishTrustlnTarget

requires Integrity, Confidentiality, DetectReplay,
Det ect M sor deri ng

Setting Association Options

Example In the default configuration file, the denos. t1's. bank_ser ver scope specifies

the following association options:

Obix Configuration File
In 'denos.tls’ scope

bank_server {

policies:iiop_tls:target_secure_invocation_policy:requires =

["Confidentiality"];

policies:iiop_tls:target_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

337

CHAPTER 12 | Configuring SSL/TLS Secure Associations

Hints for Setting Association Options

Overview

Use the sample scopes

Rules of thumb

338

This section gives an overview of how association options can be used in
real applications.

The quickest way to configure a secure SSL/TLS application is by basing the
configuration on one of the sample denos. t1s scopes in the

DomainName. cf g configuration file. In denos. t | s, there are sample scopes
that match all of the common use cases for SSL/TLS configuration.

For more details, see “Configuration samples” on page 66.

The following rules of thumb should be kept in mind:

® |If an association option is required by a particular invocation policy, it
must also be supported by that invocation policy. It makes no sense to
require an association option without supporting it.

® |tis important to be aware that the secure invocation policies and the
security mechanism policy mutually interact with each other. That is,
the association options effective for a particular secure association
depend on the available cipher suites (see “Constraints Imposed on
Cipher Suites” on page 348).

® The NoProtecti on option must appear alone in a list of required
options. It does not make sense to require other security options in
addition to NoPr ot ect i on.

Types of association option

EstablishTrustInTarget and

EstablishTrustinClient

Setting Association Options

Association options can be categorized into the following different types, as
shown in Table 16.

Table 16: Description of Different Types of Association Option

Description

Relevant Association Options

Request or require TLS peer
authentication.

EstablishTrustinTarget and
EstablishTrustInClient.

Quality of protection.

Confidentiality, Integrity,
DetectReplay, and
DetectMisordering.

Allow or require insecure
connections.

NoProtection.

These association options are used as follows:

Est abl i shTrust | nTar get —determines whether a server sends its own
X.5009 certificate to a client during the SSL/TLS handshake. In
practice, secure Orbix applications must enable

Est abl i shTrust I nTar get , because all of the cipher suites supported
by Orbix require it.

The Est abl i shTrust I nTar get association option should appear in all
of the configuration variables shown in the relevant row of Table 17.
Est abl i shTrust | nd i ent —determines whether a client sends its own
X.509 certificate to a server during the SSL/TLS handshake. The

Est abl i shTrust I nd i ent feature is optional and various combinations
of settings are possible involving this assocation option.

339

CHAPTER 12 | Configuring SSL/TLS Secure Associations

The Establ i shTrust I nd i ent association option can appear in any of
the configuration variables shown in the relevant row of Table 17.

Table 17: Setting EstablishTrustinTarget and EstablishTrustInClient

Association Options

Association Option

Client side—can appear in...

Server side—can appear in...

Est abl i shTrust | nTar get

policies:client_secure_invocation_pol
icy:supports

policies:client_secure_invocation_pol
icy:requires

policies:target_secure_invoca
tion_policy:supports

Est abl i shTrust I nQ i ent

policies:client_secure_invocation_pol
icy:supports

policies:target_secure_invoca
tion_policy: supports

pol i ci es: target _secure_invoca
tion_policy:requires

Confidentiality, Integrity,
DetectReplay, and
DetectMisordering

Note: The SSL/TLS client authentication step can also be affected by the
pol i ci es: al | ow unaut hent i cated_clients_pol i cy configuration

variable. See “policies” on page 570.

These association options can be considered together, because normally you
would require either all or none of these options. Most of the cipher suites
supported by Orbix support all of these association options, although there
are a couple of integrity-only ciphers that do not support Confidentiality
(see Table 21 on page 349). As a rule of thumb, if you want security you
generally would want all of these association options.

Table 18: Setting Quality of Protection Association Options

Association Options

Client side—can appear in...

Server side—can appear in...

Confidentiality,
Integrity,

Det ect Repl ay, and
Det ect M sor deri ng

policies:client_secure_invocation_pol
icy:supports

policies:client_secure_invocation_pol
icy:requires

policies:target_secure_invoca
tion_policy:supports

pol i ci es: target _secure_invoca
tion_policy:requires

340

Setting Association Options

A typical secure application would list a// of these association options in al/
of the configuration variables shown in Table 18.

Note: Some of the sample configurations appearing in the generated
configuration file require Confi denti al i ty, but not the other qualities of
protection. In practice, however, the list of required association options is
implicitly extended to include the other qualities of protection, because the
cipher suites that support Confi denti al ity also support the other
qualities of protection. This is an example of where the security
mechanism policy interacts with the secure invocation policies.

NoProtection The NoPr ot ect i on association option is used for two distinct purposes:

Disabling security selectively—security is disabled, either in the client
role or in the server role, if NoProt ecti on appears as the sole required
association option and as the sole supported association option in a
secure invocation policy. This mechanism is selective in the sense that
the client role and the server role can be independently configured as
either secure or insecure.

Note: In this case, the orb_pl ugi ns configuration variable should
include the i i op plug-in to enable insecure communication.

Making an application semi-secure—an application is semi-secure,
either in the client role or in the server role, if NoPr ot ect i on appears as
the sole required association option and as a supported association
option along with other secure association options. The meaning of
semi-secure in this context is, as follows:

. Semi-secure client—the client will open either a secure or an
insecure connection, depending on the disposition of the server
(that is, depending on whether the server accepts only secure
connections or only insecure connections). If the server is
semi-secure, the type of connection opened depends on the order
of the bindings in the bi ndi ng: cli ent _binding_list.

341

CHAPTER 12 | Configuring SSL/TLS Secure Associations

+ Semi-secure server—the server accepts connections either from a
secure or an insecure client.

Note: In this case, the orb_pl ugi ns configuration variable should
include both the iiop_tls plug-in and theii op plug-in.

Table 19 shows the configuration variables in which the NoPr ot ect i on
association option can appear.

Table 19: Setting the NoProtection Association Option

Association Option Client side—can appear in... Server side—can appear in...
NoPr ot ecti on policies:client_secure_invocation_pol policies:target_secure_invoca
icy:supports tion_policy:supports
policies:client_secure_invocation_pol policies:target_secure_invoca
icy:requires tion_policy:requires
References For more information about setting association options, see the following:

® “Securing Communications with SSL/TLS” on page 66.
® Thedenos.tls scope in a generated Orbix configuration file.

342

Specifying Cipher Suites

Specifying Cipher Suites

Overview

In this section

This section explains how to specify the list of cipher suites that are made
available to an application (client or server) for the purpose of establishing
secure associations. During a security handshake, the client chooses a
cipher suite that matches one of the cipher suites available to the server.
The cipher suite then determines the security algorithms that are used for
the secure association.

This section contains the following subsections:

Supported Cipher Suites page 344
Setting the Mechanism Policy page 346
Constraints Imposed on Cipher Suites page 348

343

CHAPTER 12 | Configuring SSL/TLS Secure Associations

Supported Cipher Suites

Orbix cipher suites

Security algorithms

Key exchange algorithms

Encryption algorithms

344

The following cipher suites are supported by Orbix:

Null encryption, integrity-only ciphers:

RSA WTH NULL_MD5
RSA WTH NULL_SHA

Standard ciphers

RSA EXPCRT_ W TH RC4_40_MXb
RSA WTH R4 128 M

RSA WTH R4 128 SHA

RSA EXPCRT_W TH DES40_CBC SHA
RSA WTH DES CBC SHA

RSA W TH_3DES_EDE_CBC SHA

Each cipher suite specifies a set of three security algorithms, which are used
at various stages during the lifetime of a secure association:

Key exchange algorithm—used during the security handshake to
enable authentication and the exchange of a symmetric key for
subsequent communication. Must be a public key algorithm.
Encryption algorithm—used for the encryption of messages after the
secure association has been established. Must be a symmetric (private
key) encryption algorithm.

Secure hash algorithm—used for generating digital signatures. This
algorithm is needed to guarantee message integrity.

The following key exchange algorithms are supported by Orbix:

RSA Rivest Shamir Adleman (RSA) public key encryption
using X.509v3 certificates. No restriction on the key size.
RSA EXPCRT RSA public key encryption using X.509v3 certificates.

Key size restricted to 512 bits.

The following encryption algorithms are supported by Orbix:

RCA_40 A symmetric encryption algorithm developed by RSA

data security. Key size restricted to 40 bits.

Secure hash algorithms

Cipher suite definitions

RCA_128
DESA0_CBC

DES CBC
3DES_EDE_CBC

Specifying Cipher Suites

RC4 with a 128-bit key.

Data encryption standard (DES) symmetric encryption.
Key size restricted to 40 bits.

DES with a 56-bit key.
Triple DES (encrypt, decrypt, encrypt) with an effective

key size of 168 bits.

The following secure hash algorithms are supported by Orbix:

M5

SHA

Message Digest 5 (MD5) hash algorithm. This algorithm
produces a 128-bit digest.

Secure hash algorithm (SHA). This algorithm produces a
160-bit digest, but is somewhat slower than MD5.

The Orbix cipher suites are defined as follows:

Table 20: Cipher Suite Definitions

Cipher Suite Key Exchange Encryption Secure Hash Exportable?
Algorithm Algorithm Algorithm
RSA W TH NULL_MD6 RSA NULL M5 yes
RSA WTH NULL_SHA RSA NULL SHA yes
RSA_EXPCRT_W TH_RC4_40_MX% RSA_EXPCRT RC4_40 M5 yes
RSA WTH RC4_128 MX% RSA RC4_128 M5 no
RSA WTH RC4_128 SHA RSA RC4_128 SHA no
RSA EXPCRT_W TH DES40_CBC SHA RSA_EXPCRT DES40_CBC SHA yes
RSA W TH DES _CBC SHA RSA DES_CBC SHA no
RSA W TH 3DES_EDE CBC SHA RSA 3DES EDE CBC | SHA no

Reference

For further details about cipher suites in the context of TLS, see RFC 2246
from the Internet Engineering Task Force (IETF). This document is available
from the IETF Web site: http://www.ietf.org.

345

http://www.ietf.org

CHAPTER 12 | Configuring SSL/TLS Secure Associations

Setting the Mechanism Policy

Mechanism policy

The protocol_version
configuration variable

Interoperating with CORBA
applications on 0S/390

346

To specify cipher suites, use the mechanism policy. The mechanism policy
is a client and server side security policy that determines

® Whether SSL or TLS is used, and
® Which specific cipher suites are to be used.

You can specify whether SSL, TLS or both are used with a transport protocol
by assigning a list of protocol versions to the

policies:iiop_tls:mechani smpolicy: protocol _version configuration
variable for IOP/TLS and the

pol i ci es: htt ps: mechani sm pol i cy: prot ocol _ver si on configuration
variable for HTTPS. For example:

Artix Configuration File
policies:iiop_tls:nechani smpolicy: protocol version =["TLS V1",
"SSL_V3"];

You can set the prot ocol _ver si on configuration variable to include one or
more of the following protocols:

TLS V1

SSL_V3

The order of the entries in the prot ocol _ver si on list is unimportant. During
the SSL/TLS handshake, the highest common protocol will be negotiated.

There are some implementations of SSL/TLS on the 0S/390 platform that
erroneously send SSL V2 client hellos at the start of an SSL V3 or TLS V1
handshake. If you need to interoperate with a CORBA application running
on 0S/390, you can configure Artix to accept SSL V2 client hellos using the
policies:iiop_tls:mechani smpolicy:accept_v2_hel | os configuration
variable for IIOP/TLS. For example:

Artix Configuration File
policies:iiop_tls:mechani smpolicy:accept_v2 hellos = "true";

The default is f al se.

The cipher suites configuration
variable

Cipher suite order

Valid cipher suites

Default values

Specifying Cipher Suites

You can specify the cipher suites available to a transport protocol by setting
the policies:iiop_tls:mechani smpolicy: ciphersuites configuration
variable for IIOP/TLS and the

pol i ci es: ht t ps: mechani sm pol i cy: ci pher sui t es configuration variable
for HTTPS. For example:

Obix Configuration File
policies:iiop_tls:mechani smpolicy:ciphersuites =
["RSA WTH NULL_MDG",
"RSA WTH NULL_SHA',
"RSA EXPORT_WTH RC4_40_MX%",
"RSA WTH RC4_128 MX%" |;

The order of the entries in the mechanism policy’s cipher suites list is
important.

During a security handshake, the client sends a list of acceptable cipher
suites to the server. The server then chooses the first of these cipher suites
that it finds acceptable. The secure association is, therefore, more likely to
use those cipher suites that are near the beginning of the ci phersui t es list.

You can specify any of the following cipher suites:
® Null encryption, integrity only ciphers:

RSA W TH_NULL_MDXb,

RSA WTH NULL_SHA
® Standard ciphers

RSA EXPORT_ W TH RCA_40_MDS,
RSA W TH_RCA_128_MD5,

RSA W TH RCA_128_SHA,

RSA EXPORT_W TH DES40_CBC SHA
RSA W TH_DES_CBC_SHA,

RSA W TH_3DES EDE_CBC SHA

If no cipher suites are specified through configuration or application code,
the following apply:

RSA WTH RCA 128 SHA,

RSA W TH RC4A_128_ M5,

RSA W TH_3DES_EDE_CBC SHA,

RSA WTH DES CBC SHA

347

CHAPTER 12 | Configuring SSL/TLS Secure Associations

Constraints Imposed on Cipher Suites

Effective cipher suites

Required and supported
association options

348

Figure 50 shows that cipher suites initially specified in the configuration are
not necessarily made available to the application. Orbix checks each cipher
suite for compatibility with the specified association options and, if
necessary, reduces the size of the list to produce a list of effective cipher
suites.

Association constrain Specified
Options Cipher Suites
yields ‘ ‘
Effective

Cipher Suites

Figure 50: Constraining the List of Cipher Suites

For example, in the context of the IIOP/TLS protocol the list of cipher suites

is affected by the following configuration options:

® Required association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:requires on
the client side, or
policies:iiop_tls:target_secure_i nvocation_policy:requires on
the server side.

® Supported association options—as listed in
policies:iiop_tls:client_secure_invocation_policy:supports on
the client side, or
policies:iiop_tls:target_secure_invocation_policy: supports on
the server side.

Specifying Cipher Suites

Cipher suite compatibility table Use Table 21 to determine whether or not a particular cipher suite is
compatible with your association options.

Table 21: Association Options Supported by Cipher Suites

Cipher Suite Supported Association Options

RSA WTH NULL_MX%B Integrity, DetectReplay,
Det ect M sor deri ng

RSA WTH NULL_SHA Integrity, DetectReplay,
Det ect M sorderi ng

RSA EXPCRT_W TH_RC4_40_MX% Integrity, DetectReplay,
Det ect M sordering, Confidentiality

RSA WTH RC4_128 MX»b Integrity, DetectReplay,
Det ect M sordering, Confidentiality

RSA WTH RC4_128 SHA Integrity, DetectReplay,
Det ect M sordering, Confidentiality

RSA EXPCRT_W TH_DESAO0_CBC_SHA Integrity, DetectReplay,
Det ect M sordering, Confidentiality

RSA WTH DES _CBC SHA Integrity, DetectReplay,
Det ect M sordering, Confidentiality

RSA W TH 3DES EDE CBC SHA Integrity, DetectReplay,
Det ect M sordering, Confidentiality

Determining compatibility The following algorithm is applied to the initial list of cipher suites:

1. Forthe purposes of the algorithm, ignore the Est abl i shTrust I nd i ent
and Est abl i shTrust | nTar get association options. These options have
no effect on the list of cipher suites.

2. From the initial list, remove any cipher suite whose supported
association options (see Table 21) do not satisfy the configured
required association options.

3. From the remaining list, remove any cipher suite that supports an
option (see Table 21) not included in the configured supported
association options.

349

CHAPTER 12 | Configuring SSL/TLS Secure Associations

No suitable cipher suites available

Example

350

If no suitable cipher suites are available as a result of incorrect
configuration, no communications will be possible and an exception will be
raised. Logging also provides more details on what went wrong.

For example, specifying a cipher suite such as RSA WTH RC4_128 M that
supports Confidentiality,|Integrity, DetectRepl ay, Det ect M sorderi ng,
Est abl i shTrust I nTarget (and optionally Est abl i shTrust I nQient) but
specifying a secure_i nvocat i on_pol i cy that supports only a subset of
those features results in that cipher suite being ignored.

Caching TLS Sessions

Caching TLS Sessions

Session caching policy

Configuration variable

Valid values

Default value

Configuration variable

Valid values

Default value

Configuration variable

Default value

You can use the I T_TLS API : : Sessi onCachi ngPol i cy to control TLS
session caching and reuse for both the client side and the server side.

You can set the | T_TLS API : : Sessi onCachi ngPol i cy with the
policies:iiop_tls:session_caching_policy or

pol i ci es: htt ps: sessi on_cachi ng_pol i cy configuration variables. For
example:

policies:iiop_tls:session_caching_policy = "CACHE CLI ENT";

You can apply the following values to the session caching policy:

CACHE_NONE,
CACHE_CLI ENT,
CACHE_SERVER
CACHE_SERVER AND_CLI ENT

The default value is CACHE_NONE.

plugins:atli_tls_tcp:session_cache validity period
This allows control over the period of time that SSL/TLS session caches
are valid for.

sessi on_cache_val i di ty_peri od is specified in seconds.

The default value is 1 day.

plugins:atli_tls_tcp: session_cache_size
sessi on_cache_si ze is the maximum number of SSL/TLS sessions that
are cached before sessions are flushed from the cache.

This defaults to no limit specified for C++.
This defaults to 100 for Java.

351

CHAPTER 12 | Configuring SSL/TLS Secure Associations

352

In this chapter

Configuring

SSL/TLS

CHAPTER 13

Authentication

This chapter describes how to configure the authentication

requirements for your application.

This chapter discusses the following topics:

Requiring Authentication page 354
Specifying Trusted CA Certificates page 361
Specifying an Application’s Own Certificate page 363
Providing a Pass Phrase or PIN page 367
Advanced Configuration Options page 374

353

CHAPTER 13 | Configuring SSL/TLS Authentication

Requiring Authentication

Overview

In this section

354

This section discusses how to specify whether a target object must
authenticate itself to a client and whether the client must authenticate itself
to the target. For a given client-server link, the authentication requirements
are governed by the following policies:

® Client secure invocation policy.

® Target secure invocation policy.

® Mechanism policy.

These policies are explained in detail in “Configuring SSL/TLS Secure

Associations” on page 327. This section focuses only on those aspects of
the policies that affect authentication.

There are two possible arrangements for a TLS secure association:

Target Authentication Only page 355

Target and Client Authentication page 358

Requiring Authentication

Target Authentication Only

Overview When an application is configured for target authentication only, the target
authenticates itself to the client but the client is not authentic to the target
object—see Figure 51.

Secure Association A
Client .

Server

Trusted CA Lists Authe_r!tlcate
Certificate

PKCS#12
CA Cert List 1 File

X.509

CA Cert List 2 ‘

L

X.509
CA

Figure 51: Target Authentication Only

Security handshake Prior to running the application, the client and server should be set up as

follows:

® Acertificate chain is associated with the server—the certificate chain is
provided in the form of a PKCS#12 file. See “Specifying an
Application’s Own Certificate” on page 363.

® One or more lists of trusted certification authorities (CA) are made
available to the client—see “Providing a List of Trusted Certificate
Authorities” on page 301.

During the security handshake, the server sends its certificate chain to the

client—see Figure 51. The client then searches its trusted CA lists to find a

CA certificate that matches one of the CA certificates in the server's

certificate chain.

355

CHAPTER 13 | Configuring SSL/TLS Authentication

Client configuration

Server configuration

356

For target authentication only, the client policies should be configured as

follows:

® Client secure invocation policy—must be configured both to require
and support the Est abl i shTrust | nTar get association option.

® Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target authentication. All of the cipher suites
currently provided by Orbix E2A support target authentication.

For target authentication only, the target policies should be configured as

follows:

® Target secure invocation policy—must be configured to support the
Est abl i shTrust | nTar get association option.

® Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target authentication. All of the cipher suites
currently provided by Orbix E2A support target authentication.

Example of target authentication
only

Requiring Authentication

The following sample extract from an Orbix E2A configuration file shows a
configuration for a CORBA client application, bank_cli ent, and a CORBA
server application, bank_server, in the case of target authentication only.

Obix Configuration File

policies:iiop_tls:nmechani smpolicy: protocol _version

policies:iiop_tls:mechani smpolicy:ciphersuites =
["RSA WTH RCA_128 SHA', "RSA WTH RCA_128 MX%"];

bank_server {

"SSL_V3";

policies:iiop tls:target_secure_invocation_policy:requires =

["Confidentiality"];

policies:iiop tls:target_secure_invocation_policy: supports =

["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];

};---

bank_client {

policies:iiop_tls:client_secure_invocation_policy:requires =

["Confidentiality", "EstablishTrustlnTarget"];

policies:iiop_tls:client_secure_invocation_policy:supports =

["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];
H

357

CHAPTER 13 | Configuring SSL/TLS Authentication

Target and Client Authentication

Overview When an application is configured for target and client authentication, the
target authenticates itself to the client and the client authenticates itself to
the target. This scenario is illustrated in Figure 52. In this case, the server
and the client each require an X.509 certificate for the security handshake.

PKCS#12
File
X.509

X.509
CA

Authenticate
Client

/_\T:usted CA Lists

CA Cert List 1

o
>
o
e | g
C
@
N

-

.

|
) =)
Client > Server

Secure Association

Trusted CA Lists
L

‘ CA Cert List 1

| I I

‘ CA Cert List 2

I

Authenticate ‘

Target |
PKCS#12
File

‘ X.509

X.509

Q
>

Figure 52: Target and Client Authentication

Security handshake Prior to running the application, the client and server should be set up as

follows:

358

Client configuration

Server configuration

Requiring Authentication

Both client and server have an associated certificate chain (PKCS#12
file)—see “Specifying an Application’s Own Certificate” on page 363.
Both client and server are configured with lists of trusted certification
authorities (CA)—see “Providing a List of Trusted Certificate
Authorities” on page 301.

During the security handshake, the server sends its certificate chain to the
client, and the client sends its certificate chain to the server—see Figure 51.

For target and client authentication, the client policies should be configured
as follows:

Client secure invocation policy—must be configured both to require
and support the Est abl i shTrust | nTarget association option. The
client also must support the Est abl i shTrust I nd i ent association
option.

Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target authentication.

For target and client authentication, the target policies should be configured
as follows:

Target secure invocation policy—must be configured to support the
Est abl i shTrust | nTar get association option. The target must also
require and support the Est abl i shTrust 1 nd i ent association option.
Mechanism policy—at least one of the specified cipher suites must be
capable of supporting target and client authentication.

359

CHAPTER 13 | Configuring SSL/TLS Authentication

Example of target and client
authentication

360

The following sample extract from an Orbix E2A configuration file shows a
configuration for a client application, secure _client_with_cert, and a
server application, secure_server_enforce_client_auth, in the case of
target and client authentication.

Obix Configuration File

policies:iiop_tls:nechani smpolicy: protocol version = "SSL V3";
policies:iiop_tls:mechani smpolicy:ciphersuites =
["RSA WTH RC4_128 SHA', "RSA WTH RC4_128 MX%"];

secure_server_enforce_client_auth
{
policies:iiop_tls:target_secure_invocation_policy:requires =
["EstablishTrustinQient", "Confidentiality"];
policies:iiop_tls:target _secure_invocation_policy:supports =
["EstablishTrustIndient", "Confidentiality", "Integrity",
"Det ect Repl ay", "DetectM sordering",
"EstablishTrust| nTarget"];

¥

secure_client_wth_cert
{
policies:iiop_tls:client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustlnTarget"];
policies:iiop_tls:client_secure_invocation_policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"Det ect M sordering", "EstablishTrustindient",
"Establ i shTrust | nTarget"];

Specifying Trusted CA Certificates

Specifying Trusted CA Certificates

Overview

Which applications need to

specify trusted CA certificates?

Deploying trusted CA certificates

Trusted CA list policy

Schannel certificate store

When an application receives an X.509 certificate during an SSL/TLS
handshake, the application decides whether or not to trust the received
certificate by checking whether the issuer CA is one of a pre-defined set of
trusted CA certificates. If the received X.509 certificate is validly signed by
one of the application’s trusted CA certificates, the certificate is deemed
trustworthy; otherwise, it is rejected.

Any application that is likely to receive an X.509 certificate as part of an
SSL/TLS or HTTPS handshake must specify a list of trusted CA certificates.
For example, this includes the following types of application:

® Al lIOP/TLS or HTTPS clients.

® Any IIOP/TLS or HTTPS servers that support mutual authentication.

You can use one of the following approaches to deploying trusted CA
certificates, depending on which SSL/TLS toolkit your application uses:

® Baltimore toolkit (all platforms)—use the Trusted CA list policy.

® Schannel toolkit (Windows C++ applications only)—use the Schannel
certificate store.

The trusted CA list policy specifies a list of files, each of which contains a
concatenated list of CA certificates in PEM format. You can configure this
policy by setting one of the following configuration variables in your
application’s configuration scope:

® policies:iiop_tls:trusted_ca_list_policy, for IOP/TLS, and
® policies:https:trusted_ca_list_policy, for HTTPS.

If you have configured your application to use the Schannel SSL/TLS toolkit
(Windows C+ + applications only), you would deploy trusted CA certificates
by adding them to the Schannel certificate store, which is an integral part of
the Windows operating system.

361

CHAPTER 13 | Configuring SSL/TLS Authentication

More details For more details about deploying trusted CA certificates, see one of the
following references:

® Baltimore toolkit—"Providing a List of Trusted Certificate Authorities”
on page 301.

® Schannel toolkit—"Deploying Trusted Certificate Authorities” on
page 320.

362

Specifying an Application’s Own Certificate

Specifying an Application’s Own Certificate

Overview

PKCS#12 files

To enable an Orbix application to identify itself, it must be associated with
an X.509 certificate. The X.509 certificate is needed during an SSL/TLS
handshake, where it is used to authenticate the application to its peers. The
method you use to specify the certificate depends on the type of application:
® Security unaware—configuration only,

® Security aware—configuration or programming.

This section describes how to specify a certificate by configuration only. For
details of the programming approach, see “Authentication” on page 461.

In practice, the TLS protocol needs more than just an X.509 certificate to

support application authentication. Orbix therefore stores X.509 certificates

in a PKCS#12 file, which contains the following elements:

® The application certificate, in X.509 format.

® One or more certificate authority (CA) certificates, which vouch for the
authenticity of the application certificate (see also “Certification
Authorities” on page 284).

®* The application certificate’s private key (encrypted).

In addition to the encryption of the private key within the certificate, the
whole PKCS#12 certificate is also stored in encrypted form.

Note: The same pass phrase is used both for the encryption of the private
key within the PKCS#12 file and for the encryption of the PKCS#12 file
overall. This condition (same pass phrase) is not officially part of the
PKCS#12 standard, but it is enforced by most Web browsers and by
Orbix.

363

CHAPTER 13 | Configuring SSL/TLS Authentication

PKCS#11 and smart cards

Schannel certificate store

SSL/TLS principal sponsor

364

Figure 53 shows the typical elements in a PKCS#12 file.

PKCS#12 File
X.509 i
A
— Certificate Chain
X.509
CA
O— < Private Key

Figure 53: Elements in a PKCS#12 File

Orbix supports the use of smart cards for storing credentials. Orbix accesses
the smart card through a standard PKCS#11 interface (implemented by the
third-party toolkit from Baltimore).

Smart card storage is arranged as a series of slots. To use the smart card
with Orbix, slot 0 should be initialized to contain an X.509 certificate chain
and a public/private key pair. The user gains access to the data in the smart
card by supplying a slot number and a PIN.

(Windows C+ + applications only) If you have configured your application to
use the Schannel toolkit, the applications own certificate will be stored in
the Schannel certificate store, which is an integral part of the Windows
operation system. For details of how to manage the certificate store, see
“Schannel Certificate Store” on page 315.

The SSL/TLS principal sponsor is a piece of code embedded in the security
plug-in that obtains SSL/TLS authentication information for an application.
It is configured by setting variables in the Orbix configuration.

Single or multiple certificates

Principal sponsor configuration

Sample PKCS #12 configuration

Sample PKCS #11 configuration

Sample Schannel configuration

Specifying an Application’s Own Certificate

The SSL/TLS principal sponsor is limited to specifying a single certificate for
each ORB scope. This is sufficient for most applications.

Specifying multiple certificates for a single ORB can only be achieved by
programming (see “Authentication” on page 461). If an application is
programmed to own multiple certificates, that application ought to be
accompanied by documentation that explains how to specify the certificates.

To use a principal sponsor, you must set the pri nci pal _sponsor
configuration variables:

1. Set the variable pri nci pal _sponsor: use_pri nci pal _sponsor to true.

2. Provide values for the pri nci pal _sponsor: aut h_net hod_i d and
princi pal _sponsor : aut h_net hod_dat a variables.

For example, to use a certificate, DemoCerts/ demo_cert _i €5. p12, that has
its password in the DemoCerts/ deno_cert _i e5. pwf file:
princi pal _sponsor: use_princi pal _sponsor = "true";
princi pal _sponsor:auth_method_id = "pkcsl2 file";
princi pal _sponsor: aut h_net hod_data =
["fil ename=DemoCerts/ deno_cert _i e5. p12",
"password_fil e=DemoCerts/ demo_cert _ie5. pwi"];
Details of these configuration variables can be found in “principal_sponsor
Namespace” on page 507.

(Java only.) For example, to use a smart card from the provider,

dkck132. dl | (Baltimore), with credentials in slot 0:

princi pal _sponsor: use_princi pal _sponsor = "true";

princi pal _sponsor:auth_nethod_id = "pkcsll";

princi pal _sponsor: aut h_nethod_data = ["provi der =dkck132.dl | ",
"slot=0"];

Details of these configuration variables can be found in “principal_sponsor

Namespace” on page 507.

(Windows C+ + applications only) If you have configured your application to
use the Schannel toolkit, you should set the principal sponsor as follows:

princi pal _sponsor: use_princi pal _sponsor = "true";
principal _sponsor:auth_nethod_id = "security_| abel ";

365

CHAPTER 13 | Configuring SSL/TLS Authentication

Credentials sharing

366

pri nci pal _sponsor: aut h_met hod_data = ["| abel =CommonName"];
Where CommonName is the common name (CN) from the certificate’s
subject DN (see “ASN.1 and Distinguished Names” on page 629).

Normally, when you specify an own credential using the SSL/TLS principal
sponsor, the credential is available only to the ORB that created it. By
setting the pl ugi ns: security: share_credential s_across_or bs variable to
true, however, the own credentials created by one ORB are automatically
made available to any other ORBs that are configured to share credentials.

Providing a Pass Phrase or PIN

Providing a Pass Phrase or PIN

Overview

In this section

When you specify an application’s own certificate, in the form of a certificate
file or smart card, you must also provide authorization data that decrypts the
certificate’s private key, as follows:

® PKCS#12 certificate file—provide a pass phrase,

® PKCS#11 or Schannel smart card—provide a PIN.

This section contains the following subsections:

Providing a Certificate Pass Phrase page 368

Providing a Smart Card PIN page 372

367

CHAPTER 13 | Configuring SSL/TLS Authentication

Providing a Certificate Pass Phrase

Overview

From a dialog prompt

368

Once you have specified a PKCS#12 certificate, you must also provide its
pass phrase. The pass phrase is needed to decrypt the certificate’s private
key (which is used during the TLS security handshake to prove the
certificate’s authenticity).

The pass phrase can be provided in one of the following ways:
® From a dialog prompt.

® From the KDM server.

® |n a password file.

® Directly in configuration.

If the pass phrase is not specified in any other way, Orbix will prompt the
user for the pass phrase as the application starts up. This approach is
suitable for persistent (that is, manually-launched) servers.

C+ + Applications

When a C+ + application starts up, the user is prompted for the pass phrase
at the command line as follows:

Initializing the CRB
Enter password :

Providing a Pass Phrase or PIN

Java Applications Using PKCS #12

If the Java application uses a PKCS #12 file to store its certificate, the
following dialog window pops up to prompt the user for the pass phrase:

X

File |C:U3«5F'5.Dlurbi}{_arﬂz.Dletclﬂsmﬁﬂglceﬂei |

Password | |

‘ Login | | Exit |

Figure 54: Java Dialog Window for Certificate Pass Phrase

The Java dialog window can also be customized by programming. See
“principal_sponsor Namespace” on page 507.

From the KDM server The pass phrase can be obtained automatically from the KDM server as the
application starts up. This mechanism is suitable for automatically launched
servers. See “Automatic Activation of Secure Servers” on page 381 for
details.

369

CHAPTER 13 | Configuring SSL/TLS Authentication

In a password file The pass phrase is stored in a password file whose location is specified in
the pri nci pal _sponsor: aut h_net hod_dat a configuration variable using the
passwor d_fil e option. For example, the i ona_ser vi ces scope configures
the principal sponsor as follows:

Obix Configuration File
i ona_services {

princi pal _sponsor: use_princi pal _sponsor = "true";

princi pal _sponsor:auth_nmethod_id = "pkcsl2 file";

princi pal _sponsor: aut h_net hod_data =
["fil ename=ASPInstallDin\ asp\ 6. 0\ et c\ t | s\ x509\ cert s\ servi ces\ a
dm ni strat or. pl2",
"password_fi | e=ASPInstallDin asp\ 6. 0\ et c\ t | s\ x509\ cert s\ servi ¢
es\adm ni strator. pwf"];

o

In this example, the pass phrase for the bank_server. p12 certificate is
stored in the admi ni strat or. pwd file, which contains the following pass
phrase:

adm ni strat or pass

WARNING: Because the password file stores the pass phrase in plain text,
the password file should not be readable by anyone except the
administrator. For greater security, you could supply the pass phrase from
a dialog prompt instead.

370

Providing a Pass Phrase or PIN

Directly in configuration For a PKCS #12 file, the pass phrase can be specified directly in the
princi pal _sponsor : aut h_net hod_dat a configuration variable using the
passwor d option. For example, the bank_server demonstration configures
the principal sponsor as follows:

Obix Configuration File
bank_server {

princi pal _sponsor: use_pri nci pal _sponsor = "true";

princi pal _sponsor:auth_met hod_id = "pkcsl12 file";

princi pal _sponsor: aut h_net hod_data =
["fil ename=ASPInstallDir\ asp\ 6. 0\ et c\ t | s\ x509\ cer t s\ denos\ bank
_server. pl2", "password=bankserverpass"];

Ik

In this example, the pass phrase for the bank_ser ver. p12 certificate is
bankser ver pass.

WARNING: Storing the pass phrase directly in configuration is not
recommended for deployed systems. The pass phrase is in plain text and
could be read by anyone.

371

CHAPTER 13 | Configuring SSL/TLS Authentication

Providing a Smart Card PIN

Overview

From a dialog prompt

372

If you are using a smart card (PKCS #11 or Schannel), you must provide a
PIN when the application starts up to gain access to the smart card.

The PIN can be provided in one of the following ways:
® From a dialog prompt.
® Directly in configuration (PKCS#11 only).

If the PIN is not specified in any other way, Orbix will prompt the user for
the PIN as the application starts up.

Java Applications Using PKCS #11 (Smart Card)

If the Java application uses a smart card to store its certificate, the following
dialog window pops up to prompt the user for the provider name, slot
number, and PIN:

|

Provider |dkck1 32.dI |

Slot |0 |

Ok Exit

Figure 55: Java Dialog Window for Certificate PIN

Providing a Pass Phrase or PIN

Windows C++ Application Using Schannel (Smart Card)

If your C+ + application is configured to use Schannel in combination with a
smart card, the following dialog window pops up to prompt the user for the
smart card PIN:

Cryptographic Service Provider

Enter User Pass Phrase:

(]9 I Cancel |

Figure 56: Schannel Dialog Window for Certificate PIN

Directly in configuration The PKCS #11 authentication mechanism allows you to specify the PIN
(PKCS#11 only) directly in configuration.

The PIN can be specified directly in the
princi pal _sponsor : aut h_net hod_dat a configuration variable using the pi n
option. For example:

Obix Configuration File
bank_server {

princi pal _sponsor: use_princi pal _sponsor = "true";
pri nci pal _sponsor: auth_net hod_i d = "pkecs11";
pri nci pal _sponsor: aut h_net hod_data = [" provi der =dkck132.dl | ",
"slot=0", "pin=1234"];
ik

In this example, the PIN for slot 0 of the smart card is 1234.

WARNING: Storing the PIN directly in configuration is not recommended
for deployed systems. The PIN is in plain text and could be read by
anyone.

373

CHAPTER 13 | Configuring SSL/TLS Authentication

Advanced Configuration Options

Overview For added security, Orbix allows you to apply extra conditions on
certificates. Before reading this section you might find it helpful to consult
“Managing Certificates” on page 281, which provides some background
information on the structure of certificates.

In this section This section discusses the following advanced configuration options:
Setting a Maximum Certificate Chain Length page 375
Applying Constraints to Certificates page 376
Delaying Credential Gathering page 378

374

Advanced Configuration Options

Setting a Maximum Certificate Chain Length

Max chain length policy

Example

Configuration variable

Default value

You can use the MaxChai nLengt hPol i cy to enforce the maximum length of
certificate chains presented by a peer during handshaking.

A certificate chain is made up of a root CA at the top, an application
certificate at the bottom and any number of CA intermediaries in between.
The length that this policy applies to is the (inclusive) length of the chain
from the application certificate presented to the first signer in the chain that
appears in the list of trusted CA's (as specified in the

Trust edCALi st Pol i cy).

For example, a chain length of 2 mandates that the certificate of the
immediate signer of the peer application certificate presented must appear
in the list of trusted CA certificates.

You can specify the maximum length of certificate chains used in
MaxChai nLengt hPol i cy with the

policies:iiop_tls:nmax_chain_| ength_policy and

pol i ci es: htt ps: max_chai n_I engt h_pol i cy configuration variables. For
example:

policies:iiop_tls:max_chain_length_policy = "4";

The default value is 2 (that is, the application certificate and its signer,
where the signer must appear in the list of trusted CA'’s.

375

CHAPTER 13 | Configuring SSL/TLS Authentication

Applying Constraints to Certificates

Certificate constraints policy

Configuration variable

Constraint language

Example

376

You can use the Cert Const rai nt sPol i cy to apply constraints to peer X.509
certificates by the default Certi fi cat eval i dat or Pol i cy. These conditions
are applied to the owner’s distinguished name (DN) on the first certificate
(peer certificate) of the received certificate chain. Distinguished names are
made up of a number of distinct fields, the most common being
Organization Unit (OU) and Common Name (CN).

You can specify a list of constraints to be used by Cert Const rai nt sPol i cy
through the policies:iiop_tls:certificate_constraints_policy or
policies: https:certificate_constraints_policy configuration variables.
For example:
policies:iiop_tls:certificate_constraints_policy =
[" ON=Johnny*, QU=[unit 1| | T_SSL], O=l ONA, C=l rel and, ST=Dubl i n, L=Ea
rth", " ON=Paul *, QU=SSLTEAM O=l ONA, C=I rel and, ST=Dubl i n, L=Eart h",
" ONETheQmi pot ent One"] ;

These are the special characters and their meanings in the constraint list:

* Matches any text. For example:
an* matches ant and anger, but not aunt
[] Grouping symbols.
| Choice symbol. For example:

OU[unit1] I T_SSL] signifies that if the QUis unit1
or 1 T_SSL, the certificate is acceptable.

= 1= Signify equality and inequality respectively.

This is an example list of constraints:

policies:iiop_tls:certificate_constraints_policy = [
"O[unit1] 1 T_SSL], CN=St eve*, L=Dubl i n",

"OQUEI T_ART*, QU =l T_ARTt est er s, ON=[Jan| Donal], ST=

Bost on"];

This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

| f

Distinguished names

Advanced Configuration Options

The QUis unitl or I T_SSL
And
The ON begins with the text Steve
And
The location is Dublin
Then the certificate is acceptabl e
E se (rmoving on to the second constraint)
| f
The QU begins with the text |T_ART but isn't |T_ARTtesters
And
The comon nane is either Donal or Jan
And
The State is Boston
Then the certificate is acceptabl e
QG herwi se the certificate is unacceptable.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "ON =" might not be recognized, where "CN=" is recognized.

For more information on distinguished names, see “ASN.1 and
Distinguished Names” on page 629.

377

CHAPTER 13 | Configuring SSL/TLS Authentication

Delaying Credential Gathering

Overview

SSL/TLS handshake process

378

Delayed credential gathering is a feature that enables a client to send an
X.509 certificate to a secure server at a later point in the SSL/TLS
handshake. The advantage of this handshake procedure is that the server
sends the client a list of trusted CA certificates. Hence, the client can select
a certificate at runtime which is compatible with the server’s trusted CA
certificates.

Note: Delayed credential gathering is currently only supported in
combination with the Schannel SSL/TLS toolkit (Windows C+ +
applications only). See “Choosing an SSL/TLS Toolkit” on page 269.

Delayed credential gathering occurs during the course of the SSL/TLS
handshake process as follows:

Stage Description

1 | Aclient opens a new connection to a secure server and initiates
the SSL/TLS connection handshake.

2 | The client does not initially send an X.509 certificate to the
server, although the client supports authentication (that is, the
Establ i shTrust | nd i ent association option is supported on
the client side, but the principal sponsor is disabled).

3 | At a later stage of the handshake, the server gives the client a
second chance to send an X.509 certificate. The server
explicitly requests a certificate from the client and sends a list
of all the CA certificates it is willing to trust.

4 | At this point, if delayed credential gathering is enabled, the
client will select a certificate and send it on to the server.
Depending on the configuration, the certificate is selected
either by default or manually by the user.

If delayed credential gathering is not enabled, connection
establishment would fail at this point.

Enabling delayed credential
gathering

Prompting the user for credentials

Choosing credentials by default

Example client configuration

Advanced Configuration Options

Delayed credential gathering is enabled by setting the following variable to
true in the relevant scope of your Orbix configuration:

plugins:iiop_tls:delay_credential _gathering_until_handshake

When the server requests a client certificate during the SSL/TLS handshake,
the certificate can be selected using one of the following procedures:

® Prompting the user for credentials.
® Choosing credentials by default.

To enable the user to choose a client certificate at SSL/TLS handshake time,
you should set the pl ugi ns: schannel : pronpt _wi th_credential _choi ce
variable to true. For example:

plugins:iiop_tls:delay_credential gathering_until_handshake =
"true";
pl ugi ns: schannel : pronpt _wi th_credential _choice = "true";

If the pl ugi ns: schannel : pronpt _wi t h_credenti al _choi ce variable is set to
false, the default behavior is for Orbix to choose the first certificate it can
find in the certificate store that meets the applicable constraints. For
example, you can enable a default credential choice as follows

plugins:iiop_tls:delay_credential gathering_until_handshake =
"true";

pl ugi ns: schannel : pronpt _with_credential _choice = "fal se";

Example 39 shows how to configure an SSL/TLS client to use delayed
credential gathering.

Example 39: Client Configuration with Delayed Credential Gathering
Obix configuration file

Schannel A i ent Appl i cation {
Configuration to | oad Schannel tool kit (not shown)

SSL/ TLS Confi guration

pol i ci es: client_secure_invocation_policy:requires =
["Confidentiality", "EstablishTrustlnTarget"];

379

CHAPTER 13 | Configuring SSL/TLS Authentication

380

Example 39: Client Configuration with Delayed Credential Gathering

Ik

pol i cies: client_secure_invocation_policy:supports =
["Confidentiality", "Integrity”, "DetectReplay",

"Det ect M sordering", "EstablishTrustlnTarget",
"EstablishTrustindient"];

Del ayi ng credential s gaterhi ng

pri nci pal _sponsor: use_pri nci pal _sponsor = "fal se";
pl ugi ns:iiop_tls:delay credential _gathering_until_handshake
= "true";

pl ugi ns: schannel : pronpt _wi th_credential _choice = "true";

The preceding configuration example can be explained as follows:

1.

A basic prerequisite for delayed credential gathering is that your
application is configured to use the Schannel toolkit (see “Schannel
Toolkit for C++" on page 272 for details).

The client must support the Est abl i shTrust 1 nd i ent association
option.

The principal sponsor must be disabled when using the delayed
credential gathering feature; in addition you must ensure that no
certificate is associated with the client through programming the
principal authenticator.

The del ay_credential _gat heri ng_until _handshake variable is set to
true to enable delayed credential gathering.

In this example, the pronpt _wi th_credenti al _choi ce variable is set to
true so that Schannel will prompt the user for credentials at SSL/TLS
handshake time. You could also set this variable to false, if you want to
let Orbix choose the credentials by default.

In this chapter

Automatic

Activation of

CHAPTER 14

Secure Servers

Every server secured with Orbix has an associated certificate
and private key. To access its private key, and use it to encrypt
messages, a server must retrieve the associated pass phrase.
This chapter shows you how to use Orbix administration to

supply pass phrases to servers.

This chapter covers the following topics:

Managing Server Pass Phrases page 382
Protecting against Server Imposters page 385
How the KDM Activates a Secure Server page 387
KDM Administration page 389
Setting Up the KDM page 392
Registering a Secure Server page 394

381

CHAPTER 14 | Automatic Activation of Secure Servers

Managing Server Pass Phrases

Overview

Persistent activation

Automatic activation

Key distribution management

382

Every server secured with Orbix has an associated certificate and private
key. To access the private key, which is stored in encrypted form, a pass
phrase must be supplied to the server as it starts up. The server is then able
to identify itself to other applications that require authentication.

To activate a secure server persistently (manual start-up), the server's pass
phrase must be supplied by the operator who is starting the process.
Typically, the operator types in the pass phrase manually in response to a
login prompt at the console.

To activate a secure server automatically (in response to a client request),
the server's pass phrase should be supplied automatically because it would
be impractical for the server to wait for manual intervention. This is
particularly true of high availability environments. It is necessary, therefore,
to have a mechanism for automatic delivery of authentication data to a
server.

Orbix provides the key distribution management (KDM) mechanism to
manage the authentication data required by servers. The KDM manages the
storage of authentication data and is responsible for delivering the
authentication data to automatically activated servers.

KDM architecture

The KDM server

The key distribution repository

Managing Server Pass Phrases

Figure 57 shows the main components of the KDM architecture:

Acgvation

Reguest Request Node (&)
41% o—— Locator [1]] Daemon 1]

‘ o— KDM Server ‘
IMR

‘ Key Distribution
Repository

- - 0 - - _]

[

Figure 57: The KDM Architecture

The main component of the KDM is the KDM server, which is implemented
as a plug-in and embedded in the locator service. The main responsibility of
the KDM server is to manage the secure storage and retrieval of
authentication data.

The key distribution repository (KDR) is the database that stores

authentication data for the KDM server.The KDR currently stores the

following information:

® Pass phrases—a pass phrase is stored in the form of an ORB
name/pass phrase association. Given an ORB name, the KDM server
can retrieve the associated pass phrase. Just one pass phrase can be
stored per ORB name.

® Checksums—a checksum is generated for a particular server record in
the IMR and stored in the form of a process name/checksum
association. Checksums are described in “Protecting against Server
Imposters” on page 385.

383

CHAPTER 14 | Automatic Activation of Secure Servers

Role of the locator

Role of the node daemon

384

When the locator receives a client request for an inactive server, the role of
the locator is to contact the KDM server (a plug-in to the locator), retrieve
the server's authentication data and send the authentication data on to the
node daemon.

When the node daemon receives an activation request from the locator, the
node daemon launches the corresponding server process and passes the
authentication data to the server as it starts up.

Protecting against Server Imposters

Protecting against Server Imposters

Security threats

Protection measures

The secure_directories
configuration variable

A server imposter is a rogue server executable that runs in place of a
legitimate server application.The KDM must ensure that authentication data
are not supplied to server imposters. The following forms of attack must be
guarded against:

® Replacing the server executable by an imposter.

® Replacing one or more Orbix plug-ins by imposters.

® Tampering with the IMR record to point at a rogue executable.

The following measures should be taken to protect against server imposters:

® Place all server executables in a trusted directory (for example, one
secured by the operating system).

® Place all plug-in libraries in a trusted directory.

® Specify the list of trusted directories in the node daemon’s
secur e_di rectori es configuration variable.

® Use the KDM checksum facility to protect the IMR record from
tampering.

The secure_directori es configuration variable specifies a list of trusted
directories to the node daemon. For example, on the Windows platform you
could set it as follows:

Obix B2A Configuration File
i ona_servi ces {

node_daenon {

secure_directories = ["c:\trusted_servers",
"c:\trusted_apps"];

}
IE

If the node daemon’s secur e_di rect ori es configuration variable is set, only
server executables stored in one of the listed directories can be launched.

385

CHAPTER 14 | Automatic Activation of Secure Servers

Checksums

386

The server's IMR record contains details of where to find the server
executable and other server activation information. By protecting the IMR
record from tampering, you can ensure that the KDM passes its
authentication data only to a known server executable.

After an administrator creates or modifies a server's IMR record the
administrator generates an associated checksum for the IMR record. The
checksum is then stored in the KDR database, in the form of a process
name/checksum association.

How the KDM Activates a Secure Server

How the KDM Activates a Secure Server

Overview When the KDM mechanism is used, two different kinds of server activation

are supported, as follows:

® Insecure server activation—the server is activated using the normal
(insecure) activation mechanism. A server is implicitly treated as
insecure if no pass phrases are registered for the server.

® Secure server activation—the server is activated using a secure
activation algorithm. The KDM supplies pass phrases to the server and
verifies the server's checksum.

Activation process Figure 58 outlines the steps for activating a secure server:

@ Client (@ Pass SeTurity

Request) i (=
a O Locator ‘ tribu

es Node
O
Daemon n

@ Activate and
Pass Security

\
‘ Attriblﬁtes

o— KDM Server

Checksum

(3 Retrieve
Pass Phrase

=)
Server

‘ @ Verity

IMR

L kR

|

Figure 58: Automatic Activation of a Secure Server

387

CHAPTER 14 | Automatic Activation of Secure Servers

Description

388

The secure server shown in Figure 58 is activated using the KDM, as

follows:

Stage

Description

1

A client makes a request on a server that is currently inactive.

In Figure 58, the client request (a Request or Locat eRequest
message) is sent to the locator. The example assumes that the
target object belongs to an indirect persistent POA.

The locator requests the server's checksum from the KDM,
which attempts to retrieve the checksum from the KDR
database.

If there is a checksum for the server, the checksum for the
server’s current IMR record is calculated and compared with
the retrieved checksum. If the checksums do not match, the
locator reports an error.

The locator requests the server pass phrases from the KDM,
which retrieves the pass phrases from the KDR database.

If there are pass phrases but no checksum for the server, the
locator reports an error (unless the

pl ugi ns: kdm checksuns_opt i onal configuration variable is set
to fal se).

If there are no pass phrases registered for the server, the
locator reverts to the standard procedure for activating an
insecure server at this point.

The locator sends an activation request and authentication data
to the node daemon.

The node daemon activates the server and passes the
authentication data to the server as it starts up.

KDM Administration

KDM Administration

Overview

Logging In

An administrator uses an extended version of the i t admi n utility to manage
the pass phrases and checksums stored in the KDR. In a secure
environment, the i t adm n utility includes a KDM administration plug-in,
kdm adm Figure 59 shows how the i t admi n utility communicates with the
KDM server.

S
‘ Host 1 ‘
i tadm n Client ‘ oO— Locator ‘
KDM
= Subcommands
1] kdm_adm A KDM Server ‘
Plug-In \
Enter
Administration ‘
Commands ‘
Key Distribution IMR ‘
Repository

Figure 59: Using itadmin to Manage the KDM Server

Whenever the administrator invokes a KDM command (kdm admor
checksum the i t adm n client communicates directly with a secure IP port on
the KDM server (separate from the locator’s ports).

Before invoking i t adnmi n commands to manage the KDM, an administrator
must log on to the i t adm n utility. To log on, enter the following at a
command prompt:

itadmn

% admi n_l ogon | ogi n identity

389

CHAPTER 14 | Automatic Activation of Secure Servers

Commands

390

Pl ease enter password for identity identity:

%

After entering i t admi n, subsequent commands are entered in i t adm n script
mode (see Administrator’s Guide). The adm n_| ogon command logs the
administrator on to the i t adm n utility using the X.509 certificate specified
by identity. The administrator then enters the pass phrase to access the
certificate.

See the Administrator’s Guide for full details of the adni n_| ogon command
syntax.

Two new administration commands, kdm admand checksum are provided
for the KDM. These commands are used from within the i t adm n scripting
mode.

The kdm admcommand manages pass phrases stored in the KDR. The
command supports the following subcommands and options:

Table 22: The kdm_adm Administration Command

Command Subcommand and Options

kdm adm create -orbname name [-password pass_phrase]

confirm -orbname name

renove -orbname name

list [-count]

change_pw

KDM Administration

The checksumcommand manages server checksums stored in the KDR. The
command supports the following subcommands and options:

Table 23: The checksum Administration Command

Command

Subcommand and Options

checksum

create -orbname name [-password pass_phrase]

confirm -orbname name

renove -orbnanme name

list [-count]

See the Administrator’s Guide for detailed descriptions of these commands.
Examples of using these commands appear in “Registering a Secure Server”

on page 394.

Configuration The KDM is configured by two sets of variables, as follows:

Table 24: Prefixes for KDM Configuration Variables

Prefix

Description

pl ugi ns: kdm

Variables with this prefix configure the KDM server
plug-in, which is embedded in the locator service.

pl ugi ns: kdm adm | Variables with this prefix configure the KDM

administration plug-in, which is embedded in the
i t admi n utility.

A complete list and descriptions of KDM configuration variables is provided
in the Appendix A on page 485.

391

CHAPTER 14 | Automatic Activation of Secure Servers

Setting Up the KDM

Setting up a secure domain

Using secure directories

Defining certificate constraints

392

Use the i t confi gur e utility to create a secure domain that includes the
KDM. You must choose file-based configuration instead of the configuration
repository (CFR) on a secure domain, because the CFR is completely
insecure.

WARNING: Because there is no security on the CFR, anyone could update
the CFR so that the KDM uses their certificate. Such an individual would
then be able to read all the KDM passwords.

When an administrator enables automatic activation of a secure server, it
becomes possible for remote clients to trigger activation of the secure server.
It is, therefore, essential to protect server executables from being overwritten
by storing them in a trusted directory.

Create a directory, SecureServerDir, that is accessible only to administrators
and store your secure server executables in this directory. Add the secure
directory, SecureServerDir, to the node daemon'’s list of trusted directories.
For example:

O bix E2A Configuration File
i ona_services {

node_daenon {
secure_directories = ["SecureServerDir'];

I8
Ik

In a real deployment, you must define a set of certificate constraints for the

KDM. The following certificate constraints are relevant to the KDM:

® plugins: kdmcert _const rai nt s—restricts access to the KDM server,
protecting it from unauthorized clients. See
“plugins:kdm:cert_constraints” on page 494 for details of how to set
this variable.

Setting Up the KDM

® plugins: kdm adm cert _const rai nt s—protects the i t admi n utility
from rogue applications that might attempt to impersonate the KDM
server. See “plugins:kdm_adm:cert_constraints” on page 495 for
details of how to set this variable.

Creating and installing When you create a new set of X.509 certificates for use with Orbix, you
administration certificates need to choose a naming pattern for your Distinguished Names that is
compatible with the KDM certificate constraints. In particular, your
certificates should satisfy the following conditions:
® The Orbix locator certificate (also used by the KDM server) must satisfy
the pl ugi ns: kdm adm cert _constrai nt s certificate constraints.
® Certificates with administrator privileges should satisfy the
pl ugi ns: kdm cert _const rai nt s certificate constraints.
® Other certificates must not satisfy the KDM certificate constraints.
To deploy the administrator certificates (that is, the certificates used by
i t adm n), create a secure directory AdminCerts, copy the administrator
certificates to this directory, and set the i t adnmi n_x509_cert _r oot
configuration variable equal to AdminCerts.

393

CHAPTER 14 | Automatic Activation of Secure Servers

Registering a Secure Server

Server registration steps

394

You must register the server with the locator daemon to enable it to find the
server when requested by a client. To register the server with the locator,
perform the following steps:

1.

Enter i t adni n. This starts the Orbix administration command shell,
and avoids typing i t adni n before each command.

Register the server's persistent POA name and ORB name with the
locator, using the following commands:

% or bnane create denos.tls. secure_bank_ext ended_server
% poa create -replica denos.tls. secure_bank_ext ended_server
bank_ser ver _persi st ent _poa

The first command creates an ORB name called

denos. tls. secure_bank_ext ended_server. The second creates a POA
name called bank_server _persi stent_poa, and associates it with
denos. t1s. secur e_bank_ext ended_ser ver ORB name, using the
-repl i ca option. For more details about POA names and ORB names,
see the Administrator’s Guide.

Register the server process name with the locator.

C++ Server
To register a C++ process name, use the following command:

UNIX
% process create -node_daenon host name/it_node_daenon
- pat hnane
{install-dir/asp/6.0/denos/tl s/ secure_bank_ext ended/
cxx_server/server} -args "--use_kdm/tnp/bank.ior"
secur e_bank_ext ended_pr ocess
Windows
% process create -node_daenon host name/it_node_daenon
- pat hnane
{install-dir\asp\6.0\denos\tI s\secure_bank_ext ended\
cxx_server\server.exe} -args "--use_kdm C \tenp\bank.ior"

secur e_bank_ext ended_pr ocess
Replace host name with your machine’s DNS name, and replace
instal | -dir with the location of your Orbix installation (for example,

Running the server

Registering a Secure Server

c:\iona). The - ar gs parameter specifies command-line arguments (for
example, the file used to publish the server object reference).

4. Register the server process name with the appropriate ORB name (in
this case, denos. t|s. secur e_bank_ext ended_ser ver):

orbname nodi fy -process secure_bank_ext ended_process
denos. tl s. secur e_bank_ext ended_ser ver

5. From the i t adni n command prompt, log on to the i t adni n utility:

% adm n_| ogon | ogi n kdnadm n
Pl ease enter password for identity kdmadm n:

This example uses the kdmadmi n. p12 certificate which has the
password kdnmadni npass.

6. Register the server's pass phrase with the KDM:

% kdm adm creat e -or bnane
denos. tl s. secur e_bank_ext ended_ser ver
Pl ease enter password for orb ny_orb_nane :

The secur e_bank_ext ended_server demonstration uses the
bankser ver. p12 certificate which has the password bankser ver pass.

7. Create and store a checksum for the server's IMR record:

% checksum creat e -process secure_bank_ext ended_process

After registering the bank server, you must run the bank server once to
initialize the bank. i or file containing a persistent object reference. It is only
necessary to run the server explicitly once. Subsequently, the node daemon
can activate the bank server automatically in response to client requests.

395

CHAPTER 14 | Automatic Activation of Secure Servers

396

In this part

Part IV

CSIv2 Administration

This part contains the following chapters:

Introduction to CSIv2 page 399

Configuring CSIv2 Authentication over Transport page 409

Configuring CSIv2 Identity Assertion page 429

In this chapter

CHAPTER 15

Introduction to
CSlvZ2

CSIv2 is the OMG’s Common Secure Interoperability protocol
v2.0, which can provide the basis for application-level security
in CORBA applications. The Orbix Security Framework uses
CSIv2 to transmit usernames and passwords, and asserted
identities between applications.

This chapter discusses the following topics:

CSIv2 Features page 400
Basic CSlv2 Scenarios page 402
Integration with the Orbix Security Framework page 406

399

CHAPTER 15 | Introduction to CSIv2

CSlv2 Features

Overview

Application-level security

Transmitting CSlv2-related
security data

CSlIv2 mechanisms

CSlv2 authentication over
transport mechanism

400

This section gives a quick overview of the basic features provided by CSlv2
application-level security. Fundamentally, CSIv2 is a general, interoperable
mechanism for propagating security data between applications. Because
CSIv2 is designed to complement SSL/TLS security, CSIv2 focuses on
providing security features not covered by SSL/TLS.

CSIv2 is said to provide application-level security because, in contrast to
SSL/TLS, security data is transmitted above the transport layer and the
security data is sent after a connection has been established.

The CSIv2 specification defines a new GIOP service context type, the

security attribute service context, which is used to transmit CSIv2-related

security data. There are two important specializations of GIOP:

® |IOP—the Internet inter-ORB protocol, which specialises GIOP to the
TCP/IP transport, is used to send CSIv2 data between CORBA
applications.

® RMI/IOP—RMI over 1IOP, which is an IIOP-compatible version of
Java’'s Remote Method Invocation (RMI) technology, is used to send
CSIv2 data between EJB applications and also for CORBA-to-EJB
interoperability.

The following CSlv2 mechanisms are supported:
® CSlIv2 authentication over transport mechanism.
® CSIv2 identity assertion mechanism.

The CSIv2 authentication over transport mechanism provides a simple client
authentication mechanism, based on a username and a password. This
mechanism propagates a username, password, and domain name to the
server. The server then authenticates the username and password before
allowing the invocation to proceed.

CSIv2 identity assertion
mechanism

Applicability of CSIv2

CSIv2 Features

The CSIv2 identity assertion mechanism provides a way of asserting the
identity of a caller without performing authentication. This mechanism is
usually used to propagate a caller identity that has already been
authenticated at an earlier point in the system.

CSIv2 is applicable to both CORBA technology. CSIv2 can be used by the
following kinds of application:

® CORBA C++ applications.
® CORBA Java applications.

401

CHAPTER 15 | Introduction to CSIv2

Basic CSlIv2 Scenarios

Overview

In this section

402

The CSIv2 specification provides two independent mechanisms for sending
credentials over the transport (authentication over transport, and identity
assertion), but the CSIv2 specification does not mandate how the
transmitted credentials are used. Hence, there are many different ways of
using CSIv2 and different ways to integrate it into a security framework
(such as iSF).

This section describes some of the basic scenarios that illustrate typical
CSIv2 usage.

This section contains the following subsections:

CSIv2 Authentication over Transport Scenario page 403

CSIv2 Identity Assertion Scenario page 404

Basic CSlv2 Scenarios

CSlv2 Authentication over Transport Scenario

Overview

Scenario description

More details

Figure 60 shows a basic CSlv2 scenario where a CORBA client and a
CORBA server are configured to use the CSIv2 authentication over transport
mechanism.

," Propagate

S (@ user login (@) authentication
&= i\ token
u/p/d
Client 'y
thenticati
?oukeﬁn eaten @ aut henti cate()
v

Authentication
Service

Figure 60: Basic CSIv2 Authentication over Transport Scenario

The scenario shown in Figure 60 can be described as follows:

Stage Description

1 | The user enters a username, password, domain name on the
client side (user login).

2 | When the client makes a remote invocation on the server,
CSIv2 transmits the username/password/domain authentication
data to the server in a security attribute service context.

3 | The server authenticates the received username/password
before allowing the invocation to proceed.

For more details about authentication over transport, see “Configuring CSlv2
Authentication over Transport” on page 409.

403

CHAPTER 15 | Introduction to CSIv2

CSlv2 Identity Assertion Scenario

Overview Figure 61 shows a basic CSIv2 scenario where a client and an intermediate
server are configured to use the CSIv2 authentication over transport
mechanism, and the intermediate server and a target server are configured
to use the CSIv2 identity assertion mechanism. In this scenario, the client
invokes on the intermediate server, which then invokes on the target server.

) . . Examine
_ ’l, @ Set asserted identity @ calling identity
— _—— AL I RN _--> |u
&= \\/ e \ Propagate identity -
uip/d e v '
Client | Reaquest+ .| Intermediate | Reauest+ | Target
" Server ‘ 7| Server
A
Client
authentication
token v Identity token
Authentication
Service
Figure 61: Basic CSIv2 Identity Assertion Scenario
Scenario description The second stage of the scenario shown in Figure 61 (intermediate server

invokes an operation on the target server) can be described as follows:

Stage Description

1 | The intermediate server can set the identity that will be
asserted to the target in one of two ways:

® Implicitly—if the execution context has an associated

CSlv2 received credentials, the intermediate server
extracts the user identity from the received credentials, or
®* Explicitly—by programming.

404

Basic CSlv2 Scenarios

Stage Description

2 | When the intermediate server makes a remote invocation on
the target server, CSIv2 transmits the user identity data to the
server in a security attribute service context.

3 | The target server can access the propagated user identity
programmatically (by extracting it from a
Securitylevel 2:: Recei vedOr edent i al s object).

More details For more details about identity assertion, see “Configuring CSlv2 Identity
Assertion” on page 429.

405

CHAPTER 15 | Introduction to CSIv2

Integration with the Orbix Security Framework

Overview This section presents an example of how CSIv2 works in the context of the
Orbix Security Framework. The purpose of the example is to show the
distinction between the purely CSIv2 functionality and the way in which
CSIv2 is used in the Orbix Security Framework. The example also provides a
case study of how to integrate the CSI plug-in within a wider security
framework.

CSlIv2 authentication domain In the context of the Orbix Security Framework, the CSIv2 authentication
domain set by the user on the client side must match the CSlv2
authentication domain set on the server side.

Plug-ins used by the iSF Within the iSF, a typical CORBA server would load the following security
plug-ins: IIOP/TLS, GSP, and CSI. The roles of the GSP plug-in and the CSI
plug-in in particular are important in the context of the iSF, as follows:

® GSP plug-in,
® CSI plug-in.
GSP plug-in The role of the GSP plug-in is to manage the interpretation of authentication

data and to perform authorization. The GSP plug-in implements features
specific to the Orbix Security Framework.

CSlI plug-in The role of the CSIv2 plug-in is to manage the propagation of authentication
data. It handles the protocol that delivers the data and makes decisions
such as whether to propagate authentication data in further calls to other
servers.

406

How CSIv2 integrates with iSF

Description

Integration with the Orbix Security Framework

Figure 62 shows how the CSIv2 and the GSP plug-ins behave in the context
of the iSF, for a server that is configured to use CSIv2 authentication over

transport.

@ _/’/,
Request + -—' '_@ Extract

CORBA Server

CSI/GSP Action-role

I'II'CI)_ZI u/p/d @ Auth mapping file
A 1 ACL

@G

aut henti cate() Retrieve roles and realms
y

Orbix Security Service

Invocation

Figure 62: CSIv2 in the Orbix Security Framework

The stages of a secure invocation using CSIv2 authentication over transport,
as shown in Figure 62, can be described as follows:

Stage

Description

1

A secure operation invocation arrives at the server. Initially, the
invocation passes through the 1IOP/TLS plug-in, which is
responsible for decrypting the incoming message and
performing other transport layer security tasks.

The CSI plug-in extracts the username/password/domain
authentication data, which identifies the calling user, from the
incoming message’s security attribute service context.

407

CHAPTER 15 | Introduction to CSIv2

408

Stage Description
3 | The CSI plug-in delegates authentication to the
| T_CSl:: Aut hent i cat eGSSUPQr edent i al s callback object,
which is implemented in the GSP plug-in.
4 | The Aut hent i cat eGSSUPCr edent i al s object further delegates
authentication to the central Orbix security service.
5 | If authentication with the Orbix security service is successful,

the GSP plug-in receives details of all the roles and realms for
the calling user. The roles and realms are cached, to be used
later during the authorization step.

In this chapter

CHAPTER 16

Configuring CSIvZ2
Authentication
over Transport

This chapter explains the concepts underlying the CSlv2
authentication over transport mechanism and provides details
of how to configure a client and a server to use this mechanism.

This chapter discusses the following topics:

CSIv2 Authentication Scenario page 410
SSL/TLS Prerequisites page 414
Requiring CSIv2 Authentication page 416
Providing an Authentication Service page 419
Providing a Username and Password page 420
Sample Configuration page 424

409

CHAPTER 16 | Configuring CSIv2 Authentication over Transport

CSlv2 Authentication Scenario

Overview This section describes a typical CSIv2 authentication scenario, where the
client is authenticated over the transport by providing a username and a
password.

Authentication over transport The CSIv2 authentication over transport mechanism is a simple client

authentication mechanism based on a username and a password. In a
system with a large number of clients, it is significantly easier to administer
CSIv2 client authentication than it is to administer SSL/TLS client
authentication.

CSlIv2 authentication is said to be over transport, because the
authentication step is performed at the General Inter-ORB Protocol (GIOP)
layer. Specifically, authentication data is inserted into the service context of
a GIOP request message. CSlv2 authentication, therefore, occurs after a
connection has been established (in contrast to SSL/TLS authentication).

GSSUP mechanism The Generic Security Service Username/Password (GSSUP) mechanism is
the basic authentication mechanism supported by CSIv2 at Level O
conformance. Currently, this is the only authentication mechanism
supported by IONA’s implementation of CSIv2.

Dependency on SSL/TLS Note, that CSIv2 authentication over transport cannot provide adequate
security on its own. The authentication over transport mechanism relies on
the transport layer security, that is SSL/TLS, to provide the following
additional security features:

® Server authentication.
® Privacy of communication.
® Message integrity.

410

CSIv2 Authentication Scenario

CSlv2 scenario Figure 63 shows a typical scenario for CSlv2 authentication over transport:
PKCS#12
File
OO0
O—m
Client Target Server
invoke
Client
@ authentication
token

©

’_. 2
| i *

i Request + —> E i

L---%> SSL/TLS Connection . E

® v

| Authentication Service

Figure 63: CS/v2 Authentication Over Transport Scenario

How CSIv2 authentication over As shown in Figure 63 on page 411, the authentication over transport
transport proceeds mechanism proceeds as follows:
Stage Description

1 | When a client initiates an operation invocation on the target,
the client’s CSI plug-in inserts a client authentication token
(containing username/password/domain) into the GIOP request
message.

411

CHAPTER 16 | Configuring CSIv2 Authentication over Transport

Stage Description

2 | The request, together with the client authentication token, is
sent over the SSL/TLS connection. The SSL/TLS connection
provides privacy and message integrity, ensuring that the
username and password cannot be read by eavesdroppers.

3 | Before permitting the request to reach the target object, the CSI
server interceptor calls an application-supplied object (the
authentication service) to check the username/password
combination.

4 | If the username/password combination are authenticated
successfully, the request is allowed to reach the target object;
otherwise the request is blocked and an error returned to the
client.

SSL/TLS connection The client and server should both be configured to use a secure SSL/TLS
connection. In this scenario, the SSL/TLS connection is configured for target
authentication only.

See “SSL/TLS Prerequisites” on page 414 for details of the SSL/TLS
configuration for this scenario.

Client authentication token A client authentication token contains the data that a client uses to
authenticate itself to a server through the CSIv2 authentication over
transport mechanism, as follows:
® Username—a UTF-8 character string, which is guaranteed not to
undergo conversion when it is sent over the wire.

® Password—a UTF-8 character string, which is guaranteed not to
undergo conversion when it is sent over the wire.

® Domain—a string that identifies the CSIv2 authentication domain
within which the user is authenticated.

Note: The client’'s domain should match the target domain, which is
specified by the

poli ci es: csi:auth_over_transport: server_donai n_name
configuration variable on the server side.

412

Authentication service

CSIv2 Authentication Scenario

The client authentication token is usually initialized by the CSIv2 principal
sponsor (which prompts the user to enter the username/password and
domain). See “Providing a Username and Password” on page 420.

The authentication service is an external service that checks the username
and password received from the client. If the authentication succeeds, the
request is allowed to proceed and an invocation is made on the target
object; if the authentication fails, the request is automatically blocked and a
QOORBA: : NO_PERM SSI ON system exception is returned to the client.

See “Providing an Authentication Service” on page 419.

413

CHAPTER 16 | Configuring CSIv2 Authentication over Transport

SSL/TLS Prerequisites

Overview

SSL/TLS target authentication
only

Configuration samples

414

The SSL/TLS protocol is an essential complement to CSIv2 security. The
CSIv2 authentication over transport mechanism relies on SSL/TLS to provide
the following additional security features:

® Server authentication.

® Privacy of communication.

® Message integrity.

WARNING: If you do not enable SSL/TLS for the client-server connection,
the GSSUP username and password would be sent over the wire
unencrypted and, therefore, could be read by eavesdroppers.

For the scenario depicted in Figure 63 on page 411, the SSL/TLS
connection is configured for target authentication only. The SSL/TLS
configuration can be summarized as follows:

® Client-side SSL/TLS configuration—the client requires confidentiality,

message integrity, and the Est abl i shTrust | nTarget SSL/TLS
association option. No X.509 certificate is provided on the client side,
because the client is not authenticated at the transport layer.
Server-side SSL/TLS configuration—the server requires confidentiality
and message integrity, but the Establ i shTrustIndient SSL/TLS
association option is not required. An X.509 certificate is provided on
the server side to enable the client to authenticate the server.

The SSL/TLS configuration of this CSIv2 scenario is based on the following
TLS demonstration configurations in your Orbix configuration
(DomainName. cf g file or CFR service):

® denos.tls.secure_client_with_no_cert

® denos.tls.secure_server_no_client_auth

SSL/TLS principal sponsor
configuration

References

SSL/TLS Prerequisites

In this scenario, the SSL/TLS principal sponsor needs to be enabled only on
the server side, because it is only the server that has an associated X.509
certificate.

Note: The SSL/TLS principal sponsor is completely independent of the
CSIv2 principal sponsor (see “CSIv2 principal sponsor” on page 420). It is
possible, therefore, to enable both of the principal sponsors within the
same application.

See “Sample Configuration” on page 424 for a detailed example of the client
and server SSL/TLS configuration.

See “SSL/TLS Administration” on page 267 for complete details of
configuring and administering SSL/TLS.

415

CHAPTER 16 | Configuring CSIv2 Authentication over Transport

Requiring CSIv2 Authentication

Overview This section describes the minimal configuration needed to enable CSIv2
authentication over transport. In a typical system, however, you also need to
configure SSL/TLS (see “SSL/TLS Prerequisites” on page 414) and the
CSIv2 principal sponsor (see “Providing a Username and Password” on
page 420).

Loading the CSI plug-in To enable CSIv2 for a C+ + or Java application, you must include the csi
plug-in in the or b_pl ugi ns list in your Orbix configuration. The
bi ndi ng: cl i ent_bi ndi ng_l i st and bi ndi ng: server _bi ndi ng_I i st must
also be initialized with the proper list of interceptor combinations.
Sample settings for these configuration variables can be found in the
denos. t 1 s. csi v2 configuration scope of your Orbix configuration. For
example, you can load the csi plug-in with the following configuration:

Obix configuration file

csiv2 {
orb_plugins = ["local | og_streant, "iiop_profile", "giop",
"iiop_tls", "csi"];

bi ndi ng: client_binding_list = ["A CP+EGM COP",
" OTS+PQA Col oc", "PQOA Col oc*, "OTS+TLS Col oc+PQA Col oc",
"TLS Col oc+PQA _Col oc", "d CP+SHM CP', "CS| +OTS+d CP+l | O,
"CSl +3 CP+l | OP', "CSl +0TS+d CP+l | CP_TLS',
"CSl +3 CP+l | CP_TLS'] ;

bi ndi ng: server_binding_list = ["CSI"];

ik
Client configuration A client can be configured to support CSIv2 authentication over transport, as
follows:

Obix configuration file
pol i ci es: csi: auth_over_transport:client_supports =
["EstablishTrustInQient"];

416

Client CSIv2 association options

Server configuration

Server CSIv2 association options

Server domain name

Requiring CSIv2 Authentication

The Establ i shTrust I nQ i ent option is a CSIv2 association option.
Including this option in the

pol i cies:csi:auth_over_transport:client_supports list indicates that
the client supports the CSlv2 authentication over transport mechanism.

A server can be configured to support CSIv2 authentication over transport,
as follows:

Obix configuration file

policies:csi:auth_over_transport:target supports
["EstablishTrustindient"];

policies:csi:auth_over_transport:target_requires
["EstablishTrustindient"];

policies:csi:auth_over_transport: server_domai n_nane =
"AuthDomain";

policies:csi:auth_over_transport:authentication_service =
"csiv2. Aut henti cati onServi ceChj ect”;

Including the Est abl i shTrust I nd i ent CSlv2 association option in the
pol i ci es:csi:auth_over_transport:target_supports list indicates that
the server supports the CSIv2 authentication over transport mechanism.

Including the Est abl i shTrust I nd i ent CSlv2 association option in the
pol i cies:csi:auth_over transport:target requires list indicates that
the server requires clients to authenticate themselves using the CSIv2
authentication over transport mechanism. If the client fails to authenticate
itself to the server when the server requires it, the server throws a

COORBA: : NO_PERM SSI ON system exception back to the client.

The server domain name is the name of a valid CSIv2 authentication
domain. A CSIv2 authentication domain is an administrative unit within
which a username/password combination is authenticated.

A CSIv2 client will check that the domain name in its CSIv2 credentials is
the same as the domain name set on the server side by the
policies:csi:auth_over_transport:server_domai n_nane configuration
variable. If the domain in the client credentials is an empty string, however,
the domain always matches (the empty string is treated as a wildcard).

417

CHAPTER 16 | Configuring CSIv2 Authentication over Transport

Authentication service

418

The aut hent i cati on_ser vi ce variable specifies a Java class that provides
an implementation of the authentication service. This enables you to provide
a custom implementation of the CSIv2 authentication service in Java.

When using CSIv2 in the context of the Orbix Security Framework, however,
this configuration variable should be omitted. In the Orbix Security

Framework, the GSP plug-in specifies the CSIv2 authentication service
programmatically.

See “Providing an Authentication Service” on page 419 for more details.

Providing an Authentication Service

Providing an Authentication Service

Overview

By configuration (Java only)

By programming a policy (Java
only)

By registering an initial reference

Default authentication service

Orbix Security Framework

Sample implementation

An implementation of the CSIv2 authentication service can be specified in
one of the following ways:

® By configuration (Java only).

® By programming a policy (Java only).

® By registering an initial reference.

In Java, the authentication service is provided by a customizable class
which can be loaded by setting the
policies:csi:auth_over_transport:authentication_service
configuration variable to the fully-scoped name of the Java class.

In Java, you can specify a CSIv2 authentication service object
programmatically by setting the I T_CSI : : CSI _SERVER AS PQLI CY policy with
an I T_CSl:: Aut hent i cat i onSer vi ce struct as its policy value.

See the CORBA Programmer’s Reference, Java for more details.

You can specify a CSIv2 authentication service object (in C++ and Java) by
registering an instance as the | T_CSI Aut hent i cati onQbj ect initial
reference. This approach is mainly intended for use by Orbix plug-ins.

If no authentication service is specified, a default implementation is used
that always returns f al se in response to aut henti cat e() calls.

In the context of the Orbix Security Framework, the GSP plug-in provides a
proprietary implementation of the CSIv2 authentication service that
delegates authentication to the Orbix security service.

A sample implementation of a CSIv2 authentication service can be found in
the following demonstration directory:

ASPInstallDirl asp/ Version/ demos/ cor ba/ t | s/ csi v2/ j aval src/ csiv2

419

CHAPTER 16 | Configuring CSIv2 Authentication over Transport

Providing a Username and Password

Overview

CSlv2 principal sponsor

Credentials sharing

Logging in

420

This section explains how a user can provide a username and a password
for CSIv2 authentication (logging on) as an application starts up. CSlv2
mandates the use of the GSSUP standard for transmitting a
username/password pair between a client and a server.

The CSIv2 principal sponsor is a piece of code embedded in the CSI plug-in
that obtains authentication information for an application. It is configured by
setting variables in the Orbix configuration. The great advantage of the
CSIv2 principal sponsor is that it enables you to provide authentication data
for security unaware applications, just by modifying the configuration.

The following configuration file extract shows you how to enable the CSlv2
principal sponsor for GSSUP-style authentication (assuming the application
is already configured to load the CSI plug-in):

Obix configuration file
pri nci pal _sponsor: csi : use_pri nci pal _sponsor = "true";
princi pal _sponsor: csi: use_nethod_id = "GSSUPMech";

Normally, when you specify an own credential using the CSI principal
sponsor, the credential is available only to the ORB that created it. By
setting the pl ugi ns: security: share_credenti al s_acr oss_or bs variable to
true, however, the own credentials created by one ORB are automatically
made available to any other ORBs that are configured to share credentials.

The GSSUP username and password can be provided in one of the following
ways:

® From a dialog prompt.

® Directly in configuration.

® By programming.

From a dialog prompt

Providing a Username and Password

If the login data are not specified in configuration, the CSIv2 principal
sponsor will prompt the user for the username, password, and domain as
the application starts up. The dialog prompt is displayed if the client
supports the Est abl i shTrust Ind i ent CSIv2 association option and one or
more of the pri nci pal _sponsor: csi : aut h_net hod_dat a fields are missing
(username, password, or domain).

C++ Applications
When a C+ + application starts up, the user is prompted for the username
and password at the command line as follows:

Pl ease enter usernane :
Enter password :

Java Applications
The following dialog window pops up to prompt the user for the username,
password, and domain name:

|

Username: |jh|'3'995 |

Passwaori: |*"f“‘*‘*‘** |

Domai: |pcoROUF]

Ok Exit

Figure 64: Java Dialog Window for GSSUP Username and Password

Note: The password is not checked until the client communicates with a
server secured by CSIv2. Hence, the dialog is unable to provide immediate
confirmation of a user's password and a mis-typed password will not be
detected until the client begins communicating with the server.

421

CHAPTER 16 | Configuring CSIv2 Authentication over Transport

Directly in configuration

By programming

422

The username, password, and domain can be specified directly in the
princi pal _sponsor : csi : aut h_met hod_dat a configuration variable. For
example, the CSIv2 principal sponsor can be configured as follows:

Obix configuration file

princi pal _sponsor: csi : use_princi pal _sponsor = "true";

princi pal _sponsor: csi: use_nethod_id = "GSSUPMech";

pri nci pal _sponsor: csi: aut h_net hod_data = ["user name=User",
" passwor d=Pass", "domai n=AuthDomain"];

In this example, the aut h_met hod_dat a variable specifies a User username,
Pass password, and AuthDomain domain.

WARNING: Storing the password directly in configuration is not
recommended for deployed systems. The password is in plain text and
could be read by anyone.

A CORBA application developer can optionally specify the GSSUP
username, password and domain name by programming—see “Creating
CSIv2 Credentials” on page 470.

In this case, an administrator should ensure that the CSIv2 principal
sponsor is disabled for the application. Either the

princi pal _sponsor: csi : use_pri nci pal _sponsor variable can to be set to
fal se, or the CSIv2 principal sponsor variables can be removed from the
application’s configuration.

The best approach is to set the
princi pal _sponsor: csi: use_princi pal _sponsor variable to f al se in the
application’s configuration scope. For example:

Obix configuration file
out er _confi g_scope {

ny_app_confi g _scope {
princi pal _sponsor: csi: use_princi pal _sponsor = "fal se";

}s

Providing a Username and Password

This ensures that the principal sponsor cannot be enabled accidentally by
picking up configuration variables from the outer configuration scope.

423

CHAPTER 16 | Configuring CSIv2 Authentication over Transport

Sample Configuration

Overview

In this section

424

This section provides complete sample configurations, on both the client
side and the server side, for the scenario described in “CSIlv2 Authentication
Scenario” on page 410.

This section contains the following subsections:

Sample Client Configuration page 425

Sample Server Configuration page 427

Sample Configuration

Sample Client Configuration

Overview

Configuration sample

This section describes a sample client configuration for CSIv2 authentication

over transport which has the following features:

® Theiiop_tlsand csi plug-ins are loaded into the application.

® The client supports the SSL/TLS Est abl i shTrust | nTar get association
option.

® The client supports the CSIv2 authentication over transport
Establ i shTrust I nd i ent association option.

® The username and password are specified using the CSIv2 principal
sponsor.

The following sample shows the configuration of a client application that
uses CSlIv2 authentication over transport to authenticate a user, Paul (using
the csiv2. client. paul ORB name):

Obix configuration file

csiv2

{
orb_plugins = ["local | og_strean, "iiop_profile", "giop",
"iiop_tls", "csi"];
event log:filters = ["IT_CSI=*", "IT_TLS=*", "IT_IlCP_TLS=*",

"I T_ATLI _TLS=*"];

bi nding:client_binding |list = ["Ad CP+EGM CP",
"OrS+PQA Col oc", "PQOA (ol oc", "OTS+TLS Col oc+PQA Col oc",
"TLS Col oc+PQA Col oc", "G CP+SHM CP', "CSl +OTS+d CP+l | CP*,
"CSI+Q@ CP+l | OP', "CSI +0TS+d CP+l | CP_TLS",

"CSl+@ CP+l | OP_TLS'];

bi ndi ng: server_binding list = ["CSI"];

client
{
policies:iiop_tls:client_secure_invocation_policy:supports
=["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];
policies:iiop_tls:client_secure_invocation_policy:requires
=["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering"];

425

CHAPTER 16 | Configuring CSIv2 Authentication over Transport

paul
{
pl ugi ns: csi: al |l ow csi _repl y_wi thout _servi ce_context =
"fal se";

pol i ci es: csi : auth_over_transport:client_supports
["EstablishTrustIndient"];

pol i cies:csi:auth_over_transport:target_requires
["EstablishTrustIndient"];

princi pal _sponsor: csi: use_princi pal _sponsor = "true";
pri nci pal _sponsor: csi :auth_nmethod_i d = " GSSUPMech";
pri nci pal _sponsor: csi : aut h_nmet hod_data =
[" user name=Paul ", "passwor d=password", domai n="DEFAULT"];
IE
b
ik

426

Sample Configuration

Sample Server Configuration

Overview

Configuration sample

This section describes a sample server configuration for CSlv2
authentication over transport which has the following features:
® Theiiop_tlsand csi plug-ins are loaded into the application.
® The server supports the SSL/TLS Est abl i shTrust | nTarget and
Est abl i shTrust | nd i ent association options.
® The server's X.509 certificate is specified using the SSL/TLS principal
sponsor.
® The server supports the CSIv2 authentication over transport
Est abl i shTrust | nd i ent association option.

The following sample shows the configuration of a server application that
supports CSlv2 authentication over transport (using the csi v2. server ORB
name):

Obix configuration file

csiv2

{
orb_plugins = ["local | og_strean, "iiop_profile", "giop",
"iiop_tls", "csi"];
event log:filters = ["IT_CSI=*", "IT_TLS=*", "IT_IlCP_TLS=*",

"I T_ATLI _TLS=*"];

bi nding:client_binding |list = ["Ad CP+EGM CP",
"OrS+PQA Col oc", "PQOA (ol oc", "OTS+TLS Col oc+PQA Col oc",
"TLS Col oc+PQA Col oc", "G CP+SHM CP', "CSl +OTS+d CP+l | CP*,
"CSI+Q@ CP+l | OP', "CSI +0TS+d CP+l | CP_TLS",
"CSl+@ CP+l | OP_TLS'];

bi ndi ng: server_binding list = ["CSI"];

server
{
policies:iiop_tls:target secure_invocati on_policy: supports
=["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget",
"Establ i shTrustInQient"];
policies:iiop_tls:target_secure_invocation_policy:requires
=["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering"];

427

CHAPTER 16 | Configuring CSIv2 Authentication over Transport

princi pal _sponsor: use_princi pal _sponsor = "true";

princi pal _sponsor: auth_nethod_id = "pkcs12_file";

princi pal _sponsor: aut h_nmet hod_data =
["fil ename=C \ ASPInstallDin asp\ 6. 0\ et c\ t | s\ x509\ cer t s\ denos\ b
ank_server.pl2", "password=bankserverpass"];

pol i cies:csi:auth_over_transport:target_supports =
["EstablishTrustIndient"];
pol i ci es: csi : auth_over_transport: aut henti cati on_service =
"csiv2. Aut henti cati onServi ceChj ect";
pol i ci es: csi:auth_over_transport: server_donmai n_nane =
" DEFAULT" ;
IE

428

In this chapter

CHAPTER 17

Configuring CSIvZ2
ldentity Assertion

This chapter explains the concepts underlying the CSiv2
identity assertion (or delegation) mechanism and provides
details of how to configure your applications to use this
mechanism.

This chapter discusses the following topics:

CSIv2 Identity Assertion Scenario page 430
SSL/TLS Prerequisites page 434
Enabling CSIv2 Identity Assertion page 436
Sample Configuration page 438

429

CHAPTER 17 | Configuring CSIv2 Identity Assertion

CSIv2 Ildentity Assertion Scenario

Overview

Identity assertion

Dependency on SSL/TLS

430

This section describes a typical CSIv2 identity assertion scenario, involving a
client, an intermediate server, and a target server. Once the client has
authenticated itself to the intermediate server, the intermediate server can
impersonate the client by including an identity token in the requests that it
sends to the target server. The intermediate server thus acts as a proxy (or
delegate) server.

The CSIv2 identity assertion mechanism provides the basis for a
general-purpose delegation or impersonation mechanism. Identity assertion
is used in the context of a system where a client invokes an operation on an
intermediate server which then invokes an operation on a target server (see
Figure 65). When making a call on the target, the client identity (which is
authenticated by the intermediate server) can be forwarded by the
intermediate to the target. This enables the intermediate to impersonate the
client.

The CSIv2 identity assertion mechanism relies on SSL/TLS to provide the
the following security features at the transport layer (between the
intermediate server and the target server):

® Authentication of the target server to the intermediate server.

® Authentication of the intermediate server to the target server.

® Privacy of communication.

® Message integrity.

CSlv2 scenario

CSIv2 Identity Assertion Scenario

Figure 65 shows a typical scenario for CSIv2 identity assertion:

Client

®

[

How CSIv2 identity assertion

proceeds

. A
&,> SSL/TLS Connection P

PKCS#12 PKCS#12
File File
OO OO
O—m O—m
Intermediate Server Target Server
invoke inv%@
Client
authentication Identity token @
token @ @
-
37 ey |
i | 7
| | T
Request + |u/p/d | —> E | ! Request + El — E
1
P i i
| 1 | 1
] : !]
) {
|
1
\ 4

®

lp . 7N
+» | SSL/TLS Connection n -

@ Received

(

credentials object
Authentication Service ’

Figure 65: CS/v2 Identity Assertion Scenario

As shown in Figure 65 on page 431, the identity assertion mechanism

proceeds as follows:

Stage

Description

1

When a client initiates an operation invocation on the
intermediate, the client’s CSI plug-in inserts a client
authentication token (containing username/password/domain)
into the GIOP request message.

431

CHAPTER 17 | Configuring CSIv2 Identity Assertion

Stage Description

2 | The request, together with the client authentication token, is
sent over the SSL/TLS connection. The SSL/TLS connection
provides privacy and message integrity, ensuring that the
username and password cannot be read by eavesdroppers.

3 | Before permitting the request to reach the target object in the
intermediate, the intermediate’s CSI plug-in calls the
authentication service to check the username/password
combination.

4 | If the username/password combination are authenticated
successfully, the request is allowed to reach the object;
otherwise the request is blocked and an error is returned to the
client.

5 | Within the context of the current invocation, the intermediate
server invokes an operation on the target server.

Because identity assertion has been enabled on the
intermediate server, the intermediate’s CSI plug-in extracts the
client username from the received GSSUP credentials, creates
an identity token containing this username, and then inserts
the identity token into the GIOP request message.

6 | The request, together with the identity token, is sent over the
SSL/TLS connection. The SSL/TLS connection provides privacy
message integrity, and mutual authentication between the
intermediate and the target.

7 | When the request arrives at the target server, the asserted
identity is extracted and made available to the target through
the CORBA received credentials object—see “Retrieving
Received Credentials” on page 489.

SSL/TLS connection The intermediate server and target server should both be configured to use a
secure SSL/TLS connection. In this scenario, the intermediate-to-target
SSL/TLS connection is configured for mutual authentication.

See “SSL/TLS Prerequisites” on page 434 for details of the SSL/TLS
configuration for this scenario.

432

Identity token

Received credentials

CSlv2 Identity Assertion Scenario

An identity token can contain one of the following types of identity token:

® | TTAbsent —if no identity token is included in the GIOP message sent
by the intermediate server (for example, if CSIv2 identity assertion is
disabled in the intermediate server).

® | TTAnonynmous—if the intermediate server is acting on behalf of an
anonymous, unauthenticated client.

® | TTPrinci pal Name—if the intermediate server is acting on behalf of an
authenticated client. In this case, the client identity contains the
following data:

. GSSUP username—automatically extracted from the GSSUP
client authentication token received from the client.

. Subject DN—if the intermediate server authenticates the client
using an X.509 certificate, but not using a username and
password, the intermediate would forward on an identity token
containing the subject DN from the client certificate.

The received credentials is an object, of

Securitylevel 2: : Recei vedO edent i al s type, defined by the OMG CORBA
Security Service that encapsulates the security credentials received from a
client. In this scenario, the target server is programmed to access the
asserted identity using the received credentials.

For details of how to access the asserted identity through the received
credentials object, see “Retrieving Received Credentials from the Current
Object” on page 490.

433

CHAPTER 17 | Configuring CSIv2 Identity Assertion

SSL/TLS Prerequisites

Overview

SSL/TLS mutual authentication

Setting certificate constraints

434

The CSIv2 identity assertion mechanism relies on SSL/TLS to provide the
the following security features at the transport layer (between the
intermediate server and the target server):

® Authentication of the target server to the intermediate server.

® Authentication of the intermediate server to the target server.

® Privacy of communication.

® Message integrity.

For the scenario depicted in Figure 65 on page 431, the SSL/TLS

connection between the intermediate and the target server is configured for

mutual authentication. The SSL/TLS configuration can be summarized as

follows:

® Intermediate server SSL/TLS configuration—the intermediate server
requires confidentiality, message integrity, and the
Est abl i shTrust | nTarget SSL/TLS association option. An X.509
certificate is provided, which enables the intermediate server to be
authenticated both by the client and by the target server.

® Target server SSL/TLS configuration—the server requires
confidentiality, message integrity, and the Est abl i shTrust I nQ i ent
SSL/TLS association option. An X.509 certificate is provided, which
enables the target server to be authenticated by the intermediate
server.

See “Sample Intermediate Server Configuration” on page 441 for a detailed
example of the SSL/TLS configuration in this scenario.

See “SSL/TLS Administration” on page 267 for complete details of
configuring and administering SSL/TLS.

In the scenario depicted in Figure 65 on page 431, the target server grants
a special type of privilege (backward trust) to the intermediate server—that
is, the target accepts identities asserted by the intermediate without getting

Principal sponsor configuration

SSL/TLS Prerequisites

the chance to authenticate these identities itself. It is, therefore,
recommended to set the certificate constraints policy on the target server to
restrict the range of applications that can connect to it.

The certificate constraints policy prevents connections being established to
the target server, unless the ASN.1 Distinguished Name from the subject
line of the incoming X.509 certificate conforms to a certain pattern.

See “Applying Constraints to Certificates” on page 376 for further details.

In this scenario, the SSL/TLS principal sponsor needs to be enabled in the
intermediate server and in the target server.

See “Specifying an Application’s Own Certificate” on page 363 and
“Providing a Certificate Pass Phrase” on page 368 for further details.

Note: The SSL/TLS principal sponsor is completely independent of the
CSlv2 principal sponsor (see “Providing a Username and Password” on
page 420). It is possible, therefore, to enable both of the principal
sponsors within the same application.

435

CHAPTER 17 | Configuring CSIv2 Identity Assertion

Enabling CSlv2 Identity Assertion

Overview Based on the sample scenario depicted in Figure 65 on page 431, this
section describes the basic configuration variables that enable CSIv2
identity assertion. These variables on their own, however, are by no means
sufficient to configure a system to use CSIv2 identity assertion. For a
complete example of configuring CSIv2 identity assertion, see “Sample
Configuration” on page 438.

Loading the CSI plug-in To enable CSIv2, you must include the csi plug-in in the or b_pl ugi ns list in
your Orbix configuration. The bi ndi ng: cl i ent _bi nding_l i st and
bi ndi ng: server _bi ndi ng_| i st must also be initialized with the proper list
of interceptor combinations.

Sample settings for these configuration variables can be found in the
denos. t 1 s. csi v2 configuration scope of your Orbix configuration. For
example, you can load the csi plug-in with the following configuration:

Obix configuration file

csiv2 {
orb_plugins = ["local | og_streant, "iiop_profile", "giop",
"iiop_tls", "csi"];

bi ndi ng: client_binding_list = ["A CP+EGM COP",
" OTS+PQA Col oc", "PQOA Col oc*, "OTS+TLS Col oc+PQA Col oc",
"TLS Col oc+PQA _Col oc", "QA CP+SHM CP', "CS| +OTS+d CP+l | OP",
"CSl +3 CP+l | OP', "CSl +0TS+d CP+l | CP_TLS',
"CSl +3 CP+l | CP_TLS'] ;

bi ndi ng: server_binding_list = ["CSI"];

Intermediate server configuration The intermediate server can be configured to support CSIv2 identity
assertion, as follows:

Obix configuration file
policies:csi:attribute_service:client_supports =
["IdentityAssertion"];

436

Intermediate server CSlv2
association options

Target server configuration

Target server CSIv2 association
options

Enabling CSIv2 Identity Assertion

Including the I dent i t yAsserti on CSIv2 association option in the
policies:csi:attribute service:client_supports list indicates that the
application supports CSlv2 identity assertion when acting as a client.

The target server can be configured to support CSIv2 identity assertion, as
follows:

Obix configuration file
policies:csi:attribute_service:target_supports =
["ldentityAssertion"];

Including the I dent i t yAsserti on CSIv2 association option in the
policies:csi:attribute service:target_supports list indicates that the
application supports CSIv2 identity assertion when acting as a server.

437

CHAPTER 17 | Configuring CSIv2 Identity Assertion

Sample Configuration

Overview

In this section

438

This section provides complete sample configurations, covering the client,
the intermediate server, and the target server, for the scenario described in
“CSlv2 Identity Assertion Scenario” on page 430.

This section contains the following subsections:

Sample Client Configuration page 439
Sample Intermediate Server Configuration page 441
Sample Target Server Configuration page 443

Sample Configuration

Sample Client Configuration

Overview

Configuration sample

This section describes a sample client configuration for the CSIv2 identity

assertion scenario. In this part of the scenario, the client is configured to use

CSIv2 authentication over transport, as follows:

® Theiiop_tlsand csi plug-ins are loaded into the application.

® The client supports the SSL/TLS Est abl i shTrust | nTar get association
option.

® The client supports the CSIv2 authentication over transport
Est abl i shTrust I nd i ent association option.

® The username and password are specified using the CSIv2 principal
sponsor.

The following sample shows the configuration of a client application that
uses CSlIv2 authentication over transport to authenticate a user, Paul (using
the csiv2. client. paul ORB name):

Obix configuration file

csiv2

{
orb_plugins = ["local | og_strean, "iiop_profile", "giop",
"iiop_tls", "csi"];
event log:filters = ["IT_CSI=*", "IT_TLS=*", "IT_IlCP_TLS=*",

"I T_ATLI _TLS=*"];

bi nding:client_binding |list = ["Ad CP+EGM CP",
"OrS+PQA Col oc", "PQOA (ol oc", "OTS+TLS Col oc+PQA Col oc",
"TLS Col oc+PQA Col oc", "G CP+SHM CP', "CSl +OTS+d CP+l | CP*,
"CSI+Q@ CP+l | OP', "CSI +0TS+d CP+l | CP_TLS",

"CSl+@ CP+l | OP_TLS'];

bi ndi ng: server_binding list = ["CSI"];

client
{
policies:iiop_tls:client_secure_invocation_policy:supports
=["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget"];
policies:iiop_tls:client_secure_invocation_policy:requires
=["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering"];

439

CHAPTER 17 | Configuring CSIv2 Identity Assertion

paul
{
pl ugi ns: csi: al |l ow csi _repl y_wi thout _servi ce_context =
"fal se";
pol i ci es: csi : auth_over_transport:client_supports =
["EstablishTrustIndient"];

pri nci pal _sponsor: csi : use_pri nci pal _sponsor = "true";
pri nci pal _sponsor: csi :aut h_nmethod_i d = " GSSUPMech";
princi pal _sponsor: csi : aut h_nmet hod_data =
["user nane=Paul ", "password=password", "donai n=DEFAULT"];
IE
b
ik

440

Sample Configuration

Sample Intermediate Server Configuration

Overview

Configuration sample

This section describes a sample intermediate server configuration for CSIv2
identity assertion which has the following features:

Theiiop_tls and csi plug-ins are loaded into the application.

In the role of server, the intermediate server supports the SSL/TLS
Est abl i shTrust | nTar get and Est abl i shTrust | nd i ent association
options.

In the role of client, the intermediate server supports the SSL/TLS
Est abl i shTrust I nTar get and Est abl i shTrust I nQd i ent association
options.

The intermediate server's X.509 certificate is specified using the
SSL/TLS principal sponsor.

In the role of server, the intermediate server supports the CSIv2
authentication over transport Est abl i shTrust I nd i ent association
option.

In the role of client, the intermediate server supports the CSIv2

I dentityAssertion association option.

The following sample shows the configuration of an intermediate server
application that supports CSIv2 authentication over transport (when acting
as a server) and identity assertion (when acting as a client). In this example,
the server executable should use the csiv2.interned_server ORB name:

Obix configuration file
csiv2

{

orb_plugins = ["local | og streant, "iiop_profile", "giop",
“iiop_tls", "csi"];

event _log:filters = ["IT_CSI =", "IT_TLS=*", "IT_|ICP_TLS=*",
"I T_ATLI _TLS=*"];

bi nding: client_binding_list = ["AQ CP+EGM CP",
"OTS+PQA Col oc", "PQA (ol oc", "OIS+TLS Col oc+PQA Col oc",
"TLS Col oc+PQA Col oc", "d OP+SHM OP', "CSl +OTS+d CP+l | CP",
"CSl+@ CP+l | OP', "CSI +0TS+@ P+l | CP_TLS',
"CSl +G CP+l | GP_TLS'] ;

bi ndi ng: server _binding_list = ["CSI"];

441

CHAPTER 17 | Configuring CSIv2 Identity Assertion

442

i nt er med_ser ver

{
policies:iiop _tls:target _secure_invocation_policy: supports

= ["Integrity", "Confidentiality", "DetectReplay",

"Det ect M sordering", "EstablishTrustlnTarget",

"EstablishTrustindient"];
policies:iiop_tls:target_secure_invocation_policy:requires

= ["Integrity", "Confidentiality", "DetectReplay",

"Det ect M sordering"];
policies:iiop_tls:client_secure_invocation_policy:supports

= ["Integrity", "Confidentiality", "DetectReplay",

"Det ect M sordering", "EstablishTrustlnTarget",

"Establ i shTrustIndient"];
policies:iiop_tls:client_secure_invocation_policy:requires

= ["Integrity", "Confidentiality", "DetectReplay",

"Det ect M sordering"];

princi pal _sponsor: use_pri nci pal _sponsor = "true";

princi pal _sponsor:auth_nethod_id = "pkcsl2 file";

princi pal _sponsor: auth_net hod_data =
["fil ename=C \ ASPInstallDin art\ 6. 0\ et c\t | s\ x509\ cer t s\ denos\ b
ank_server.pl2", "password=bankserverpass"];

pl ugi ns: csi:all ow csi_reply wi thout _service context =
"fal se";

policies:csi:attribute_service:client_supports =
["ldentityAssertion"];

pol i cies: csi:auth_over_transport:target_supports =
["EstablishTrustinQient"];

policies:csi:auth over _transport:target requires =
["EstablishTrustInQient"];

pol i ci es: csi:auth_over_transport:authentication_service =
"csi v2. Aut henti cati onSer vi ceChj ect";
pol i ci es:csi:auth_over_transport: server_domai n_nane =
" DEFAULT";
IE

Sample Configuration

Sample Target Server Configuration

Overview

Configuration sample

This section describes a sample target server configuration for CSIv2 identity
assertion which has the following features:

Theiiop_tls and csi plug-ins are loaded into the application.

The server supports the SSL/TLS Est abl i shTrust | nTarget and

Est abl i shTrust | nd i ent association options.

The server requires the SSL/TLS Est abl i shTrust | nQ i ent association
option.

The server's X.509 certificate is specified using the SSL/TLS principal
sponsor.

The intermediate server supports the CSIv2 I dentityAssertion
association option.

The following sample shows the configuration of a target server application
that supports identity assertion (using the csi v2. target _server ORB
name).

Obix configuration file
csiv2

{

orb_plugins = ["local | og streant, "iiop_profile", "giop",
“iiop_tls", "csi"];

event _log:filters = ["IT_CSI =", "IT_TLS=*", "IT_IICP_TLS=*",
"I T_ATLI _TLS=*"];

bi nding: client_binding_list = ["AQ CP+EGM CP",
"OTS+PQA Col oc", "PQA (ol oc", "OIS+TLS Col oc+PQA Col oc",
"TLS Col oc+PQA Col oc", "d OP+SHM OP', "CSl +OTS+d CP+l | CP",
"CSl+@ CP+l | OP', "CSI +0TS+d@ P+l | CP_TLS',
"CSl +G CP+l | GP_TLS'] ;

bi ndi ng: server _binding_list = ["CSI"];

target _server
{
policies:iiop_tls:target_secure_invocation_policy: supports
= ["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustlnTarget",
"Establ i shTrustInQient"];

443

CHAPTER 17 | Configuring CSIv2 Identity Assertion

policies:iiop_tls:target_secure_invocation_policy:requires
= ["Integrity", "Confidentiality", "DetectReplay",
"Det ect M sordering", "EstablishTrustindient"];

princi pal _sponsor: use_pri nci pal _sponsor = "true";
princi pal _sponsor: auth_nethod_id = "pkcs12_file";
princi pal _sponsor: aut h_net hod_data =
["fil ename=C \ ASPInstallDin art\ 6. 0\ et c\t| s\ x509\ cert s\ demos\ b
ank_server.pl2", "password=bankserverpass"];
policies:csi:attribute service:target_supports =
["ldentityAssertion"];
b
ik

444

In this part

Part V

CORBA Security
Programming

This part contains the following chapters:

Programming Policies page 447

Authentication page 461

Validating Certificates page 499

CHAPTER 18

Programming
Policies

You can customize the behavior of secure CORBA applications
by setting policies programmatically.

In this chapter This chapter discusses the following topics:
Setting Policies page 448
Programmable SSL/TLS Policies page 451
Programmable CSIv2 Policies page 458

447

CHAPTER 18 | Programming Policies

Setting Policies

Overview

Client-side policy levels

Server-side policy levels

Policy management

448

This section provides a brief overview of how to set CORBA policies by
programming. An example, in C++ and Java, is provided that shows how
to set a CORBA policy at the ORB level.

How to program CORBA policies is described in more detail in the CORBA
Programmer’s Guide.

You can set client-side policies at any of the following levels:
* ORB

® Thread

® Object (for client-side proxies).

You can set server-side policies at any of the following levels:
* ORB
® POA

As described in the CORBA Programmer’s Guide, you can set a policy at
each level using the appropriate policy management object as listed in
Table 25.

Table 25: Policy Management Objects

Policy Level Policy Management Object
ORB QORBA: : Pol i cyManager
Thread QORBA: : Pol i cyQurrent
POA Port abl eSer ver: : POA : create_PQX()
Client-side proxy (ObjectRef) . _set _policy_overrides()

Setting Policies

C++ Example The following C+ + example shows how to set an SSL/TLS certificate
constraints policy at the ORB level:

Example 40: C++ Example of Setting ORB-Level Policies

/] C++
QORBA: : Any any;
OORBA: : Pol i cyLi st orb_polici es;
orb_policies.length(1);
1 CORBA: : (oj ect _var obj ect =

gl obal _orb->resol ve_initial _references("CORBPol i cyManager");
OORBA: : Pol i cyManager _var policy ngr =
CCRBA: : Pol i cyManager : : _narrow obj ect);

2 IT TLS API:: CertConstraints cert_constraints;
cert_constraints.length(l);

3 cert_constraints[0] = QORBA: :string_dup(
" C=US, ST=Massachuset t s, O=ABi gBank*, QU=Adni ni strati on"
)

any <<= cert_constraints;
4,5 orb_policies[0] = global_orb->create policy(
I T_TLS APl :: TLS CERT_QOONSTRAI NTS_PQLI CY, any
IE
6 policy _ngr->set_policy_overrides(
orb_policies, OORBA : ADD OVERR DE
IE

Java Example The following Java example shows how to set an SSL/TLS certificate
constraints policy at the ORB level:

Example 41: Java Example of Setting ORB-Level Policies

/1 Java
1 Pol i cyManager pol _manager = nul | ;
pol _manager = (Pol i cyManager)
orb.resol ve_ initial_references("ORBPol i cyManager");
Any policy value = orb.create_any();
String[] constraint =
{" C=US, ST=Massachuset t s, O=ABi gBank*, QU=Adnmi ni strati on"};
2,3 Cert Const rai nt sHel per.insert(policy_val ue, constraint);
Policy[] policies = new Policy[1];

449

CHAPTER 18 | Programming Policies

Setting a Policy at ORB Level

450

Example 41: Java Example of Setting ORB-Level Policies

4,5 policies[0] =
orb. create_pol i cy(TLS CERT_CONSTRAI NTS_PQLI CY. val ue,
policy_val ue);
6 pol _manager . set_pol i cy_overri des(pol i ci es,
Set Overri deType. SET_OVERR DE) ;

The programming steps in the preceding examples, “C++ Example” on
page 449 and “Java Example” on page 449, can be explained as follows:

1. Retrieve the ORB policy manager.

2. Create an instance of the policy that you are to adjust, based on the
Orbix IDL (see the CORBA Programmer’s Reference).

3. Set your new values on this policy.

Create an ORB policy object using the OORBA: : CRB: creat e_pol i cy()
operation and provide your new policy as a parameter.

5. Add the policy to a Pol i cyLi st object.

Use the Pol i cyManager : : set _pol i cy_overrides() operation to set
the new Pol i cyLi st on the ORB.

Programmable SSL/TLS Policies

Programmable SSL/TLS Policies

Overview

In this section

This section gives a brief overview of the different kinds of programmable
SSL/TLS policy and discusses how these policies interact with each other
and with policies set in configuration.

For more details of these SSL/TLS policies, consult the relevant sections of
the CORBA Programmer’s Reference.

This section contains the following subsections:

Introduction to SSL/TLS Policies page 452
The QOPPolicy page 454
The EstablishTrustPolicy page 455
The InvocationCredentialsPolicy page 456
Interaction between Policies page 457

451

CHAPTER 18 | Programming Policies

Introduction to SSL/TLS Policies

Configuring or programming
policies

Augmenting minimum levels of
security

What are the minimum security
levels for objects?

452

You can use policies to govern security behavior in Orbix and most of these
policies can be set through the Orbix configuration file (see “policies” on
page 570).

However, policies set with the configuration file only apply at the ORB level.
If you develop security-aware applications, you can add a finer level of
security to objects by programming policies in your application code.

You can use the CORBA policy IDL and the TLS policy IDL to refine the

security features that your objects require. Follow these steps:

1. Consider what are the minimum security levels set for objects in your
system.

2. Add to these minimum levels, by adding the available programmable
policies to your application code.

Note: Examples of configuring policies programmatically can be found in
the TLS policy demo, in the ASPInstallDirl asp/ 6. 0/ demos/ t| s/ pol i cy
directory.

You can set the minimum levels of security that objects require with secure
invocation policies. There are two types of secure invocation policy:

® Security::Secdient Securel nvocation

® Security:: SecTarget Secur el nvocati on

You can apply values for these in the Orbix configuration file, as discussed in
“Setting Association Options” on page 330, or by programming policies.

It is important to remember that by programming policies you can only add
more security to the minimum required in the configuration; you cannot
reduce the minimum required security by programming.

Programmable SSL/TLS Policies

Required and supported security Any object, can have the following dispositions to a security feature:
features * |f the object requires a certain type of security, that requirement must
be complied with before a call to the object succeeds.
® |If the object supports a certain type of security, that security feature
can be used, but does not have to be used.

453

CHAPTER 18 | Programming Policies

The QOPPolicy

IDL definition

Purpose

Restricting cipher suites

Over-riding how an object is
contacted

454

The Securi tyLevel 2: : QOPPol i cy policy provides a way to override the

client and target secure invocation policies. You can apply four levels of
protection defined by the enumerated type, Security: : QCP, defined as

follows:

//1DL
nmodul e Security {

enum QCP {
SecQCPNoPr ot ect i on,
SecQPIntegrity,
SecQPConfidentiality,
SecQCPI ntegrityAndConfidentiality

The Securi tylLevel 2: : QCPPol i cy is used by security aware applications for
two purposes:

® Restricting the types of cipher suites available for consideration.
® Qverriding the way in which a specific object is contacted.

The values allowed for QOP policies are not specific enough to identify
particular cipher suites (the mechanism policy can be used for this).
However the QCPPol i cy value can render certain cipher suites
inapplicable—see “Constraints Imposed on Cipher Suites” on page 348.

If you set a QOP policy to override an existing QOP policy, the applicable list
of cipher suites can be extended as a result.

When you set a QOP policy override for an object, this results in a new
object reference that contains the applicable policies. This means that the
QOP policy can conveniently be used to create an insecure object reference
(where allowed by the administration policies) that you can use for
operations where you wish insecure invocations to take place. The original
object reference that contains a higher quality of protection can be used for
the more sensitive operations.

Programmable SSL/TLS Policies

The EstablishTrustPolicy

Purpose

IDL Definition

Structure members

You can use the Securitylevel 2: : Est abl i shTrust Pol i cy to control
whether server or client authentication is to be enforced.

Both a client and target object can support this policy, meaning that, for a
client, the client is prepared to authenticate its privileges to the target, and
the target supports this.

However, you can also set this policy as required for a target policy. This
means that a client must authenticate its privileges to the target, before the
target will accept the connection.

The SecuritylLevel 2:: Establ i shTrust Pol i cy policy contains an attribute,
trust, of Security::EstablishTrust type that specifies whether trust in
client and trust in target is enabled. The Security: : Establ i shTrust type is
defined as follows:

//1DL
nmodul e Security {

struct EstablishTrust {
bool ean trust_in_client;
bool ean trust_in_target;

}s

This structure contains the following members:

® Thetrust_in_client element stipulates whether the invocation must
select credentials and mechanism that allow the client to be
authenticated to the target.

® Thetrust_in_target element stipulates whether the invocation must
first establish trust in the target.

Note: Normally, all SSL/TLS cipher suites need to authenticate the target.

455

CHAPTER 18 | Programming Policies

The InvocationCredentialsPolicy

Purpose

Attribute

Setting the policy at object level

456

The SecurityLevel 2: : I nvocat i onCredenti al sPol i cy policy forces a POA
to use specific credentials or to use specific credentials on a particular
object. When this object is returned by the get _pol i cy() operation, it
contains the active credentials that will be used for invocations using this
target object reference.

The SecuritylLevel 2:: 1 nvocat i onQredenti al sPol i cy policy has a single
attribute, creds, that returns a list of O edenti al s objects that are used as
invocation credentials for invocations through this object reference.

An I nvocat i onCredent i al sPol i cy object can be passed to the

set _policy_overrides() operation to specify one or more Oredenti al s
objects to be used when calling this target object, using the object reference
returned by set _pol i cy_overri des() .

Programmable SSL/TLS Policies

Interaction between Policies

Upgrading security

No downgrading of security

Compatibility with the mechanism
policy value

To upgrade an insecure Orbix application to be fully secure using the QoP
and Est abl i shTrust policies, the application must initially be configured to
support the Det ect Repl y and the Det ect M sor der i ng association options.
This is because it is not possible to specify the Det ect Repl ay and

Det ect M sor der i ng association options programatically, but these
association options are needed for all the SSL/TLS cipher suites. See
“Constraints Imposed on Cipher Suites” on page 348.

When you specify the client secure invocation policy and the target secure
invocation policy, you are providing your application with its minimum
security requirements. These minimum requirements must be met by any
other specified policies and cannot be weakened. This means that the
following policies cannot be specified, if their values would conflict with the
corresponding Secur el nvocat i onPol i cy value:

® QOPPolicy
® Mechani snPol i cy
® EstablishTrustPolicy

You cannot specify values for the QOPPol i cy, Secur el nvocat i onPol i cy
(client and target), or Establ i shTrust Pol i cy, if the underlying mechanism
policy does not support it. For example, you cannot specify that
Confidentiality is required, if only NULL cipher suites are enabled in the
Mechani sniPol i cy.

457

CHAPTER 18 | Programming Policies

Programmable CSlv2 Policies

Overview This section gives a brief overview of the programmable CSIv2 policies.
These programmable policies provide functionality equivalent to the CSlv2
configuration variables.

For complete details of the CSIv2 policies, see the description of the I T_CsI
module in the CORBA Programmer’s Reference.

CSIv2 policies The following CSIv2 policies can be set programmatically:
® Client-side CSIv2 authentication policy.
® Server-side CSIv2 authentication policy.
® Client-side CSlIv2 identity assertion policy.
® Server-side CSIv2 identity assertion policy.

Client-side CSIv2 authentication You can set the client-side CSIv2 authentication policy to enable an

policy application to send GSSUP username/password credentials over the wire in
a GIOP service context. The programmable client-side CSIv2 authentication
policy provides functionality equivalent to setting the following configuration
variable:
pol i ci es: csi:auth_over_transport:client_supports
To create a client-side CSIv2 authentication policy, use the following IDL
data types from the I T_CSI module:
® Policy type constant is | T_CSI:: CSI _CLI ENT_AS PCLI CY.
® Policy data is I T_CSI:: Aut henti cat i onSer vi ce.

Server-side CSIv2 authentication You can set the server-side CSIv2 authentication policy to enable an
policy application to receive and authenticate GSSUP username/password
credentials. The programmable server-side CSIv2 authentication policy
provides functionality equivalent to setting the following configuration
variables:
pol i ci es: csi:auth_over_transport:target_supports
policies:csi:auth_over_transport:target_requires
pol i ci es: csi:auth_over_transport: server_domai n_nane
pol i ci es: csi:aut h_over_transport:authenti cation_service

458

Client-side CSIv2 identity
assertion policy

Server-side CSIv2 identity
assertion policy

Programmable CSIv2 Policies

To create a server-side CSIv2 authentication policy, use the following IDL
data types from the I T_CSI module:

® Policy type constant is I T_CSI: : CSI _SERVER AS PCLI CY.
® Policy datais I T_CSI:: Aut henti cat i onSer vi ce.

You can set the client-side CSIv2 identity assertion policy to enable an
application to send a CSIv2 asserted identity over the wire in a GIOP service
context. The programmable client-side CSIv2 identity assertion policy
provides functionality equivalent to setting the following configuration
variable:

policies:csi:attribute_service:client_supports

To create a client-side CSIv2 identity assertion policy, use the following IDL
data types from the I T_CSI module:

® Policy type constant is I T_CSI:: CSI _CLI ENT_SAS PQLI CY.
® Policy datais I T_CSl:: AttributeService.

You can set the server-side CSIv2 identity assertion policy to enable an
application to receive a CSIv2 asserted identity. The programmable
server-side CSIv2 identity assertion policy provides functionality equivalent
to setting the following configuration variable:

policies:csi:attribute_service:target_supports

To create a server-side CSIv2 identity assertion policy, use the following IDL
data types from the I T_CSI module:

® Policy type constant is I T_CSI: : CSI _SERVER SAS PQLI CY.
® Policy datais I T_CSI:: AttributeService.

459

CHAPTER 18 | Programming Policies

460

In this chapter

CHAPTER 19

Authentication

The Orbix Security Framework protects your applications by
preventing principals from making calls to the system unless
they authenticate themselves.

This chapter discusses the following topics:

Using the Principal Authenticator page 462
Using a Credentials Object page 475
Retrieving Own Credentials page 477
Retrieving Target Credentials page 483
Retrieving Received Credentials page 489

461

CHAPTER 19 | Authentication

Using the Principal Authenticator

Overview The principal authenticator is an object that associates secure identities
with a CORBA application. This section explains how to use the principal
authenticator to create various kinds of credentials.

In this section This section contains the following subsections:
Introduction to the Principal Authenticator page 463
Creating SSL/TLS Credentials page 466
Creating CSIv2 Credentials page 470

462

Using the Principal Authenticator

Introduction to the Principal Authenticator

Overview This section describes the role of the principal authenticator object in
creating and authenticating an application’s own credentials.

Creating own credentials There are two alternative ways to create an application’s own credentials:
® By configuration—that is, by setting the principal sponsor
configuration variables. See “Specifying an Application’s Own
Certificate” on page 363.
® By programming—that is, by calling the
SecuritylLevel 2:: Princi pal Aut henti cator: : aut henti cat e()
operation directly. This alternative is described here.

Principal A principal can be any person or code that wants to use your secure system.
The principal must be identified, for example by a user name and password,
and authenticated. Once authenticated, your system assigns credentials to
that principal, that assert the authenticated identity.

Own credentials An own credentials object, of SecuritylLevel 2:: redenti al s type,
represents a secure identity under whose authority the context is executing.
When an application invokes an operation on a remote server, it sends one
or more of its own credentials to the server in order to identify itself to the
server.

Principal authenticator The principal authenticator is a factory object that creates own credentials
and associates them with the current ORB instance. By calling the principal
authenticator’s aut hent i cat e() operation multiple times, you can associate
a list of own credentials objects with the current ORB.

Note: In terms of the CORBA Security Specification, an ORB object is
identified with a security capsule. The list of own credentials created by a
principal authenticator is implicitly associated with the enclosing security
capsule.

463

CHAPTER 19 | Authentication

Credentials sharing

Creating own credentials

Types of credentials

SSL/TLS own credentials

CSlv2 own credentials

464

Normally, when you specify an own credential using the principal
authenticator, the credential is available only to the ORB that created it. By
setting the pl ugi ns: security: share_credential s_across_or bs variable to
true, however, the own credentials created by one ORB are automatically
made available to any other ORBs that are configured to share credentials.

To create own credentials and make them available to your application,
follow these steps:

Step Action

1 | Obtain an initial reference to the
Securi tylLevel 2: : Securit yManager object.

2 | Acquire a SecuritylLevel 2:: Princi pl eAut hent i cat or object
from the security manager.

3 | Call the Princi pl eAut henti cator: : aut hent i cat e() operation
to authenticate the client principal and create a
SecuritylLevel 2:: O edenti al s own credentials object.

4 | If more than one type of own credentials object is needed, call
the Pri nci pl eAut henti cator: : aut henti cat e() operation
again with the appropriate arguments.

Using the Pri nci pal Aut hent i cat or, you can create the following types of
credentials:

® SSL/TLS own credentials.
® CSIv2 own credentials.

An SSL/TLS own credentials contains an X.509 certificate chain and is
represented by an object of I T_TLS APl :: TLSOredent i al s type.

The contents of a CSIv2 own credentials depends on the particular

mechanism that is used, as follows:

® Username and password—if the CSIv2 authentication over transport
mechanism is used.

Using the Principal Authenticator

® Username only—if the CSIv2 identity assertion mechanism is used.

In both cases, the CSIv2 own credentials is represented by an object of
IT_CSl::CSl Oedential s type.

465

CHAPTER 19 | Authentication

Creating SSL/TLS Credentials

Overview

C++ example

466

The following authentication methods are supported for SSL/TLS:

I T_TLS APl :: 1 T_TLS AUTH METH PKCS12_FI LE—enables you to specify
the path name of a PKCS#12 file containing an X.509 certificate
chain. Not supported by Schannel.

IT_TLS API:: 1 T_TLS AUTH METH PKCS12_DER—enables you to specify
an X.5009 certificate chain in DER-encoded PKCS#12 format. The
PKCS#12 data is provided in the form of an

I T Certificate:: DERDat a object. Not supported by Schannel.
IT_TLS API:: 1 T_TLS AUTH METH CERT_CHAI N—enables you to specify
the private key and certificate chain directly as

IT Certificate:: DERData and I T_Certificate:: X509Cert Chai n
objects, respectively. Not supported by Schannel.

IT_TLS API::1T_TLS AUTH METH CERT CHAI N FI LE—enables you to
specify the path name of a file containing a PEM-encoded X.509
certificate chain. Not supported by Schannel.

IT_TLS API:: 1 T_TLS AUTH METH PKCS11—enables you to specify the
provider, slot number and PIN for a PKCS#11 smart card. Not
supported by Schannel.

IT_TLS API:: 1 T_TLS AUTH METH LABEL—enables you to specify the
common name (CN) from an application certificate’'s subject DN. This
method can be used only in combination with the Schannel toolkit
(Windows C++ only).

In the following C++ example, a client principal passes its identity to the
principal authenticator in the form of a PKCS#12 file:

Example 42: C++ Example of SSL/TLS Authentication

/[C++
int pkcsl2 | ogin(

CORBA: : ORB_ptr orb,
const char *pkcs12_fil enarre,
const char *password

Using the Principal Authenticator

Example 42: C++ Example of SSL/TLS Authentication

{
CCRBA: : Any aut h_dat a;
OCRBA: : Any* continuation_data_ign;
CCRBA: : Any* aut h_specific_data ign;
Security::AttributeList privileges; // Empty
Securitylevel 2:: Credenti al s_var creds;
Security::AuthenticationStatus status;
I T_TLS API:: PKCS12Fi | eAuthData pl2_aut h_dat a;
OCRBA: : (hj ect _var obj ;
Securitylevel 2:: SecurityManager _var security_manager_obj ;
SecuritylLevel 2: : Princi pal Aut henti cat or _var

princi pal _aut henti cat or _obj ;

obj = orb->resolve_initial_references("SecurityManager");
security _manager_obj = Securitylevel 2:: SecurityManager: :
_narrow(obj);

princi pal _authenticator_obj =
security_manager _obj - >princi pal _aut henti cator();

pl2_auth_data.fil enane =
CORBA: : string_dup(pkcsl12 fil enane);
pl2_aut h_dat a. password =
OORBA: : string_dup(password) ;
aut h_data <<= p12_aut h_dat a;

status = principal _authenti cat or _obj - >aut hent i cat e(

I T_TLS API:: 1 T_TLS AUTH METH PKCS12_FI LE,

"y /1 The mechani sm nane.

NULL, /1l SecurityNane (not used for this nethod).

auth_data, // The authentication data for this nmethod of

/1 authentication.

privileges, // Empty list, no privileges are supported
/1 by SSL.

creds,

continuation_data ign, // These | ast two paramaters are

auth_specific_data ign // not used by this

/1 mechani sni net hod conbi nati on.

467

CHAPTER 19 | Authentication

C++ notes The preceding C++ example can be explained as follows:
1. Declare an empty credentials object reference to hold the security

attributes of this client if login is successful.
Obtain an initial reference to the Securi t yManager object.
Acquire a Pri nci pl eAut hent i cat or object from the security manager.
Use the Pri nci pl eAut hent i cat or to authenticate the client principal.
If this operation returns a value of Security: : SecAut hSuccess, the
security attributes of the authenticated object are stored in the
credentials object, creds.

Java example In the following Java example, a client principal passes its identity to the
principal authenticator in the form of a PKCS#12 file:

Example 43: Java Example of SSL/TLS Authentication

[/ Java
1 org. ong. SecuritylLevel 2. Securi t yManager manager =
(org.ong. SecuritylLevel 2. Securit yManager)
orb.resolve initial_references("SecurityManager");

2 Pri nci pal Aut henti cat or aut henti cat or
manager . princi pal _aut henti cator();

Any auth_data any = orb.create_any();
PKCS12Fi | eAut hDat a aut henti cati on_data =

new PKCS12Fi | eAut hDat a(" bankser ver pass", certificate);
PKCS12Fi | eAut hDat aHel per . i nsert (aut h_dat a_any,

aut henti cati on_dat a) ;

SecAttribute[] privileges = new SecAttribute[0];

/1 Hol der for the credentials returned fromlogging in
3 Credenti al sHol der credentials = new Oredenti al sHol der () ;

/1 Hol ders for continuation_data and aut h_specific_data
[/ are not used

AnyHol der continuati on_data = new AnyHol der () ;

AnyHol der aut h_speci fic_data = new AnyHol der () ;

Aut henti cati onStatus aut henti cation_result;

468

Using the Principal Authenticator

Example 43: Java Example of SSL/TLS Authentication

4 authentication_result = authenticator. aut henticat e(

| T_TLS AUTH METH PKCS12_FI LE. val ue,
"", [/ mechani smenpty
"", [/ security name enpty
aut h_dat a_any,
privil eges,
credenti al s,
conti nuati on_dat a,
aut h_specific_data

Java notes The preceding Java example can be explained as follows:
1. Obtain an initial reference to the Securi t yManager object.
2. Acquire a Princi pl eAut hent i cat or object from the security manager.

3. Initialize an empty credentials holder object to hold the security
attributes of this client if login is successful.

4. Use the Princi pl eAut henti cat or to authenticate the client principal.
If this operation returns a value of Securi ty: : SecAut hSuccess, the
security attributes of the authenticated object are stored in the
QO edenti al s object.

469

CHAPTER 19 | Authentication

Creating CSIv2 Credentials

Overview The following authentication method is supported for CSIv2:
® |T_CSl::1T_CSI_AUTH METH USERNAME PASSWRD—enables you to
specify a GSSUP username, password, and domain. The GSSUP
authentication data is provided in the form of an
| T_CSI : : GSSUPAut hDat a object.

C++ example Example 44 shows how to create CSIv2 credentials in C++, by supplying a
username, <user_name>, password, <password>, and authentication
domain, <domain>, to the principal authenticator's aut henti cat e()
operation.

Example 44: C++ Example of CSIv2 Authentication

Il C++

int

set_csiv2_credential (CCRBA: : CRB var orb)

{
I T_CSl : : GSSUPAut hDat a csi _gssup_aut h_dat a;
CORBA: : Any aut h_dat a;
OORBA: : Any* continuation_data_ign;
OORBA: : Any* aut h_speci fic_data_ign;
Security::AttributeList privil eges;
Securitylevel 2:: Oedential s_var creds;
OORBA: : String_var user nane;
Security::AuthenticationSt at us st at us;

Securitylevel 2:: Princi pal Aut henti cat or _var authenti cator;

try {
/l Cet initial reference of SecurityManager
SecuritylLevel 2: : Securi tyManager _var security_manager _obj ;

try
{

CCRBA: : (hj ect _var obj ;

1 obj = orb->resolve_initial _references(
"Securi t yManager "
)
security_manager_obj =
Securitylevel 2:: SecurityManager: : _narrow obj);

470

Using the Principal Authenticator

Example 44: C++ Example of CSIv2 Authentication

if (OORBA: :is_nil(security_manager_obj))
{
cerr << "Wnexpected Error. Failed to initialize "
"SecurityManager initial reference." << endl;

}

authenticator =
security_manager _obj - >pri nci pal _aut henticator();
if (QORBA :is_nil(authenticator))

{
/1 Log error nessage (not shown) ...
return -1;
}
}
catch (const CCRBA : CRB:: | nval i dNane&)
{
// Log error message (not shown) ...
return -1;
}

usernane = CORBA: :string_dup(" <user_name>");
csi _gssup_aut h_dat a. password =
COORBA: : st ring_dup(" <password>");
csi _gssup_aut h_data. domai n =
CORBA: : st ring_dup(" <domain>");
aut h_dat a <<= csi _gssup_aut h_dat a;

status = aut henti cat or - >aut hent i cat e(
I T_CSl::1T_CSI_AUTH METH USERNAME PASSWORD,

, /1 NOT USED
user nane, /] GSSUP user name
aut h_dat a, // GSSUP auth data in an any
privil eges, /1 NOT USED
creds, // returned credential s
continuation_data_ign, /1 NOT USED
aut h_specific_data_ign /1 NOT USED
E
if (status != Security:: SecAut hSuccess)
{
// Log error message (not shown) ...
return -1;
}

471

CHAPTER 19 | Authentication

Example 44: C++ Example of CSIv2 Authentication

cat ch(const OCRBA: : Excepti on& ex)

{ cerr << "Could not set csi credentials, " << ex << endl;
return -1;
}
return O;
}
C++ notes The preceding C++ example can be explained as follows:

1. Obtain an initial reference to the Securi t yManager object.

2. Acquire a Princi pl eAut hent i cat or object from the security manager.

3. Create a GSSUPAuUt hDat a struct containing the GSSUP password,
<password>, and domain, <domain>.

4. Insert the GSSUPAut hDat a struct, aut h_dat a, into the any,
aut h_dat a_any.

5. Call authenticate() on the Princi pl eAut henti cat or object to
authenticate the client principal. If the aut henti cat e() operation
returns a value of Securi ty: : SecAut hSuccess, the security attributes
of the authenticated object are stored in creds.

Java example Example 45 shows how to create CSIv2 credentials in Java, by supplying a
username, <user_name>, password, <password>, and authentication
domain, <domain>, to the principal authenticator's aut henti cat e()
operation.

Example 45: Java Example of CSIv2 Authentication
[/ Java

/1 Gven the fol | owi ng prerequisites:
I/ orb - Areference to an org. ong. CORBA. CRB obj ect .

1 org.ony. SecuritylLevel 2. Securit yManager manager =
(org.ony. SecuritylLevel 2. Securi t yManager)
orb.resol ve_initial _references("SecurityManager");

2 org. ong. SecuritylLevel 2. Pri nci pal Aut henti cat or aut henti cat or
= manager . pri nci pal _aut henti cator();

472

Using the Principal Authenticator

Example 45: Java Example of CSIv2 Authentication

org. ong. OORBA. Any auth_data_any = orb.create_any();
comiona. | T_CSl. GSSUPAut hData auth_data =
new comiona. | T_CS| . GSSUPAut hDat a(
" <password>",
" <domain>"
)
comiona. | T_CS| . GSSUPAut hDat aHel per . i nsert (
aut h_dat a_any,
aut h_dat a

)

org.ony. Security. SecAttribute[] privil eges
= new org.ony. Security. SecAttribute[0];

/1 Holder for the credentials returned froml ogging in
org. ong. SecuritylLevel 2. O edenti al sHol der credential s
= new org. ony. SecuritylLevel 2. O edenti al sHol der () ;

// Holders for continuation_data and auth_specific_data
// are not used
or g. ong. CORBA. AnyHol der conti nuati on_dat a
= new or g. ong. CORBA AnyHol der () ;
or g. ong. QORBA. AnyHol der aut h_speci fi c_data
= new or g. ong. CCRBA. AnyHol der () ;

org.ong. Security. AuthenticationStatus aut hentication_result;

authentication_result = principal _authenti cator. authenti cat e(
comiona. | T_CSl.IT_CSl_AUTH METH USERNAME PASSWIRD. val ue,

"y /1 NOT USED
"<user_name>", [/ GSSUP user name
aut h_dat a_any, // an any containing the
/1 I T_CSI:: GSSUPAut hDat a st ruct
privil eges, /1 NOT USED
credential s, /1l returns the CSlv2 user credentials

continuation_data, // NOTI' USED
aut h_specific_data // NOT USED

)

/1 Returned credentials can be accessed in 'credential s. val ue’

473

CHAPTER 19 | Authentication

Java notes

474

The preceding Java example can be explained as follows:

1.
2.
3.

Obtain an initial reference to the Securi t yManager object.

Acquire a Pri nci pl eAut hent i cat or object from the security manager.
Create a GSSUPAut hDat a struct containing the GSSUP password,
<password>, and domain, <domain>.

Insert the GSSUPAut hDat a struct, aut h_dat a, into the any,

aut h_dat a_any.

Initialize an empty credentials holder object to hold the security
attributes of this client.

Call aut henti cate() on the Pri nci pl eAut henti cat or object to
authenticate the client principal. If the aut henti cat e() operation
returns a value of Securi ty: : SecAut hSuccess, the security attributes
of the authenticated object are stored in credenti al s. val ue.

Using a Credentials Object

Using a Credentials Object

What is a credentials object?

Credentials types

How credentials are obtained

Accessing the credentials
attributes

Standard credentials attributes

A SecuritylLevel 2:: Oredenti al s object is a locality-constrained object that
represents a particular principal’s credential information, specific to the
execution context. A Oredent i al s object stores security attributes, including
authenticated (or unauthenticated) identities, and provides operations to
obtain and set the security attributes of the principal it represents.

There are three types of credentials:

® Own credentials—identifies the principal under whose authority the
context is executing. An own credential is represented by an object of
SecuritylLevel 2:: Oredenti al s type.

® Target credentials—identifies a remote target object. A target
credential is represented by an object of
SecuritylLevel 2: : Target Oredenti al s type.

® Received credentials—identifies the principal that last sent a message
to the current execution context (for example, the principal that called
a currently executing operation). A received credential is represented
by an object of Securi tyLevel 2: : Recei vedOredent i al s type.

Credentials objects are created or obtained as the result of:
® Authentication.

® Asking for a O edential s object from a SecurityLevel 2:: Qurrent
object or from a Securi tyLevel 2: : Securi t yManager object.

The security attributes associated with a Oredenti al s object can be
obtained by calling the SecuritylLevel 2:: redenti al s: : get _attri but es()
operation, which returns a list of security attributes (of

Security:: AttributeList type).

Two security attribute types are supported by Orbix (of
Security:: SecurityAttributeType type), as follows:

475

CHAPTER 19 | Authentication

Orbix-specific credentials
attributes

Retrieval method summary

476

® Security::_Public—presentin every Oredential s object. The value
of this attribute is always empty.

Note: The _ (underscore) prefix in _Publ i ¢ is needed to avoid a
clash with the IDL keyword, publ i c. The underscore prefix is,
however, omitted from the corresponding C++ and Java identifiers.

® Security:: Accessl d—present only if the Oredenti al s object
represents a valid credential (containing an X.509 certificate chain). In
SSL/TLS, the value of this attribute is the string form of the subject DN
of the first certificate in the certificate chain.

Orbix also enables you to access the X.509 certificate chain associated with
a Oredenti al s object by narrowing the Oredenti al s object to one of the
following interface types: I T_TLS_API :: redenti al s,

I T_TLS APl :: Recei vedOredential s, or | T_TLS API:: Target O edenti al s.

The different credentials types can be retrieved in the following ways:

® Retrieving own credentials—a client’s own credentials can be retrieved
from the SecuritylLevel 2:: Securit yManager object.

® Retrieving target credentials—a client can retrieve target credentials
(if they are available) by passing the target's object reference to the
Securitylevel 2:: SecurityManager:: get_target_credential s()
operation.

® Retrieving received credentials—a server can retrieve an
authenticated client’s credentials from the Securi tyLevel 2:: Qurrent
object.

Retrieving Own Credentials

Retrieving Own Credentials

Overview This section describes how to retrieve own credentials from the security
manager object and how to access the information contained in the own
credentials.

In this section This section contains the following subsections:

Retrieving Own Credentials from the Security Manager page 478
Parsing SSL/TLS Own Credentials page 480
Parsing CSIv2 Own Credentials page 482

477

CHAPTER 19 | Authentication

Retrieving Own Credentials from the Security Manager

Overview This section describes how to retrieve an application’s list of own credentials
from the security manager object.

The security manager object The SecurityLevel 2: : Securi t yManager object provides access to
ORB-specific security information. The attributes and operations of the
Securi t yManager object apply to the current security capsule (that is, ORB
or group of credentials-sharing ORBs) regardless of the thread of execution.

Security manager operations and The attributes and operations on the SecurityLevel 2: : Securi t yManager

attributes object are described in the CORBA Programmer’s Reference.
C++ example In C++, you can retrieve an application’s own credentials list as shown in
Example 46.

Example 46: Retrieving a C++ Application’s Own Credentials List
/] C++

1 OCRBA : (hj ect_var obj =
ny_orb->resolve_initial _references("SecurityManager");
Securitylevel 2:: SecurityManager _var security nanager_obj =
SecuritylLevel 2: : SecurityManager: : _narrow obj);
if (OORBA :is_nil(security_nanager obj))
{

}

[/l Error! Deal with failed narrow. ..

2 Securitylevel 2:: Oedential sList_var creds_list =
security_manager obj ->own_credenti al s();

The preceding code example can be described, as follows:

1. The standard string, Securit yManager, is used to obtain an initial
reference to the SecurityLevel 2:: Securi t yManager object.

2. The list of own credentials is obtained from the own_credential s
attribute of the security manager object.

478

Java example

2

Retrieving Own Credentials

In Java, you can retrieve an application’s own credentials list as shown in
Example 47.

Example 47: Retrieving a Java Application’s Own Credentials List

/1 Java
try {
org. onmg. CORBA (hj ect obj =
ny_orb.resolve_initial _references("SecurityManager");

org. ony. Securi tylLevel 2. SecurityManager security manager _obj
= org. ony. Securitylevel 2. Securit yManager Hel per. narrow(obj) ;

}
catch (org. ong. CORBA CRB. | nval i d\Nane e) {
}
catch (org. ong. CCRBA BAD PARAM e)
{

// Error! Deal with failed narrow ..
}

org.ong. SecuritylLevel 2. Oredential s[] creds_list =
security manager _obj.own_credential s();

The preceding code example can be described, as follows:

1. The standard string, Securit yManager, is used to obtain an initial
reference to the Securi tyLevel 2: : Securi t yManager object.

2. The list of own credentials is obtained from the own_credenti al s
attribute of the security manager object.

479

CHAPTER 19 | Authentication

Parsing SSL/TLS Own Credentials

Overview

C++ example

480

This subsection explains how to access the information stored in an
SSL/TLS credentials object. If a credentials object obtained from the security
manager is of SSL/TLS type, you can narrow the credentials to the

I T_TLS API:: TLSO edenti al s type to gain access to its X.509 certificate
chain.

In C+ +, if the own credentials list contains a list of SSL/TLS credentials,
you can access the credentials as follows:

/] C++
for (CORBA::ULong i=0; i < creds_list->length(); i++)

{

/1l Access the i’th own credentials in the |ist
I T TLS API:: TLSOredential s_var tls_creds =
I T_TLS API:: TLSO edential s::_narrow(creds_list[i]);
if (CORBA :is nil(tls_creds))
{

}

/] Error! Deal with failed narrow...

/I Get the first X 509 certificate in the chain
IT Certificate:: X509Cert _var cert =
tls_creds->get_x509 cert();

/!l Examne the X 509 certificate, etc.

Retrieving Own Credentials

Java example In Java, if the own credentials list contains a list of SSL/TLS credentials, you
can access the credentials as follows:

/1 Java

import comiona.corba. | T_TLS API. TLSO edenti al s;
inport comiona.corba. | T_TLS API. TLSOr edenti al sHel per;
inmport comiona.corba.| T Certificate. X509Cert;

for (int i=0; i < creds_list.length; i++)

{
Il Access the i’th own credentials in the |ist
TLSCredentials tls_creds =
TLSCredent i al sHel per. narrow(creds_list[i]);
/] Get the first X 509 certificate in the chain
X509Cert cert =
tls_creds. get_x509 cert();
// Examine the X 509 certificate, etc.
}

481

CHAPTER 19 | Authentication

Parsing CSlv2 Own Credentials

Overview

Java example

482

This subsection explains how to access the information stored in a CSIv2
credentials object. If a credentials object obtained from the security manager
is of CSIv2 type, you can narrow the credentials to the
IT_CS::CSlOedentials type.

In Java, if the own credentials list contains a list of CSIv2 credentials, you
can access the credentials as follows:

Il Java

inport comiona.corba.l T_CSl.CSl Credential s;

inport comiona.corba.l T_CSl.CSl Credenti al sHel per;

inport comiona.corba.l T _CSlI.CSl Cedential sType;

i nport
comiona. corba. | T_CSl.CSl Credenti al sType. GSSUPCr edent i al s;

i nport
comiona. corba. | T_CSl . CSI Oredenti al sType. Propagat edO edent i al
S;

for (int i=0; i < creds_list.length; i++)

{
/1 Access the i’th own credentials in the |ist
CSI O edentials csi_creds =
CSl Oredenti al sHel per. narrow(creds_list[i]);
CSl Oredenti al sType csi _type
= csi _creds. csi _credential s_type()
if (csi_type == GSSUPCredential s) {
Systemout.printIn("[" +i +"] ="
+ "credentials for CSIv2 authentication nechani sm');
}
}

Retrieving Target Credentials

Retrieving Target Credentials

Overview This section describes how to retrieve the target credentials from a particular
target object and how to access the information contained in the target
credentials.

In this section This section contains the following subsections:

Retrieving Target Credentials from an Object Reference page 484
Parsing SSL/TLS Target Credentials page 487

483

CHAPTER 19 | Authentication

Retrieving Target Credentials from an Object Reference

Availability of target credentials

The TargetCredentials interface

Interaction with rebind policy

484

Target credentials are available on the client side only if the client is
configured to authenticate the remote target object. For almost all SSL/TLS
cipher suites and for all SSL/TLS cipher suites currently supported by Orbix
E2A ASP this is the case.

When target credentials are available to the client, they are implicitly
associated with an object reference.

The SecuritylLevel 2: : Target Oredent i al s interface is the standard type
used to represent a target credentials object. It is described in the CORBA
Programmer’s Reference.

If you are going to retrieve target credentials, you should be aware of the
possible interactions with the rebind policy.

WARNING: If you want to check the target credentials, you should ensure
that transparent rebinding is disabled by setting the

pol i ci es: rebi nd_pol i cy configuration variable to NO REBI ND. Otherwise,
a secure association could close (for example, if automatic connection
management is enabled) and rebind to a different server without the client
being aware of this.

C++ example

Retrieving Target Credentials

In C++, you can retrieve the target credentials associated with a particular
object reference, target _ref, as shown in Example 48.

Example 48: C++ Obtaining Target Credentials
Il C++

/1 Gven the follow ng prerequisites:
Il ny_orb - areference to an ORB i nstance.
/I target_ref - an object reference to a renote, secured object.

OORBA: : (oj ect _var obj =
ny_orb->resol ve_initial _references("SecurityMnager");
SecuritylLevel 2:: SecurityManager _var security_manager _obj =
Securitylevel 2:: Securi t yManager: : _narrow obj);
if (CCRBA :is_nil(security_manager_obj))
{

}

/] Error! Deal with failed narrow ..

SecuritylLevel 2:: Target O edential s_var target_creds =
security_manager_obj ->get_target _credential s(target_ref);

485

CHAPTER 19 | Authentication

Java example

486

In Java, you can retrieve the target credentials associated with a particular
object reference, target _ref, as shown in Example 49.

Example 49: Java Obtaining Target Credentials
/1l Java

/1 Gven the fol | owi ng prerequisites:
// ny_orb - a reference to an CRB i nst ance.
I/ target_ref - an object reference to a renote, secured obj ect.

try {
or g. ong. CORBA (bj ect obj =
ny_orb.resol ve_initial_references("SecurityManager");
org. omy. Securitylevel 2. Securi t yManager security_nanager_obj
= org. ony. Securitylevel 2. Securi t yManager Hel per. narrow(obj) ;

}
catch (org. ong. CORBA. CRB. | nval i dNane e) {
}
catch (org.ong. CORBA. BAD PARAM e)
{

[/l Error! Deal with failed narrow ..
}

org.ony. Securitylevel 2. Target redentials target_creds =
security _manager _obj.get target credential s(target_ref);

Retrieving Target Credentials

Parsing SSL/TLS Target Credentials

Overview

C++ example

If you want to access the added value Orbix functionality for SSL/TLS target
credentials, perform this additional step after obtaining the target
credentials (otherwise, you can use the standard

SecuritylLevel 2:: Oredenti al s interface).

Narrow the SecurityLevel 2: : Target Oredent i al s object to the
I T_TLS APl :: TLSTar get Oredent i al s type to gain access to its X.509
certificate.

In C++, after obtaining a target credentials object, t arget _cr eds, as shown
in Example 48 on page 485, you can access the SSL/TLS specific data as
follows:

/] C++

I T_TLS APl :: TLSTarget Oredential s var tls target creds =

I T_TLS API:: TLSTarget Oredenti al s: : _narrow(target_creds);
if (CCRBA :is_ nil(tls_target_creds))
{

/] Error! Deal with failed narrow ..

}

I/ Get the first X 509 certificate in the chain
IT Certificate:: X509Cert _var cert =
tls_target creds->get x509 cert();

/1 Exam ne the X 509 certificate, etc.

487

CHAPTER 19 | Authentication

Java example In Java, after obtaining a target credentials object, t arget _creds, as shown
in Example 49 on page 486, you can access the SSL/TLS specific data as
follows (exception handling not shown):

/1 Java

import comiona.corba. | T_TLS API. TLSTarget O edenti al s;
inport comiona.corba.l T_TLS APl . TLSTarget O edenti al sHel per;
import comiona.corba.l T Certificate. X509Cert;

TLSTarget Oredentials tls_target_creds =
TLSTar get O edent i al sHel per. narrow(target _creds);

/] Get the first X 509 certificate in the chain
X509Cert cert =
tls_target_creds. get _x509 cert();

// Examine the X 509 certificate, etc.

488

Retrieving Received Credentials

Retrieving Received Credentials

Overview This section describes how to retrieve received credentials from the current
object and how to access the information contained in the received
credentials.

In this section This section contains the following subsections:

Retrieving Received Credentials from the Current Object page 490

Parsing SSL/TLS Received Credentials page 492

Parsing CSIv2 Received Credentials page 494

489

CHAPTER 19 | Authentication

Retrieving Received Credentials from the Current Object

Role of the A security-aware server application can obtain information about the

SecurityLevel2::Current object attributes of the calling principal through the Securi tyLevel 2:: Qurrent
object. The Securi tyLevel 2:: Qurrent object contains information about
the execution context.

The SecurityLevel2::Current The Securi tyLevel 2:: Qurrent interface is described in detail in the CORBA

interface Programmer’s Reference.

C++ example In C+ +, to obtain received credentials, perform the steps shown in
Example 50.

Example 50: C++ Retrieving Received Credentials

Il C++

/1 In the context of an operation/attribute inplenmentation

OORBA: : (hj ect _var obj =
ny_orb->resol ve_ initial _references("SecurityQurrent");
SecuritylLevel 2:: Qurrent _var current_obj =
Securitylevel 2:: Qurrent::_narrow obj);
if (QORBA :is nil(current_obj))
{
// Error! Deal with failed narrow ..

}

SecuritylLevel 2: : Recei vedO edenti al s_var recvd_creds =
current _obj ->recei ved_credential s();

490

Retrieving Received Credentials

Java example In Java, to obtain received credentials, perform the steps shown in
Example 51.

Example 51: Java Retrieving Received Credentials

/1 Java

/1 In the context of an operation/attribute inplenentation

try {
org. ong. CORBA. Chj ect obj =
ny_orb.resolve_initial _references("SecurityQurrent");
org. omg. SecuritylLevel 2. Qurrent current_obj
= org.ony. SecuritylLevel 2. Qurrent Hel per. narrow(obj) ;

}
catch (org. ong. CORBA CRB. I nval i dNane e) {
}
cat ch (org. ong. CORBA. BAD PARAM e)
{

[/ Error! Deal with failed narrow ..
}

org. ong. Securi tylLevel 2. Recei vedO edenti al s recvd _creds =
current _obj.recei ved_credential s();

491

CHAPTER 19 | Authentication

Parsing SSL/TLS Received Credentials

Overview If you want to access the added value Orbix functionality for SSL/TLS
received credentials, perform this additional step (otherwise, you can use
the standard SecurityLevel 2:: Oredenti al s interface).

Narrow the SecurityLevel 2: : Recei vedQredent i al s object to the
I T_TLS API:: TLSRecei vedCredent i al s type to gain access to its X.509
certificate (this step is specific to Orbix).

C++ example In C+ +, after obtaining a received credentials object, recvd_creds, (see
Example 50 on page 490) you can access the SSL/TLS specific data as
follows:

/] C++

I T_TLS APl :: TLSRecei vedOredential s_var tls_recvd_creds =

I T_TLS API:: TLSRecei vedOr edenti al s: : _narrow(recvd_creds);
if (CQORBA :is_nil(tls_recvd creds))
{

[/l Error! Deal with failed narrow. ..

}

I/l Get the first X 509 certificate in the chain
IT Certificate:: X509Cert _var cert =
tls_recvd_creds->get x509 cert();

/1 Exami ne the X 509 certificate, etc.

492

Java example

Retrieving Received Credentials

In Java, after obtaining a received credentials object, recvd_creds, (see
Example 51 on page 491) you can access the SSL/TLS specific data as
follows (exception handling not shown):

/1l Java

import comiona.corba. | T_TLS API. TLSRecei vedOredenti al s;
inport comiona.corba. | T_TLS APl . TLSRecei vedOr edent i al sHel per;
inmport comiona.corba.| T Certificate. X509Cert;

TLSRecei vedO edential s tls_recvd_creds =
TLSRecei vedOr edent i al sHel per. narrow(recvd_cr eds) ;

/l Get the first X 509 certificate in the chain
X509Cert cert =
tls_recvd_creds. get_x509_cert ();

// Examine the X 509 certificate, etc.

493

CHAPTER 19 | Authentication

Parsing CSlv2 Received Credentials

Overview

CSIv2 received credentials

CSIReceivedCredentials interface

494

If you want to access the added value Orbix functionality for CSIv2 received
credentials, you need to narrow the generic

SecuritylLevel 2: : Recei vedO edent i al s object to the

I T_CSI:: CSl Recei vedOr edent i al s type. This subsection explains, with the
help of examples, how to access the CSIv2 received credentials.

The CSIv2 received credentials are a special case, because the CSIv2

specification allows up to three distinct credentials types to be propagated

simultaneously. A CSIv2 received credentials can, therefore, include one or

more of the following credentials types:

® Propagated identity credentials (through the CSIv2 identity assertion
mechanism).

® GSSUP credentials (through the CSIv2 authentication mechanism).

® Transport credentials (through SSL/TLS).

Access to each of the credentials types is provided by the following
attributes of the | T_CSI : : CSI Recei vedOredent i al s interface:

/1 1D
modul e I T_CSI {

local interface CSl Recei vedCredential s :
I T_TLS APl :: TLSRecei vedOredential s, CSICedentials

{
readonly attribute CSI Oredential s gssup_credential s;
readonly attribute CSI O edential s
propagat ed_i dentity credenti al s;
readonly attribute SecuritylLevel 2:: Credential s
transport _credenti al s;
I8

Java example

Retrieving Received Credentials

In Java, after obtaining a received credentials object, recvd_creds (see
Example 51 on page 491), you can access the CSIv2 specific data as
shown in Example 52. This example assumes that CSIv2 authentication is
enabled, but not CSIv2 identity assertion. Hence, no attempt is made to
access the propagated identity credentials.

Example 52: Java Parsing CSIv2 Received Credentials

/1l Java
inport org.ong. Security.*;
import org.ong. SecuritylLevel 2. *;

inport comiona.corba. | T_CSl.CSl Recei vedCr edent i al s;
import comiona.corba. | T _CSl.CSl Recei vedCOr edent i al sHel per;
inport comiona.corba. | T_CSl.CSl Cedential sType;

inport comiona.corba. | T_CSl.CSl _SERVER AS PQLI CY;

import comiona.corba.util.QbServicesWility;

/1 Cet the TLS received credential s
CSl Recei vedOredential s csi_rec_creds

= CSl Recei vedCredent i al sHel per . narrow(recvd_creds) ;
Oedentials transport_credential s_rec

= csi_rec_creds.transport_credential s();

/1 Select the org.ong. Security. Accessld SecAttribute type
AttributeType[] attributes_types =

{
new Attri but eType(

new Ext ensi bl eFam | y((short)0, (short)l), Accessld.val ue
)
IE

SecAttribute[] trans_attribute
= transport_credential s_rec.get_attributes(
attributes_types
JE
String trans_access_id = new String(
trans_attribute[0].value, O, trans_attribute[O0].val ue.length

);

/] Get the GSSUP (usernane/ passsword) credential s
O edentials gssup_creds = csi_rec_creds. gssup_credential s();

SecAttribute[] gssup_attribute

495

CHAPTER 19 | Authentication

Example 52: Java Parsing CSIlv2 Received Credentials

= gssup_creds.get_attributes(attributes_types);

8 String gssup_access_id = new String(
gssup_attribute[0].value, O, gssup_attribute[0].value.length

)

The preceding Java example can be explained as follows:

1. This line attempts to narrow the generic received credentials object,
recvd_creds, to the | T_CSI : : CSI Recei vedOredent i al s type. If the
received credentials object is not of this type, the narrow would fail and
a OCRBA: : BAD PARAMexception would be thrown.

2. Thetransport_credential s attribute accessor returns a reference to
the received transport credentials (for example, SSL/TLS), which form
part of the overall CSI received credentials. If there is no secure
transport or if the client is not configured to send transport credentials,
the return value would be nul I .

3. This line initializes a Security:: Attribut eTypeLi st sequence (Java
org.ony. Security. AttributeType[] array) with a single attribute type
for a Security:: Accessld.

4. The attribute type list created in the previous line is passed to
get _attributes() to retrieve the Accessl d attribute from the received
transport credentials. The Accessl d for the transport credentials is the
distinguished name of the subject of the X.509 certificate received
from the client. In other words, the Accessl d identifies the invoking
client.

5. This line converts the Accessl! d from its native format (an octet
sequence) into a string. The result is a distinguished name in string
format (see “ASN.1 and Distinguished Names” on page 629).

This step completes the process of identifying the client using the
transport credentials portion of the CSI received credentials.

496

Retrieving Received Credentials

The gssup_credenti al s attribute accessor returns a reference to the
received GSSUP credentials. The GSSUP credentials contain an
authenticated username sent by the client using the CSIv2
authentication mechanism. If the client is not configured to use the
CSlv2 authentication mechanism, the return value would be nul I .

The get _attributes() operation is invoked to retrieve the Accessl d
attribute from the received GSSUP credentials. The Accessl d for the
GSSUP credentials is the client’'s username.

This line converts the Accessl d from its native format (an octet
sequence) into a string.

This step completes the process of identifying the client using the
GSSUP portion of the CSI received credentials.

497

CHAPTER 19 | Authentication

498

In this chapter

CHAPTER 20

Validating
Certificates

During secure authentication, Orbix TLS checks the validity of
an application’s certificate. This chapter describes how Orbix
validates a certificate and how you can use the Orbix API to
introduce additional validation to your applications.

This chapter discusses the following topics:

Overview of Certificate Validation page 500
The Contents of an X.509 Certificate page 503
Parsing an X.509 Certificate page 504
Controlling Certificate Validation page 506
Obtaining an X.509 Certificate page 515

499

CHAPTER 20 | Validating Certificates

Overview of Certificate Validation

Certificate validation The Orbix API allows you to define a certificate validation policy that
implements custom validation of certificates. During authentication, Orbix
validates a certificate and then passes it to a certificate validation object, if
you have specified a certificate validation policy. This functionality is useful
in systems that have application-specific requirements for the contents of
each certificate.

Validation process A server sends its certificate to a client during a TLS handshake, as follows:
1. The server obtains its certificate (for example, by reading it from a local
file) and transmits it as part of the handshake.
2. The client reads the certificate from the network, checks the validity of
its contents, and either accepts or rejects the certificate.

4 Client R 4 Server)
Application Code Application Code
Orbix 2000 SSL/ 0rbix 2000 SSLTLS
TLS
- \) 1.TLS Checks /)

Certificate

2. TLS Accepts
or Rejects
Certificate

Figure 66: Validating a Certificate

500

Default validation

Custom validation

Example of custom validation

Overview of Certificate Validation

The default certificate validation in Orbix checks the following:

The certificate is a validly constructed X.509 certificate.

The signature is correct for the certificate.

The certificate has not expired and is currently valid.

The certificate chain is validly constructed, consisting of the peer
certificate plus valid issuer certificates up to the maximum allowed
chain depth.

If the Cert Constrai nt sPol i cy has been set, the DN of the received
peer certificate is checked to see if it passes any of the constraints in
the policy conditions. This applies only to the application certificate,
not the CA certificates in the chain.

For some applications, it is necessary to introduce additional validation. For
example, your client programs might check that each server uses a specific,
expected certificate (that is, the distinguished name matches an expected
value). Using Orbix, you can perform custom validation on certificates by
registering an | T_TLS APl :: Cert Val i dat or Pol i cy and implementing an
associated | T_TLS: : Cert Val i dat or object.

For example, Figure 67 shows the steps followed by Orbix to validate a
certificate when a Cert Val i dat or Pol i cy has been registered on the client

side:
1.
2.

The standard validation checks are applied by Orbix.

The certificate is then passed to an I T_TLS: : Cert Val i dat or callback
object that performs user-specified validation on the certificate.

The user-specified Cert Val i dat or callback object can decide whether
to accept or reject the certificate.

501

CHAPTER 20 | Validating Certificates

3.
CertValidator
Callback
Accepts or
Rejects
Certificate

502

4. Orbix accepts or rejects the certificate.

Client

Application Code

CertValidator
Callback

Orbix 2000 SSL/TLS

N\

4. TLS Accepts
or Rejects
Certificate

Figure 67: Using a CertValidator Callback

2. CertValidator
Callback Checks
Certificate

Server

Application Code

1. TLS Checks
Certificate

Orbix 2000 SSL/

TLS

/)

The Contents of an X.509 Certificate

The Contents of an X.509 Certificate

Purpose of a certificate An X.509 certificate contains information about the certificate subject and
the certificate issuer (the CA that issued the certificate).

Certificate syntax A certificate is encoded in Abstract Syntax Notation One (ASN.1), a
standard syntax for describing messages that can be sent or received on a
network.

Certificate contents The role of a certificate is to associate an identity with a public key value. In

more detail, a certificate includes:

® X.509 version information.

® Aserial number that uniquely identifies the certificate.
® A common name that identifies the subject.

® The public key associated with the common name.

® The name of the user who created the certificate, which is known as
the subject name.

* Information about the certificate issuer.

® The signature of the issuer.

® Information about the algorithm used to sign the certificate.

® Some optional X.509 v3 extensions. For example, an extension exists
that distinguishes between CA certificates and end-entity certificates.

503

CHAPTER 20 | Validating Certificates

Parsing an X.509 Certificate

Parsing APIs Two distinct APIs are used to parse an X.509 certificate, depending on
whether you program in C++ or Java, as follows:
® C++ parsing uses the interfaces defined in the | T_Certificate IDL
module.
® Java parsing uses the j ava. security. cert package and a subset of
the interfaces in the I T_Certificate IDL module.

C+ + parsing Orbix E2A ASP provides a high-level set of C++ classes that provide the
ability to parse X.509 v3 certificates, including X.509 v3 extensions. When
writing your certificate validation functions, you use these classes to
examine the certificate contents.

The C++ parsing classes are mapped from the interfaces appearing in the
I T_Certificate IDL module—see the CORBA Programmer’s Reference.

Java parsing Orbix E2A ASP allows you to use the X.509 functionality provided by the
JDK.

If you develop Java applications, only the following IDL interfaces are
relevant:

® |IT Certificate::Certificate
® |T Certificate:: X509Cert
® |IT Certificate::X509CertificateFactory
To access the information in a Java X.509 certificate, perform the following
steps:
1. Extract the DER data from the certificate using the
IT Certificate:: Certificate::encoded_formattribute.
2. Pass the DER data to the
comiona.corba.tls.cert.CertHel per.bytearray_to_cert() method
to obtain ajava. security.cert. Certificate object.

3. Usethejava. security. cert package to examine the certificate.

504

Working with distinguished
names in C++

Extracting distinguished names
from certificates in C+ +

Working with X.509 extensions in
C++

Parsing an X.509 Certificate

An X.509 certificate uses ASN.1 distinguished name structures to store
information about the certificate issuer and subject. A distinguished name
consists of a series of attribute value assertions (AVAs). Each AVA
associates a value with a field from the distinguished name.

For example, the distinguished name for a certificate issuer could be
represented in string format as follows:

/| C=I B/ ST=Co. Dubl i n/ L=Dubl i n/ O=I ON& OUJ=PDY ON=I ONA

In this example, AVAs are separated by the / character. The first field in the
distinguished name is C, representing the country of the issuer, and the

corresponding value is the country code | E. This example distinguished
name contains six AVAs.

Once you have acquired a certificate, the I T_Certificate:: Certificate
interface permits you to retrieve distinguished names using the

get _i ssuer_dn_string() and get_subj ect_dn_string() operations. These
operations return an object derived from the I T_Certi fi cate: : AVALI st
interface. The AVALI st interface gives you access to the AVA objects
contained in the distinguished name. For more information on these
interfaces, see the CORBA Programmer’s Reference.

Some X.509 v3 certificates include extensions. These extensions can
contain several different types of information. You can use the

IT Certificate:: ExtensionList and I T _Certificate::Extension
interfaces described in the CORBA Programmer’s Reference to retrieve this
information.

505

CHAPTER 20 | Validating Certificates

Controlling Certificate Validation

Policies used for certificate You can control how your applications handle certificate validation using the
validation following Orbix policies:
Cert Const rai nt sPol i cy Use this policy to apply conditions that peer
X.509 certificates must meet to be
accepted.

CertificatevalidatorPolicy Use this policy to create customized
validations of peer certificate chains.

In this section This section contains the following subsections:
Certificate Constraints Policy page 507
Certificate Validation Policy page 511

506

Controlling Certificate Validation

Certificate Constraints Policy

Constraints applied to
distinguished names

Alternatives ways to set the
constraints policy

Setting the CertConstraintsPolicy
by configuration

Setting the CertConstraintsPolicy
by programming

You can impose rules about which peer certificates to accept using
certificate constraints. These are conditions imposed on a received
certificate subject's distinguished name (DN). Distinguished names are
made up of a number of distinct fields, the most common being
Organization Unit (OU) and Common Name (CN). Constraints are not
applied to all certificates in a received certificate chain, but only to the first
in the list, the peer application certificate.

Use the certificate constraints policy to apply these conditions. You can set
this policy in two ways:

By configuration This allows you to set constraints at the granularity
of an ORB. The same constraints are applied to both
client and server peer certificates.

By programming This allows you to set constraints by ORB, thread,
POA, or object reference. You can also differentiate
between client and server certificates when
specifying constraints.

You can set the Cert Constrai ntsPol i cy in the configuration file. For
example:

" C=US, ST=Massachuset t s, O=ABi gBank*, OU=Adni ni strati on"

In this case, the same constraints string applies to all POAs. If you need
different constraints for different POAs then you must supply the policy at
POA creation time. For more details, see “Applying Constraints to
Certificates” on page 376.

When you specify a Cert Const r ai nt sPol i cy object on an ORB
programatically, objects created by that ORB apply the certificate
constraints to all applications that connect to it.

507

CHAPTER 20 | Validating Certificates

In the following example, the certificate constraints string specified only
allows clients from the Administration Organization unit to connect. The
administration user is the only client that has a certificate that satisfies this
constraint.

Note: Thiscertificate constraints policyisonly relevantifthe target object
supports client authentication.

C++ example The following C++ example shows how to set the Cert Const rai nt sPol i cy
programmatically:

Example 53: C++ Example of Setting the CertConstraintsPolicy
/[C++

CCRBA: : Any any;
1 OCRBA: : Pol i cyLi st orb_poli cies;
orb_policies.length(1);

2 OORBA: : (hj ect _var object =

gl obal _orb->resolve_initial _references("CORBPol i cyManager");
OCRBA: : Pol i cyManager _var pol i cy_ngr = OORBA: : Pol i cyManager : :
_narrow(obj ect);
3 IT_TLS APl :: CertConstraints cert_constraints;
cert_constraints.length(1);

cert_constraints[0] =
OORBA: : string_dup(" C=US, ST=Massachusetts,
O=ABi gBank*, OJ=Adnmi ni strati on");
any <<= cert_constraints;
4 orb_policies[0] = global _orb->create policy(lT_TLS APl ::
TLS_CERT_CONSTRAI NTS_PCLI CY, any);

5 pol i cy_ngr->set_policy_overrides(orb_policies, OORBA :
ADD_OVERRI DE);
C++ example description The preceding C++ example can be explained as follows:

1. Create a Pol i cyLi st object.
2. Retrieve the Pol i cyManager object.
3. Instantiate a Cert Const rai nt s data instance (string array).

508

Java example

Controlling Certificate Validation

4. Create a policy using the CORBA: : ORB: : creat e_pol i cy() operation.
The first parameter to this operation sets the policy type to
TLS _CERT_CONSTRAI NTS_PCLI CY, and the second is an Any
containing the custom policy.

5. Use the Pol i cyManager to add the new policy override to the Orb
scope

The following Java example shows how to set the Cert Const rai nt sPol i cy
programmatically:

Example 54: Java Example of Setting the CertConstraintsPolicy (Sheet 1 of

2)

/1 Java

/1 OM5 inports

i npor t
i npor t
i npor t
i npor t
i npor t

or g. omg. CCRBA. CRBPackage. | nval i d\arre;
or g. onmg. CCRBA Pol i cy;

or g. omg. CCRBA. Pol i cyManager ;

or g. omg. CCRBA Pol i cyManager Hel per ;

or g. omg. CORBA. Set Overri deType;

// 1 ONA specific security inports

i npor t
i npor t

comiona.corba. | T_TLS API. Cert Constrai nt sHel per;
comiona.corba. | T_TLS API. TLS CERT_CONSTRAI NTS_PQLI CY;

public class Server

{
publ

{

tr
{

ic static void main(String args[])

y

Pol i cyManager pol _manager = null;
try
{
pol _manager = Pol i cyManager Hel per. nar r ow(
orb.resol ve_ initial_references("ORBPol i cyManager")
E
}
cat ch(l nval i d\Nane i nval i d_name)
{
Systemerr. println(
"x509 initial reference not set. Check plugin list"

509

CHAPTER 20 | Validating Certificates

Example 54: Java Example of Setting the CertConstraintsPolicy (Sheet 2 of
2)

)
Systemexit(1);
}
cat ch(org. ong. CCRBA BAD PARAM exc)
{
Systemerr.println("narrow to PolicyManager failed.");
Systemexit(1);
}

org. onmg. CORBA Any policy value = orb.create_any();
2 String[] constraint =
{" C=US, ST=Massachuset ts, O=AB gBank*, QU=Adni ni stration"};
3 Cert Const rai nt sHel per.insert(policy_value, constraint);
Policy[] policies = new Policy[1];
4 policies[0] = orb.create policy(
TLS CERT_CONSTRAI NTS_PCLI CY. val ue,
policy_val ue
IE
5 pol _manager . set _pol i cy_overri des(
poli ci es,
Set Overri deType. SET_OVERR DE
IE

Java example description The preceding Java example can be explained as follows:

1. Retrieve the Pol i cyManager object.

2. Instantiate a Cert Const rai nt s data instance (string array).
3. Insert the constraint into pol i cy_val ue (an Any).
4

Create a policy using the CORBA : CRB: : creat e_pol i cy() operation.
The first parameter to this operation sets the policy type to
TLS _CERT_CONSTRAI NTS_PCLI CY, and the second is an Any
containing the custom policy.

5. Use the Pol i cyManager to add the new policy override to the ORB
scope

510

Controlling Certificate Validation

Certificate Validation Policy

Certificate validation

Restrictions on custom certificate
validation

Customizing your applications

Derive a class from the
CertValidator signature class

Your applications can perform customized validation of peer certificate
chains. This enables them, for example, to perform special validation on
x.509 v3 extensions or do automatic database lookups to validate subject
DNs.

The customized certificate validation policy cannot make Orbix accept a
certificate that the system has already decided is invalid. It can only reject a
certificate that would otherwise have been accepted.

To customize your applications, perform the following steps:

Step Action

1 | Derive a class from the CertValidator signature class.

2 | Override the validate cert _chain() operation.

3 | Specify the CertValidatorPolicy on the ORB.

Your customized policy is used in addition to the default
Cert Val i dat or Pol i cy.

In the following example, an implementation class is derived from the
I T TLS:: CertValidator interface:

/] C++

class CustonCert Val i dat or | npl
public virtual IT_TLS:: CertValidator,
public virtual QOORBA: :Local (bj ect

{
publ i c:

CCRBA: : Bool ean
val i date_cert _chai n(
QOORBA: : Bool ean chain_i s_valid,
const | T Certificate:: X509Cert Chai n& cert _chain,

511

CHAPTER 20 | Validating Certificates

const | T_TLS:: Cert Chai nErrorl nfo& error_info
)5
H

The class contains your custom version of the val i date_cert _chai n()
function.

Override the validate_cert_chain() The following an example custom validation function simply retrieves a
operation name from a certificate:

Example 55: C++ Example of Overriding validate cert_chain()

/] C++

COCORBA: : Bool ean

CQust onCert Val i dator | npl : : val i dat e_cert _chai n(
OCORBA: : Bool ean chain_is_valid,
const | T Certificate::X509Cert Chai n& cert_chain,
const | T_TLS:: Cert Chai nErrorlnfo& error_info

)
{
if (chain_is_valid)
{
OORBA: : String_var O\
1 IT Certificate:: X509Cert _var cert = cert_chain[0];
2 IT Certificate:: AVALi st _var subject =
cert->get_subject_avalist();
IT Certificate::Bytes* subject_string_nane;
3 subj ect _string_nane = subject->convert(IT Certificate::
| T_FMI_STRI NG ;
int len = subject_string_name->| ength();
char *str_nane = new char[len];
for (int i =0; i <len; i++){
str_nanme[i] = (char) ((*subject _string nane)[i]);
}
}
return chain_is_valid;
}

512

Specify the CertValidatorPolicy on
the ORB

Controlling Certificate Validation

The preceding C++ example can be explained as follows:

1.
2.

The certificate is retrieved from the certificate chain.

An AVAList (see “Working with distinguished names in C++" on
page 505) containing the distinguished name is retrieved from the
certificate.

The distinguished name is converted to string format.

Once you have devised your custom validation class, create an instance of it
and apply it as a policy to the Orb with the policy manager, as shown in the
following example:

Example 56: C++ Example of Setting the CertValidatorPolicy

/] G+
int main(int argc, char* argv[])

{

CORBA: : Pol i cyTypeSeq t ypes;

OORBA: : Pol i cyLi st policies(1);

CORBA: : Any pol i cy_any;

CORBA: : (bj ect _var obj ect;

OORBA: : Pol i cyManager _var pol i cy_nur;

IT TLS:: CertValidator_ptr customcert_val obj;

policies.length(l);

types.length(1);

types[0] = IT_TLS APl ::TLS CERT VALI DATCR PQLI CY;
CORBA: : CRB var orb = CCRBA : CRB_init(argc, argv);

obj ect = orb->resol ve_initial_references("CRBPol i cyManager");
policy ngr = GORBA: : Pol i cyManager:: narrow obj ect);

I/ set cert validator policy at CRB scope

customcert_val _obj = new QustonCert Val i dator | npl;
policy any <<= customcert_val obj;
policies[0] =

orb->create_policy(l T_TLS API::TLS CERT VALI DATCR PCLI CY,
pol i cy_any);

pol i cy_ngr->set_policy overrides(
policies,
OCRBA: : ADD OVERR DE
IE

513

CHAPTER 20 | Validating Certificates

514

Example 56: C++ Example of Setting the CertValidatorPolicy

}

As can be seen from the above example, you can apply the new
Cert Val i dat or policy to the Orb in the same manner as any other
Orbix2000 policy:

1.
2.

Create a QORBA: : Pol i cyLi st object.

Set the type of the appropriate policy slot in the Pol i cyLi st to
TLS_CERT_VALI DATCR_PCLI CY. In this example, the first slot is
chosen.

Retrieve the CORBA: : Pol i cyManager object.

Instantiate the custom I T_TLS: : Cert Val i dat or policy object.
Create a policy using the OORBA: : CRB: : creat e_pol i cy() operation.
The first parameter to this operation sets the policy type to
TLS_CERT_VALI DATCR_PCLI CY, and the second is a CORBA : Any
containing the custom policy.

Use the Pol i cyManager to add the new policy override to the ORB
scope.

Obtaining an X.509 Certificate

Obtaining an X.509 Certificate

Alternative ways of obtaining You can obtain a certificate in the following ways:
certificates ® Usingthe I T_TLS API:: TLSOredenti al s interface, which enables you
to retrieve X.509 certificates from a credentials object—see “Retrieving
Own Credentials” on page 477.
® ThelT_ Certificate:: X509Cert Chai n object that Orbix passes to the
IT_TLS:: CertValidator::validate_cert_chain() operation.
® Usingthel T Certificate::X509CertificateFactory interface, which
creates an I T_Certificate:: X509Cert object from DER data.
The certificate can be accessed through the I T_Certificate: : X509Cert
interface. For more For more information on this interface, see the CORBA
Programmer’s Reference.

515

CHAPTER 20 | Validating Certificates

516

Part Vi

ISF Programming

In this part This part contains the following chapters:

Developing an iSF Adapter page 519

In this chapter

CHAPTER 21

Developing an ISF
Adapter

An iSF adapter is a replaceable component of the iSF server
module that enables you to integrate iSF with any third-party
enterprise security service. This chapter explains how to

develop and configure a custom iSF adapter implementation.

This chapter discusses the following topics:

iSF Security Architecture page 520
iSF Server Module Deployment Options page 524
iSF Adapter Overview page 526
Implementing the IS2Adapter Interface page 527
Deploying the Adapter page 537

519

CHAPTER 21 | Developing an iSF Adapter

iISF Security Architecture

Overview This section introduces the basic components and concepts of the iSF
security architecture, as follows:

® Architecture.

® iSF client.

® iSF client SDK.

® Orbix Security Service.
® iSF adapter SDK.

® iSF adapter.

® Example adapters.

520

Architecture

iSF client

iSF Security Architecture

Figure 68 gives an overview of the Orbix Security Service, showing how it
fits into the overall context of a secure system.

Java C/C++
application application
iSF client SDK iSF client SDK

A 4 A 4

Orbix Security Service

iSF Server Module

iSF adapter SDK

iSF adapter

Third-party security service

Figure 68: Overview of the Orbix Security Service

An iSF client is an application that communicates with the Orbix Security
Service to perform authentication and authorization operations. The
following are possible examples of iSF client applications:

® CORBA servers.

® Artix servers.

® Any server that has a requirement to authenticate its clients.

Hence, an iSF client can also be a server. It is a client only with respect to
the Orbix Security Service.

521

CHAPTER 21 | Developing an iSF Adapter

iSF client SDK

Orbix Security Service

iSF server module

iSF adapter SDK

iSF adapter

522

The iSF client SDK is the programming interface that enables the iSF clients
to communicate (usually remotely) with the Orbix Security Service.

Note: The iSF client SDK is only used internally. It is currently not
available as a public programming interface.

The Orbix Security Service is a standalone process that acts a thin wrapper
layer around the iSF server module. On its own, the iSF server module is a
Java library which could be accessed only through local calls. By embedding
the iSF server module within the Orbix Security Service, however, it
becomes possible to access the security service remotely.

The iSF server module is a broker that mediates between iSF clients, which

request the security service to perform security operations, and a third-party

security service, which is the ultimate repository for security data.

The iSF server module has the following special features:

®* A replaceable iSF adapter component that enables integration with a
third-party enterprise security service.

® Asingle sign-on feature with user session caching.

The iSF adapter SDK is the Java API that enables a developer to create a
custom iSF adapter that plugs into the iSF server module.

An iSF adapter is a replaceable component of the iSF server module that
enables you to integrate with any third-party enterprise security service. An
iSF adapter implementation provides access to a repository of authentication
data and (optionally) authorization data as well.

Example adapters

iSF Security Architecture

The following standard adapters are provided with Orbix:
[)

Lightweight Directory Access Protocol (LDAP).

® File—a simple adapter implementation that stores authentication and
authorization data in a flat file.

WARNING: The file adapter is intended for demonstration purposes only.

It is not industrial strength and is not meant to be used in a production
environment.

523

CHAPTER 21 | Developing an iSF Adapter

ISF Server Module Deployment Options

Overview

CORBA service

524

The iSF server module, which is fundamentally implemented as a Java
library, can be deployed in one of the following ways:

® CORBA service.

The iSF server module can be deployed as a CORBA service (Orbix Security
Service), as shown in Figure 69. This is the default deployment model for
the iSF server module in Orbix. This deployment option has the advantage
that any number of distributed iSF clients can communicate with the iSF
server module over IOP/TLS.

With this type of deployment, the iSF server module is packaged as an
application plug-in to the Orbix generic server (just like any of the other
standard Orbix services). The Orbix Security Service can be launched by the
i tsecurity executable and basic configuration is set in the

i ona_servi ces. securi ty scope of the Orbix configuration file.

Application

iSF client SDK

IIOP/TLS
CORBA Service

A4

IDL Interface

A 4

iSF Security Module

iSF adapter

Figure 69: iSF Server Module Deployed as a CORBA Service

iSF Server Module Deployment Options

525

CHAPTER 21 | Developing an iSF Adapter

iISF Adapter Overview

Overview

Standard iSF adapters

Custom iSF adapters

Main elements of a custom iSF
adapter

Implementation of the ISF
Adapter Java interface

Configuration of the ISF adapter
using the iSF properties file

526

This section provides an overview of the iSF adapter architecture. The
modularity of the iSF server module design makes it relatively
straightforward to implement a custom iSF adapter written in Java.

IONA provides several ready-made adapters that are implemented with the
iSF adapter API. The following standard adapters are currently available:

® File adapter.
® LDAP adapter.

The iSF server module architecture also allows you to implement your own
custom iSF adapter and use it instead of a standard adapter.

The main elements of a custom iSF adapter are, as follows:
® |Implementation of the ISF Adapter Java interface.
® Configuration of the ISF adapter using the iSF properties file.

The only code that needs to be written to implement an iSF adapter is a
class to implement the | S2Adapt er Java interface. The adapter
implementation class should respond to authentication requests either by
checking a repository of user data or by forwarding the requests to a
third-party enterprise security service.

The iSF adapter is configured by setting Java properties in the

i s2. properties file. Theis2. properties file stores two kinds of

configuration data for the iSF adapter:

® Configuration of the iSF server module to load the adapter—see
“Configuring iSF to Load the Adapter” on page 538.

® Configuration of the adapter itself—see “Setting the Adapter
Properties” on page 539.

Implementing the IS2Adapter Interface

Implementing the IS2Adapter Interface

Overview

Test user

iSF adapter example

The comi ona. security. i s2adapt er package defines an | S2Adapt er Java
interface, which a developer must implement to create a custom iSF
adapter. The methods defined on the | SFAdapt er class are called by the iSF
server module in response to requests received from iSF clients.

This section describes a simple example implementation of the | S2Adapt er
interface, which is capable of authenticating a single test user with
hard-coded authorization properties.

The example adapter implementation described here permits authentication
of just a single user, test _user. The test user has the following
authentication data:

User nane: test_user
Passwor d: test_password

and the following authorization data:

® The user's global realm contains the Quest Rol e role.

® The user's EngReal mrealm contains the Engi neer Rol e role.

® The user’s Fi nanceReal mrealm contains the Account ant Rol e role.

Example 57 shows a sample implementation of an iSF adapter class,
Exanpl eAdapt er, that permits authentication of a single user. The user's
username, password, and authorization are hard-coded. In a realistic
system, however, the user data would probably be retrieved from a database
or from a third-party enterprise security system.

Example 57: Sample ISF Adapter Implementation

inport comiona.security.azmyr. Authori zati onManager ;

i nport comiona. security.comon. Aut henti cat edPri nci pal ;
import comiona. security.comon. Real m

inport comiona. security.comon. Rol e;

inport comiona.security.is2adapter.|S2Adapter;

i mport comiona. security.is2adapter.| S2Adapt er Excepti on;
inport java.util.Properties;

inport java.util.Arraylist;

inmport java.security.cert.X509Certificate;

527

CHAPTER 21 | Developing an iSF Adapter

Example 57: Sample ISF Adapter Implementation

inport org.apache.|og4j.*;
inport java.util.ResourceBundl e;

inport java.util.M ssingResourceException;
public class Exanpl eAdapter inpl ements | S2Adapter {

public final static String EXAMPLE PRCPERTY =
"exanpl e_property";

public final static String ADAPTER NAME = " Exanpl eAdapter";

1 private final static String MV6G EXAMPLE ADAPTER | NI Tl ALI ZED

="initialized";
private final static Stri ng MSG EXAMPLE ADAPTER CLCSED
= "cl osed";

private final static String M5SG EXAMPLE ADAPTER AUTHENTI CATE
= "aut henti cate";
private final static String
MSG EXAMPLE_ADAPTER AUTHENTI CATE_REALM =
"aut henti cate_real nt;
private final static String
MSG EXAMPLE_ADAPTER AUTHENTI CATE_ (K = "aut henti cat eok";
private final static String MBG EXAMPLE ADAPTER GETAUTH NFO
= "get aut hi nf 0";
private final static String
MSG EXAMPLE_ADAPTER GETAUTH NFO CK = "get aut hi nf ook";

private ResourceBundle _res_bundle = null;

2 private static Logger LOG =
Logger . get Logger (Exanpl eAdapt er. cl ass. get Nane()) ;

publ i c Exanpl eAdapter() {

3 _res_bundl e = Resour ceBundl e. get Bundl e(" Exanpl eAdapter") ;
LOG set Resour ceBundl e(_res_bundl e) ;
}

4 public void initialize(Properties props)

t hr ons | S2Adapt er Exception {

LOG | 7dl og(Priority. | NFO ADAPTER NAME + "." +
MBG_EXAMPLE_ADAPTER | N Tl ALI ZED, nul |') ;

528

Implementing the IS2Adapter Interface

Example 57: Sample ISF Adapter Implementation

/] exanpl e property
String propVal = props. get Property(EXAVPLE PRCPERTY) ;
LOG i nf o(propVal) ;

}

public void close() throws |S2Adapter Exception {
LOG | 7dl og(Priority. | NFOQ ADAPTER NAME + "." +

MBG_EXAMPLE_ADAPTER CLCSED, nul I);

}

publ i ¢ Aut henti cat edPrinci pal authenticate(String usernane,
String password)
throws | S2Adapt er Excepti on {

LOG | 7dl og(Priority. | NFQ ADAPTER NAME + "." +
MBG_EXAMPLE_ADAPTER AUTHENTI CATE, new
(bj ect [] {user nane, password}, nul |);

Aut henti cat edPrinci pal ap = null;
try{
i f (usernane. equal s("test_user")
&% password. equal s("test_password")){
ap = get Aut hori zat i onl nf o(new
Aut hent i cat edPri nci pal (user nane)) ;
}
el se {
LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
| S2Adapt er Except i on. WRONG_NAME_PASSWORD, nul 1) ;
t hrow new | S2Adapt er Excepti on(_res_bundl e, t hi s,
| S2Adapt er Except i on. WRONG_NAME_PASSWORD, new
(pj ect[] {user nane}) ;

}

} catch (Exception e) {
LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
| S2Adapt er Except i on. AUTH_FAI LED, e) ;
t hr ow new | S2Adapt er Except i on(_res_bundl e, t hi s,
| S2Adapt er Except i on. AUTH FAl LED, new (bj ect[]{usernane}, e);
}

LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +

MBG_EXAMPLE ADAPTER AUTHENTI CATE K, nul |) ;
return ap;

529

CHAPTER 21 | Developing an iSF Adapter

Example 57: Sample ISF Adapter Implementation

}

10 publ i ¢ Aut henti catedPrinci pal authenticate(String real mane,
String username, String password)
throws | S2Adapt er Exception {

LOG | 7dl og(Priority. | NFO ADAPTER NAME + "." +
MSG EXAMPLE_ADAPTER AUTHENTI CATE_REALM new
Chj ect []{real marre, user nane, passwor d}, nul 1) ;

Aut henti cat edPrinci pal ap = null;
try{
if (usernane.equal s("test _user")
&% password. equal s("test _password")){
11 Aut hent i cat edPri nci pal principal = new
Aut hent i cat edPri nci pal (user nane) ;
princi pal . set Qurrent Real n{r eal mane) ;
ap = getAuthorizati onl nfo(principal);
}
el se {
LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
| S2Adapt er Except i on. WRONG_NAME_PASSWCRD, nul |) ;
t hr ow new | S2Adapt er Excepti on(_res_bundl e, this,
| S2Adapt er Except i on. WRONG_NAME_PASSWIRD, new
bj ect []{usernane});

}

} catch (Exception e) {
LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
| S2Adapt er Except i on. AUTH_FAI LED, e) ;
t hrow new | S2Adapt er Excepti on(_res_bundl e, this,
| S2Adapt er Except i on. AUTH FAI LED, new Cbj ect []{user nane}, e);

}

LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
MBG_EXAMPLE_ADAPTER AUTHENTI CATE CK, nul |) ;
return ap;

}

12 publ i c Authenti catedPrinci pal authenticate(X509Certificate
certificate)
throws | S2Adapt er Exception {
t hrow new | S2Adapt er Except i on(
_res_bundl e, this,
| S2Adapt er Except i on. NOT_| MPLEMENTED

530

13

14

15
16

17

18

Implementing the IS2Adapter Interface

Example 57: Sample ISF Adapter Implementation

)
}

publ i ¢ Aut henti cat edPrinci pal authenticate(String real m

X509Certificate certificate)

throws | S2Adapt er Excepti on {
t hrow new | S2Adapt er Except i on(

_res_bundl e, this,

| S2Adapt er Except i on. NOT_| MPLEMENTED
)i

}

publ i ¢ Aut henti cat edPri nci pal
get Aut hori zat i onl nf o(Aut hent i cat edPri nci pal principal) throws
| S2Adapt er Except i on{

LOG | 7dl og(Priority. | NFO ADAPTER NAME + "." +
MSG_EXAMPLE_ADAPTER GETAUTH NFQ, new
Qpj ect[]{principal.getWserlD)},null);

Aut henti cat edPrinci pal ap = null;
String username = principal.getUerlX);
String real mane = principal . get Current Real () ;

try{
if (usernane. equal s("test_user")) {
ap = new Aut henti cat edPri nci pal (user nane) ;
ap. addRol e(new Rol e("Quest Rol e", ""));

if (realmane == null || (realmane != null &&
r eal mare. equal s("EngReal n')))
{
ap. addReal n{ new Real n{" EngReal nt, ""));
ap. addRol e(" EngReal i, new
Rol e("Engi neerRol e", ""));
}
if (realmane == null || (realmane != null &&
r eal mare. equal s("Fi nanceReal ni')))
{
ap. addReal n{new Real n{"Fi nanceReal ni',""));
ap. addRol e(" Fi nanceReal ni', new
Rol e(" Account ant Rol e", ""));
}
}

531

CHAPTER 21 | Developing an iSF Adapter

Example 57: Sample ISF Adapter Implementation

el se {

LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
| S2Adapt er Except i on. USER NOT_EXI ST, new (bj ect [] { user nane},
null);

t hr ow new | S2Adapt er Excepti on(_res_bundl e, this,
| S2Adapt er Except i on. USER NOT_EXI ST, new (bj ect [] { user nane}) ;

}

} catch (Exception e) {
LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
| S2Adapt er Except i on. AUTH_FAI LED, e) ;
t hr ow new | S2Adapt er Excepti on(_res_bundl e, this,
| S2Adapt er Except i on. AUTH FAI LED, new (bj ect []{user nane}, e);

}

LOG | 7dl og(Priority. WARN, ADAPTER NAME + "." +
MBG_EXAMPLE_ADAPTER GETAUTH NFO &K nul |) ;
return ap;

}

19 publ i ¢ Aut henti cat edPri nci pal get Aut hori zationl nfo(String
user nane) throws | S2Adapt er Except i on{

/1 this method has been deprecated
t hr ow new | S2Adapt er Except i on(
_res_bundl e, this,
| S2Adapt er Except i on. NOT_| MPLEMENTED
)
}

20 publ i c Authenti catedPrinci pal getAuthorizationlnfo(String
real mane, String usernane) throws | S2Adapt er Excepti on{

// this nethod has been deprecated
t hr ow new | S2Adapt er Except i on(
_res_bundl e, this,
| S2Adapt er Except i on. NOT_| MPLEMENTED
)
}

21 public ArrayList getA | Users()
throws | S2Adapt er Exception {

532

22

Implementing the IS2Adapter Interface

Example 57: Sample ISF Adapter Implementation

}

t hrow new | S2Adapt er Except i on(
_res_bundl e, this,
| S2Adapt er Except i on. NOT_| MPLEMENTED
)i

publ i c voi d | ogout (Aut henti catedPrinci pal ap) throws
| S2Adapt er Excepti on {

}

The preceding iSF adapter code can be explained as follows:

1.

These lines list the keys to the messages from the adapter’s resource
bundle. The resource bundle stores messages used by the Log4J logger
and exceptions thrown in the adapter.

This line creates a Log4J logger.

This line loads the resource bundle for the adapter.

Theinitialize() method is called just after the adapter is loaded.
The properties passed to the i ni tialize() method, props, are the
adapter properties that the iSF server module has read from the

i s2. properti es file.

See “Setting the Adapter Properties” on page 539 for more details.

The cl ose() method is called to shut down the adapter. This gives you
an opportunity to clean up and free resources used by the adapter.
This variant of the | S2Adapt er . aut hent i cat e() method is called
whenever an iSF client calls Aut hManager . aut hent i cat e() with
username and password parameters.

In this simple demonstration implementation, the aut henti cat e()
method recognizes only one user, t est _user, with password,

t est _password.

This line calls a Log4J method in order to log a localized and
parametrized message to indicate that the authenticate method has
been called with the specified username and password values. Since

533

CHAPTER 21 | Developing an iSF Adapter

534

10.

11.

12.

13.

14.

all the keys in the resource bundle begin with the adapter name, the
adapter name is prepended to the key. The | 7dl og() methodisused
becauseit automeaticaly searchesthe resource beund e which was st previoudy by
theloggersset Resour ceBundl e() method.

If authentication is successful; that is, if the name and password
passed in match test _user and test_password, the

get Aut hori zat i onl nf o() method is called to obtain an

Aut hent i cat edPri nci pal object populated with a// of the user’s realms
and role

If authentication fails, an |1 S2Adapt er Except i on is raised with minor
code | S2Adapt er Except i on. WRONG_NAMVE PASSWIRD.

The resource bundle is passed to the exception as it accesses the
exception message from the bundle using the key,

Exanpl eAdapt er . w ongUser namePasswor d.

This variant of the | S2Adapt er . aut hent i cat e() method is called
whenever an iSF client calls Aut hManager . aut hent i cat e() with realm
name, username and password parameters.

This method differs from the preceding username/password
aut hent i cat e() method in that only the authorization data for the
specified realm and the global realm are included in the return value.

If authentication is successful, the get Aut hori zat i onl nf o() method is
called to obtain an Aut hent i cat edPri nci pal object populated with the
authorization data from the specified realm and the global realm.

This variant of the | S2Adapt er . aut hent i cat e() method is called
whenever an iSF client calls Aut hManager . aut hent i cat e() with an
X.5009 certificate parameter.

This variant of the | S2Adapt er . aut hent i cat e() method is called
whenever an iSF client calls Aut hManager . aut hent i cat e() with a
realm name and an X.509 certificate parameter.

This method differs from the preceding certificate aut henti cat e()
method in that only the authorization data for the specified realm and
the global realm are included in the return value.

This method should create an Aut hent i cat edPri nci pal object for the
user nane user. If a realm is not specified in the principal, the

Aut hent i cat edPri nci pal is populated with all realms and roles for this

15.

16.

17.

18.

19.

20.

21.

Implementing the IS2Adapter Interface

user. If a realm /s specified in the principal, the
Aut hent i cat edPri nci pal is populated with authorization data from
the specified realm and the global realm only.

This line creates a new Aut hent i cat edPri nci pal object for the
user nane user to hold the user's authorization data.

This line adds a Quest Rol e role to the global realm, | ONAQ obal Real m
using the single-argument form of addRol e() . Roles added to the
global realm implicitly belong to every named realm as well.

This line checks if no realm is specified in the principal or if the realm,
EngReal m is specified. If either of these is true, the following lines add
the authorization realm, EngReal m to the Aut henti cat edPri nci pal
object and add the Engi neer Rol e role to the EngReal mauthorization
realm.

This line checks if no realm is specified in the principal or if the realm,
Fi nanceReal m is specified. If either of these is true, the following lines
add the authorization realm, Fi nanceReal m to the

Aut hent i cat edPri nci pal object and add the Account ant Rol e role to
the Fi nanceReal mauthorization realm.

Since SSO was introduced to Orbix, this variant of the

| S2Adapt er . get Aut hori zati onl nfo() method has been deprecated.
The method

| S2Adapt er . get Aut hor i zat i onl nf o(Aut hent i cat edPri nci pal
princi pal) should be used instead

Since SSO was introduced to Orbix, this variant of the

| S2Adapt er . get Aut hori zati onl nfo() method has also been
deprecated. The method

| S2Adapt er . get Aut hor i zat i onl nf o(Aut hent i cat edPri nci pal
princi pal) should be used instead

The get Al | Users() method is currently not used by the iSF server
module during runtime. Hence, there is no need to implement this
method currently.

535

CHAPTER 21 | Developing an iSF Adapter

22. When the | ogout () method is called, you can perform cleanup and
release any resources associated with the specified user principal. The
iSF server module calls back on | S2Adapt er . | ogout () either in
response to a user calling Aut hManager . | ogout () explicitly or after an
SSO session has timed out.

536

Deploying the Adapter

Deploying the Adapter

Overview This section explains how to deploy a custom iSF adapter.

In this section This section contains the following subsections:
Configuring iSF to Load the Adapter page 538
Setting the Adapter Properties page 539

Loading the Adapter Class and Associated Resource Files page 540

537

CHAPTER 21 | Developing an iSF Adapter

Configuring iSF to Load the Adapter

Overview

Adapter name

Adapter class

Example adapter

538

You can configure the iSF server module to load a custom adapter by setting
the following properties in the iSF server module’s i s2. properti es file:

® Adapter name.
® Adapter class.

The iSF server module loads the adapter identified by the
com i ona. i sp. adapt er s property. Hence, to load a custom adapter,
Adapt er Nane, set the property as follows:

com i ona. i sp. adapt er s=Adapt er Nane

Note: In the current implementation, the iSF server module can load only
a single adapter at a time.

The name of the adapter class to be loaded is specified by the following
property setting:

com i ona. i sp. adapt er. Adapt er Narre. cl ass=Adapt er d ass

For example, the example adapter provided shown previously can be
configured to load by setting the following properties:

com i ona. i sp. adapt er s=exanpl e
com i ona. i sp. adapt er . exanpl e. cl ass=i sf adapt er . Exanpl eAdapt er

Deploying the Adapter

Setting the Adapter Properties

Overview

Adapter property name format

Truncation of property names

Example

Accessing properties from within
an iSF adapter

This subsection explains how you can set properties for a specific custom
adapter in the i s2. properti es file.

All configurable properties for a custom file adapter, Adapt er Narre, should
have the following format:

com i ona. i sp. adapt er. Adapt er Nare. par am Pr opert yNane

Adapter property names are truncated before being passed to the iSF
adapter. That is, the com i ona. i spadapt er . Adapt er Narre. par amprefix is
stripped from each property name.

For example, given an adapter named Exanpl eAdapt er which has two

properties, host and port, these properties would be set as follows in the

i s2. properties file:

com i ona. i sp. adapt er. exanpl e. param exanpl e_property="This is an
exanpl e property"

Before these properties are passed to the iSF adapter, the property names

are truncated as if they had been set as follows:

exanpl e_property="This is an exanpl e property"

The adapter properties are passed to the iSF adapter through the
comiona. security.is2adapter.| S2Adapter.initialize() callback
method. For example:

public void initialize(java.util.Properties props)
throws | S2Adapt er Excepti on {
/1l Access a property through its truncated narre.
String propVal = props. get Property("PropertyNane")

539

CHAPTER 21 | Developing an iSF Adapter

Loading the Adapter Class and Associated Resource Files

Overview

CORBA service

540

You need to make appropriate modifications to your CLASSPATH to ensure
that the iSF server module can find your custom adapter class.

In all cases, the location of the file used to configure Log4| logging can be
set using the | og4j . confi gurati on property in the i s2. properti es file.

By default, the Orbix Security Service uses the i ona_servi ces. security
scope in your Orbix configuration file (or configuration repository service).
Modify the pl ugi ns: j ava_server: cl asspat h variable to include the
directory containing the compiled adapter class and the adapter’s resource
bundle. The pl ugi ns: j ava_ser ver : cl asspat h variable uses the value of the
SECUR TY_CLASSPATH variable.

For example, if the adapter class and adapter resource bundle are located in
the O bi xI nst al | Di r\ Exanpl eAdapt er directory, you should set the
SEQUR TY_CLASSPATH variable as follows:

Obix configuration file

SECUR TY_CLASSPATH =
" bi xI nstal | D r\ Exanpl eAdapt er ; O bi xI nstal | D r\ et c\ dormai ns; O
rbi xI nstal | Di r\ et ¢\ domai ns\ Domai nNane\ ; O bi xI nstal | Di r\ asp\ V
ersion\lib\security.jar";

The Orbix Security Service launches a Java process which uses the
classpath defined in the securi tyserver _ce. xn file which is located in the
Qbi xI nstal | Dir/ et ¢/ domai ns/ Donai nNane/ r esour ces directory. This
classpath also needs to be modified.

Deploying the Adapter

In this case, you must also modify the ce: | oader element of
securityserver_ce. xn file, as shown in the following example:

securityserver _ce.xm file
<ce: | oader >
<ce: | ocati on>C bi x|l nstal | O r\ Exanpl eAdapt er </ ce: | ocat i on>
<ce: | ocati on>${j ava. hone}/../lib/tools.jar</ce:location>
<ce: | ocati on>O bi xI nstal | D r\ et c\ donmai ns</ ce: | ocat i on>
<ce: | ocati on>Qrbi xI nst al | Di r\asp\ Version\bi n\..\Iib\security.

jar</ce:location>
</ ce: | oader >

541

CHAPTER 21 | Developing an iSF Adapter

542

In this appendix

APPENDIX A

Security

This appendix describes variables used by the IONA Security
Framework. The Orbix security infrastructure is highly
configurable.

This appendix discusses the following topics:

Applying Constraints to Certificates page 545
initial_references page 547
plugins:atli2_tls page 548
plugins:csi page 550
plugins:csi page 550
plugins:gsp page 552
plugins:https page 558
plugins:iiop_tls page 559
plugins:kdm page 564
plugins:kdm_adm page 566
plugins:locator page 567
plugins:schannel page 568
plugins:security page 569

543

APPENDIX A | Security

544

policies page 570
policies:csi page 576
policies:https page 579
policies:iiop_tls page 585
policies:tls page 595
principal_sponsor page 596
principal_sponsor:csi page 600
principal_sponsor:https page 603

Applying Constraints to Certificates

Applying Constraints to Certificates

Certificate constraints policy

Configuration variable

Constraint language

Example

You can use the Cert Const rai nt sPol i cy to apply constraints to peer X.509
certificates by the default Certifi cat eVal i dat or Pol i cy. These conditions
are applied to the owner’s distinguished name (DN) on the first certificate
(peer certificate) of the received certificate chain. Distinguished names are
made up of a number of distinct fields, the most common being
Organization Unit (OU) and Common Name (CN).

You can specify a list of constraints to be used by Cert Const rai nt sPol i cy
through the policies:iiop_tls:certificate_constraints_policy or
policies:https:certificate constraints_policy configuration variables.
For example:
policies:iiop_tls:certificate constraints_policy =
[" ONEJohnny*, QU=[uni t 1| | T_SSL], O=l ONA, C=l rel and, ST=Dubl i n, L=Ea
rth", " O\N=Paul *, QU=SSLTEAM O=I ONA, C=I r el and, ST=Dubl i n, L=Eart h",
" ON=TheOmi pot ent Cne"] ;

These are the special characters and their meanings in the constraint list:

* Matches any text. For example:
an* matches ant and anger, but not aunt
[1 Grouping symbols.
| Choice symbol. For example:

OU=[unit1] 1 T_SSL] signifies that if the QUis unit1
or I T_SSL, the certificate is acceptable.

= 1= Signify equality and inequality respectively.

This is an example list of constraints:

policies:iiop_tls:certificate constraints_policy = [
"OU=[unitl] I T_SSL], ON=St eve*, L=Dubl i n",

"OEI T_ART*, QU =l T_ARTt est er s, ON=[Jan| Donal], ST=

Boston"];

545

APPENDIX A | Security

Distinguished names

546

This constraint list specifies that a certificate is deemed acceptable if and
only if it satisfies one or more of the constraint patterns:

| f
The QUis unitl or IT_SSL
And
The ON begins with the text Steve
And
The location is Dublin
Then the certificate is acceptable
El se (moving on to the second constraint)
| f
The QU begins with the text IT_ART but isn't |T_ARTtesters
And
The common nane is either Donal or Jan
And
The State is Boston
Then the certificate is acceptable
QG herwi se the certificate is unacceptabl e.

The language is like a boolean OR, trying the constraints defined in each
line until the certificate satisfies one of the constraints. Only if the certificate
fails all constraints is the certificate deemed invalid.

Note that this setting can be sensitive about white space used within it. For
example, "ON =" might not be recognized, where "CN=" is recognized.

For more information on distinguished names, see the Security Guide.

initial_references

initial_references

IT_TLS_ Toolkit:plugin

The initial _references namespace contains the following configuration
variables:

® |T_TLS_ Toolkit:plugin

This configuration variable enables you to specify the underlying SSL/TLS
toolkit to be used by Orbix. It is used in conjunction with the

pl ugi ns: bal ti more_t ool kit:shlib_nane,

pl ugi ns: schannel _t ool ki t: shl i b_nanme (Windows only) and

pl ugi ns: syst enssl _t ool ki t: shl i b_name (z/OS only) configuration
variables to implement SSL/TLS toolkit replaceability.

The default is the Baltimore toolkit.

For example, to specify that an application should use the Schannel
SSL/TLS toolkit, you would set configuration variables as follows:

initial _references:|T_TLS Tool kit:plugin = "schannel _tool kit";
pl ugi ns: schannel _tool kit:shlib _name = "it_tls_schannel ";

547

APPENDIX A | Security

plugins:atli2_tls

cert_store_protocol

cert_store provider

548

The pl ugi ns: at | i 2_t|s namespace contains the following variables:
® cert_store_protocol

® cert _store provider

® kmf_algorithm

® tmf_algorithm

® use jsse_tk

(Java only) This variable is used in conjunction with
policies:tls:use_external _cert_store to configure Orbix to use an
external certificate store. Orbix passes the value of this variable as the
prot ocol argument to the j avax. net. ssl . SSLCont ext . get | nst ance()
method. To obtain a list of possible values for this variable, consult the
documentation for your third-party JSSE/JCS security provider.

For example, if your application is using the Sun JSSE security provider, you
can configure the certificate store to use the SSLv3 protocol as follows:

plugins:atli2_tls:cert_store_protocol = "SSLv3";

(Java only) This variable is used in conjunction with
policies:tls:use_external _cert_store to configure Orbix to use an
external certificate store. Orbix passes the value of this variable as the
provi der argument to the j avax. net . ssl . SSLCont ext . get | nst ance()
method. To obtain a list of possible values for this variable, consult the
documentation for your third-party JSSE/JCS security provider.

For example, if your application is using the Sun JSSE security provider, you
can configure the certificate store provider as follows:

plugins:atli2 tls:cert_store provider = "SunJSSE';

kmf_algorithm

tmf_algorithm

use_jsse tk

plugins:atli2_tls

(Java only) This variable is used in conjunction with
policies:tls:use_external cert_store to configure Orbix to use an
external certificate store. Orbix passes the value of this variable as the

al gori t hmargument to the

j avax. net . ssl . KeyManager Fact ory. get | nst ance() method, overriding the
value of the ssl . KeyManager Fact ory. al gori t hmproperty set in the

java. security file. To obtain a list of possible values for this variable,
consult the documentation for your third-party JSSE/JCS security provider.

For example, if your application is using the Sun JSSE security provider, you
can configure the key manager factory to use the following algorithm:

plugins:atli2_ tls:knf_al gorithm= "SunX509";

(Java only) This variable is used in conjunction with
policies:tls:use_external _cert_store to configure Orbix to use an
external certificate store. Orbix passes the value of this variable as the

al gori t hmargument to the

j avax. net . ssl . Tr ust Manager Fact ory. get | nst ance() method, overriding
the value of the ssl . Trust Manager Fact ory. al gori t hmproperty set in the
java. security file. To obtain a list of possible values for this variable,
consult the documentation for your third-party JSSE/JCS security provider.

For example, if your application is using the Sun JSSE security provider, you
can configure the trust manager factory to use the following algorithm:

plugins:atli2 tls:tnf_algorithm= "SunX509";

(Java only) Specifies whether or not to use the JSSE/JCE architecture with
Orbix Java applications. If t rue, Orbix uses the JSSE/JCE architecture to
implement SSL/TLS security; if f al se, Orbix uses the Baltimore SSL/TLS
toolkit.

The default is fal se.

549

APPENDIX A | Security

plugins:csi

The pl ugi ns: csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):

d al l ow csi _reply_without_service_context.
® dasshane.
® shlib_nane.

d use_| egacy_pol i ci es.

allow_csi_reply without_service context

ClassName

550

(Java only) Boolean variable that specifies whether a CSIv2 client enforces
strict checking for the presence of a CSIv2 service context in the reply it
receives from the server.

Up until Orbix 6.2 SP1, the Java implementation of the CSIv2 protocol
permitted replies from a CSlv2 enabled server even if the server did not send
a CSIv2 response. From Orbix 6.2 SP1 onwards, this variable determines
whether or not the client checks for a CSIv2 response.

If the variable is set to f al se, the client enforces strict checking on the
server reply. If there is no CSIv2 service context in the reply, a

NO_PERM SSI ON exception with the minor code, BAD SAS_SERVI CE_QONTEXT,
is thrown by the client.

If the variable is set to t r ue, the client does not enforce strict checking on
the reply. If there is no CSIv2 service context in the reply, the client does not
raise an exception.

Default is t r ue.

A assNane specifies the Java class that implements the csi plugin. The
default setting is:

pl ugi ns: csi : d assNane = "com i ona. corba. security. csi.CSl Pl ugin";

shlib_name

use_legacy policies

plugins:csi

This configuration setting makes it possible for the Orbix core to load the
plugin on demand. Internally, the Orbix core uses a Java class loader to load
and instantiate the csi class. Plugin loading can be initiated either by
including the csi in the orb_pl ugi ns list, or by associating the plugin with
an initial reference.

shl i b_nane identifies the shared library (or DLL in Windows) containing the
csi plugin implementation.

pl ugi ns: csi:shlib_nane = "it_csi_prot";

The csi plug-in becomes associated with the it _csi _prot shared library,
where i t_csi _prot is the base name of the library. The library base name,
it_csi_prot, is expanded in a platform-dependent manner to obtain the full
name of the library file.

Boolean variable that specifies whether the application can be programmed
using the new CSIv2 policy types or the older (legacy) CSIv2 policy types.

If pl ugi ns: csi : use_| egacy_pol i ci es is set to t r ue, you can program CSlv2
using the following policies:

® |IT_CSl::AuthenticationServicePolicy
® |IT . CSl::AttributeServicePolicy

If pl ugi ns: csi : use_| egacy_pol i ci es is set to fal se, you can program
CSIv2 using the following policies:

d IT_CSl::AttributeServiceProtocol dient
® IT_CSl::AttributeServiceProtocol Server

Default is f al se.

551

APPENDIX A | Security

plugins:gsp

The pl ugi ns: gsp namespace includes variables that specify settings for the
Generic Security Plugin (GSP). This provides authorization by checking a
user's roles against the permissions stored in an action-role mapping file. It
includes the following:

d accept _asserted_aut hori zati on_i nfo

d action_rol e _napping_file

® assert_authorization_info

d aut henti cati on_cache_si ze

d aut hent i cati on_cache_ti meout

® authorization_policy_enforcenment_point

d aut hori zation_pol i cy_store_type

® authorization_realm

® dasshane

® enabl e_authori zation

® enabl e _gssup_sso

® enabl e_user_id_| oggi ng

® enabl e x509_sso

® enforce_secure_comms_t 0_sso_server

® enable_security service _cert_authentication
d retrieve_isf_auth_principal _info for_all_real ns
d sso_server_certificate_constraints

® use_client_|oad_bal anci ng

accept_asserted_authorization_info

If fal se, SAML data is not read from incoming connections. Default is t r ue.

action_role_mapping _file

Specifies the action-role mapping file URL. For example:

552

assert_authorization_info

authentication_cache_size

plugins:gsp

pl ugi ns: gsp: action_rol e_mappi ng_file =
"file:///nylaction/rol e mappi ng";

If f al se, SAML data is not sent on outgoing connections. Default is t r ue.

The maximum number of credentials stored in the authentication cache. If
this size is exceeded the oldest credential in the cache is removed.

A value of -1 (the default) means unlimited size. A value of 0 means disable
the cache.

authentication_cache_timeout

The time (in seconds) after which a credential is considered stale. Stale
credentials are removed from the cache and the server must re-authenticate
with the Orbix security service on the next call from that user. The cache
timeout should be configured to be smaller than the timeout set in the

i s2. properti es file (by default, that setting is

i s2. sso. sessi on. ti meout =600).

A value of -1 (the default) means an infinite time-out. A value of 0 means
disable the cache.

authorization_policy_enforcement_point

Specifies whether access decisions should be made locally (based on
cached ACL data) or delegated to the Orbix security service. This variable is
meaningful only when the aut hori zati on_pol i cy_store_type is set to
centralized.

This configuration variable can have the following values:

® | ocal —after retrieving and caching ACL data from the Orbix security
service, the GSP plug-in consults only the local cache when making
access decisions.

553

APPENDIX A | Security

® central i zed—this option is currently not implemented. If you set this
option, the application will throw a CORBA: : NO_| MPLEMENT system
exception.

The default is | ocal .

authorization_policy_store_type

authorization_realm

ClassName

554

Specifies whether ACL data should be stored locally (on the same host as
the Orbix application) or centrally (on the same host as the Orbix security
server). This configuration variable can have the following values:
® | ocal —retrieves ACL data from the local file specified by the
pl ugi ns: gsp: acti on_rol e_mappi ng_fi | e configuration variable.
® central i zed—retrieves ACL data from the Orbix security service. The
Orbix security service must be configured to support centralized ACLs
by editing the relevant properties in its i s2. properti es file.

The default is | ocal .

aut hori zat i on_r eal mspecifies the iSF authorization realm to which a
server belongs. The value of this variable determines which of a user's roles
are considered when making an access control decision.

For example, consider a user that belongs to the ej b- devel oper and

cor ba- devel oper roles within the Engi neeri ng realm, and to the ordinary
role within the Sales realm. If you set pl ugi ns: gsp: aut hori zat i on_r eal mto
Sales for a particular server, only the ordinary role is considered when
making access control decisions (using the acti on-r ol e mapping file).

d assNane specifies the Java class that implements the gsp plugin. This
configuration setting makes it possible for the Orbix core to load the plugin
on demand. Internally, the Orbix core uses a Java class loader to load and

enable_authorization

enable_gssup_sso

enable_user_id_logging

enable_x509_sso

plugins:gsp

instantiate the gsp class. Plugin loading can be initiated either by including
the csi in the or b_pl ugi ns list, or by associating the plugin with an initial
reference.

A boolean GSP policy that, when true, enables authorization using
action-role mapping ACLs in server.

Default is t r ue.

Enables SSO with a username and a password (that is, GSSUP) when set to
true.

A boolean variable that enables logging of user IDs on the server side.
Default is f al se.

Up until the release of Orbix 6.1 SP1, the GSP plug-in would log messages

containing user IDs. For example:

[junit] Fri, 28 May 2004 12:17:22.0000000 [SLEEPY: 3284]
(IT_CSI:205) | - Wser alice authenticated successfully.

In some cases, however, it might not be appropriate to expose user IDs in

the Orbix log. From Orbix 6.2 onward, the default behavior of the GSP

plug-in is changed, so that user IDs are not logged by default. To restore the

pre-Orbix 6.2 behavior and log user IDs, set this variable to true.

Enables certificate-based SSO when set to true.

555

APPENDIX A | Security

enforce_secure_comms_to_sso_server

Enforces a secure SSL/TLS link between a client and the login service when
set to t rue. When this setting is true, the value of the SSL/TLS client secure
invocation policy does not affect the connection between the client and the
login service.

Default is t r ue.

enable_security service cert_authentication

A boolean GSP setting that enables X.509 certificate-based authentication
on the server side using the Orbix security service.

Default is f al se.

retrieve_isf_auth_principal_info_for_all_realms

A boolean setting that determines whether the GSP plug-in retrieves role
and realm data for all realms, when authenticating user credentials. If true,
the GSP plug-in retrieves the user’s role and realm data for all realms; if
fal se, the GSP plug-in retrieves the user's role and realm data only for the
realm specified by pl ugi ns: gsp: aut hori zati on_real m

Setting this variable to f al se can provide a useful performance optimization
in some applications. But you must take special care to configure the
application correctly for making operation invocations between different
realms.

Default is t r ue.

sso_server_certificate_constraints

556

A special certificate constraints policy that applies only to the SSL/TLS
connection between the client and the SSO login server. For details of the
pattern constraint language, see “Applying Constraints to Certificates” on
page 545.

plugins:gsp

use_client_load_balancing

A boolean variable that enables load balancing over a cluster of security
services. If an application is deployed in a domain that uses security service
clustering, the application should be configured to use client load balancing
(in this context, client means a client of the Orbix security service). See also
policies:iiop_tls:|oad_bal anci ng_nechani sm

Default is tr ue.

557

APPENDIX A | Security

plugins:https

The pl ugi ns: ht t ps namespace contains the following variable:
® (ClassName

ClassName

(Java only) This variable specifies the class name of the ht t ps plug-in
implementation. For example:

pl ugi ns: htt ps: d assName = "com i ona. cor ba. htt ps. HTTPSPl ugl n";

558

plugins:iiop_tls

plugins:iiop tls

The pl ugi ns:iiop_tls namespace contains the following variables:

buffer_pool:recycle_segments
buffer_pool:segment_preallocation
buffer_pools:max_incoming_buffers_in_pool
buffer_pools:max_outgoing_buffers_in_pool
cert_expiration_warning_days
delay_credential_gathering_until_handshake
enable_iiop_1 O client_support
enable_warning_for_approaching_cert_expiration
incoming_connections:hard_limit
incoming_connections:soft_limit
outgoing_connections:hard_limit
outgoing_connections:soft_limit
own_credentials_warning_cert_constraints
tcp_listener:reincarnate_attempts
tcp_listener:reincarnation_retry_backoff_ratio
tcp_listener:reincarnation_retry delay

buffer_pool:recycle_segments

(Java only) When this variable is set, the ii op_t|s plug-in reads this
variable's value instead of the
pl ugi ns:iiop: buffer_pool : recycl e_segnent s variable's value.

buffer_pool:segment_preallocation

(Java only) When this variable is set, the ii op_t|s plug-in reads this
variable's value instead of the

pl ugi ns:iiop: buffer_pool : segnent _preal | ocati on variable’s value.

559

APPENDIX A | Security

buffer_pools:max_incoming_buffers_in_pool

(C++ only) When this variable is set, the i i op_t| s plug-in reads this
variable's value instead of the

pl ugi ns: i i op: buf fer_pool s: max_i ncomi ng_buf fers_i n_pool variable's
value.

buffer_pools:max_outgoing_buffers_in_pool

(C++ only) When this variable is set, the i i op_t| s plug-in reads this
variable's value instead of the

pl ugi ns: i i op: buf f er_pool s: max_out goi ng_buf fers_i n_pool variable's
value.

cert_expiration_warning_days

(Since Orbix 6.2 SP1) Specifies the threshold for the number of days left to
certificate expiration, before Orbix issues a warning. If the application’s own
certificate is due to expire in less than the specified number of days, Orbix
issues a warning message to the log.

Default is 31 days.

See also the following related configuration variables:

plugins:iiop_tls:enabl e warning for_approaching_cert_expiration
plugins:iiop_tls:ow_credentials_warning_cert_constraints

delay_credential_gathering_until_handshake

(Windows and Schannel only) This client configuration variable provides an
alternative to using the pri nci pal _sponsor variables to specify an
application’s own certificate. When this variable is set to t rue and

princi pal _sponsor: use_princi pal _sponsor is set to fal se, the client
delays sending its certificate to a server. The client will wait until the server
explicitly requests the client to send its credentials during the SSL/TLS
handshake.

560

plugins:iiop_tls

This configuration variable can be used in conjunction with the
pl ugi ns: schannel : pronpt _wi t h_credenti al _choi ce configuration variable.

enable_iiop_1 O client_support

This variable enables client-side interoperability of Orbix SSL/TLS
applications with legacy 110P 1.0 SSL/TLS servers, which do not support
IIOP 1.1.

The default value is f al se. When set to t rue, Orbix SSL/TLS searches
secure target 1I0P 1.0 object references for legacy [IOP 1.0 SSL/TLS tagged
component data, and attempts to connect on the specified port.

Note: This variable will not be necessary for most users.

enable_warning_for_approaching_cert_expiration

(Since Orbix 6.2 SP1) Enables warnings to be sent to the log, if an
application’s own ceritificate is imminently about to expire. The boolean
value can have the following values: t rue, enables the warning feature;
fal se, disables the warning feature.

Default is tr ue.
See also the following related configuration variables:

plugins:iiop_tls:cert_expiration_warni ng_days
pl ugins:iiop_tls:own_credentials_warning cert_constraints

incoming_connections:hard_limit

Specifies the maximum number of incoming (server-side) connections
permitted to 1IOP. [IOP does not accept new connections above this limit.
Defaults to -1 (disabled).

When this variable is set, the i i op_t1s plug-in reads this variable’s value
instead of the pl ugi ns: i i op: i ncom ng_connections: hard_linit variable's
value.

Please see the chapter on ACM in the CORBA Programmer’s Guide for
further details.

561

APPENDIX A | Security

incoming_connections:soft_limit

Specifies the number of connections at which 110P should begin closing
incoming (server-side) connections. Defaults to -1 (disabled).

When this variable is set, the i i op_t|s plug-in reads this variable's value
instead of the pl ugi ns: i i op: i ncom ng_connections: soft_|inmt variable's
value.

Please see the chapter on ACM in the CORBA Programmer’s Guide for
further details.

outgoing_connections:hard_limit

When this variable is set, the i i op_t|s plug-in reads this variable’s value
instead of the pl ugi ns: i i op: out goi ng_connections: hard linit variable’s
value.

outgoing_connections:soft_limit

When this variable is set, the i i op_t|s plug-in reads this variable's value
instead of the pl ugi ns: i i op: out goi ng_connections: soft_|imt variable's
value.

own_credentials_warning_cert_constraints

562

(Since Orbix 6.2 SP1) Set this certificate constraints variable, if you would
like to avoid deploying certain certificates as an own certificate. A warning is
issued, if the own certificate’s subject DN matches the constraints specified
by this variable (see “Applying Constraints to Certificates” on page 545 for
details of the constraint language). For example, you might want to generate
a warning in case you accidentally deployed an IONA demonstration
certificate.

Default is an empty list, [].

Note: This warning is not related to certificate expiration and works
independently of the certificate expiration warning.

plugins:iiop_tls

tcp_listener:reincarnate_attempts

(Windows only)

plugins:iiop_tls:tcp_listener:reincarnate_attenpts specifies the
number of times that a Listener recreates its listener socket after recieving a
SocketException.

Sometimes a network error may occur, which results in a listening socket
being closed. On Windows, you can configure the listener to attempt a
reincarnation, which enables new connections to be established. This
variable only affects Java and C+ + applications on Windows. Defaults to O
(no attempts).

tcp_listener:reincarnation_retry_backoff_ratio

(Windows only)

plugins:iiop_tls:tcp_ listener:reincarnation_retry_del ay specifies a
delay between reincarnation attempts. Data type is | ong. Defaults to 0 (no
delay).

tcp_listener:reincarnation_retry_delay

(Windows only)

plugins:iiop_tls:tcp_listener:reincarnation_retry backoff_ratiosp
ecifies the degree to which delays between retries increase from one retry to
the next. Datatype is | ong. Defaults to 1.

563

APPENDIX A | Security

plugins:kdm

cert_constraints

564

The pl ugi ns: kdmnamespace contains the following variables:
® cert_constraints

® iop_tls:port

® checksums_optional

Specifies the list of certificate constraints for principals attempting to open a
connection to the KDM server plug-in. See “Applying Constraints to
Certificates” on page 545 for a description of the certificate constraint
syntax.

To protect the sensitive data stored within it, the KDM applies restrictions

on which entities are allowed talk to it. A security administrator should

choose certificate constraints that restrict access to the following principals:

® The locator service (requires read-only access).

® The kdm admplug-in, which is normally loaded into the itadmin utility
(requires read-write access).

All other principals should be blocked from access. For example, you might
define certificate constraints similar to the following:
pl ugi ns: kdm cert_constraints =

[" C=US, ST=Massachuset t s, O=ABi gBank*, CN\N=Secur e adni n*",

" C=US, ST=Bost on, O=ABi gBank*, CN=Cr bi x2000 Locat or Servi ce*"]
Your choice of certificate constraints will depend on the naming scheme for
your subject names.

plugins:kdm

iiop_tis:port

Specifies the well known IP port on which the KDM server listens for
incoming calls.

checksums_optional

When equal to f al se, the secure information associated with a server must
include a checksum; when equal to t rue, the presence of a checksum is
optional. Default is f al se.

565

APPENDIX A | Security

plugins:kdm_adm

cert_constraints

566

The pl ugi ns: kdm admnamespace contains the following variable:

® cert_constraints

Specifies the list of certificate constraints that are applied when the KDM
administration plug-in authenticates the KDM server. See “Applying
Constraints to Certificates” on page 545 for a description of the certificate
constraint syntax.

The KDM administration plug-in requires protection against attack from
applications that try to impersonate the KDM server. A security
administrator should, therefore, choose certificate constraints that restrict
access to trusted KDM servers only. For example, you might define
certificate constraints similar to the following:
pl ugi ns: kdm adm cert _constraints =

[" C=US, ST=Massachuset t s, O=ABi gBank*, ON=I T_KDW"] ;
Your choice of certificate constraints will depend on the naming scheme for
your subject names.

plugins:locator

plugins:locator

The plugins:locator namespace contains the following variable:

® iop_tls:port

iiop_tls:port

Specifies the IP port number where the Orbix locator service listens for
secure connections.

Note: This is only useful for applications that have a single TLS listener.

For applications that have multiple TLS listeners, you need to
programmatically specify the well-known addressing policy.

567

APPENDIX A | Security

plugins:schannel

The pl ugi ns: schannel namespace contains the following variable:

® prompt_with_credential_choice

prompt_with_credential choice

(Windows and Schannel only) Setting both this variable and the
plugins:iiop_tls:delay credential _gathering_until_handshake
variable to true on the client side allows the user to choose which
credentials to use for the server connection. The choice of credentials
offered to the user is based on the trusted CAs sent to the client in an
SSL/TLS handshake message.

If pronpt _wi th_credenti al _choi ce is set to f al se, runtime chooses the
first certificate it finds in the certificate store that meets the applicable
constraints.

The certificate prompt can be replaced by implementing an IDL interface
and registering it with the ORB.

568

plugins:security

plugins:security

The pl ugi ns: securi ty namespace contains the following variable:
® share_credentials_across_orbs

share_credentials_across_orbs

Enables own security credentials to be shared across ORBs. Normally, when
you specify an own SSL/TLS credential (using the principal sponsor or the
principal authenticator), the credential is available only to the ORB that
created it. By setting the

pl ugi ns: security:share credential s_across_orbs variable to true,
however, the own SSL/TLS credentials created by one ORB are
automatically made available to any other ORBs that are configured to share
credentials.

See also pri nci pal _sponsor: csi : use_exi sting_credenti al s for details of
how to enable sharing of CSI credentials.

Default is f al se.

569

APPENDIX A | Security

policies

The pol i ci es namespace defines the default CORBA policies for an ORB.
Many of these policies can also be set programmatically from within an
application. SSL/TLS-specific variables in the pol i ci es namespace include:
d al ow_unaut henti cated_clients_policy

d certificate_constraints_policy

® client_secure_invocation_policy:requires
client_secure_invocation_policy:supports
® nax_chain_l ength_policy

® nechani sm pol i cy: accept _v2_hel | os

d mechani sm pol i cy: ci phersui tes

d mechani sm pol i cy: prot ocol _versi on

® session_caching_policy

target _secure_i nvocation_policy:requires
target _secure_i nvocati on_policy: supports

® trusted_ca list_policy

allow_unauthenticated clients_policy

(Deprecated in favor of

policies:iiop_tls:allow unauthenticated clients_policy and
policies: https:all ow unaut henticated clients_policy.)

A generic variable that sets this policy both foriiop_tls and https. The
recommended alternative is to use the variables prefixed by

policies:iiop_tlsand policies:https instead, which take precedence
over this generic variable.

570

policies

certificate_constraints_policy

(Deprecated in favor of
policies:iiop_tls:certificate_constraints_policy and
policies:https:certificate_constraints_policy.)

A generic variable that sets this policy both foriiop_tls and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tlsandpolicies:https instead, which take precedence
over this generic variable.

client_secure_invocation_policy:requires

(Deprecated in favor of
policies:iiop_tls:client_secure_invocation_policy:requires and
policies:https:client_secure_invocation_policy:requires.)

A generic variable that sets this policy both foriiop_tIs and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.

client_secure_invocation_policy:supports

(Deprecated in favor of
policies:iiop_tls:client_secure_invocation_policy:supports and
policies: https:client_secure_invocation_policy: supports.)

A generic variable that sets this policy both foriiop_tIs and https. The
recommended alternative is to use the variables prefixed by
policies:iiop_tls and policies:https instead, which take precedence
over this generic variable.

571

APPENDIX A | Security

max_chain_length_policy

(Deprecated in favor of pol i ci es:iiop_tls:max_chai n_I ength_policy and
pol i ci es: htt ps: max_chai n_| engt h_pol i cy.)

max_chai n_| engt h_pol i cy specifies the maximum certificate chain length
that an ORB will accept. The policy can also be set programmatically using
the I T_TLS API : : MaxChai nLengt hPol i cy CORBA policy. Default is 2.

Note: The max_chain_| engt h_pol i cy is not currently supported on the
z/OS platform.

mechanism_policy:accept_v2_hellos

572

(Deprecated in favor of

policies:iiop_tls:nechani smpolicy:accept_v2_ hellos and

pol i ci es: htt ps: mechani sm pol i cy: accept _v2_hel | 0s.)

The accept _v2_hel | os policy is a special setting that facilitates
interoperability with an Orbix application deployed on the z/OS platform.
When true, the Orbix application accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS V1 protocol. When f al se, the
Orbix application throws an error, if it receives a V2 client hello. The default
is fal se.

For example:

pol i ci es: mechani sm pol i cy: accept _v2_hellos = "true";

policies

mechanism_policy:ciphersuites

(Deprecated in favor of

policies:iiop_tls:nmechani smpolicy:ciphersuites and

pol i ci es: ht t ps: mechani sm pol i cy: ci phersui tes.)

mechani sm pol i cy: ci pher sui t es specifies a list of cipher suites for the
default mechanism policy. One or more of the cipher suites shown in
Table 26 can be specified in this list.

Table 26: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers
RSA WTH NULL_MX% RSA EXPCRT_W TH_RCA_40_MX%
RSA WTH NULL_SHA RSA WTH RC4_128 MX%

RSA WTH RCA_128_SHA

RSA EXPORT W TH_DES40_CBC SHA

RSA W TH DES_CBC SHA

RSA W TH_3DES EDE CBC SHA

If you do not specify the list of cipher suites explicitly, all of the null
encryption ciphers are disabled and all of the non-export strength ciphers
are supported by default.

mechanism_policy:protocol_version

(Deprecated in favor of
policies:iiop_tls:nmechani smpolicy: protocol _version and
pol i ci es: ht t ps: mechani sm pol i cy: prot ocol _ver si on.)

mechani sm pol i cy: prot ocol _ver si on specifies the list of protocol versions
used by a security capsule (ORB instance). The list can include one or more
of the values SSL_V3 and TLS_V1. For example:

pol i ci es: mechani sm pol i cy: prot ocol _version=["TLS V1", "SSL_V3"];

573

APPENDIX A | Security

session_caching_policy

sessi on_cachi ng_pol i cy specifies whether an ORB caches the session
information for secure associations when acting in a client role, a server
role, or both. The purpose of session caching is to enable closed connections
to be re-established quickly. The following values are supported:

CACHE_NONE(default)

CACHE_CLI ENT

CACHE_SERVER

CACHE_SERVER AND CLI ENT

The policy can also be set programmatically using the
I T_TLS API :: Sessi onCachi ngPol i cy CORBA policy.

target_secure_invocation_policy:requires

(Deprecated in favor of

policies:iiop_tls:target_secure_ invocation_policy:requires and
pol i ci es: https:target _secure_invocation_policy:requires.)

target _secure_i nvocation_pol i cy: requires specifies the minimum level
of security required by a server. The value of this variable is specified as a
list of association options.

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

target_secure_invocation_policy:supports

574

(Deprecated in favor of
policies:iiop_tls:target_secure_invocation_policy:supports and
policies: https:target_secure_invocation_policy: supports.)

suppor t s specifies the maximum level of security supported by a server. The
value of this variable is specified as a list of association options. This policy
can be upgraded programmatically using either the QCP or the

Est abl i shTrust policies.

trusted_ca_list_policy

policies

(Deprecated in favor of policies:iiop_tls:trusted ca list_policy and
policies:https:trusted _ca |ist_policy.)

trusted_ca_list_policy specifies a list of filenames, each of which
contains a concatenated list of CA certificates in PEM format. The aggregate
of the CAs in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted ca list _policy =
["install _dir/asp/version/etc/tls/x509/calca_listl. pent,
"install_dir/asp/version/etc/tls/x509/cal/ca_list_extra.penm];

The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

575

APPENDIX A | Security

policies:csi

The pol i ci es: csi namespace includes variables that specify settings for
Common Secure Interoperability version 2 (CSIv2):

d attribute_service: backward_trust: enabl ed

d attribute_service:client_supports

® attribute_service:target_supports

d aut h_over _transport: authenti cation_service

d aut h_over _transport:client_supports

® auth_over_transport:server_donai n_name

d aut h_over _transport:target_requires

® auth_over_transport:target_supports

attribute_service:backward_trust:enabled

(Obsolete)

attribute_service:client_supports

attribute_service: client_supports is a client-side policy that specifies
the association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is

I denti tyAsserti on. This policy is normally specified in an intermediate
server so that it propagates CSIv2 identity tokens to a target server. For
example:

policies:csi:attribute _service:client_supports =
["lIdentityAssertion"];

576

policies:csi

attribute_service:target_supports

attribute_service:target _supports is a server-side policy that specifies
the association options supported by the CSIv2 attribute service (principal
propagation). The only assocation option that can be specified is

I dentityAssertion. For example:

policies:csi:attribute_service:target_supports =
["ldentityAssertion"];

auth_over_transport:authentication_service

(Java CSI plug-in only) The name of a Java class that implements the

I T_CSl:: Aut hent i cat eGSSUPQr edent i al s IDL interface. The authentication
service is implemented as a callback object that plugs into the CSIv2
framework on the server side. By replacing this class with a custom
implementation, you could potentially implement a new security technology
domain for CSIv2.

By default, if no value for this variable is specified, the Java CSI plug-in uses
a default authentication object that always returns f al se when the
aut hent i cat e() operation is called.

auth_over_transport:client_supports

auth_over_transport:client_supports is a client-side policy that specifies
the association options supported by CSIv2 authorization over transport.
The only assocation option that can be specified is

Establi shTrustIndient. For example:

policies:csi:auth_over_transport:client_supports =
["EstablishTrustindient"];

577

APPENDIX A | Security

auth_over_transport:server_domain_name

The iSF security domain (CSIv2 authentication domain) to which this server
application belongs. The iSF security domains are administered within an
overall security technology domain.

The value of the server _donai n_nane variable will be embedded in the IORs
generated by the server. A CSIv2 client about to open a connection to this
server would check that the domain name in its own CSIv2 credentials
matches the domain name embedded in the IOR.

auth_over_transport:target_requires

aut h_over_transport:target_requires is a server-side policy that
specifies the association options required for CSIv2 authorization over
transport. The only assocation option that can be specified is

Est abl i shTrust I nd ient. For example:

policies:csi:auth_over_transport:target_requires =
["EstablishTrustinQient"];

auth_over_transport:target_supports

578

auth_over_transport:target_supports is a server-side policy that
specifies the association options supported by CSIv2 authorization over
transport. The only assocation option that can be specified is

Establ i shTrustIndient. For example:

policies:csi:auth_over_transport:target_supports =
["EstablishTrustinQient"];

policies:https

policies:https

The pol i ci es: htt ps namespace contains variables used to configure the
htt ps plugin.

Note: In Orbix 6.1 SP1 and Orbix 6.2, the pol i ci es: ht t ps configuration
variables are available only in the Java implementation of the ht t ps
plug-in.

The pol i ci es: htt ps namespace contains the following variables:
d al I ow_unaut henti cated_clients_policy

d certificate_constraints_policy

® client_secure_invocation_policy:requires
d client_secure_invocation_policy: supports
® nax_chain_length policy

® nechani smpolicy: accept _v2_hel |l os

d mechani sm pol i cy: ci phersui tes

d mechani sm pol i cy: prot ocol _versi on

® session_caching_policy

d target _secure_i nvocati on_policy:requires
d target _secure_i nvocati on_policy: supports

® trusted ca list_policy

allow_unauthenticated clients_policy

(Java only) A boolean variable that specifies whether a server will allow a
client to establish a secure connection without sending a certificate. Default
is fal se.

This configuration variable is applicable only in the special case where the
target secure invocation policy is set to require NoPr ot ect i on (a semi-secure
server).

579

APPENDIX A | Security

certificate_constraints_policy

(Java only) A list of constraints applied to peer certificates—see “Applying
Constraints to Certificates” on page 545 for the syntax of the pattern
constraint language. If a peer certificate fails to match any of the
constraints, the certificate validation step will fail.

The policy can also be set programmatically using the
I T_TLS API:: Cert Const rai nt sPol i cy CORBA policy. Default is no
constraints.

client_secure_invocation_policy:requires

(Java only) Specifies the minimum level of security required by a client. The
value of this variable is specified as a list of association options—see the
Orbix Security Guide for details on how to set SSL/TLS association options.

Note: In accordance with CORBA security, this policy cannot be
downgraded programmatically by the application.

client_secure_invocation_policy:supports

max_chain_length_policy

580

(Java only) Specifies the initial maximum level of security supported by a
client. The value of this variable is specified as a list of association
options—see the Orbix Security Guide for details on how to set SSL/TLS
association options.

Note: This policy can be upgraded programmatically using either the QoP
or the Est abl i shTrust policies.

(Java only) The maximum certificate chain length that an ORB will accept
(see the discussion of certificate chaining in the Orbix Security Guide).

policies:https

The policy can also be set programmatically using the
| T_TLS API : : MaxChai nLengt hPol i cy CORBA policy. Default is 2.

Note: The max_chai n_| engt h_pol i cy is not currently supported on the
z/0OS platform.

mechanism_policy:accept_v2_hellos

(Java only) This HTTPS-specific policy overides the generic

pol i ci es: mechani sm pol i cy: accept _v2_hel | os policy.

The accept _v2_hel | os policy is a special setting that facilitates HTTPS
interoperability with certain Web browsers. Many Web browsers send SSL
V2 client hellos, because they do not know what SSL version the server
supports.

When true, the Orbix server accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS V1 protocol. When f al se, the
Orbix server throws an error, if it receives a V2 client hello. The default is
true.

Note: This default value is deliberately different from the
policies:iiop_tls:mechani smpolicy:accept v2 hel | os default value.

For example:

pol i ci es: https: nechani smpolicy:accept_v2 hellos = "true";

mechanism_policy:ciphersuites

(Java only) Specifies a list of cipher suites for the default mechanism policy.
One or more of the following cipher suites can be specified in this list:

Table 27: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers
RSA WTH NULL_M®% RSA EXPORT WTH RC4_40_MXb
RSA WTH NULL_SHA RSA WTH R4 128 _MXb

581

APPENDIX A | Security

Table 27: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers

RSA WTH RC4_128_SHA

RSA EXPCRT_W TH_DESA0_CBC _SHA

RSA W TH_DES_CBC SHA

RSA W TH 3DES EDE CBC SHA

If you do not specify the list of cipher suites explicitly, all of the null
encryption ciphers are disabled and all of the non-export strength ciphers
are supported by default.

mechanism_policy:protocol_version

session_caching_policy

582

(Java only) This HTTPS-specific policy overides the generic

pol i ci es: mechani sm pol i cy: prot ocol _ver si on policy.

Specifies the list of protocol versions used by a security capsule (ORB
instance). Can include one or more of the following values:

TLS V1
ssL_v3

The default setting is SSL_V3 and TLS V1.
For example:

pol i ci es: htt ps: nechani sm pol i cy: protocol _version = ["TLS V1",
"SSL_V3"];

(Java only) When this policy is set, the htt ps plug-in reads this policy’s
value instead of the pol i ci es: sessi on_cachi ng policy’s value (C++) or
pol i ci es: sessi on_cachi ng_pol i cy policy’s value (Java).

policies:https

target_secure_invocation_policy:requires

(Java only) Specifies the minimum level of security required by a server. The
value of this variable is specified as a list of association options—see the
Orbix Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

target_secure_invocation_policy:supports

(Java only) Specifies the maximum level of security supported by a server.
The value of this variable is specified as a list of association options—see
the Orbix Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QP or the
Est abl i shTrust policies.

583

APPENDIX A | Security

trusted_ca_list_policy

(Java only) Contains a list of filenames (or a single filename), each of which
contains a concatenated list of CA certificates in PEM format. The aggregate
of the CAs in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:
policies:trusted_ca list_policy =

["ASPInstal | Dir/asp/ 6.0/ etc/tls/x509/calca_listl. pent,

"ASPInstal | Dir/asp/ 6.0/ etc/tls/x509/calca_list_extra.pem];
The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

584

policies:iiop_tls

policies:iiop_tls

The policies:iiop_tls namespace contains variables used to set
I10P-related policies for a secure environment. These setting affect the
iiop_tls plugin. It contains the following variables:

al I ow_unaut henti cated_clients_policy

buf fer _si zes_pol i cy: def aul t _buf f er _si ze
buf fer _si zes_pol i cy: nax_buf f er _si ze
certificate_constraints_policy
client_secure_invocation_policy:requires
client_secure_invocation_policy:supports
client_version_policy
connection_attenpts
connection_retry_del ay

| oad_bal anci ng_nechani sm
max_chai n_| engt h_pol i cy

nmechani sm pol i cy: accept _v2_hel | os
mechani sm pol i cy: ci pher sui tes

mechani sm pol i cy: prot ocol _versi on
server_address_node_pol i cy: | ocal _donai n
server_address_node_pol i cy: | ocal _host name
server_address_node_pol i cy: port _range
server_addr ess_node_pol i cy: publ i sh_host nanme
server_version_policy

sessi on_cachi ng_pol i cy
target_secure_invocation_pol i cy: requires
target _secure_i nvocati on_policy: supports
tcp_options_policy: no_del ay
tcp_options_policy:recv_buffer_size
tcp_options_policy: send_buffer_size

trusted_ca_ list_policy

585

APPENDIX A | Security

allow_unauthenticated_clients_policy

A boolean variable that specifies whether a server will allow a client to
establish a secure connection without sending a certificate. Default is f al se.

This configuration variable is applicable only in the special case where the
target secure invocation policy is set to require NoPr ot ect i on (a semi-secure
server).

buffer_sizes policy:default_buffer size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the pol i cies:iiop: buffer_sizes policy:default_buffer_size
policy’s value.

buf fer _si zes_pol i cy: def aul t _buf f er _si ze specifies, in bytes, the initial
size of the buffers allocated by IIOP. Defaults to 16000. This value must be
greater than 80 bytes, and must be evenly divisible by 8.

buffer_sizes_policy:max_buffer_size

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the pol i ci es:iiop: buffer_sizes policy: max_buffer_size
policy’s value.

buf f er _si zes_pol i cy: max_buf f er _si ze specifies the maximum buffer size

permitted by IIOP, in kilobytes. Defaults to 512. A value of -1 indicates
unlimited size. If not unlimited, this value must be greater than 80.

certificate_constraints_policy

586

A list of constraints applied to peer certificates—see the discussion of
certificate constraints in the Orbix security guide for the syntax of the pattern
constraint language. If a peer certificate fails to match any of the
constraints, the certificate validation step will fail.

The policy can also be set programmatically using the
I T_TLS API:: Cert Const rai nt sPol i cy CORBA policy. Default is no
constraints.

policies:iiop_tls

client_secure_invocation_policy:requires

Specifies the minimum level of security required by a client. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

client_secure_invocation_policy:supports

client_version_policy

connection_attempts

Specifies the initial maximum level of security supported by a client. The
value of this variable is specified as a list of association options—see the
Orbix Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QP or the
Est abl i shTrust policies.

client _version_pol i cy specifies the highest IIOP version used by clients. A
client uses the version of 1IOP specified by this variable, or the version
specified in the IOR profile, whichever is lower. Valid values for this variable
are: 1.0, 1.1, and 1. 2.

For example, the following file-based configuration entry sets the server I10OP
version to 1.1.

policies:iiop:server_version_policy="1.1";
The following i t adm n command set this variable:

itadmn variable nodify -type string -value "1.1"
policies:iiop:server_version_policy

connect i on_at t enpt s specifies the number of connection attempts used
when creating a connected socket using a Java application. Defaults to 5.

587

APPENDIX A | Security

connection_retry_delay

connection_retry_del ay specifies the delay, in seconds, between
connection attempts when using a Java application. Defaults to 2.

load_balancing_mechanism

max_chain_length_policy

Specifies the load balancing mechanism for the client of a security service
cluster (see also pl ugi ns: gsp: use_cl i ent _| oad_bal anci ng). In this
context, a client can also be an Orbix server. This policy only affects
connections made using IORs that contain multiple addresses. The
iiop_tls plug-in load balances over the addresses embedded in the IOR.
The following mechanisms are supported:

® random—choose one of the addresses embedded in the IOR at random
(this is the default).

® sequenti al —choose the first address embedded in the IOR, moving
on to the next address in the list only if the previous address could not
be reached.

This policy overides pol i ci es: max_chai n_| engt h_pol i cy forthe iiop_tls
plugin.
The maximum certificate chain length that an ORB will accept.

The policy can also be set programmatically using the
| T_TLS API : : MaxChai nLengt hPol i cy CORBA policy. Default is 2.

Note: The max_chain_| engt h_pol i cy is not currently supported on the
z/0S platform.

mechanism_policy:accept_v2_hellos

588

This [IOP/TLS-specific policy overides the generic
pol i ci es: mechani sm pol i cy: accept _v2_hel | os policy.

policies:iiop_tls

The accept _v2_hel | os policy is a special setting that facilitates
interoperability with an Orbix application deployed on the z/OS platform.
Orbix security on the z/OS platform is based on IBM’s System/SSL toolkit,
which implements SSL version 3, but does so by using SSL version 2 hellos
as part of the handshake. This form of handshake causes interoperability
problems, because applications on other platforms identify the handshake
as an SSL version 2 handshake. The misidentification of the SSL protocol
version can be avoided by setting the accept _v2_hel | os policy to true in
the non-z/0S application (this bug also affects some old versions of
Microsoft Internet Explorer).

When t r ue, the Orbix application accepts V2 client hellos, but continues the
handshake using either the SSL_V3 or TLS_V1 protocol. When f al se, the
Orbix application throws an error, if it receives a V2 client hello. The default
is fal se.

Note: This default value is deliberately different from the
pol i ci es: htt ps: mechani sm pol i cy: accept _v2_hel | os default value.

For example:

policies:iiop_tls:mechani smpolicy:accept_v2 hellos = "true";

mechanism_policy:ciphersuites

This policy overides pol i ci es: mechani sm pol i cy: ci pher sui t es for the
iiop_tls plugin.

Specifies a list of cipher suites for the default mechanism policy. One or
more of the following cipher suites can be specified in this list:

Table 28: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers
RSA WTH NULL_M®% RSA EXPORT WTH RC4_40_MXb
RSA WTH NULL_SHA RSA WTH R4 128 _MXb

RSA WTH RCA_128_SHA

RSA EXPCRT_W TH_DES40_CBC _SHA

589

APPENDIX A | Security

Table 28: Mechanism Policy Cipher Suites

Null Encryption, Integrity Standard Ciphers
and Authentication Ciphers

RSA W TH_DES_CBC SHA

RSA W TH_3DES EDE CBC SHA

If you do not specify the list of cipher suites explicitly, all of the null
encryption ciphers are disabled and all of the non-export strength ciphers
are supported by default.

mechanism_policy:protocol_version

This 1IOP/TLS-specific policy overides the generic

pol i ci es: mechani sm pol i cy: prot ocol _ver si on policy.

Specifies the list of protocol versions used by a security capsule (ORB
instance). Can include one or more of the following values:

TLS V1

SSL_ V3
SSL_\V2V3 (Deprecated)

The default setting is SSL_V3 and TLS V1.

For example:

policies:iiop_tls:mechani smpolicy:protocol _version = ["TLS V1",
"SSL_V3"];

The SSL_V2V3 value is now deprecated. It was previously used to facilitate

interoperability with Orbix applications deployed on the z/OS platform. If you

have any legacy configuration that uses SSL_V2V3, you should replace it with

the following combination of settings:

policies:iiop_tls:mechani smpolicy:protocol _version = ["SSL_V3",
"TLS V1"];

policies:iiop_tls:mechani smpolicy:accept_v2 hellos = "true";

server_address_mode_policy:local domain
(Java only) When this policy is set, the i iop_tIs plug-in reads this policy’s

value instead of the
pol i cies:iiop:server_address_mode_pol icy: | ocal _donai n policy’s value.

590

policies:iiop_tls

server_address_mode_policy:local_hostname

(Java only) When this policy is set, the i iop_tIs plug-in reads this policy’s
value instead of the

policies:iiop:server_address_node_policy: | ocal _hostnane policy’s
value.

server _addr ess_node_pol i cy: | ocal _host nane specifies the hostname
advertised by the locator daemon/configuration repository, and listened on
by server-side 110P.

Some machines have multiple hostnames or IP addresses (for example,
those using multiple DNS aliases or multiple network cards). These
machines are often termed multi-homed hosts. The | ocal _host name
variable supports these type of machines by enabling you to explicitly
specify the host that servers listen on and publish in their IORs.

For example, if you have a machine with two network addresses
(207. 45. 52. 34 and 207. 45. 52. 35), you can explicitly set this variable to
either address:

policies:iiop:server_address_node policy: | ocal _hostname =
"207. 45. 52. 34";

By default, the I ocal _host nane variable is unspecified. Servers use the
default hostname configured for the machine with the Orbix configuration
tool.

server_address_mode_policy:port_range

(Java only) When this policy is set, the i iop_tIs plug-in reads this policy’s
value instead of the

policies:iiop:server_address_nmode_policy: port_range policy’s value.
server _addr ess_node_pol i cy: port _r ange specifies the range of ports that
a server uses when there is no well-known addressing policy specified for
the port.

591

APPENDIX A | Security

server_address_mode_policy:publish_hostname

server_version_policy

session_caching_policy

592

When this policy is set, the i i op_t1s plug-in reads this policy’s value
instead of the

pol i ci es:iiop:server_address_mode_pol i cy: publ i sh_host name policy’s
value.

server _addr ess_mode- pol i cy: publ i sh_host name specifes whether [IOP
exports hostnames or IP addresses in published profiles. Defaults to f al se
(exports IP addresses, and does not export hostnames). To use hostnames
in object references, set this variable to true, as in the following file-based
configuration entry:

pol i ci es: iiop: server_address_node_pol i cy: publ i sh_host name=t r ue
The following i t admi n command is equivalent:

itadmn variable create -type bool -value true
pol i ci es:iiop:server_address_node_pol i cy: publ i sh_host nanme

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop: server_version_policy policy’s value.
server _ver si on_pol i cy specifies the GIOP version published in 110P

profiles. This variable takes a value of either 1. 1 or 1. 2. Orbix servers do not
publish [IOP 1.0 profiles. The default value is 1. 2.

This policy overides pol i ci es: sessi on_cachi ng_pol i cy for the iiop_tls
plugin.

policies:iiop_tls

target_secure_invocation_policy:requires

This policy overides
policies:target_secure_invocation_policy:requires fortheiiop_tls
plugin.

Specifies the minimum level of security required by a server. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for more details about association options.

In accordance with CORBA security, this policy cannot be downgraded
programmatically by the application.

target_secure_invocation_policy:supports

This policy overides
policies:target_secure_invocation_policy:supports fortheiiop_tls
plugin.

Specifies the maximum level of security supported by a server. The value of
this variable is specified as a list of association options—see the Orbix
Security Guide for more details about association options.

This policy can be upgraded programmatically using either the QoP or the
Est abl i shTrust policies.

tcp_options_policy:no_delay

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:no_del ay policy’s
value.

tcp_options_pol i cy: no_del ay specifies whether the TCP_NCDELAY option
should be set on connections. Defaults to f al se.

593

APPENDIX A | Security

tcp_options_policy:recv_buffer_size

When this policy is set, the i i op_t1s plug-in reads this policy’s value
instead of the policies:iiop:tcp_options_policy:recv_buffer_size
policy’s value.

tcp_options_pol i cy: recv_buf fer_si ze specifies the size of the TCP
receive buffer. This variable can only be set to 0, which coresponds to using
the default size defined by the operating system.

tcp_options_policy:send_buffer_size

trusted_ca_list_policy

594

When this policy is set, the iiop_tls plug-in reads this policy’s value
instead of the pol i cies:iiop:tcp_options_policy:send buffer_size
policy’s value.

tcp_options_pol i cy: send_buf fer_si ze specifies the size of the TCP send
buffer. This variable can only be set to 0, which coresponds to using the
default size defined by the operating system.

This policy overides the policies:trusted_ca_list_policy for the
iiop_tls plugin.

Contains a list of filenames (or a single filename), each of which contains a
concatenated list of CA certificates in PEM format. The aggregate of the CAs
in all of the listed files is the set of trusted CAs.

For example, you might specify two files containing CA lists as follows:

policies:trusted_ca list_policy =
["ASPInstal D r/asp/ 6.0/ etc/tls/x509/calca_listl. pent,
"ASPInstal | Dir/asp/ 6.0/ etc/tls/x509/calca_list_extra.pem];
The purpose of having more than one file containing a CA list is for
administrative convenience. It enables you to group CAs into different lists
and to select a particular set of CAs for a security domain by choosing the
appropriate CA lists.

policies:tls

policies:tls

use_external cert_store

The following variables are in this namespace:

® use_external _cert_store

(Java only) A binary variable that configures Orbix to check for the presence
of a third-party certificate store. The possible values are: true, to check for
the presence of an external certificate store, and f al se, to use the built-in
certificate store (that is, certificate location specified by the principal
sponsor).

The default is f al se.
This variable has no effect unless you also configure your Java application to

use an external security provider—see the description of the
plugins:atli2_tls:use_jsse_tk configuration variable for more details.

This policy variable must be used in conjunction with the following
configuration variables:

plugins:atli2 tls:cert_store_provider
plugins:atli2_ tls:cert_store_protocol

You can also optionally set the following configuration variables (which
override the corresponding properties in the j ava. securi ty file):

plugins:atli2_tls:knf_al gorithm
plugins:atli2 tls:tnf_algorithm

595

APPENDIX A | Security

principal_sponsor

In this section

use_principal_sponsor

596

The pri nci pal _sponsor namespace stores configuration information to be
used when obtaining credentials. Orbix provides an implementation of a
principal sponsor that creates credentials for applications automatically. The
principal sponsor automatically calls the aut henti cat e() operation on the
Pri nci pal Aut hent i cat or object after determining the data to supply.

Use of the Pri nci pal Sponsor is disabled by default and can only be enabled
through configuration.

The Pri nci pal Sponsor represents an entry point into the secure system. It
must be activated and authenticate the user, before any application-specific
logic executes. This allows unmodified, security-unaware applications to
have Oredenti al s established transparently, prior to making invocations.

The following variables are in this namespace:
d use_pri nci pal _sponsor

® auth_nethod_id

® auth_nethod_data

d cal | back_handl er: A assNane

® login_ attenpts

use_princi pal _sponsor specifies whether an attempt is made to obtain
credentials automatically. Defaults to f al se. If set to t rue, the following
princi pal _sponsor variables must contain data in order for anything to
actually happen.

auth_method_id

auth_method_data

principal_sponsor

aut h_rret hod_i d specifies the authentication method to be used. The
following authentication methods are available:

pkcs12 file
pkcs1l

security_l abel

The authentication method uses a PKCS#12 file.

Java only. The authentication data is provided by a
smart card.

Windows and Schannel only. The authentication
data is specified by supplying the common name
(CN) from an application certificate’s subject DN.

For example, you can select the pkcs12_fil e authentication method as

follows:

princi pal _sponsor: auth_nethod_id = "pkcsl12 file";

aut h_rret hod_dat a is a string array containing information to be interpreted
by the authentication method represented by the aut h_net hod_i d.

For the pkcs12_fi | e authentication method, the following authentication
data can be provided in aut h_net hod_dat a:

filename

passwor d

password file

A PKCS#12 file that contains a certificate chain and
private key—required.

A password for the private key—optional.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

The name of a file containing the password for the private
key—optional.

This option is not recommended for deployed systems.

597

APPENDIX A | Security

598

For the pkcs11 (smart card) authentication method, the following
authentication data can be provided in aut h_ret hod_dat a:

provi der A name that identifies the underlying PKCS #11
toolkit used by Orbix to communicate with the smart
card.

The toolkit currently used by Orbix has the provider
name dkck132. dl | (from Baltimore).
sl ot The number of a particular slot on the smart card
(for example, 0) containing the user’s credentials.
pin A PIN to gain access to the smart card—optional.

It is bad practice to supply the PIN from
configuration for deployed systems. If the PIN is not
supplied, the user is prompted for it.

For the security_| abel authentication method on Windows, the following
authentication data can be provided in aut h_ret hod_dat a:

| abel (Windows and Schannel only.) The common name
(CN) from an application certificate’s subject DN

For example, to configure an application on Windows to use a certificate,
bob. p12, whose private key is encrypted with the bobpass password, set the
aut h_net hod_dat a as follows:

princi pal _sponsor: aut h_met hod_data =
["fil ename=c: \ user s\ bob\ bob. p12", " passwor d=bobpass"];

The following points apply to Java implementations:

® |f the file specified by fi | ename= is not found, it is searched for on the
classpath.

® The file specified by fi | ename= can be supplied with a URL instead of
an absolute file location.

® The mechanism for prompting for the password if the password is
supplied through passwor d= can be replaced with a custom
mechanism, as demonstrated by the I ogi n demo.

principal_sponsor

® There are two extra configuration variables available as part of the
princi pal _sponsor namespace, namely
princi pal _sponsor: cal | back_handl er and
princi pal _sponsor: | ogi n_attenpts. These are described below.

® These Java-specific features are available subject to change in future
releases; any changes that can arise probably come from customer
feedback on this area.

callback_handler:ClassName

login_attempts

cal | back_handl er : A assNane specifies the class name of an interface that
implements the interface comi ona. corba. t | s. aut h. Cal | backHandl er . This
variable is only used for Java clients.

| ogi n_at t enpt s specifies how many times a user is prompted for
authentication data (usually a password). It applies for both internal and
custom Cal | backHandl ers; if a Cal | backHandl er is supplied, it is invoked
upon up to I ogi n_at t enpt s times as long as the Pri nci pal Aut henti cat or
returns SecAut hFai | ure. This variable is only used by Java clients.

599

APPENDIX A | Security

principal_sponsor:csi

use_existing_credentials

use_principal_sponsor

600

The princi pal _sponsor : csi hamespace stores configuration information to
be used when obtaining CSI (Common Secure Interoperability) credentials.
It includes the following:

d use_exi sting_credential s

d use_pri nci pal _sponsor
® auth_nethod_data

® auth_nethod_id

A boolean value that specifies whether ORBs that share credentials can also
share CSI credentials. If true, any CSI credentials loaded by one
credential-sharing ORB can be used by other credential-sharing ORBs
loaded after it; if f al se, CSI credentials are not shared.

This variable has no effect, unless the

pl ugi ns: security:share_credential s_across_orbs variable is also tr ue.

Default is f al se.

use_pri nci pal _sponsor is a boolean value that switches the CSI principal
sponsor on or off.

If set to t rue, the CSI principal sponsor is enabled; if f al se, the CSI
principal sponsor is disabled and the remaining pri nci pal _sponsor: csi
variables are ignored. Defaults to f al se.

auth_method_data

principal_sponsor:csi

aut h_ret hod_dat a is a string array containing information to be interpreted
by the authentication method represented by the aut h_net hod_i d.

For the GSSUPMech authentication method, the following authentication
data can be provided in aut h_net hod_dat a:

user nane

passwor d

domai n

The username for CSIv2 authorization. This is optional.
Authentication of CSIv2 usernames and passwords is
performed on the server side. The administration of
usernames depends on the particular security mechanism
that is plugged into the server side see

aut h_over_transport:authenti cation_service.

The password associated with username. This is optional. It is
bad practice to supply the password from configuration for
deployed systems. If the password is not supplied, the user is
prompted for it.

The CSIv2 authentication domain in which the
username/password pair is authenticated.

When the client is about to open a new connection, this
domain name is compared with the domain name embedded
in the relevant IOR (see

pol i ci es: csi:auth_over _transport:server_domai n_nane).
The domain names must match.

Note: If domai n is an empty string, it matches any target
domain. That is, an empty domain string is equivalent to a
wildcard.

If any of the preceding data are omitted, the user is prompted to enter
authentication data when the application starts up.

For example, to log on to a CSIv2 application as the admi ni strat or user in
the US- Sant ad ar a domain:

princi pal _sponsor: csi: aut h_met hod_data =
["username=adm ni strator", "domai n=US-Santad ara"];

601

APPENDIX A | Security

auth_method_id

602

When the application is started, the user is prompted for the administrator
password.

Note: It is currently not possible to customize the login prompt associated
with the CSIv2 principal sponsor. As an alternative, you could implement
your own login GUI by programming and pass the user input directly to the
principal authenticator.

aut h_met hod_i d specifies a string that selects the authentication method to
be used by the CSI application. The following authentication method is
available:

GSSUPMech The Generic Security Service Username/Password
(GSSUP) mechanism.

For example, you can select the GSSUPMech authentication method as
follows:

princi pal _sponsor: csi:auth_met hod_id = " GSSUPMech”;

principal_sponsor:https

principal_sponsor:https

In this section

use_principal_sponsor

The princi pal _sponsor: htt ps namespace provides configuration variables
that enable you to specify the own credentials used with the HTTPS
transport. The variables in the pri nci pal _sponsor: htt ps namespace
(which are specific to the HTTPS protocol) have precedence over the
analogous variables in the pri nci pal _sponsor namespace.

Note: In Orbix 6.1 SP1 and Orbix 6.2, the pri nci pal _sponsor: ht t ps
configuration variables are available only in the Java implementation of the
ht t ps plug-in.

Use of the Pri nci pal Sponsor is disabled by default and can only be enabled
through configuration.

The Pri nci pal Sponsor represents an entry point into the secure system. It
must be activated and authenticate the user, before any application-specific
logic executes. This allows unmodified, security-unaware applications to
have O edenti al s established transparently, prior to making invocations.

The following variables are in this namespace:
® use_princi pal _sponsor
® auth _nethod_id

® auth_nethod_data

(Java only) use_pri nci pal _sponsor specifies whether an attempt is made
to obtain credentials automatically. Defaults to f al se. If set to true, the
following pri nci pal _sponsor: htt ps variables must contain data in order for
anything to actually happen:

® auth_method_id

® auth_method_dat a

603

APPENDIX A | Security

auth_method_id

auth_method_data

604

(Java only) aut h_net hod_i d specifies the authentication method to be used.
The following authentication methods are available:

pkcs12 file The authentication method uses a PKCS#12 file

For example, you can select the pkcs12 fil e authentication method as
follows:

princi pal _sponsor: auth_met hod_id = "pkcsl12 file";

(Java only) aut h_met hod_dat a is a string array containing information to be
interpreted by the authentication method represented by the
aut h_met hod_i d.

For the pkcs12_fil e authentication method, the following authentication

data can be provided in aut h_net hod_dat a:

fil enane A PKCS#12 file that contains a certificate chain and
private key—required.

passwor d A password for the private key—optional.

It is bad practice to supply the password from
configuration for deployed systems. If the password is not
supplied, the user is prompted for it.

password_file The name of a file containing the password for the private
key—optional.

This option is not recommended for deployed systems.
For example, to configure an application on Windows to use a certificate,

bob. p12, whose private key is encrypted with the bobpass password, set the
aut h_rret hod_dat a as follows:

princi pal _sponsor: aut h_net hod_data =
["fil ename=c: \ user s\ bob\ bob. p12", " password=bobpass"];

APPENDIX B

ISF Configuration

This appendix provides details of how to configure the Orbix
security server.

In this appendix This appendix contains the following sections:
Properties File Syntax page 606
iSF Properties File page 607
Cluster Properties File page 624
log4j Properties File page 626

605

CHAPTER B | iSF Configuration

Properties File Syntax

Overview

Property definitions

Specifying full pathnames

Specifying relative pathnames

606

The Orbix security service uses standard Java property files for its
configuration. Some aspects of the Java properties file syntax are
summarized here for your convenience.

A property is defined with the following syntax:
<Pr oper t yName>=<Pr opert yVal ue>

The <Pr oper t yNane> is a compound identifier, with each component
delimited by the . (period) character. For example,

i s2.current. server.id. The <PropertyVal ue> is an arbitrary string,
including all of the characters up to the end of the line (embedded spaces
are allowed).

When setting a property equal to a filename, you normally specify a full
pathname, as follows:

UNIX
/ horre/ dat a/ securi tyl nfo. xm

Windows
D./ional/securitylnfo.xm
or, if using the backslash as a delimiter, it must be escaped as follows:

D\\iona\\securityl nfo. xn

If you specify a relative pathname when setting a property, the root directory
for this path must be added to the Orbix security service's classpath. For
example, if you specify a relative pathname as follows:

UNIX

securi tyl nfo. xm

The security service's classpath must include the file's parent directory:

CLASSPATH = / hone/ dat a/ : <r est _of _cl asspat h>

iSF Properties File

ISF Properties File

Overview

File location

An iSF properties file is used to store the properties that configure a specific
Orbix security service instance. Generally, every Orbix security service
instance should have its own iSF properties file. This section provides
descriptions of all the properties that can be specified in an iSF properties
file.

The default location of the iSF properties file is the following:

O bi xI nstal | Di r/ et ¢/ domai ns/ Domai nNane/ server _Host /i s2. propertie
s

In general, the iSF properties file location is specified in the Orbix
configuration by setting the i s2. properti es property in the
pl ugi ns: j ava_ser ver: syst em properties property list.

For example, on UNIX the security server's property list is normally
initialized in the i ona_ser vi ces. securi ty configuration scope as follows:
Obix configuration file
i ona_services {
security {
pl ugi ns: j ava_server: system properties =
["org. omg. CORBA CRB ass=com i ona. corba. art.arti npl . CRBl npl ",
"or g. ong. CORBA. ORBSI ngl et ond ass=com i ona. corba. art.arti npl . O
RBSi ngl et on",

"i s2. properties=ASPI nstal | Di r/ et ¢/ domai ns/ Donmai nNare/ i s2. pr op
erties"];

}

607

CHAPTER B | iSF Configuration

List of properties The following properties can be specified in the iSF properties file:

check.kdc.running

A boolean property that specifies whether or not the Artix security service
should check whether the Kerberos KDC server is running. Default is f al se.

check.kdc.principal

(Used in combination with the check. kdc. r unni ng property.) Specifies the
dummy KDC principal that is used for connecting to the KDC server, in order
to check whether it is running or not.

com.iona.isp.adapters

Specifies the iSF adapter type to be loaded by the Orbix security service at
runtime. Choosing a particular adapter type is equivalent to choosing an
Artix security domain. Currently, you can specify one of the following

adapter types:
® file
hd LDAP

For example, you can select the LDAP adapter as follows:

com i ona. i sp. adapt er s=LDAP

Note: The file adapter is intended for demonstration purposes only. Use
of the file adapter is not supported in production systems.

com.iona.isp.adapter.file.class

Specifies the Java class that implements the file adapter.

For example, the default implementation of the file adapter provided with
Orbix is selected as follows:

comiona.isp.adapter.file.class=comiona.security.is2adapter.file.Fi|eAuthAdapter

608

iSF Properties File

com.iona.isp.adapter.file.param.filename

Specifies the name and location of a file that is used by the file adapter to
store user authentication data.

For example, you can specify the file, C /i s2_confi g/ security_info.xm ,
as follows:

comiona.isp.adapter.file.paramfil enane=C /is2_confi g/ security_info.xmn

com.iona.isp.adapter.file.params

Obsolete. This property was needed by earlier versions of the Orbix security
service, but is now ignored.

com.iona.isp.adapter.LDAP.class

Specifies the Java class that implements the LDAP adapter.

For example, the default implementation of the LDAP adapter provided with
Orbix is selected as follows:

com i ona. i sp. adapt er. LDAP. cl ass=com i ona. securi ty. i s2adapt er . | dap. LdapAdapt er

com.iona.isp.adapter.LDAP.param.CacheSize

Specifies the maximum LDAP cache size in units of bytes. This maximum
applies to the total LDAP cache size, including all LDAP connections
opened by this Orbix security service instance.

Internally, the Orbix security service uses a third-party toolkit (currently the
iPlanet SDK) to communicate with an LDAP server. The cache referred to
here is one that is maintained by the LDAP third-party toolkit. Data retrieved
from the LDAP server is temporarily stored in the cache in order to optimize
subsequent queries.

For example, you can specify a cache size of 1000 as follows:

com i ona. i sp. adapt er. LDAP. par am CacheS ze=1000

609

CHAPTER B | iSF Configuration

com.iona.isp.adapter.LDAP.param.CacheTimeToLive

Specifies the LDAP cache time to-live in units of seconds. For example, you
can specify a cache time to-live of one minute as follows:

com i ona. i sp. adapt er. LDAP. par am CacheTi meToLi ve=60

com.iona.isp.adapter.LDAP.param.GroupBaseDN

Specifies the base DN of the tree in the LDAP directory that stores user
groups.

For example, you could use the RDN sequence, DC=i ona, DC=com as a base
DN by setting this property as follows:

com i ona. i sp. adapt er. LDAP. par am G oupBaseDN=dc=i ona, dc=com

Note: The order of the RDNs is significant. The order should be based on
the LDAP schema configuration.

com.iona.isp.adapter.LDAP.param.GroupNameAttr

Specifies the attribute type whose corresponding attribute value gives the
name of the user group. The default is CN.

For example, you can use the common name, QN, attribute type to store the
user group’s name by setting this property as follows:

com i ona. i sp. adapt er. LDAP. par am G oupNarmeAt t r =cn

com.iona.isp.adapter.LDAP.param.GroupObjectClass

Specifies the object class that applies to user group entries in the LDAP
directory structure. An object class defines the required and allowed
attributes of an entry. The default is gr oupOf Uni queNarres.

610

iSF Properties File

For example, to specify that all user group entries belong to the
gr oupC Uni queNarres object class:

com i ona. i sp. adapt er. LDAP. par am G oupChj ect A ass=gr oupof uni quenanes

com.iona.isp.adapter.LDAP.param.GroupSearchScope

Specifies the group search scope. The search scope is the starting point of a
search and the depth from the base DN to which the search should occur.
This property can be set to one of the following values:

® BAsE—Search a single entry (the base object).
ONE—Search all entries immediately below the base DN.
suB—Search all entries from a whole subtree of entries.

Default is SUB.

For example:

com i ona. i sp. adapt er. LDAP. par am G oupSear chScope=SUB

com.iona.isp.adapter.LDAP.param.host.<ci uster_i ndex>

For the <cl ust er _i ndex> LDAP server replica, specifies the IP hostname
where the LDAP server is running. The <cl ust er _i ndex> is 1 for the primary
server, 2 for the first failover replica, and so on.

For example, you could specify that the primary LDAP server is running on
host 10. 81. 1. 100 as follows:

com i ona. i sp. adapt er. LDAP. par am host . 1=10. 81. 1. 100

com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize

Specifies the maximum LDAP connection pool size for the Orbix security
service (a strictly positive integer). The maximum connection pool size is the
maximum number of LDAP connections that would be opened and cached
by the Orbix security service. The default is 1.

611

CHAPTER B | iSF Configuration

For example, to limit the Orbix security service to open a maximum of 50
LDAP connections at a time:

com i ona. i sp. adapt er . LDAP. par am MaxConnect i onPool Si ze=50

com.iona.isp.adapter.LDAP.param.MemberDNAttr

Specifies which LDAP attribute is used to retrieve group members. The
LDAP adapter uses the Menber DNAt t r property to construct a query to find
out which groups a user belongs to.

The list of the user's groups is needed to determine the complete set of roles
assigned to the user. The LDAP adapter determines the complete set of roles
assigned to a user as follows:

1. The adapter retrieves the roles assigned directly to the user.

2. The adapter finds out which groups the user belongs to, and retrieves
all the roles assigned to those groups.

Default is uni queMenber .

For example, you can select the uni queMenber attribute as follows:

com i ona. i sp. adapt er . LDAP. par am Menber DNAL t r =uni queMenber

com.iona.isp.adapter.LDAP.param.MemberFilter

Specifies how to search for members in a group. The value specified for this
property must be an LDAP search filter (can be a custom filter).

com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize

Specifies the minimum LDAP connection pool size for the Orbix security
service. The minimum connection pool size specifies the number of LDAP
connections that are opened during initialization of the Orbix security
service. The default is 1.

For example, to specify a minimum of 10 LDAP connections at a time:

com i ona. i sp. adapt er . LDAP. par am M nConnect i onPool Si ze=10

612

iSF Properties File

com.iona.isp.adapter.LDAP.param.port.<ci uster_i ndex>

For the <cl ust er _i ndex> LDAP server replica, specifies the IP port where
the LDAP server is listening. The <cl ust er _i ndex> is 1 for the primary
server, 2 for the first failover replica, and so on. The default is 389.

For example, you could specify that the primary LDAP server is listening on
port 636 as follows:

com i ona. i sp. adapt er. LDAP. par am port . 1=636

com.iona.isp.adapter.LDAP.param.PrincipalUserDN.<ci uster _i ndex>

For the <cl ust er _i ndex> LDAP server replica, specifies the username that
is used to login to the LDAP server (in distinguished name format). This
property need only be set if the LDAP server is configured to require
username/password authentication.

No default.

com.iona.isp.adapter.LDAP.param.PrincipalUserPassword.<cl ust er_i ndex>

For the <cl ust er _i ndex> LDAP server replica, specifies the password that is
used to login to the LDAP server. This property need only be set if the LDAP
server is configured to require username/password authentication.

No default.

WARNING: Because the password is stored in plaintext, you must ensure
that the i s2. properti es file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.LDAP.param.RetrieveAuthlInfo
Specifies whether or not the Orbix security service retrieves authorization

information from the LDAP server. This property selects one of the following
alternatives:

613

CHAPTER B | iSF Configuration

® yes—the Orbix security service retrieves authorization information from
the LDAP server.

® no—the Orbix security service retrieves authorization information from
the iS2 authorization manager..

Default is no.

For example, to use the LDAP server’s authorization information:

com i ona. i sp. adapt er. LDAP. par am Ret ri eveAut hl nf o=yes

com.iona.isp.adapter.LDAP.param.RoleNameAttr

Specifies the attribute type that the LDAP server uses to store the role name.
The default is ON.

For example, you can specify the common name, QN, attribute type as
follows:

com i ona. i sp. adapt er. LDAP. par am Rol eNarreAt t r =cn

com.iona.isp.adapter.LDAP.param.SSLCACertDir.<ci ust er _i ndex>

For the <cl ust er _i ndex> LDAP server replica, specifies the directory name
for trusted CA certificates. All certificate files in this directory are loaded and
set as trusted CA certificates, for the purpose of opening an SSL connection
to the LDAP server. The CA certificates can either be in DER-encoded X.509
format or in PEM-encoded X.509 format.

No default.

For example, to specify that the primary LDAP server uses the
d:/certs/test directory to store CA certificates:

comiona.isp. adapt er. LDAP. param SSLCACert D r. 1=d: /cert s/t est

614

iSF Properties File

com.iona.isp.adapter.LDAP.param.SSLClientCertFile.<ci ust er _i ndex>

Specifies the client certificate file that is used to identify the Orbix security
service to the <cl ust er _i ndex> LDAP server replica. This property is needed
only if the LDAP server requires SSL/TLS mutual authentication. The
certificate must be in PKCS#12 format.

No default.

com.iona.isp.adapter.LDAP.param.SSLClientCertPassword.<ci ust er _i ndex>

Specifies the password for the client certificate that identifies the Orbix
security service to the <cl ust er _i ndex> LDAP server replica. This property
is needed only if the LDAP server requires SSL/TLS mutual authentication.

WARNING: Because the password is stored in plaintext, you must ensure
that the i s2. properti es file is readable and writable only by users with
administrator privileges.

com.iona.isp.adapter.LDAP.param.SSLEnabled.<cI uster _i ndex>

Enables SSL/TLS security for the connection between the Orbix security
service and the <cl ust er _i ndex> LDAP server replica. The possible values
are yes or no. Default is no.

For example, to enable an SSL/TLS connection to the primary LDAP server:

com i ona. i sp. adapt er. LDAP. par am SSLEnabl ed. 1=yes

com.iona.isp.adapter.LDAP.param.UseGroupAsRole

Specifies whether a user’s groups should be treated as roles. The following
alternatives are available:

® yes—each group name is interpreted as a role name.
®* no—for each of the user's groups, retrieve all roles assigned to the
group.

615

CHAPTER B | iSF Configuration

This option is useful for some older versions of LDAP, such as iPlanet 4.0,
that do not have the role concept.

Default is no.

For example:

com i ona. i sp. adapt er. LDAP. par am Use@ oupAsRol e=no

com.iona.isp.adapter.LDAP.param.UserBaseDN

Specifies the base DN (an ordered sequence of RDNSs) of the tree in the
LDAP directory that stores user object class instances.

For example, you could use the RDN sequence, DC=i ona, DC=com as a base
DN by setting this property as follows:

com i ona. i sp. adapt er . LDAP. par am User BaseDN=dc=i ona, dc=com

com.iona.isp.adapter.LDAP.param.UserCertAttrName

Specifies the attribute type that stores a user certificate. The default is
user Certificate.

For example, you can explicitly specify the attribute type for storing user
certificates to be user Certi fi cat e as follows:

com i ona. i sp. adapt er. LDAP. par am User Cert At t r Nane=user Certifi cate

com.iona.isp.adapter.LDAP.param.UserNameAttr=uid

616

Specifies the attribute type whose corresponding value uniquely identifies
the user. This is the attribute used as the user’s login ID. The default is ui d.

For example:

com i ona. i sp. adapt er. LDAP. par am User NarreAt t r =ui d

iSF Properties File

com.iona.isp.adapter.LDAP.param.UserObjectClass

Specifies the attribute type for the object class that stores users. The default
is or gani zat i onal Per son.

For example:

com i ona. i sp. adapt er. LDAP. par am User (bj ect d ass=or gani zat i onal Per son

com.iona.isp.adapter.LDAP.param.UserRoleDNAttr

Specifies the attribute type that stores a user’s role DN. The default is
nsRol eDn (from the Netscape LDAP directory schema).

For example:

com i ona. i sp. adapt er. LDAP. par am User Rol eDNAt t r =nsr ol edn

com.iona.isp.adapter.LDAP.param.UserSearchFilter

Custom filter for retrieving users. In the current version, $USER NAVES is the
only replaceable parameter supported. This parameter would be replaced
during runtime by the LDAP adapter with the current User's login ID. This
property uses the standard LDAP search filter syntax.

For example:

&(ui d=$USER_NAMES) (obj ect cl ass=or gani zat i onal Per son)

com.iona.isp.adapter.LDAP.param.UserSearchScope

Specifies the user search scope. This property can be set to one of the
following values:

® BASE—Search a single entry (the base object).
® O\Ne—Search all entries immediately below the base DN.
® suB—Search all entries from a whole subtree of entries.

Default is suB.

617

CHAPTER B | iSF Configuration

For example:

com i ona. i sp. adapt er. LDAP. par am User Sear chScope=SUB

com.iona.isp.adapter.LDAP.param.version

Specifies the LDAP protocol version that the Orbix security service uses to
communicate with LDAP servers. The only supported version is 3 (for LDAP
v3, http://www.ietf.org/rfc/rfc2251.txt). The default is 3.

For example, to select the LDAP protocol version 3:

com i ona. i sp. adapt er. LDAP. par am ver si on=3

com.iona.isp.adapter.LDAP.params

Obsolete. This property was needed by earlier versions of the Orbix security
service, but is now ignored.

com.iona.isp.authz.adapters

Specifies the name of the adapter that is loaded to perform authorization.
The adapter name is an arbitrary identifier, Adapt er Narre, which is used to
construct the names of the properties that configure the adapter—that is,
com i ona. i sp. aut hz. adapt er . Adapt er Nane. cl ass and

com i ona. i sp. aut hz. adapt er . Adapt er Nane. param fil el i st. For example:

comiona.isp. aut hz. adapters=fil e

comiona.isp.authz. adapter.file.class=comiona.security.is2AzAda
pter.mltifile MiltiFileAzAdapter

comiona.isp.authz. adapter.file. paramfilelist=ACLFileListFile;

com.iona.isp.authz.adapter.adapt er nare.class

Selects the authorization adapter class for the Adapt er Nane adapter. The
following adapter implementations are provided by Orbix:

618

http://www.ietf.org/rfc/rfc2251.txt

iSF Properties File

d comiona.security.is2AzAdapter.nultifile. MiltiF | eAzAdapt er —
an authorization adapter that enables you to specify multiple ACL files.
It is used in conjunction with the
comiona.isp.authz. adapter.file.paramfilelist property.

For example:
comiona.isp.authz. adapters = file

comiona.isp.authz. adapter.file.class=comiona.security.is2AzAda
pter.multifile. MiltiFileAzAdapter

com.iona.isp.authz.adapter.adapt er nane.param.filelist

is2.current.server.id

Specifies the absolute pathname of a file containing a list of ACL files for the
Adapt er Nane adapter. Each line of the specified file has the following
format:

[ACLKey=] ACLFi | eNae

A file name can optionally be preceded by an ACL key and an equals sign,
ACLKey=, if you want to select the file by ACL key. The ACL file,

ACLFi | eNane, is specified using an absolute pathname in the local file
format.

For example, on Windows you could specify a list of ACL files as follows:
U /orbi x_security/etc/acl _files/server_ A xm

U /orbi x_security/etc/acl _files/server_B. xm
U /orbi x_security/etc/acl _files/server_ C xm

The server ID is an alphanumeric string (excluding spaces) that specifies the
current Orbix security service’s ID. The server ID is needed for clustering.
When a secure application obtains a single sign-on (SSO) token from this
Orbix security service, the server ID is embedded into the SSO token.
Subsequently, if the SSO token is passed to a second Orbix security service
instance, the second Orbix security service recognizes that the SSO token
originates from the first Orbix security service and delegates security
operations to the first Orbix security service.

619

CHAPTER B | iSF Configuration

The server ID is also used to identify replicas in the cl uster. properti es
file.

For example, to assign a server ID of 1 to the current Orbix security service:

is2.current.server.id=1

is2.cluster.properties.filename

Specifies the file that stores the configuration properties for clustering. For
example:

is2.cluster.properties.filename=C /is2 config/cluster.properties

is2.replication.required

Enables the replication feature of the Orbix security service, which can be
used in the context of security service clustering. The possible values are
true (enabled) and f al se (disabled). When replication is enabled, the
security service pushes its cache of SSO data to other servers in the cluster
at regular intervals.

Default is f al se.
For example:

is2.replication.required=true

is2.replication.interval

Specifies the time interval between replication updates to other servers in
the security service cluster. The value is specified in units of a second.

Default is 30 seconds.

For example:

is2.replication.interval =10

620

iSF Properties File

is2.replica.selector.classname

is2.sso.cache.size

is2.sso.enabled

If replication is enabled (see i s2. repl i cati on. requi red), you must set this
variable equal to comiona. security.replicate. StaticReplicaSel ector.

For example:

is2.replica.sel ector.classnanme=comiona. security.replicate. Stati
cRepl i caSel ect or

Specifies the maximum cache size (number of user sessions) associated
with single sign-on (SSO) feature. The SSO caches user information,
including the user's group and role information. If the maximum cache size
is reached, the oldest sessions are deleted from the session cache.

No default.

For example:

i s2. sso. cache. si ze=1000

Enables the single sign-on (SSO) feature of the Orbix security service. The
possible values are yes (enabled) and no (disabled).

Default is yes.
For example:

i s2. sso. enabl ed=yes

is2.sso.remote.token.cached

In a federated scenario, this variable enables caching of token data for
tokens that originate from another security service in the federated cluster.
When this variable is set to true, a security service need contact another

621

CHAPTER B | iSF Configuration

security service in the cluster, only when the remote token is authenticated
for the first time. For subsequent token authentications, the token data for
the remote token can be retrieved from the local cache.

Default is f al se.

is2.sso.session.idle.timeout

is2.sso.session.timeout

622

Sets the session idle time-out in units of seconds for the single sign-on
(SSO) feature of the Orbix security service. A zero value implies no time-out.

If a user logs on to the Orbix Security Framework (supplying username and
password) with SSO enabled, the Orbix security service returns an SSO
token for the user. The next time the user needs to access a resource, there
is no need to log on again because the SSO token can be used instead.
However, if no secure operations are performed using the SSO token for the
length of time specified in the idle time-out, the SSO token expires and the
user must log on again.

Default is 0 (no time-out).

For example:

i s2. sso. session.idle.timeout =0

Sets the absolute session time-out in units of seconds for the single sign-on
(SSO) feature of the Orbix security service. A zero value implies no time-out.

This is the maximum length of time since the time of the original user login
for which an SSO token remains valid. After this time interval elapses, the
session expires irrespective of whether the session has been active or idle.
The user must then login again.

Default is 0 (no time-out).

For example:

i s2. sso0. sessi on. ti meout =0

logdj.configuration

iSF Properties File

Specifies the log4j configuration filename. You can use the properties in this
file to customize the level of debugging output from the Orbix security
service. See also “log4]j Properties File” on page 626.

For example:

| og4j . confi guration=d:/tenp/ nyconfi g.txt

623

CHAPTER B | iSF Configuration

Cluster Properties File

Overview The cluster properties file is used to store properties common to a group of
Orbix security service instances that operate as a cluster or federation. This
section provides descriptions of all the properties that can be specified in a
cluster file.

File location The location of the cluster properties file is specified by the
i s2.cluster. properties.fil enanme property in the iSF properties file. All of
the Orbix security service instances in a cluster or federation must share the
same cluster properties file.

List of properties The following properties can be specified in the cluster properties file:

com.iona.security.common.securitylnstanceURL.<server_I >

Specifies the server URL for the <server_I D> Orbix security service
instance.

When single sign-on (SSO) is enabled together with clustering or federation,
the Orbix security service instances use the specified instance URLs to
communicate with each other. Because the Orbix security service instances
share the same cluster file, they can read each other's URLs and open
connections to each other.

The connections between Orbix security service instances are made using
the IIOP protocol combined with SSL/TLS. The detailed configuration of the
IIOP/TLS endpoint is specified in the Orbix configuration file for each
security service in the cluster. Hence, you can discover the host and port
used by a particular security service by inspecting the values of the

pl ugi ns:security:iiop_tls:host and plugins:security:iiop_tls:port
variables from its Orbix configuration. You can use the host and port values
to construct the value of the security instance URL.

624

Cluster Properties File

For example, consider a cluster of three security services, where the first
security service (ID=1) is configured as follows:

Obix Configuration File for service with | D=1
pl ugi ns: security cluster:iiop_tls:addr_list =
["+security0l: 5001", "+security02: 5002", "+security03:5003"];
pl ugi ns: security:iiop_tls:host = "5001";
pl ugi ns: security:iiop_tls:port = "security0l";

The pl ugi ns: security:iiop_tls:host and

pl ugi ns: security:iiop_tls:port variables give the host and port of the
first service, server01: 5001. Assuming the host and port for the second and
third services are server 02: 5002 and ser ver 03: 5003 respectively, you
would configure the security instance URLs as follows:

Advertise the locations of the security services in the cluster.
com i ona. security. common. securitylnstanceURL. 1=cor bal oc:it_iiops: 1. 2@ecurity01: 5001/ T_Security

Servi ce

com i ona. security. common. securityl nstanceURL. 2=corbal oc: it _iiops: 1. 2@ecurity02: 5002/ T_Security
Servi ce

com i ona. security. common. securityl nstanceURL. 3=corbal oc:it _iiops: 1. 2@ecurity03:5003/1T Security
Servi ce

com.iona.security.common.replicaURL.<server i >>

A comma-separated list of URLs for the other security services to which this
service replicates its SSO token data. In Orbix, the URLs for the other
security services are normally specified in a cor bal oc format.

For example, to configure the first service in a cluster (ID=1) to replicate its
SSO token data to the second service (with address, server 02: 5002) and
the third service (with address, ser ver 02: 5002) in the cluster, you would
add the following line to the cl ust er. properti es file:

Configure replication between security services.
com i ona. security.common. repli caURL. 1=corbal oc: it _iiops: 1. 2@ecuri ty02: 5002/ | T_SecurityService,c
orbaloc:it_iiops: 1. 2@ecurity03: 5003/ T SecurityService

625

CHAPTER B | iSF Configuration

log4j Properties File

Overview The log4j properties file configures log4| logging for your Orbix security
service. This section describes a minimal set of log4] properties that can be
used to configure basic logging.

log4j documentation For complete log4j documentation, see the following Web page:
http://jakarta.apache.org/log4j/docs/documentation.htmi

File location The location of the log4j properties file is specified by the
| og4j . configuration property in the iSF properties file. For ease of
administration, different Orbix security service instances can optionally
share a common log4j properties file.

List of properties To give you some idea of the capabilities of log4j, the following is an
incomplete list of properties that can be specified in a log4j properties file:

log4j.appender.<appender Handl e>

This property specifies a log4j appender class that directs

<Appender Handl e> logging messages to a particular destination. For
example, one of the following standard log4j appender classes could be
specified:

or g. apache. | og4j . Consol eAppender

or g. apache. | og4j . Fi | eAppender

org. apache. 1 og4j . Rol | i ngFi | eAppender

org. apache. 1 og4j . Dai | yRol |'i ngFi | eAppender

or g. apache. | og4j . AsynchAppender

or g. apache. | og4j . Wi t er Appender

For example, to log messages to the console screen for the Al appender
handle:

| 0g4j . appender . Al=or g. apache. | og4j . Consol eAppender

626

http://jakarta.apache.org/log4j/docs/documentation.html

log4j Properties File

log4j.appender.<appender Handl e>.layout

This property specifies a log4j layout class that is used to format
<Appender Handl e> logging messages. One of the following standard log4|
layout classes could be specified:

or g. apache. | og4j . Patt er nLayout
or g. apache. | og4j . HTM_Layout

or g. apache. | og4j . S npl eLayout
or g. apache. | og4j . TTCCLayout

For example, to use the pattern layout class for log messages processed by
the A1 appender:

| og4j . appender . Al. | ayout =or g. apache. | og4j . Pat t er nLayout

log4j.appender.<appender Handl e>.1ayout.ConversionPattern

This property is used only in conjunction with the
or g. apache. | og4j . Patt ernLayout class (when specified by the

| 0g4j . appender . <Appender Handl e>. | ayout property) to define the format
of a log message.

For example, you can specify a basic conversion pattern for the A1 appender
as follows:

| og4j . appender . Al. | ayout . Conversi onPattern=%4r [%] %5p % % - %%

log4j.rootCategory

This property is used to specify the logging level of the root logger and to
associate the root logger with one or more appenders. The value of this
property is specified as a comma separated list as follows:

<LogLevel >, <Appender Handl e01>, <Appender Handl e02>,

The logging level, <LogLevel >, can have one of the following values:

DEBUG
® INO
* WARN
® ERORR

627

CHAPTER B | iSF Configuration

628

b FATAL
An appender handle is an arbitrary identifier that associates a logger with a

particular logging destination.
For example, to select all messages at the DEBUG level and direct them to the

Al appender, you can set the property as follows:

| 0g4j . r oot Cat egor y=DEBUG Al

APPENDIX C

ASN.1 and
Distinguished
Names

The OSI Abstract Syntax Notation One (ASN.1) and X.500
Distinguished Names play an important role in the security
standards that define X.509 certificates and LDAP directories.

In this appendix This appendix contains the following section:

ASN.1 page 630

page 631

Distinguished Names

629

CHAPTER C | ASN.1 and Distinguished Names

ASN.1

Overview

BER

DER

References

630

The Abstract Syntax Notation One (ASN.1) was defined by the OSI
standards body in the early 1980s to provide a way of defining data types
and structures that is independent of any particular machine hardware or
programming language. In many ways, ASN.1 can be considered a
forerunner of the OMG’s IDL, because both languages are concerned with
defining platform-independent data types.

ASN.1 is important, because it is widely used in the definition of standards
(for example, SNMP, X.509, and LDAP). In particular, ASN.1 is ubiquitous
in the field of security standards—the formal definitions of X.509 certificates
and distinguished names are described using ASN.1 syntax. You do not
require detailed knowledge of ASN.1 syntax to use these security standards,
but you need to be aware that ASN.1 is used for the basic definitions of
most security-related data types.

The OSI's Basic Encoding Rules (BER) define how to translate an ASN.1
data type into a sequence of octets (binary representation). The role played
by BER with respect to ASN.1 is, therefore, similar to the role played by
GIOP with respect to the OMG IDL.

The OSI's Distinguished Encoding Rules (DER) are a specialization of the
BER. The DER consists of the BER plus some additional rules to ensure that
the encoding is unique (BER encodings are not).

You can read more about ASN.1 in the following standards documents:
® ASN.1 is defined in X.208.
® BERis defined in X.209.

Distinguished Names

Distinguished Names

Overview

String representation of DN

DN string example

Structure of a DN string

oID

Historically, distinguished names (DN) were defined as the primary keys in

an X.500 directory structure. In the meantime, however, DNs have come to

be used in many other contexts as general purpose identifiers. In the Orbix

Security Framework, DNs occur in the following contexts:

® X.509 certificates—for example, one of the DNs in a certificate
identifies the owner of the certificate (the security principal).

® |LDAP—DNs are used to locate objects in an LDAP directory tree.

Although a DN is formally defined in ASN.1, there is also an LDAP standard
that defines a UTF-8 string representation of a DN (see RFC 2253). The
string representation provides a convenient basis for describing the structure
of a DN.

Note: The string representation of a DN does not provide a unique
representation of DER-encoded DN. Hence, a DN that is converted from
string format back to DER format does not always recover the original DER
encoding.

The following string is a typical example of a DN:
C=US, O=I ONA Technol ogi es, QJ=Engi neeri ng, ONFA. N Q her

A DN string is built up from the following basic elements:

* QID.

® Attribute types.
* AVA.

®* RDN.

An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely
identifies a grammatical construct in ASN.1.

631

CHAPTER C | ASN.1 and Distinguished Names

Attribute types

The variety of attribute types that could appear in a DN is theoretically
open-ended, but in practice only a small subset of attribute types are used.
Table 29 shows a selection of the attribute types that you are most likely to

encounter:

Table 29: Commonly Used Attribute Types

String X.500 Attribute Type Size of Data Equivalent OID
Representation
C count r yNamre 2 .5.4.6
(@) or gani zat i onNane 1...64 .5.4.10
(0V] or gani zat i onal Uni t Nane 1...64 .5.4.11
CN comonNane 1...64 .5.4.3
ST st at eOr Provi nceNane 1...64 .5.4.8
L | ocal i t yNarre 1...64 .5.4.7
STREET st reet Address
DC domai nConponent
ub userid

AVA

632

An attribute value assertion (AVA) assigns an attribute value to an attribute
type. In the string representation, it has the following syntax:

<attr-type>=<attr-val ue>

For example:
CN=A. N Qher

Alternatively, you can use the equivalent OID to identify the attribute type in

the string representation (see Table 29). For example:

2.5.4.3=A° N Cher

RDN

Distinguished Names

A relative distinguished name (RDN) represents a single node of a DN (the
bit that appears between the commas in the string representation).
Technically, an RDN might contain more than one AVA (it is formally
defined as a set of AVAs); in practice, however, this almost never occurs. In
the string representation, an RDN has the following syntax:

<attr-type>=<attr-val ue>[+<attr-type>=<attr-val ue> ...]
Here is an example of a (very unlikely) multiple-value RDN:
QU=Eng1+0U=Eng2+0QJ=Eng3

Here is an example of a single-value RDN:

QU=Engi neeri ng

633

CHAPTER C | ASN.1 and Distinguished Names

634

In this appendix

APPENDIX D

Association
Options

This appendix describes the semantics of all the association
options that are supported by Orbix.

This appendix contains the following section:

Association Option Semantics page 636

635

APPENDIX D | Association Options

Association Option Semantics

Overview

IDL Definitions

This appendix defines how Associ ati onQpt i ons are used with
Secd i ent | nvocat i on and SecTar get | nvocat i on policies.

Associ ati onQpt i ons are enumerated in the CORBA security specification as
follows:

/11DL

t ypedef unsigned short Associ ati onQpti ons;

const
const
const
const

Associ ati onQpti ons
Associ ati onQpt i ons
Associ ati onQpti ons
Associ ati onQpti ons

NoProtection = 1;
Integrity = 2;
Confidentiality = 4;
DetectReplay = 8;

const Associ ati on(ptions Detect M sordering = 16;
const Associ ati onQpti ons EstablishTrustlnTarget = 32;
const Associ ationQptions EstablishTrustinQient = 64;
/1 Unsupported option: NoDel egation

/1 Unsupported option: SinpleDelegation

/1 Unsupported option: ConpositeDel egation

Table of association options Table 30 shows how the options affect client and target policies:

Table 30: AssociationOptions for Client and Target

Association client_supports client_requires target_supports target_requires
Options

NoPr ot ect i on Client supports The client’s Target supports The target’s
unprotected minimal unprotected minimal protection
messages. protection messages. requirement is

requirement is unprotected
unprotected messages.
messages.

Integrity The client The client The target supports | The target requires
supports integrity | requires integrity protected messages to be
protected messages to be messages. integrity protected.
messages. integrity

protected.

636

Association Option Semantics

Table 30: AssociationOptions for Client and Target
Association client_supports client_requires target_supports target_requires
Options

Confidentiali The client The client The target supports | The target requires

ty supports requires confidentiality messages to be
confidentiality messages to be protected confidentiality
protected confidentiality messages. protected.
messages. protected.

Det ect Repl ay The client can The client The target can The target requires
detect replay of requires detection | detect replay of detection of
requests (and of message requests (and message replay.
request replay. request fragments).
fragments).

Det ect M sor de The client can The client The target can The target requires

ring detect sequence requires detection | detect sequence detection of
errors of requests | of message errors of requests message

(and request

mis-sequencing.

(and request

mis-sequencing.

fragments). fragments).
Est abl i shTrus The client is The client The target is (This option is
t 1 nTar get capable of requires prepared to invalid).
authenticating establishment of authenticate its
the target. trust in the identity to the
target's identity. client.
Est abl i shTrus The client is (This option is The target is The target requires

tinQient

prepared to
authenticate its
identity to the
target.

invalid).

capable of
authenticating the
client.

establishment of
trust in the client’s
identity.

637

APPENDIX D | Association Options

638

DTD file

APPENDIX E

Action-Role
Mapping DTD

This appendix presents the document type definition (DTD) for
the action-role mapping XML file.

The action-role mapping DTD is shown in Example 58.
Example 58:

<?xm version="1.0" encodi ng="UTF-8" ?>

<! ELEMENT act i on- nane (#PCDATA) >

<! ELEMENT rol e- name (#PCDATA) >

<! ELEMENT ser ver - name (#PCDATA) >

<! ELEMENT acti on-rol e- mappi ng (server-nane, interface+)>

<! ELEMENT nane (#PCDATA) >

<! ELEMENT interface (name, action-rolet)>

<! ELEMENT par aneter EMPTY>

<! ATTLI ST par anet er
nane CDATA #REQU RED
val ue CDATA #REQU RED

>

<! ELEMENT par aneter-control (paraneter+, role-nanet)>

<! ELEMENT action-rol e (action-nane, paraneter-control*,
rol e- name+) >

<I ELEMENT al | ow unl i sted-i nterfaces (#PCDATA)>

<! ELEMENT secure-system (al | owunli sted-interfaces*,
act i on-r ol e- mappi ng+) >

639

CHAPTER E | Action-Role Mapping DTD

Action-role mapping elements The elements of the action-role mapping DTD can be described as follows:
<! ELEMENT act i on- name (#PCDATA) >
Specifies the action name to which permissions are assigned. The
interpretation of the action name depends on the type of application:
+ CORBA server—for IDL operations, the action name corresponds
to the GIOP on-the-wire format of the operation name (usually the
same as it appears in IDL).
For IDL attributes, the accessor or modifier action name
corresponds to the GIOP on-the-wire format of the attribute
accessor or modifier. For example, an IDL attribute, f oo, would
have an accessor, _get foo, and a modifier, _set foo.

. Artix server—for WSDL operations, the action name is equivalent
to a WSDL operation name; that is, the Qper at i onNane from a
tag, <operati on nane="Cper at i onName" >.

<! ELEMENT action-rol e (action-nane, paraneter-control*,
rol e- nane+) >

Groups together a particular action and all of the roles permitted to
perform that action.

<! ELEMENT acti on-rol e- nmappi ng (server-nane, interface+)>
Contains all of the permissions that apply to a particular server
application.

<! ELEMENT al | owunli sted-interfaces (#PCDATA) >
Specifies the default access permissions that apply to interfaces not
explicitly listed in the action-role mapping file. The element contents
can have the following values:

1

. t rue—for any interfaces not listed, access to all of the interfaces
actions is allowed for all roles. If the remote user is
unauthenticated (in the sense that no credentials are sent by the
client), access is also allowed.

Note: However, if <al | ow unl i st ed-i nterfaces>istrue and a

particular interface is listed, then only the actions explicitly listed

within that interface’s i nt er f ace element are accessible. Unlisted
actions from the listed interface are not accessible.

640

. f al se—for any interfaces not listed, access to all of the interfaces’
actions is denied for all roles. Unauthenticated users are also
denied access.

Default is f al se.
< ELEMENT interface (nanme, action-role+)>

In the case of a CORBA server, the i nt er f ace element contains all of
the access permissions for one particular IDL interface.

In the case of an Artix server, the i nt er f ace element contains all of the
access permissions for one particular WSDL port type.

You can also use the wildcard, *, to match any number of contiguous
characters in an interface name.

<! ELEMENT nane (#PCDATA) >
Within the scope of an i nt er f ace element, identifies the interface (IDL
interface or WSDL port type) with which permissions are being
associated. The format of the interface name depends on the type of
application, as follows:

B CORBA server—the nane element identifies the IDL interface
using the interface’s OMG repository ID. The repository ID
normally consists of the characters I DL: followed by the fully
scoped name of the interface (using / instead of : : as the scoping
character), followed by the characters : 1. 0. Hence, the
Si npl e: : Si npl ebj ect IDL interface is identified by the
| DL: Si npl e/ Si npl eQj ect : 1. 0 repository ID.

Note: The form of the repository ID can also be affected by various
#pr agma directives appearing in the IDL file. A commonly used
directive is #pragma prefi x.

For example, the CosNami ng: : Nam ngCont ext interface in the naming
service module, which uses the omy. or g prefix, has the following
repository ID: | DL: ong. or g/ CosNam ng/ Nani ngCont ext : 1. 0

. Artix server—the nane element contains a WSDL port type name,
specified in the following format:
NanespaceUR : Port TypeNane
The Por t TypeNane comes from a tag, <port Type
nane="Por t TypeNane" >, defined in the NamespaceUR namespace.

641

CHAPTER E | Action-Role Mapping DTD

642

The NanespaceUR is usually defined in the <defi niti ons
t ar get Nanespace="NanespacelUR " ... > tag of the WSDL
contract.

<! ELEMENT par aneter EMPTY>
<I ATTLI ST par aret er
name CDATA #REQU RED
val ue CDATA #REQU RED

The <par amet er > element is used in conjunction with the action-role
mapping feature to restrict user access to an action. A user role is
allowed to access an action only if the parameter specified by the nanme
attribute has the value specified by the val ue attribute.

Note: By default, the <par anet er> and <par anet er - cont r ol > tags
only have an effect for the CFR service. Extending this feature to work
with other services requires the IONA ART plug-in development kit.

<! ELEMENT par aret er-control (parameter+, role-name+t)>
Specifies access control based on the values of certain parameters of
the associated action. The role names listed within the
<par anet er - cont r ol > element are granted access to the enclosing
action only if the parameters take the values specified by the
<par anet er > tags.

<! ELEMENT rol e- nane (#PCDATA) >
Specifies a role to which permission is granted. The role name can be
any role that belongs to the server’s Artix authorization realm (for
CORBA bindings, the realm name is specified by the
pl ugi ns: gsp: aut hori zat i on_r eal mconfiguration variable; for SOAP
bindings, the realm name is specified by the
pl ugi ns: asp: aut hori zat i on_r eal mconfiguration variable) or to the
| ONAQ obal Real mrealm. The roles themselves are defined in the
security server backend; for example, in a file adapter file or in an
LDAP backend.

<! ELEMENT secure-system (al | owunli sted-interfaces*,
action-rol e- mappi ng+) >

The outermost scope of an action-role mapping file groups together a
collection of acti on-r ol e- mappi ng elements.
<| ELEMENT ser ver - name (#PCDATA) >

The ser ver - nane element specifies the configuration scope (that is, the
ORB name) used by the server in question. This is normally the value
of the - CRBnane parameter passed to the server executable on the
command line.

You can also use the wildcard, *, to match any number of contiguous
characters in a configuration scope name.

643

CHAPTER E | Action-Role Mapping DTD

644

APPENDIX F

OpenSSL Utilities

The openssl program consists of a large number of utilities that
have been combined into one program. This appendix
describes how you use the openssl program with Orbix when
managing X.509 certificates and private keys.

In this appendix This appendix contains the following sections:
Using OpenSSL Utilities page 646
The OpenSSL Configuration File page 655

645

CHAPTER F | OpenSSL Utilities

Using OpenSSL Utilities

The OpenSSL package

Command syntax

The openssl utilities

The - hel p option

646

Orbix ships a version of the OpenSSL program that is available with Eric
Young's openssl package. OpenSSL is a publicly available implementation of
the SSL protocol. Consult “License Issues” on page 665 for information
about the copyright terms of OpenSSL.

Note: For complete documentation of the OpenSSL utilities, consult the
documentation at the OpenSSL web site ht t p: // www. openssl . or g/ docs.

An openssl command line takes the following form:
openss| utility arguments

For example:

openssl x509 -in Obi xCA -text

This appendix describes four openssl! utilities:

x509 Manipulates X.509 certificates.

req Creates and manipulates certificate signing requests, and self-signed
certificates.

rsa Manipulates RSA private keys.
ca Implements a Certification Authority (CA).

To get a list of the arguments associated with a particular command, use
the - hel p option as follows:

openssl utility -hel p
For example:
openssl x509 -hel p

Using OpenSSL Utilities

The x509 Utility

Purpose of the x509 utility In Orbix the x509 utility is mainly used for:

® Printing text details of certificates you wish to examine.

® Converting certificates to different formats.

Options The options supported by the openss| x509 utility are as follows:

-informarg

-outformarg

-keyformarg
-CAformarg
- CAkeyformarg
-in arg

-out arg
-serial

- hash

- subj ect

-i ssuer
-startdate

- enddat e

- dat es

- modul us
-fingerprint
- noout

-days arg

-signkey arg
- x509t or eq

-req

-CA arg

input format - default PEM

(one of DER NET or PEM

output fornmat - default PEM

(one of DER NET or PEM

private key format - default PEM
CA format - default PEM

CA key format - default PEM
input file - default stdin
output file - default stdout
print serial nunber val ue

print serial nunber val ue

print subject DN

print issuer DN

not Before field

not After field

both Before and After dates
print the RSA key nodul us

print the certificate fingerprint
no certificate output

How long till expiry of a signed certificate
def 30 days

self sign cert with arg
output a certification request object

input is a certificate request, sign and

out put

set the CA certificate, must be PEM fornmat

647

CHAPTER F | OpenSSL Utilities

Using the x509 utility

648

- CAkey arg - set the CA key, nust be PEMfornat. If m ssing
it is assumed to be in the CAfile

- CAcreat eseri al - create serial nunber file if it does not exist

- CAseri al - serial file

-text - print the certificate in text form

-C - print out C code forns

-md2/-md5/ -shal/ - digest to do an RSA sign with
-nmic2

To print the text details of an existing PEM-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in M/Cert.pem -inform PEM -t ext

To print the text details of an existing DER-format X.509 certificate, use the
x509 utility as follows:

openssl x509 -in M/Cert.der -informDER -text

To change a certificate from PEM format to DER format, use the x509 utility
as follows:

openssl x509 -in M/Cert.pem -inform PEM -out form DER - out
M/Cert . der

Using OpenSSL Utilities

The req Utility

Purpose of the x509 utility

Options

The req utility is used to generate a self-signed certificate or a certificate
signing request (CSR). A CSR contains details of a certificate to be issued by
a CA. When creating a CSR, the req command prompts you for the
necessary information from which a certificate request file and an encrypted
private key file are produced. The certificate request is then submitted to a
CA for signing.

If the - nodes (no DES) parameter is not supplied to r eq, you are prompted

for a pass phrase which will be used to protect the private key.

Note: It is important to specify a validity period (using the - days
parameter). If the certificate expires, applications that are using that
certificate will not be authenticated successfully.

The options supported by the openssl req utility are as follows:

-informarg
-outform
-in arg

-out arg
-text

- noout
-verify

- nodul us

- nodes

-key file
-keyformarg
-keyout arg
-newkey rsa:bits

-newkey dsa:file

-[digest]

-config file

input format - one of DER TXT PEM

arg output format - one of DER TXT PEM
inout file

output file

text formof request

do not out put REQ

verify signature on REQ

RSA nodul us

do not encrypt the output key

use the private key contained in file

key file fornat

file to send the key to

generate a new RSA key of ‘bits’ in size
generate a new DSA key, parameters taken from
CAin ‘file

Digest to sign with (nd5 shal, nmd2, ndc2)

request tenplate file

649

CHAPTER F | OpenSSL Utilities

Using the req Utility

650

- new new request

- x509 out put an x509 structure instead of a
certificate req. (Used for creating sel f signed
certificates)

- days nunber of days an x509 generated by -x509 is
valid for
-asnl- kl udge Qutput the ‘request’ in a format that is wong

but sone CA' s have been reported as requiring
[It is now al ways turned on but can be turned
of f with -no-asnl-kl udge]

To create a self-signed certificate with an expiry date a year from now, the
req utility can be used as follows to create the certificate CA cert. pemand
the corresponding encrypted private key file CA pk. pem

openssl req -config ss/_conf path_name -days 365

-out CA cert.pem-new -x509 -keyout CA pk.pem

This following command creates the certificate request M/Reg. pemand the
corresponding encrypted private key file M/Encr ypt edKey. pem

openssl req -config ss/_conf path _name - days 365
-out M/Req. pem - new - keyout M/Encrypt edkey. pem

Using OpenSSL Utilities

The rsa Utility

Purpose of the rsa utility

Options

Using the rsa Utility

The rsa command is a useful utility for examining and modifying RSA
private key files. Generally RSA keys are stored encrypted with a symmetric
algorithm using a user-supplied pass phrase. The OpenSSL req command
prompts the user for a pass phrase in order to encrypt the private key. By
default, req uses the triple DES algorithm. The r sa command can be used
to change the password that protects the private key and to convert the
format of the private key. Any rsa command that involves reading an
encrypted rsa private key will prompt for the PEM pass phrase used to
encrypt it.

The options supported by the openssl rsa utility are as follows:

-informarg input format - one of DER NET PEM

-outformarg output fornmat - one of DER NET PEM

-in arg inout file

-out arg output file

- des encrypt PEMoutput wth cbc des

- des3 encrypt PEMout put with ede cbc des using
168 bit key

-text print the key in text

- noout do not print key out

- nodul us print the RSA key nodul us

Converting a private key to PEM format from DER format involves using the
r sa utility as follows:

openssl rsa -informDER -in M/Key.der -outformPEM-out MKey. pem

Changing the pass phrase which is used to encrypt the private key involves
using the rsa utility as follows:

openssl rsa -informPEM-in M/Key. pem -out f orm PEM - out M/Key. pem
-des3

Removing encryption from the private key (which is not recommended)
involves using the rsa command utility as follows:

openssl rsa -informPEM-in M/Key. pem-outformPEM-out M/Key2. pem

651

CHAPTER F | OpenSSL Utilities

Note: Do not specify the same file for the -i n and - out parameters,
because this can corrupt the file.

652

Using OpenSSL Utilities

The ca Utility

Purpose of the ca utility

Creating a new CA

Options

You can use the ca utility create X.509 certificates by signing existing
signing requests. It is imperative that you check the details of a certificate
request before signing. Your organization should have a policy with respect
to the issuing of certificates.

The ca utility is used to sign certificate requests thereby creating a valid
X.509 certificate which can be returned to the request submitter. It can also
be used to generate Certificate Revocation Lists (CRLS). For information on
the ca - pol i cy and - nare options, refer to “The OpenSSL Configuration
File” on page 655.

To create a new CA using the openssl ca utility, two files (serial and
i ndex. t xt) need to be created in the location specified by the openssl|
configuration file that you are using.

The options supported by the openssl ca utility are as follows:

-ver bose - Talk al ot while doing things

-config file - Aconfig file

-nane arg - The particular CA definition to use

-gencrl - CGenerate a new CRL

-crldays days - Days is when the next CRL is due

-crlhours hours - Hours is when the next CRL is due

-days arg - nunber of days to certify the certificate for

-md arg - md to use, one of mi2, md5, sha or shal

-policy arg - The CA ‘policy’ to support

-keyfile arg - PEMprivate key file

-key arg - key to decode the private key if it is
encrypt ed

-cert - The CA certificate

-infile - The input PEMencoded certificate request(s)

-out file - Were to put the output file(s)

-outdir dir - Were to put output certificates

653

CHAPTER F | OpenSSL Utilities

-infiles.... - The last argunment, requests to process

-spkac file - File contains DN and signed public key and
chal | enge

- preserveDN - Do not re-order the DN

- bat ch - Do not ask questions

- msi e_hack - nsie nodifications to handle all thos

uni versal strings

Note: Most of the above parameters have default values as defined in
openssl . cnf.

Using the ca Utility Converting a private key to PEM format from DER format involves using the
ca utility as shown in the following example. To sign the supplied CSR
M/Reg. pemto be valid for 365 days and create a new X.509 certificate in
PEM format, use the ca utility as follows:

openssl ca -config ss/_conf path_name -days 365
-in M/Req. pem -out MyNewCert. pem

654

The OpenSSL Configuration File

The OpenSSL Configuration File

Overview A number of OpenSSL commands (for example, req and ca) take a - config
parameter that specifies the location of the openssl| configuration file. This
section provides a brief description of the format of the configuration file and
how it applies to the req and ca commands. An example configuration file is
listed at the end of this section.

Structure of openssl . cnf The openssl . cnf configuration file consists of a number of sections that
specify a series of default values that are used by the openssl commands.

In this section This section contains the following subsections:
[req] Variables page 656
[ca] Variables page 657
[policy] Variables page 658
Example openssl.cnf File page 659

655

CHAPTER F | OpenSSL Utilities

[req] Variables

Overview of the variables

def aul t _bi t s configuration
variable

def aul t _keyfil e configuration
variable

di stingui shed_nane
configuration variable

656

The req section contains the following variables:

default _bits = 1024

defaul t _keyfile = privkey. pem

di stingui shed_nane = req_di stingui shed_nane
attributes = reqg_attributes

The def aul t _bi t s variable is the default RSA key size that you wish to use.
Other possible values are 512, 2048, and 4096.

The def aul t _keyfi | e variable is the default name for the private key file
created by req.

The di sti ngui shed_name variable specifies the section in the configuration
file that defines the default values for components of the distinguished name
field. The req_attri but es variable specifies the section in the configuration
file that defines defaults for certificate request attributes.

The OpenSSL Configuration File

[ca] Variables

Choosing the CA section

Overview of the variables

You can configure the file openssl . cnf to support a number of CAs that
have different policies for signing CSRs. The - name parameter to the ca
command specifies which CA section to use. For example:

openssl ca -name MGCa ...

This command refers to the CA section [M/Ca] . If - nane is not supplied to
the ca command, the CA section used is the one indicated by the

def aul t _ca variable. In the “Example openssl.cnf File” on page 659, this is
set to CA defaul t (which is the name of another section listing the defaults
for a number of settings associated with the ca command). Multiple
different CAs can be supported in the configuration file, but there can be
only one default CA.

Possible [ca] variables include the following

dir: The location for the CA database
The database is a sinple text database containing the
following tab separated fi el ds:

st at us: A value of ‘R - revoked, ‘'E -expired or ‘V valid
i ssued date: Wien the certificate was certified

revoked date: Wien it was revoked, blank if not revoked

serial nunber: The certificate serial nunber

certificate: Were the certificate is |ocated

O\ The narme of the certificate

The serial nunber field should be unique, as should the CN/st at us
combination. The ca utility checks these at startup.

certs: This is where all the previously issued certificates are
kept

657

CHAPTER F | OpenSSL Utilities

[policy]l Variables

Choosing the policy section

Example policy section

The mat ch policy value

The optional policy value

The suppl i ed policy value

658

The policy variable specifies the default policy section to be used if the

- pol i cy argument is not supplied to the ca command. The CA policy section
of a configuration file identifies the requirements for the contents of a
certificate request which must be met before it is signed by the CA.

There are two policy sections defined in the “Example openssl.cnf File” on
page 659: pol i cy_mat ch and pol i cy_anyt hi ng.

The pol i cy_mat ch section of the example openssl . cnf file specifies the
order of the attributes in the generated certificate as follows:

count r yName

st at eQ Provi nceNare

or gani zat i onNamre

or gani zat i onal Uni t Name
commonNane

enai | Addr ess

Consider the following value:
countryName = match
This means that the country name must match the CA certificate.

Consider the following value:
organi sati onal Unit Name = opti onal
This means that the or gani sat i onal Uni t Nanme does not have to be present.

Consider the following value:
conmonNane = suppl i ed
This means that the commonNane must be supplied in the certificate request.

The OpenSSL Configuration File

Example openssl.cnf File

Listing

The following listing shows the contents of an example openssl . cnf
configuration file:

HHHEHH T
openssl exanpl e configuration file.

This is nostly used for generation of certificate requests.
T
[ca]

defaul t _ca= CA defaul t # The default ca section
T

[CAdefault]
dir=/opt/iona/ O bi xSSL1. Oc/certs # Wiere everything is kept

certs=$dir # Wiere the issued certs are kept
crl_dir= $dir/crl # Where the issued crl are kept
dat abase= $dir/index.txt # database index file
new certs_dir= $dir/newcerts # default place for new certs
certificate=$dir/CA Obi xCA # The CA certificate
serial= $dir/serial # The current serial nunber
cri=$dir/crl.pem# The current CRL

private_key= $dir/ CA O bi xCA pk # The private key
RANDFI LE= $dir/.rand # private random nunber file
defaul t _days= 365 # how long to certify for

default _crl_days= 30 # how | ong before next CRL
defaul t_nd= nd5 # whi ch message digest to use
preserve= no # keep passed DN ordering

A few different ways of specifying how closely the request
shoul d
conformto the details of the CA

pol i cy= pol i cy_nat ch
For the CA policy

[pol i cy_mat ch]

count ryName= nat ch

st at eQ Provi nceNane= nat ch

or gani zat i onNarme= nat ch

or gani zat i onal Uni t Name= opt i onal
conmonNarre= suppl i ed

659

CHAPTER F | OpenSSL Utilities

enai | Addr ess= opti onal

For the ‘anything’ policy
At this point intime, you nust list all acceptable ‘object’
types

[policy_anything]

countryName = opti onal

st at eQ Provi nceNanme= opt i onal

| ocal i t yNarme= opti onal

organi zati onNarme = opti onal
organi zat i onal Uni t Nanme = opti onal
comonNamre= suppl i ed

enai | Addr ess= opti onal

[req]

default_bits = 1024

def aul t _keyfile= privkey. pem

di sti ngui shed_nanme = req_di sti ngui shed_narme
attributes = req_attributes

[req_distingui shed_nane]

countryName= Country Nane (2 letter code)
countryNanme_nin= 2

countryName_nax = 2

stat eO Provi nceNane= State or Province Nane (full name)
I ocalityName = Locality Name (eg, city)

organi zati onName = QO gani zati on Nane (eg, conpany)
organi zati onal Uni t Name = Organi zational Unit Nanme (eg, section)
commonNarre = Common Name (eg. YOUR nane)
commonNane_nax = 64

enai | Address = Email Address

enai | Address_nax = 40

[reg_attributes]

chal | engePassword = A chal | enge password
chal | engePassword_nin = 4

chal | engePasswor d_nmax = 20

unst ruct ur edNane= An optional conpany name

660

In this appendix

APPENDIX G

Security
Recommendations

This appendix lists some general recommendations for
ensuring the effectiveness of Orbix security.

This appendix contains the following sections:

General Recommendations page 662

Orbix Services page 663

661

APPENDIX G | Security Recommendations

General Recommendations

List of recommendations The following general recommendations can help you secure your system
using Orbix applications

1. Use SSL security for every application wherever possible.

2. Use the strongest cipher suites available. There is little extra overhead
if you use 128 bit instead of 40 bit encryption for a typical connection.

3. If your application must connect to insecure applications, limit the
aspects of your system that use insecure communications to the
minimum necessary using policies and security aware code.

4. Treat any IOR received from an insecure endpoint as untrustworthy.
Set your policies so that you cannot use insecure IORs accidentally. Set
all communications in your ORBs to be secure by default and use the
appropriate policies to override these where necessary.

5. Itis important to remember that the certificates supplied with Orbix are
for demonstration purposes only and must be replaced with a securely
generated set of real certificates before applications can run in a
production environment.

6. The contents of your trusted CA list files must only include CA
certificates that you trust.

7. Do not use passwords in the configuration file. This feature is only a
developer aid.

8. The security of all SSL/TLS programs is only as strong as the weakest
cipher suite that they support. Consider making stronger cipher suites
available as an optional service which may be availed of by
applications with stronger minimum security requirements.

The bad guys will of course choose to use the weakest cipher suites.

9. Depending on the sensitivity of your system an RSA key size greater
than 512 bits might be appropriate. 1024 bit keys are significantly
slower than 512 bit keys but are much more secure.

662

Orbix Services

Orbix Services

No authorization support for Orbix
services

The Orbix services—that is, the locator, the node daemon, the naming
service, the configuration repository (CFR), and the interface repository
(IFR)—are not to be considered as fully secured in this release. While they
can be configured to use SSL they do not apply any authorization to
operations that clients perform. This still applies, to a lesser extent, even if
the services are configured to only allow secure connections and to enforce
client authentication, because all clients with trusted client certificates can
modify the services at will. That is, the Orbix services provide no way to
distinguish between ordinary users and users requiring administrative
privileges (authorization is not supported by the services).

WARNING: Do not use the CFR for the configuration of security
information in this release. The CFR could be modified by unauthorized
clients which would compromise secure application configuration.

File based configuration must be used for secure applications.

663

APPENDIX G | Security Recommendations

664

APPENDIX H

License Issues

This appendix contains the text of licenses relevant to Orbix.

In this appendix This appendix contains the following section:

OpenSSL License page 666

665

CHAPTER H | License Issues

OpenSSL License

Overview The licence agreement for the usage of the OpenSSL command line utility
shipped with Orbix SSL/TLS is as follows:

LI CENSE | SSUES

The penSSL tool kit stays under a dual license, i.e. both the conditions of
the penSSL License and the original SSLeay |icense apply to the toolkit.
See below for the actual license texts. Actually both |icenses are BSD-style
pen Source licenses. In case of any license issues related to QoenSSL

pl ease contact openssl -core@penssl . org.

penSSL Li cense

* Copyright (c) 1998-1999 The (penSSL Project. Al rights reserved.
* Redistribution and use in source and binary forns, with or without
* nodification, are permtted provided that the fol |l owi ng conditions

* are met:

* 1. Redistributions of source code must retain the above copyri ght
* notice, this list of conditions and the follow ng disclainer.

* 2. Redistributions in binary formnust reproduce the above copyright

* notice, this list of conditions and the follow ng disclainer in
* the docunentation and/or other materials provided with the
* di stribution.

* 3. Al advertising naterials nmentioning features or use of this

* software nust display the foll owi ng acknow edgnent :

* "Thi s product includes software devel oped by the QpenSSL Proj ect
* for use in the penSSL Tool kit. (http://ww. openssl.org/)"

* 4, The names "(penSSL Tool kit" and "(penSSL Project” nust not be used to

* endorse or pronote products derived fromthis software wi thout
* prior witten pernission. For witten permssion, please contact
* openssl - core@penssl . org.

* 5. Products derived fromthis software nay not be called "QpenSSL"
* nor may "enSSL" appear in their names without prior witten
* perm ssion of the QpenSSL Proj ect.

666

OpenSSL License

* 6. Redistributions of any formwhatsoever nmust retain the follow ng
* acknow edgrrent :

* "Thi s product includes software devel oped by the enSSL Proj ect
* for use in the enSSL Tool kit (http://ww. openssl.org/)"

* TH'S SOFTWARE | S PROVI DED BY THE QpenSSL PRQJECT ""AS |S' AND ANY
* EXPRESSED CR | MPLI ED WARRANTI ES, | NCLUDING BUT NOT LIMTED TO THE
* | MPLI ED WARRANTI ES CF MERCHANTABI LI TY AND FI TNESS FCR A PARTI QULAR
* PURPCSE ARE DI SCLAIMED. I N NO EVENT SHALL THE QpenSSL PRQJIECT CR
* | TS CONTR BUTCRS BE LI ABLE FCR ANY DI RECT, | NDI RECT, | NC DENTAL,

* SPEA AL, EXEMPLARY, CR CONSEQUENTI AL DAMAGES (I NCLUDING BUT

* NOT LIMTED TO PROCUREMENT CF SUBSTI TUTE GOCDS CR SERMI CES;

* LOSS OF USE, DATA, OR PRCFI TS, CR BUSI NESS | NTERRUPTI QN

* HONEVER CAUSED AND ON ANY THECRY CF LIABILITY, WHETHER I N CONTRACT,
* STRICT LIABILITY, OR TCRT (I NCLUDI NG NEGLI GENCE CR OTHERW SE)

* ARISING IN ANY WAY QUT OF THE USE OF TH'S SCFTWARE, EVEN | F ADVI SED
* CF THE PCSSI Bl LI TY CF SUCH DAVACE

* This product includes cryptographic software witten by Eric Young
* (eay@ryptsoft.con). This product includes software witten by Tim
* Hudson (tj h@ryptsoft.con.

Original SSLeay License

/* Copyright (Q 1995-1998 Eric Young (eay@ryptsoft.con
* Al rights reserved.

* This package is an SSL inplenentation witten
* by Eric Young (eay@ryptsoft.con).
* The inplementation was witten so as to conformwi th Netscapes SSL.

* This library is free for commercial and non-comercial use as |long as
* the followi ng conditions are aheared to. The follow ng conditions

* apply to all code found in this distribution, be it the R4, RSA

* | hash, DES, etc., code; not just the SSL code. The SSL docunentation
* included with this distribution is covered by the sane copyright terns
* except that the holder is TimHudson (tjh@ryptsoft.con).

* Copyright remains Eric Young's, and as such any Copyright notices in

* the code are not to be renoved.

* |f this package is used in a product, Eric Young shoul d be given attribution
* as the author of the parts of the library used.

667

CHAPTER H | License Issues

This can be in the formof a textual message at programstartup or
in docunentation (online or textual) provided with the package.

Redi stribution and use in source and binary forns, with or w thout

nmodi fication, are pernitted provided that the fol |l owi ng conditions

are net:

1. Redistributions of source code nust retain the copyright
notice, this list of conditions and the follow ng disclainer.

2. Redistributions in binary formnust reproduce the above copyright
notice, this list of conditions and the follow ng disclaimer in the
docunentation and/ or other naterials provided with the distribution.

3. Al advertising materials nentioning features or use of this software
nust display the foll ow ng acknow edgenent :
"Thi s product includes cryptographic software witten by
Eric Young (eay@ryptsoft.com"
The word 'cryptographic' can be left out if the rouines fromthe library
bei ng used are not cryptographic related :-).

4. If you include any Wndows specific code (or a derivative thereof) from
the apps directory (application code) you rmust include an acknow edgenent:
"This product includes software witten by TimHudson (tjh@ryptsoft.com"

THS SCFTWARE |S PROVIDED BY ERC YOUNG ""AS IS' AND

ANY EXPRESS CR | MPLI ED WARRANTI ES, | NCLUDING BUT NOT LIMTED TO THE

| MPLI ED WARRANTI ES CF MERCHANTABI LI TY AND FI TNESS FOR A PARTI QLAR PURPCSE
ARE DI SCLAIMED. | N NO EVENT SHALL THE AUTHOR CR OONTR BUTCRS BE LI ABLE
FCR ANY DI RECT, | NDI RECT, | NG DENTAL, SPECI AL, EXEMPLARY, CR GCONSEQUENTI AL
DAMAGES (I NCLUDING BUT NOT LIMTED TQ PROCUREMENT OF SUBSTI TUTE GOCDS
OR SERVI CES; LCBS OF USE, DATA, OR PRCFITS, CR BUSI NESS | NTERRUPTI ON)
HONEVER CAUSED AND CN ANY THECRY CF LI ABILITY, WHETHER | N GONTRACT, STR CT
LIABILITY, OR TORT (I NCLUDI NG NEGLI GENCE CR OTHERW SE) AR SING | N ANY WAY
QUT CF THE USE CF TH S SCFTWARE, EVEN | F ADVI SED CF THE PCSSI BI LI TY CF
SUCH DANVAGE

The licence and distribution terns for any publically available version or
derivative of this code cannot be changed. i.e. this code cannot sinply be
copi ed and put under another distribution |icence

[including the G\U Public Licence.]

668

Index

Symbols

#pragma prefix 196
<action-role-mapping> tag 196, 204
<allow-unlisted-interfaces> tag 195
<interface> tag 196

<name> tag 196

<realm> tag 188

<role> tag 188

<server-name> tag 196, 202
<users> tag 188

A
accept_asserted_authorization_info configuration
variable 123, 126
Accessld attribute type 496
Accessld credentials attribute 476
Accessld security attribute 476
ACL
<action-role-mapping> tag 196
<allow-unlisted-interfaces> tag 195
<interface> tag 196
<name> tag 196
<server-name> tag 196
action_role_mapping configuration variable 194
action-role mapping file 194
action-role mapping file, example 195
centralized 198, 201
ClientAccessDecision interface 199, 202, 207
com.iona.isp.authz.adapters property 203
localized 199
plugins:gsp:acl_policy_data_id variable 205, 206
plugins:gsp:action_role_mapping_file
variable 199
plugins:gsp:authorization_policy_enforcement_poi
nt variable 203
plugins:gsp:authorization_policy_store_type
variable 203
action-role mapping
and role-based access control 177
action_role_mapping configuration variable 82,
109, 121, 194, 221
action-role mapping file
<action-role-mapping> tag 196

<allow-unlisted-interfaces> tag 195

<interface> tag 196

<name> tag 196

<server-name> tag 196

CORBA

configuring 194

example 195
action-role mapping files

Orbix services, for 227
activation

automatic 382

of insecure servers 387

persistent 382

process for 387
addProvider() method

JCE security provider, adding 276
administration

itadmin utility, certificates for 310

of the KDM server 389

OpenSSL command-line utilities 292
administrator

certificates 393
admin_logon sub-command 390
admin_logon subcommand 395
and iSF adapter properties 539
application-level security 400
Artix security service

architecture 521

definition 522

features 522

plugins:java_server:classpath configuration

variable 540

standalone deployment of 524
ASN.1 282, 629

attribute types 632

AVA 632

0ID 631

RDN 633
assert_authorization_info configuration

variable 123, 125

association options

and cipher suite constraints 348

and mechanism policy 338

INDEX

client secure invocation policy, default 334
compatibility with cipher suites 349
DetectMisordering 457
DetectReply 457
EstablishTrustIinClient 72, 89, 359
EstablishTrustInClient, CSIv2 416, 417
EstablishTrustInTarget 356, 359
IdentityAssertion, CSIv2 437
NoProtection 75
rules of thumb 338
SSL/TLS
Confidentiality 332
DetectMisordering 332
DetectReplay 332
EstablishTrustInClient 333
EstablishTrustinTarget 333
Integrity 332
NoProtection 332
setting 330
target secure invocation policy, default 336
Asymmetric cryptography 49
AttributeList type 475
attribute service policy 436
AttributeService policy data 459
AttributeTypeList sequence 496
attribute value assertion 632
Attribute value assertions, See AVA
authenticate() method
in IS2Adapter 533
authenticate() operation 463, 464
AuthenticateGSSUPCredentials interface 408
Authentication 46, 48
authentication
and mechanism policy 359
caching of credentials 97
CSlv2, client configuration 425
CSIv2, requiring 416
CSIv2, sample configuration 424
CSIv2, server configuration 427
CSIv2 client-side policy 458
CSIv2 server-side policy 458
EstablishTrustPolicy 455
GSSUP mechanism
invocation credentials 456
iSF
process of 79

IT_CSI_AUTH_METH_USERNAME_PASSWORD

authentication method 470
IT_ TLS AUTH_METH_CERT_CHAIN

670

authentication method 466
IT_TLS AUTH_METH_CERT_CHAIN_FILE
authentication method 466
IT TLS AUTH_METH_LABEL authentication
method 466
IT_TLS_AUTH_METH_PKCS11 authentication
method 466
IT TLS AUTH_METH _PKCS12 DER
authentication method 466
IT TLS AUTH_METH _PKCS12 FILE
authentication method 466
methods for SSL/TLS 466
multiple own certificates 365
over transport, in CSIv2 410
own certificate, specifying 363
pass phrase
dialog prompt, C++ 368
dialog prompt, Java 369
in configuration 371
KDM server, from 369
password file, from 370
PIN
dialog prompt 372
in configuration 373
principal authenticator 462
security capsule 463
smart card
PIN 372
SSL/TLS
principal sponsor 364
requiring 354
smart cards 364
target and client 358
target only 355
trusted CA list 361

authentication_cache_size configuration variable 98

authentication_cache_timeout configuration
variable 98
authentication data
and key distribution management 382
authentication domain
CSIv2, definition 186
authentication over transport 119
client authentication token 412
client support, enabling 416
dependency on SSL/TLS 410
description 400, 410
GSSUP credentials 497
own credentials 464

scenario 403
server configuration 417
SSL/TLS prerequisites 414
target requirements 417
target support, enabling 417
authentication realm
JAAS, definition 186
authentication service
sample implementation 419
authentication service class
specifying 418
authentication service object
and CSI_SERVER_AS_POLICY policy 419
default implementation 419
iSF implementation 419
registering as an initial reference 419
AuthenticationService policy data 458, 459
AuthenticationService policy value 419
auth_method_data configuration variable 365
auth_method_id configuration variable 365
authorization
caching of credentials 97
iSF
process of 79, 92
procedure 184
role-based access control 177
roles
creating 179
example 181
special 180
SAML data 111
terminology 185
authorization realm
adding a server 178
IONAGIlobalRealm realm 180
iSF 177
iSF, setting in server 82
roles in 179
servers in 178
special 180
authorization realms
creating 179
example 181
automatic activation 382
automatic connection management
interaction with rebind policy 484
AVA 632
in distinguished names 505
AVAList interface 505

INDEX

B
backward trust 89, 434
Baltimore SSL/TLS toolkit 271
Baltimore toolkit
selecting for C++ applications 547
Basic Encoding Rules 630
basic log service ACL
IONAServiceRole 254
IONAUserRole 254
secure domain 253
semi-secure domain 253
UnauthenticatedUserRole 254
BER 630
bytearray_to_cert() method 504

C

CA b1, 282
appending to a CA list 302
choosing a host 286
commercial CAs 285
default 290
deploying 301
index file 294
in PKCS#12 file 363
list of trusted 288
multiple CAs 288
private CAs 286
private key, creating 295
security precautions 286
See Alsocertificate authority
self-signed 295

serial file 294
trusted list 301, 320, 361
657

CA, setting up 293
CA certificates 272
deploying to Windows certificate store 320
CACHE_CLIENT session caching value 351
CACHE_NONE session caching value 351
CACHE_SERVER_AND_CLIENT session caching
value 351
CACHE_SERVER session caching value 351
caching
authentication_cache_size configuration
variable 98
authentication_cache_timeout configuration
variable 98
CACHE_CLIENT session caching value 351

671

INDEX

CACHE_NONE session caching value 351
CACHE_SERVER_AND_CLIENT session caching
value 351
CACHE_SERVER session caching value 351
of credentials 97
SSL/TLS 351
cache size 351
validity period 351
Caching sessions 351
CAPI 272
CAs 293
ca utility 653
centralized ACL 203
<action-role-mapping> tag 204
<server-name> tag 202
ClientAccessDecision interface 202
com.iona.isp.authz.adapters property 203
file list 204
is2.properties file 203
overview 198, 201
plugins:gsp:acl_policy data_id variable 205, 206
plugins:gsp:authorization_policy_enforcement_poi
nt variable 203
plugins:gsp:authorization_policy_store_type
variable 203
selecting an ACL file 204
selection by ACL key 206
selection by ORB name 204
selection by override value 205
cert_constraints configuration variable 392
CertConstraintsPolicy 376, 545
CertConstraintsPolicy policy 376, 501, 506, 545
CertConstraints string array 508, 510
certificate authority
and certificate signing 282
certificate-based authentication
example scenario 91
file adapter, configuring 189
LDAP adapter, configuring 190
certificate-based SSO
overview 115
typical scenario 117
certificate constraints 392
login server 119
certificate constraints policy 501
C++ example 508
configuration, setting by 507
identity assertion and 435
Java example 509

672

programming, setting by 507

setting 507

three-tier target server 89
certificate_constraints_policy variable 376, 545
Certificate interface 504
Certificates 49, 51

chain length 375

constraints 376, 545

contents of 503

validating 499-503

validation process 500
certificates

accessing from Microsoft Management

Console 315
administrator 393
C++ parsing
get_issuer_dn_string() operation 505
get_subject dn_string() operation 505

CertConstraintsPolicy policy 376, 545

Certificate interface 504

chaining 287

common names 503

constraint language 376, 545

constraint policy, C++ example 508

constraint policy, Java example 509

constraints, applying 507

constraints policy 89

contents 503

contents of 282

creating and signing 296

creating for the KDM 393

default validation 501

demonstration 290

demonstration passwords 290

deploying 303

deploying in Schannel 314, 321

deployment, 300

deployment of 300

DER encoding 504

DER format 515

for itadmin utility 310

importing and exporting 289

issuer 503

itadmin_x509 cert_root configuration

variable 310

Java parsing 504

KDM administrator 393

length limit 288

locator 393

MaxChainLengthPolicy 375
multiple own certificates 365
obtaining 515
Orbix services 291
own, specifying 363
parsing 504
AVAList interface 505
bytearray_to_cert() method 504
pass phrase 368
peer 287
PKCS#11 interface 305, 364
PKCS#12 file 289, 363
public key 283, 503
public key encryption 344
security handshake 355, 359
self-signed 287, 295
serial number 283, 503
signing 282, 297
signing request 296
smart card deployment 305, 324
smart cards 364
subject name 503
syntax 503
trusted CA certificates 272
trusted CA list 301, 320, 361
validation
validate_cert_chain() operation 512
validation, implementing 511
X.509 282
X.509 extensions 505
X509CertificateFactory interface 504, 515
X509Cert interface 504
certificate signing request 296
common name 297
signing 297
certificate snap-in, for MMC 316
certificate store
accessing from Internet Explorer 315
deploying application certificates 321
importing PKCS#12 files 323
Schannel 272
trusted CA certificates, depoying 320
certificate validation
CertValidator interface 501
custom 501
default validation 501
certificate validation policy 500
implementing 511
CertificateValidatorPolicy policy 506

INDEX

Certification Authority. See CA
CertValidator interface 501
implementing 511
CertValidatorPolicy policy 501
CFR
CompoundName type 229
configuration scope 228
namespaces 229
parameter-based access control 230
use of 663
CFR domain
Domain.cfg file 213
secure 211
secure-Domain.cfg file 213, 214
cfr-Domain.cfg file 214
chaining of certificates 287
checksums 386
and the key distribution repository 383
checking 388
checksums_optional configuration variable 388
checksum subcommand 391, 395
ciper suites
order of 347
Ciphersuites
choosing 662
cipher suites
ciphersuites configuration variable 347
compatibility algorithm 349
compatibility with association options 349
default list 347
definitions 345
effective 348
encryption algorithm 344
exportable 345
integrity-only ciphers 344
key exchange algorithm 344
mechanism policy 346
secure hash algorithm 344
secure hash algorithms 345
security algorithms 344
specifying 343
standard ciphers 344
ciphersuites configuration variable 347
ClientAccessDecision interface 199, 202, 207
client authentication token
CSIv2 authentication over transport 412
client_binding_list configuration variable 436
and CSIv2 authentication 416
iSF, client configuration 80

673

INDEX

secure client 71, 218
client secure invocation policy 348
HTTPS 334
[IOP/TLS 334
ClientSecurelnvocationPolicy policy 331
client-side policies 448
client_version_policy
IIOP 587
close() method 533
cluster.properties file 155
example 159
clustering
definition 150
is2.cluster.properties.filename property 158
is2.replica.selector.classname 158
is2.replica.selector.classname property 158
is2.replication.required property 158, 163
IT_SecurityService initial reference 161
load balancing 158, 165
login service 157, 158
plugins:security:iiop_tls:addr_list variable 162
plugins:security:iiop_tls:host variable 162
plugins:security:iiop_tls:port variable 162
policies:iiop_tls:load_balancing_mechanism
variable 166
replicaURL property 160
securitylnstanceURL property 159
clustering, and fixed ports 77
cluster properties file 155
colocated invocations
and secure associations 328
com.iona.isp.adapters property 538
com.iona.isp.authz.adapters property 203
common names 503
uniqueness 297
common secure interoperability, see CSlv2
CompoundName type 229
Confidentiality association option 332
hints 340
Confidentiality option 332
configuration
and iSF standalone deployment 524
of OpenSSL 293
of the iSF adapter 538
plugins:java_server:classpath configuration
variable 540
Configuration file 655
configuration repository ACL 228
configuration scope 228

674

connection_attempts 587
constraint language 376, 545
Constraints
for certificates 376, 545
Contents of certificates 503
CORBA
ACLs 192
action-role mapping file 194
action-role mapping file, example 195
and iSF client SDK 522
intermediate server configuration 85
iSF, three-tier system 84
security, overview 64
SSL/TLS
client configuration 70
securing communications 66
server configuration 72
three-tier target server configuration 87
two-tier systems 78
CORBA policies
how to set 448
CORBA security
CSIv2 plug-in 65
GSP plug-in 65
IIOP/TLS plug-in 65
CORBA Security RTF 1.7 46
create_POA() operation
and policies 448
create_policy() operation 509, 510
Credentials
and Principal Authenticator 56, 59
defined 56, 59
retrieving 476
credentials
Accessld attribute 476
AttributeList type 475
attributes, Orbix-specific 476
creating CSIv2 credentials 470, 472
creating own 463
definition 475
get attributes() operation 496
get target credentials() operation 476
GSSUP 497
invocation credentials 456
obtaining 475
own
C++ example 480
Java example 481, 482
parsing 480

own, creating multiple 464
own, CSIv2 464
parsing 482
own, SSL/TLS 464
_Public attribute 476
received 476
C++ example 490
Java example 491
received, CSIv2
Java example 495
parsing 494
received, SSL/TLS
parsing 492, 493
retrieving 476
retrieving own 477
C++ example 478
Java example 479
retrieving received 489
retrieving target 483
SecurityAttributeType type 475
sharing 366, 420, 464
smart cards 364
target, interaction with rebind policy 484
target, retrieving
C++ example 485
Java example 486
target, SSL/TLS
C++ example 487
Java example 488
parsing 487
Credentials interface 463, 475
get_attributes() operation 475
Orbix-specific 476
Cryptography
asymmetric 49
RSA. See RSA cryptography
symmetric 49, 52
CsSl
and certificate-based SSO 115
authentication over transport 119
CSI authentication over transport
and single sign-on 111
CSI_CLIENT_AS_POLICY policy type 458
CSI_CLIENT _SAS_POLICY policy type 459
CSICredentials interface 465
parsing 482
CSl identity assertion
and single sign-on 111
CSl interceptor 80, 220

INDEX

CSI plug-in
and CSIv2 principal sponsor 420
loading for Java applications 416
role in iSF 407
role in the iSF 406
csi plug-in 436
CSIReceivedCredentials interface 494
CSI_SERVER_AS_POLICY policy 419
CSI_SERVER_AS_POLICY policy type 459
CSI_SERVER_SAS_POLICY policy type 459
CSlv2
applicability 401
application-level security 400
association options 417
IdentityAssertion 437
attribute service policy 436
AuthenticateGSSUPCredentials interface 408
authentication, client configuration 425
authentication, Java example 470, 472
authentication, requiring 416
authentication, sample configuration 424
authentication, server configuration 427
authentication domain 186
authentication over transport 400
authentication over transport, description 410
authentication over transport, own
credentials 464
authentication over transport scenario 403
authentication policy, client-side 458
authentication policy, server-side 458
authentication scenario 410
authentication service 418
authentication service object 413
backward trust 434
certificate constraints policy 89
client authentication token 412
client_binding_list configuration variable 436
csi plug-in for Java applications 436
features 400
GSSUPAuthData interface 470
GSSUP mechanism 410
identity assertion 401
own credentials 465
identity assertion, description 430
identity assertion, enabling 436
identity assertion, scenario description 431
identity assertion scenario 404
identity token types 433
intermediate server 404

675

INDEX

iSF integration with
ITTAbsent identity token type 433
ITTAnonymous identity token type 433
ITTPrincipalName identity token type 433
level 0 410
login 403
login, by configuration 422
login, by programming 422
login, dialog prompt 421
login options 420
policies 458
principal sponsor

client configuration 81
principal sponsor, description 420
principal sponsor, disabling 422
principal sponsor, enabling 420
principal_sponsor:csi:auth_method_data

configuration variable 422
principal sponsor and client authentication
token 413

received credentials 433
sample configurations 438
scenarios 402

server_binding_list configuration variable 436

SSL/TLS mutual authentication 434

SSL/TLS prerequisites 414, 434

SSL/TLS principal sponsor 435

transmitting security data 400

username and password, providing 420
CSlv2 authentication domain

and server domain name 417

in the iSF 406
CSIv2 plug-in

CORBA security 65
CSP 272
CSR 296
CSv2

CSlICredentials interface 465
Current interface

and credentials 476

retrieving received credentials 490
custom validation 501

D
Data Encryption Standard 52
data encryption standard
see DES
delegation
and identity assertion 430

676

demonstration certificates 290
passwords 290
deploying a CA 301
deployment
application certificates 303
certificates 300
service certificates 307
smart card, constraints 305
smart cards 305, 324
DER 630
DER encoding 504
DER format 515
DES 52
symmetric encryption 345
DetectMisordering association option 332, 457
hints 340
DetectMisordering option 332
DetectReplay association option 332
hints 340
DetectReplay option 332
DetectReply association option 457
DIRECT _PERSISTENCE policy value 76
Distinguished Encoding Rules 630
distinguished names 505
definition 631
DN
definition 631
string representation 631
Domain.cfg file 213
domain name
and CSIv2 authentication over transport 400
ignored by iSF 79
domain names
server domain name 417
domains
federating across 151

E
effective cipher suites
definition 348
effective credentials 125
enable_gssup_sso variable 105
enable x509 sso variable
and certificate-based SSO 117
Encryption 46
encryption algorithm
RC4 345
encryption algorithms 344
DES 345

symmetric 344

triple DES 345
enforce_secure_comms_to_sso_server variable 107

and the login service 101

login server 119
enterprise security service

and iSF security domains 175
EstablishTrustInClient

CSIv2 association option 416, 417, 421
EstablishTrustinClient association option 72, 333,

359

hints 339

three-tier target server 89
EstablishTrustinClient CSI association option

and username/password-based

authentication 107, 109
EstablishTrustInClient option 333
EstablishTrustinTarget association option 333, 356,
359

hints 339
EstablishTrustinTarget option 333
EstablishTrustPolicy policy 455

and interaction between policies 457
EstablishTrust type 455
event log service ACL

IONAServiceRole 256

IONAUserRole 256

secure domain 255

semi-secure domain 256

UnauthenticatedUserRole 256
event service ACL

IONAServiceRole 242

IONAUserRole 243

secure domain 241

semi-secure domain 242

UnauthenticatedUserRole 243
exportable cipher suites 345
ExtendedReceivedCredentials interface 112
Extension interface 505
ExtensionList interface 505

F
failover
definition 156
features, of the Artix security service 522
federation
and the security service 151
cluster.properties file 155
cluster properties file 155

INDEX

definition 150
is2.cluster.properties.filename property 154
is2.current.server.id property 151
is2.properties file 154, 158
plugins:security:iiop_tls settings 155

file adapter 142
configuring certificate-based authentication 189
properties 142

file-based domain
secure 211

file domain
<realm> tag 188
<users> tag 188
example 181, 187
file location 187
managing 187

fixed ports 76
DIRECT_PERSISTENCE policy value 76
host 77
IIOP/TLS addr_list 77
[IOP/TLS listen_addr 77
[IOP/TLS port 77
INDIRECT _PERSISTENCE policy value 76

G

generic security service username/password
mechanism
generic server 524
getAllUsers() method 535
get attributes() operation 496
in Credentials interface 475
getAuthorizationInfo() method 534
get_issuer_dn_string() operation 505
get_subject dn_string() operation 505
get_target credentials() operation 476
GIOP
and CSIv2 400
GroupBaseDN property 146
GroupNameAttr property 146
GroupObjectClass property 146
GroupSearchScope property 147
GSP interceptor 220
GSP plug-in
and ClientAccessDecision 199
and the login service 100
authentication_cache_size configuration
variable 98
authentication_cache_timeout configuration
variable 98

677

INDEX

caching of credentials 97

CORBA security 65

role in the iSF 406
GSSUP

modifications for single sign-on 104
GSSUPAuthData interface 470
GSSUPAuthData struct 472, 474
GSSUP credentials 153, 497
GSSUP mechanism 410

and CSIv2 principal sponsor 420
GSSUP username 433

H
Handshake, TLS 49-7?
high availability 156
HTTP
login realm 186
HTTPS
ciphersuites configuration variable 347

|
identity assertion
backward trust 434
certificate constraints policy
CSlv2

certificate constraints policy

435

csi plug-in for Java applications 436

description 401, 430

enabling 436

intermediate server configuration 436

own credentials 465

policy, client-side 459

policy, server-side 459

received credentials and 433

sample client configuration 439

sample configurations 438

sample intermediate server configuration 441

sample target server configuration 443

scenarioCSlv2

identity assertion scenario 430

scenario description 431

SSL/TLS dependency 430

SSU/TLS mutual authentication 434

SSL/TLS prerequisites 434

SSL/TLS principal sponsor 435
IdentityAssertion CSIv2 association option 437

678

identity assertion scenario 404
identity tokens
GSSUP username 433
subect DN in 433
types of 433
I1OP
and CSIv2 400
IIOP/TLS
ciphersuites configuration variable 347
host 77
IIOP/TLS addr_list 77
IIOP/TLS listen_addr 77
IIOP/TLS plug-in
CORBA security 65
role in iSF 407
IIOP/TLS port 77
I1OP plug-in
and semi-secure clients 71, 220, 226
IIOP policies 579, 585
client version 587
connection attempts 587
export hostnames 592
export IP addresses 592
GIOP version in profiles 592
server hostname 591
TCP options
delay connections 593
receive buffer size 594
I10OP policy
ports 591
IIOP_TLS interceptor 71, 218
impersonation
and identity assertion 430
imposter, server 385
IMR record 395
protecting with checksums 386
index file 294
INDIRECT _PERSISTENCE policy value 76
initialize() method 533, 539
initial references
IT_CSlAuthenticationObject 419
insecure object references
and QOP policy 454
insertProviderAt() method
JCE security provider, adding 276
Integrity 48, 53
Integrity association option 332
hints 340
integrity-only ciphers 344

Integrity option 332
intermediate server

and CSIv2 identity assertion 404

SSL/TLS connection from 432
intermediate server configuration 436
internal ORB

configuration 222

management service, monitoring 222

share_credentials_across_orbs variable 223
International Telecommunications Union 51
Internet Explorer

accessing the Windows certificate store 315
InvocationCredentialsPolicy policy 456
invocation policies

interaction with mechanism policy 338
IONAGIobalRealm 535
IONAGIobalRealm realm 180
IONA security framework, see iSF
IONAServiceRole role 227
IONAUserRole role 227
is2.cluster.properties.filename property

and clustering 158

and federation 154
is2.current.server.id property 151

and clustering 158
is2.properties file 142, 203

and clustering 158

and federation 154, 158

and iSF adapter configuration 526
is2.replica.selector.classname property

and clustering 158
is2.replication.interval property 164
is2.replication.required property 163

and clustering 158
IS2AdapterException class 534
IS2Adapter Java interface 526

implementing 527
iS2 adapters

enterprise security service 175

file domain

managing 187
file domain, example 181
LDAP domain
managing 190

standard adapters 523
iS2 server

bootstrapping 226

configuring 141

file adapter 142

INDEX

IP port 225

is2.properties file 142

LDAP adapter 144

LDAP adapter, properties 145
log4j logging 170

securing 210

security infomation file 142

iS2 service

configuring 224

iSF

action_role_mapping configuration variable 82,
109, 121, 221
and certificate-based authentication 91
and CSIv2
authentication service implementation 419
authorization
process of 79, 92
authorization realm
setting in server 82
client configuration
CSl interceptor 80
CORBA
three-tier system 84
three-tier target server configuration 87
two-tier scenario description 79
CORBA security 64
CSI plug-in role 406, 407
CSIv2 authentication domain in the 406
domain name, ignoring 79
GSP plug-in role 406
[IOP/TLS plug-in role 407
intermediate server configuration 85
security domain
creating 176
server configuration
server_binding_list 80
server domain name, ignored 417
server_domain_name configuration variable 82
three-tier scenario description 85
two-tier CORBA systems 78
user account
creating 176

iSF adapter

adapter class property 538

and IONAGIlobalRealm 535

and the iSF architecture 522
authenticate() method 533

close() method 533
com.iona.isp.adapters property 538

679

INDEX

configuring to load 538
custom adapter, main elements 526
example code 527
getAllUsers() method 535
getAuthorizationInfo() method 534
initialize() method 533, 539
logout() method 536
overview 526
property format 539
property truncation 539
WRONG_NAME_PASSWORD minor
exception 534
iSF adapter SDK
and the iSF architetecture 522
iSF client
in iSF architecture 521
iSF client SDK 522
iSF server
plugins:java_server:classpath configuration
variable 540
itadmin utility
admin_logon 390
and KDM administration 389
deploying certificates for 310
itadmin_x509 cert_root configuration
variable 310
protection 393
itadmin_x509 cert_root configuration variable 310,
393
IT_Certificate module 504
IT_CFR module 229
IT_CORBASEC module 112
IT_CSlAuthenticationObject initial object ID 419
IT_CSI_AUTH_METH_USERNAME_PASSWORD
authentication method 470
IT_SecurityService initial reference 161, 225
ITTAbsent identity token type 433
ITTAnonymous identity token type 433
IT_ TLS_ AUTH_METH_CERT_CHAIN authentication
method 466
IT_ TLS AUTH_METH_CERT_CHAIN_FILE
authentication method 466
IT TLS AUTH_METH_LABEL authentication
method 466
IT_TLS_AUTH_METH_PKCS11 authentication
method 466
IT TLS AUTH_METH _PKCS12_DER authentication
method 466
IT TLS AUTH_METH_PKCS12_FILE authentication

680

method 466
ITTPrincipalName identity token type 433
ITU 51

J
J2EE
and iSF client SDK 522
realm 186
security policy domain 186
security technology domain 185
JAAS
authentication realm 186
Java
certificates 504
java.security.cert package 504
Java Authentication and Authorization Service
see JAAS
Java Cryptography Extension 274
JCE 274
JCE architecture
enabling 549
enabling in Orbix 275
logging 277
JSSE toolkit 270

K
KDM

activation 387
activation process 387
administration overview 389
and activation 382
and certificate constraints 392
and checksums 386
and checksum storage 383
and deploying certificates 304, 308
and secure directories 392
and security threats 385
and the key distribution repository 383
and the locator 383
architecture 383
certificates, creating 393
checking the checksum 388
checksum creation 395
configuration variables 391
definition of 382
itadmin utility

protection 393
itadmin_x509 cert _root 393

logging on 390
loggin on 395
pass phrase registration 395
pass phrase storage 383
registration of a secure server 394
role of the locator 384
role of the node daemon 384
secure_directories configuration variable 385
server plug-in 383
setting up 392
kdm_adm subcommand 390, 395
KDM server protection 392
KDR 383
key distribution mechanism. See KDM
key distribution repository 383
key exchange algorithms 344

L

LDAP adapter 144
basic properties 147
configuring certificate-based authentication 190
GroupBaseDN property 146
GroupNameAttr property 146
GroupObjectClass property 146, 147
LDAP server replicas 148
MemberDNAttr property 147
PrincipalUserDN property 148
PrincipalUserPassword property 148
properties 145
replica index 148
RoleNameAttr property 146
SSLCACertDir property 149
SSLClientCertFile property 149
SSLClientCertPassword property 149
SSLEnabled property 149
UserBaseDN property 146
UserNameAttr property 146
UserObjectClass property 146
UserRoleDNAttr property 146

LDAP database
and clustering 157

LDAP domain
managing 190

LifespanPolicy policy 76

Lightweight Directory Access Protocol
see LDAP

load balancing 157
and clustering 158, 165
policies:iiop_tls:load_balancing_mechanism

variable 166

local ACL 199
local_hostname 591
localized ACL

ClientAccessDecision interface 207

locator

and the KDM 384
and the KDM server 383
certificate 393

locator ACL 233

IONAServiceRole 233
IONAUserRole 233

logdj 170

documentation 170

logging

in secure client 72
JCE architecture 277
log4j 170

login

CSIv2 403

CSIv2, by configuration 422
CSIv2, by programming 422
CSIv2 dialog prompt 421
CSIv2 options 420

login realm

HTTP, definition 186

login server

enforce_secure_comms_to _sso_server
variable 119

login service 157

and single sign-on 100

embedded deployment 100

enforce_secure_comms_to_sso_server
variable 101

login operation 116

secure connection to 101

standalone deployment mode 102

logout() method 536

M

MAC 53
management service

and the internal ORB settings 222

INDEX

max_chain_length_policy configuration variable 375
MaxChainLengthPolicy policy 375
MD5 332, 345

mechamism policy

interaction with invocation policies 338

MechanismPolicy 332

681

INDEX

mechanism policy 346 no_delay 593
and authentication 359 NO_PERMISSION exception
and interaction between policies 457 and login server certificate constraings 119
and Orbix services 218 and SSO token refresh 101
MechanismPolicy policy NoProtection assocation option
and interaction between policies 457 rules of thumb 338
MemberDNAttr property 147 NoProtection association option 75, 332
message authentication code 53 hints 341
message digest b semi-secure applications 341
see MD5 NoProtection option 332
message digests 332 notification service ACL
message fragments 332 IONAServiceRole 246
Message integrity 46 IONAUserRole 247
Microsoft Crypto APl 272 secure domain 245
Microsoft Cryptographic Service Provider 272 semi-secure domain 246
Microsoft Management Console UnauthenticatedUserRole 247
accessing certificates 315 notify log service ACL
minimum security levels 452 IONAServiceRole 259
mixed configurations, SSL/TLS 75 |[ONAUserRole 260
MMC 315 secure domain 258
multi-homed hosts, configure support for 591 semi-secure domain 259
multiple CAs 288 UnauthenticatedUserRole 260
multiple own certificates 365
mutual authentication (o)

identity assertion scenario 434 object-level policies

invocation credentials policy 456

N object references
names, distinguished 505 and target credentials 484
namespace making insecure 454
plugins:csi 550
plugins:gsp 552 opage Abstract Syntax Notation One
policies 570 see ASN.1 629
policies:csi 576 OpenSSL 286, 645
policies:https 579 openSSL
policies:iiop_tls 584 configuration file 655
principal_sponsor:csi 600 utilities 646
principle_sponsor 596, 603 openSSL.cnf example file 659
namespaces 229 openssl.cnf file 293
naming service ACL OpenSSL command-line utilities 292
IONAServiceRole 237 OpenSSL configuration file 293
IONAUserRole 237 ORB
UnauthenticatedUserRole 237 security capsule 463
node daemon Orbix configuration file 524
and the KDM 383, 384 orbname create 394
secure_directories configuration variable 385 orbname modify 395
node daemon ACL orb_plugins configuration variable 71, 220, 226
IONAServiceRole 235 client configuration 80
IONAUserRole 235 orb_plugins list
UnauthenticatedUserRole 235 CSI plug-in, including the 416

682

orb_plugins variable

and the NoProtection association option 341

semi-secure configuration 342
own credentials

creating 463
creating multiple 464
CSICredentials interface 465
CSIv2 464

parsing 482
definition 475
principal authenticator 463
retrieving 477

C++ example 478

Java example 479
SSU/TLS 464

C++ example 480

Java example 481

parsing 480
TLSCredentials interface 464

P

parameter-based access control 230
pass phrase 368
and the kdm_adm subcommand 390
and the key distribution repository 383
dialog prompt, C++ 368
dialog prompt, Java 369
in configuration 371
KDM server, from 369
password file, from 370
registering with the KDM 395
pass phrases
and key distribution management 382
passwords
demonstration, for 290
PDK
and custom SSL/TLS toolkit 270
peer certificate 287
performance
caching of credentials 97
PersistenceModePolicy policy 76
persistent activation 382
PIN 306, 325
dialog prompt 372
in configuration 373
smart card 364
PKCS#11 interface 305, 364
PKCS#12 file

importing into Windows certificate store 323

INDEX

PKCS#12 files 363
creating 289, 296
definition 289
deploying 303
importing and exporting 289
pass phrase 368
private key 363
viewing 289
plug-in development kit 270
plug-ins
csi 436
CSI, and CSIv2 principal sponsor 420
CSI, role in iSF 406, 407
CSIv2, in CORBA security 65
GSP, in CORBA security 65
GSP, role in iSF 406
IIOP 71, 220, 226
IIOP/TLS, in CORBA security 65
IIOP/TLS, role in iSF 407
kdm_adm 389
plugins:csi:ClassName 550
plugins:csi:shlib_name 551
plugins:gsp:acl_policy data_id variable 205, 206
plugins:gsp:action_role_mapping_file variable 199,
203
plugins:gsp:authorization_policy_enforcement_point
variable 203
plugins:gsp:authorization_policy_store_type
variable 203
plugins:gsp:authorization_realm 554
plugins:gsp:ClassName 554
plugins:iiop:tcp_listener:reincarnate_attempts 563
plugins:iiop:tcp_listener:reincarnation_retry backoff
ratio 563
plugins:iiop:tcp_listener:reincarnation_retry delay 5
63

plugins:iiop_tls:hfs_keyring file_password 588

plugins:iiop_tls:tcp_listener:reincarnation_retry back
off_ratio 563

plugins:iiop_tls:tcp_listener:reincarnation_retry dela
y 563

plugins:java_server:classpath configuration
variable 540

plugins:security:iiop_tls:addr_list variable

and clustering 162

plugins:security:iiop_tls:host variable 162

plugins:security:iiop_tls:port variable 162

plugins:security:iiop_tls settings 155

poa create 394

683

INDEX

polices:max_chain_length_policy 572 TLS_CERT_CONSTRAINTS_POLICY 509, 510
policies policies:allow_unauthenticated_clients_policy 570

and create_POA() operation 448
and _set_policy_overrides() operation 448
C++ example 449
CertConstraintsPolicy 376, 506, 545
certificate constraints 501, 507
certificate validation 500
CertificateValidatorPolicy 506
client secure invocation 348
ClientSecurelnvocationPolicy 331
client-side 448
CSI_SERVER_AS POLICY 419
CSIv2, programmable 458
EstablishTrustPolicy 455
how to set 448
HTTPS

client secure invocation 334

target secure invocation 336
identity assertion, client-side 459
identity assertion, server-side 459
[IOP/TLS

client secure invocation 334

target secure invocation 336
insecure object references 454
interaction between 457
InvocationCredentialsPolicy policy 456
Java example 449
MaxChainlLengthPolicy 375
minimum security levels 452
PolicyCurrent type 448
PolicyManager type 448
QOPPolicy policy 454
rebind policy 484
restricting cipher suites 454
SecClientSecurelnvocation 334
SecClientSecurelnvocation policy 452
SecQOPConfidentiality enumeration value 454
SecQOPIntegrityAndConfidentiality enumeration

value 454

SecQOPIntegrity enumeration value 454
SecQOPNoProtection enumeration value 454
SecTargetSecurelnvocation 336
SecTargetSecurelnvocation policy 452
server-side 448
SessionCachingPolicy 351
SSL/TLS 451
target secure invocation 348
TargetSecurelnvocationPolicy 331

684

policies:certificate_constraints_policy 571
policies:csi:attribute_service:client_supports 576
policies:csi:attribute_service:target supports 577
policies:csi:auth_over_transpor:target_supports 578
policies:csi:auth_over_transport:authentication_servi
ce configuration variable 418, 419
policies:csi:auth_over_transport:client_supports 57
7
policies:csi:auth_over_transport:client_supports
configuration variable 416
policies:csi:auth_over_transport:target _requires 578
policies:csi:auth_over_transport:target_requires
configuration variable 417
policies:csi:auth_over_transport:target_supports
configuration variable 417
policies:https:allow_unauthenticated_clients_policy
579
policies:https:certificate_constraints_policy 580
policies:https:client_secure_invocation_policy:requir
es 580
policies:https:client_secure_invocation_policy:suppo
rts 580
policies:https:max_chain_length_policy 580
policies:https:mechanism_policy:ciphersuites 581
policies:https:mechanism_policy:protocol_version 5
82
policies:https:session_caching_policy 582
policies:https:target secure_invocation_policy:requir
es 583
policies:https:target secure_invocation_policy:suppo
rts 583
policies:https:trusted ca_list_policy 584
policies:iiop_tls:allow_unauthenticated_clients_polic
y 586
policies:iiop_tls:certificate_constraints_policy 586
policies:iiop_tls:client_secure_invocation_policy:requ
ires 587
policies:iiop_tls:client_secure_invocation_policy:sup
ports 587
policies:iiop_tls:client_version_policy 587
policies:iiop_tls:connection_attempts 587
policies:iiop_tls:connection_retry delay 588
policies:iiop_tls:load_balancing_mechanism
variable 166
policies:iiop_tls:max_chain_length _policy 588
policies:iiop_tls:mechanism_policy:ciphersuites 589
policies:iiop_tls:mechanism_policy:protocol _version

590
policies:iiop_tls:server_address_mode_policy:local_h
ostname 591
policies:iiop_tls:server_address_mode_policy:port _ra
nge 591
policies:iiop_tls:server_address_mode_policy:publish
_hostname 592
policies:iiop_tls:server_version_policy 592
policies:iiop_tls:session_caching_policy 592
policies:iiop_tls:target secure_invocation_policy:req
uires 593
policies:iiop_tls:target secure_invocation_policy:sup
ports 593
policies:iiop_tls:tcp_options:send_buffer_size 594
policies:iiop_tls:tcp_options_policy:no_delay 593
policies:iiop_tls:tcp_options_policy:recv_buffer_size
594
policies:iiop_tls:trusted_ca_list_policy 594
policies:mechanism_policy:ciphersuites 573
policies:mechanism_policy:protocol_version 573
policies:session_caching_policy 574
policies:target secure_invocation_policy:requires 57

policies:target_secure_invocation_policy:supports 5

policies:trusted ca_list policy 575
658
PolicyCurrent type 448
policy data
AttributeService 459
AuthenticationService 458, 459
PolicyList interface 508
PolicyList object 450
PolicyManager interface 508, 510
PolicyManager object 450
PolicyManager type 448
policy types
CSI_CLIENT_AS_POLICY 458
CSI_CLIENT_SAS_POLICY 459
CSI_SERVER_AS POLICY 459
CSI_SERVER_SAS POLICY 459
policy values
AuthenticationService 419
principal
definition 463
principal authenticator
authenticate() operation 463, 464
CSIv2
Java example 470, 472

INDEX

definition 463
security capsule 463
SSL/TLS
C++ example 466
Java example 468
using 462
principal sponsor
configuring for smart cards 325
CSlv2
client configuration 81
CSlv2, description 420
CSIv2 and client authentication token 413
SSL/TLS
configuring 365
definition 364
enabling 74, 219
SSU/TLS, disabling 72
principal_sponsor:csi:auth_method_data 601
principal_sponsor:csi:auth_method_data
configuration variable 421, 422
principal_sponsor:csi:use_method_id configuration
variable 420
principal_sponsor:csi:use_principal_sponsor 600
principal_sponsor:csi:use_principal_sponsor
configuration variable 420, 422
principal_sponsor configuration namespace 365
principal_sponsor Namespace Variables 596, 603
principal sponsors
CSIv2, disabling 422
CSIv2, enabling 420
SSU/TLS, and CSIv2 415
PrincipalUserDN property 148
PrincipalUserPassword property 148
PrincipleAuthenticator interface 464, 468, 472,
474
principle_sponsor:auth_method_data 597, 604
principle_sponsor:auth_method_id 597, 604
principle_sponsor:callback handler:ClassName 599
principle_sponsor:login_attempts 599
principle_sponsor:use_principle_sponsor 596, 603
Privacy 48
private key 295
in PKCS#12 file 363
process create 394
Protocol, TLS handshake 49-??
protocol_version configuration variable 346
_Public credentials attribute 476
public key 503
Public key cryptography 49

685

INDEX

public key encryption 344
public keys 283

_Public security attribute 476
publish_hostname 592

Q
QOP enumerated type 454
QOP policy

restricting cipher suites 454
QOPPalicy policy 454

and interaction between policies 457
quality of protection 454

R
RC4 52
RC4 encryption 345
RDN 633
realm
J2EE, definition 186
see authorization realm
realms
and GSP plug-in 408
IONAGIobalRealm, adding to 535
SAML data 111
rebind policy
interaction with target credentials 484
received credentials
CSlv2
Java example 495
parsing 494
Current object 490
definition 475
identity assertion and 433
retrieving 489
C++ example 490
Java example 491
SSL/TLS
parsing 492, 493
ReceivedCredentials interface 405, 475
Orbix-specific 476
parsing received credentials 492
recv_buffer_size 594
registration
of a secure server 394
relative distinguished name 633
remote method invocation, see RMI
Replay detection 332
replication

686

definition 156
is2.replication.interval property 164
overview 163
replicalURL property 160
repository ID
#pragma prefix 196
in action-role mapping file 196
656
required security features 453
req utility 649
req Utility command 649
Rivest Shamir Adleman
see RSA
Rivest Shamir Adleman cryptography. See RSA
cryptography
RMI/IIOP
and CSIv2 400
role-based access control 177
example 179
RoleNameAttr property 146
roles
and GSP plug-in 408
creating 179
example 181
SAML data 111
special 180
root certificate directory 288
RSA 344
key size 662
symmetric encryption algorithm 344
RSA cryptography 49
RSA _EXPORT WITH_DES40 CBC_SHA cipher
suite 344, 347, 349
RSA _EXPORT WITH_RC4 40 _MDS5 cipher
suite 344, 349
rsa utility 651
rsa Utility command 651
RSA WITH 3DES EDE CBC_SHA cipher
suite 344, 349
RSA WITH_DES CBC_SHA cipher suite 344, 349
RSA WITH_NULL_MD?5 cipher suite 344, 349
RSA_WITH_NULL_SHA cipher suite 344, 349
RSA WITH _RC4 128 MD5 cipher suite 344, 349
RSA WITH_RC4 128 SHA cipher suite 344, 349

S
SAML

piggybacking data 111
sample configurations

SSL/TLS 66
scenarios
authentication in CSIv2 410
authentication over transport 403
CSIv2 402
identity assertion 404
Schannel
and smart cards 324
deploying application certificates 321
deploying certificates 314
deploying trusted CA certificates 320
Schannel toolkit 272
selecting for C++ applications 547
SecClientSecurelnvocation policy 334, 452
SecQOPConfidentiality enumeration value 454
SecQOPIntegrityAndConfidentiality enumeration
value 454
SecQOPIntegrity enumeration value 454
SecQOPNoProtection enumeration value 454
SecTargetSecurelnvocation policy 336, 452
secure associations
client behavior 334
definition 328
TLS_Coloc interceptor 328
secure_client_with_no_cert configuration
sample 414
secure_directories configuration variable 385
secure-Domain.cfg file 213
secure hash algorithms 344, 345
secure invocation policy 331, 452
secure_server_no_client_auth configuration 69
secure_server_no_client_auth configuration
sample 414
Secure Sockets Layer, See SSL
Security 661
security algorithms
and cipher suites 344
security attribute service context 400, 405
SecurityAttributeType type 475
security capsule
and principal authenticator 463
credentials sharing 366, 420, 464
security domain
creating 176
file domain example 181
security domains
architecture 175
iSF 175
security handshake

INDEX

cipher suites 343
SSU/TLS 355, 359
security infomation file 142
securitylnstanceURL property 159
SecurityManager interface 464, 468, 472, 474
and credentials 476
retrieving own credentials 478
security policy domain
J2EE, definition 186
security providers
configuring JCE 275
JCE 274
providing by programming 276
Security recommendations 661
security service
federation of 151
security technology domain
J2EE, definition 185
security threats 385
self-signed CA 295
self-signed certificate 287
semi-secure applications
and NoProtection 341
SEMI_SECURE servers 332
serial file 294
serial number 283, 503
server_binding_list configuration variable 80, 436
and CSIv2 authentication 416
secure server 220
server domain name
and CSIv2 authentication over transport 417
server_domain_name configuration variable
iSF, ignored by 82
server-side policies 448
server_version_policy
IIOP 592
service contexts
security attribute 400, 405
services
certificates 291
configuring Orbix 216
deploying certificates 307
principal sponsor
example configuration 309
securing Orbix 210
session_cache_size configuration variable 351
session_cache_validity period configuration
variable 351
session_caching_policy configuraion variable 351

687

INDEX

SessionCachingPolicy policy 351

session_caching_policy variable 351

_set_policy_overrides() operation 448

set_policy overrides() operation 450, 508
and invocation credentials 456

SHA 345

SHAL 332

share_credentials_across_orbs variable
internal ORB settings 223

shared credentials 366, 420, 464

signing certificates 282

single sign-on

accept_asserted_authorization_info configuration

variable 123, 126
assert_authorization_info configuration
variable 123, 125
effective credentials 125
ExtendedReceivedCredentials interface 112
IT_CORBASEC module 112
sample client configurations 133
sso_server_certificate_constraints configuration
variable 113
token timeouts 101
slot number, in smart card 364
smart card
certificate deployment 305
PIN 364, 372
slot number 364
smart cards 364
and Schannel 272
certificate deployment 324
deploying credentials 324
deployment constraints 305
PIN 306, 325
Specifying ciphersuites 343
SSL/TLS
association options
setting 330
caching 351
caching validity period 351
cipher suites 343
client configuration 70
colocated invocations 328
encryption algorithm 344
fixed ports 76
[IOP_TLS interceptor 71, 218
key exchange algorithm 344
logging 72
mechanism policy 346

688

mixed configurations 75
orb_plugins list 71, 220, 226
principal sponsor
disabling 72
enabling 74, 219
protocol_version configuration variable 346
sample configurations 66
secure associations 328
secure client, definition 67
secure hash algorithm 344
secure hash algorithms 345
secure invocation policy 331
securing communications 66
security handshake 355, 359
selecting a toolkit, C++ 547
semi-secure client
I1OP plug-in 71, 220, 226
semi-secure client, definition 67
semi-secure server, definition 68
server configuration 72
server server, definition 68
session cache size 351
terminology 67
TLS session 328
SSL/TLS policies 451
SSL/TLS principal sponsor
and CSIv2 authentication over transport 415
SSL/TLS toolkit
Baltimore 271
SSL/TLS toolkits 270
Schannel 272
SSLCACertDir property 149
SSLClientCertFile property 149
SSLClientCertPassword property 149
SSLeay 286
SSLEnabled property 149
SSO
see single sign-on
sso_server_certificate_constraints configuration
variable 113
sso_server_certificate_constraints variable 105
and certificate-based SSO 117
_SSO _TOKEN_ 104
certificate-based SSO 116
SSO token 113, 125
and certificate-based SSO 116
and the login service 100
automatic refresh 101
re-authenticating 124, 128, 130

timeouts 101
standalone deployment 524
standard ciphers 344
subject DN

and identity tokens 433
subject name 503
supported security features 453
Symmetric cryptography 52
symmetric encryption algorithms 344

T

Target
choosing behavior 336
target and client authentication 358
example configuration 360
target authentication 355
target authentication only
example 357
target credentials
availability of 484
definition 475
interaction with rebind policy 484
retrieving 483
C++ example 485
Java example 486
SSL/TLS
C++ example 487
Java example 488
parsing 487
TargetCredentials interface 475, 484
Orbix-specific 476
target secure invocation policy 348
HTTPS 336
IIOP/TLS 336
TargetSecurelnvocationPolicy policy 331
TCP policies
delay connections 593
receive buffer size 594
terminology
SSL/TLS
secure client, definition 67
semi-secure client, definition 67
semi-secure server, definition 68
server server, definition 68
SSL/TLS samples 67
terminology, for domain and realm 185
three-tier scenario description 85
TLS
authentication 48

INDEX

handshake 49-77
how provides security 48
integrity 53
session caching 351
TLS_CERT_CONSTRAINTS_POLICY policy
type 509, 510
TLS Coloc interceptor 328
TLSCredentials interface 464, 480, 515
TLSReceivedCredentials interface 492
TLS session
definition 328
TLSTargetCredentials interface
parsing target credentials 487
token
SSO 113, 125
tokens
client authentication 412
toolkit replaceability 270
enabling JCE architecture 549
JSSE/JCE architecture 274
logging 277
selecting the toolkit, C++ 547
trader service ACL
IONAServiceRole 239
IONAUserRole 239
secure domain 238
semi-secure domain 239
UnauthenticatedUserRole 239
Transport Layer Security, See TLS
triple DES 345
truncation of property names 539
trusted CA list 301, 320
trusted CA list policy 361
trusted ca_list_policy 302
trusted ca_list_policy configuration variable 361
trusted_ca_list_policy variable 301
and Orbix services 218
trusted CAs 288
trust in client
by programming, SSL/TLS 455
trust in target
by programming, SSL/TLS 455

U
use_jsse_tk configuration variable 549
use_principal_sponsor configuration variable 365
user account

creating 176
UserBaseDN property 146

689

INDEX

username/password-based authentication

overview 103
username and password

CSlv2 420
UserNameAttr property 146
UserObjectClass property 146
UserRoleDNAttr property 146
UserSearchScope property

LDAP adapter

UserObjectClass property 146

vV

validate_cert_chain() operation 512
Variables 656, 657, 658

W

well-known addressing policy 77
WellKnownAddressingPolicy policy 76
WRONG_NAME_PASSWORD minor exception 534

X
X.500 629
X.509
and PKCS#12 file 363
certificates. See certificates
Extension interface 505
ExtensionList interface 505
extensions 505
public key encryption 344
v3 extensions 503, 504
X.509 certificate
contents 503
definition 282
X.509 certificates 281
parsing 504
X509CertChain interface 515
X509CertificateFactory interface 504, 515
X509Cert interface 504, 515
x509 utility 647

690

INDEX

691

INDEX

692

	Orbix Security Guide
	List of Tables
	List of Figures
	Preface
	Part I Introducing Security
	1 Getting Started with Security
	Creating a Secure Domain
	Running a Secure CORBA Demonstration
	Debugging with the openssl Utility
	Where do I go from here?

	2 Orbix Security Framework
	Introduction to the iSF
	iSF Features
	Example of an iSF System
	Security Standards

	Orbix Security Service
	Orbix Security Service Architecture
	iSF Server Development Kit

	Secure Applications
	ART Security Plug-Ins
	Secure CORBA Applications

	Administering the iSF
	Overview of iSF Administration
	Secure ASP Services

	3 Transport Layer Security
	What does Orbix Provide?
	How TLS Provides Security
	Authentication in TLS
	Certificates in TLS Authentication
	Privacy of TLS Communications
	Integrity of TLS Communications

	Obtaining Credentials from X.509 Certificates
	Obtaining Certificate Credentials from a File
	Obtaining Certificate Credentials from a Smart Card

	4 Securing CORBA Applications
	Overview of CORBA Security
	Securing Communications with SSL/TLS
	Specifying Fixed Ports for SSL/TLS Connections
	Securing Two-Tier CORBA Systems with CSI
	Securing Three-Tier CORBA Systems with CSI
	X.509 Certificate-Based Authentication
	Caching of Credentials

	5 Single Sign-On for CORBA Applications
	SSO and the Login Service
	Username/Password-Based SSO
	Three Tier Example with Identity Assertion
	X.509 Certificate-Based SSO
	Enabling Re-Authentication at Each Tier
	Optimising Retrieval of Realm Data
	SSO Sample Configurations

	Part II Orbix Security Framework Administration
	6 Configuring the Orbix Security Service
	Configuring the File Adapter
	Configuring the LDAP Adapter
	Clustering and Federation
	Federating the Orbix Security Service
	Failover and Replication
	Client Load Balancing

	Additional Security Configuration
	Configuring Single Sign-On Properties
	Configuring the Log4J Logging

	7 Managing Users, Roles and Domains
	Introduction to Domains and Realms
	iSF Security Domains
	iSF Authorization Realms
	Example Domain and Realms
	Domain and Realm Terminology

	Managing a File Security Domain
	Managing an LDAP Security Domain

	8 Managing Access�Control Lists
	CORBA ACLs
	Overview of CORBA ACL Files
	CORBA Action-Role Mapping ACL

	Centralized ACL
	Local ACL Scenario
	Centralized ACL Scenario
	Customizing Access Control Locally

	9 Securing Orbix Services
	Introduction to Securing Services
	File-Based and CFR Domains
	Customizing a Secure Domain
	Configuring a Typical Orbix Service
	Configuring the Security Service

	Default Access Control Lists
	Configuration Repository ACL
	Locator ACL
	Node Daemon ACL
	Naming Service ACL
	Trader Service ACL
	Event Service ACL
	Notification Service ACL
	Basic Log Service ACL
	Event Log Service ACL
	Notify Log Service ACL

	Part III SSL/TLS Administration
	10 Choosing an SSL/TLS Toolkit
	Toolkit Replaceability
	Baltimore Toolkit for C++ and Java
	Schannel Toolkit for C++
	JSSE/JCE Architecture

	11 Managing Certificates
	What are X.509 Certificates?
	Certification Authorities
	Commercial Certification Authorities
	Private Certification Authorities

	Certificate Chaining
	PKCS#12 Files
	Using the Demonstration Certificates
	Creating Your Own Certificates
	Set Up Your Own CA
	Use the CA to Create Signed Certificates

	Deploying Certificates
	Overview of Certificate Deployment
	Providing a List of Trusted Certificate Authorities
	Deploying Application Certificates
	Deploying Certificates in Smart Cards
	Deploying Orbix Service Certificates
	Deploying itadmin Certificates
	Configuring Certificate Warnings

	Deploying Certificates with Schannel
	Schannel Certificate Store
	Deploying Trusted Certificate Authorities
	Deploying Application Certificates
	Deploying Certificates in Smart Cards

	12 Configuring SSL/TLS Secure Associations
	Overview of Secure Associations
	Setting Association Options
	Secure Invocation Policies
	Association Options
	Choosing Client Behavior
	Choosing Target Behavior
	Hints for Setting Association Options

	Specifying Cipher Suites
	Supported Cipher Suites
	Setting the Mechanism Policy
	Constraints Imposed on Cipher Suites

	Caching TLS Sessions

	13 Configuring SSL/TLS Authentication
	Requiring Authentication
	Target Authentication Only
	Target and Client Authentication

	Specifying Trusted CA Certificates
	Specifying an Application’s Own Certificate
	Providing a Pass Phrase or PIN
	Providing a Certificate Pass Phrase
	Providing a Smart Card PIN

	Advanced Configuration Options
	Setting a Maximum Certificate Chain Length
	Applying Constraints to Certificates
	Delaying Credential Gathering

	14 Automatic Activation of Secure�Servers
	Managing Server Pass Phrases
	Protecting against Server Imposters
	How the KDM Activates a Secure Server
	KDM Administration
	Setting Up the KDM
	Registering a Secure Server

	Part IV CSIv2 Administration
	15 Introduction to CSIv2
	CSIv2 Features
	Basic CSIv2 Scenarios
	CSIv2 Authentication over Transport Scenario
	CSIv2 Identity Assertion Scenario

	Integration with the Orbix Security Framework

	16 Configuring CSIv2 Authentication over Transport
	CSIv2 Authentication Scenario
	SSL/TLS Prerequisites
	Requiring CSIv2 Authentication
	Providing an Authentication Service
	Providing a Username and Password
	Sample Configuration
	Sample Client Configuration
	Sample Server Configuration

	17 Configuring CSIv2 Identity Assertion
	CSIv2 Identity Assertion Scenario
	SSL/TLS Prerequisites
	Enabling CSIv2 Identity Assertion
	Sample Configuration
	Sample Client Configuration
	Sample Intermediate Server Configuration
	Sample Target Server Configuration

	Part V CORBA Security Programming
	18 Programming Policies
	Setting Policies
	Programmable SSL/TLS Policies
	Introduction to SSL/TLS Policies
	The QOPPolicy
	The EstablishTrustPolicy
	The InvocationCredentialsPolicy
	Interaction between Policies

	Programmable CSIv2 Policies

	19 Authentication
	Using the Principal Authenticator
	Introduction to the Principal Authenticator
	Creating SSL/TLS Credentials
	Creating CSIv2 Credentials

	Using a Credentials Object
	Retrieving Own Credentials
	Retrieving Own Credentials from the Security Manager
	Parsing SSL/TLS Own Credentials
	Parsing CSIv2 Own Credentials

	Retrieving Target Credentials
	Retrieving Target Credentials from an Object Reference
	Parsing SSL/TLS Target Credentials

	Retrieving Received Credentials
	Retrieving Received Credentials from the Current Object
	Parsing SSL/TLS Received Credentials
	Parsing CSIv2 Received Credentials

	20 Validating Certificates
	Overview of Certificate Validation
	The Contents of an X.509 Certificate
	Parsing an X.509 Certificate
	Controlling Certificate Validation
	Certificate Constraints Policy
	Certificate Validation Policy

	Obtaining an X.509 Certificate

	Part VI iSF Programming
	21 Developing an iSF Adapter
	iSF Security Architecture
	iSF Server Module Deployment Options
	iSF Adapter Overview
	Implementing the IS2Adapter Interface
	Deploying the Adapter
	Configuring iSF to Load the Adapter
	Setting the Adapter Properties
	Loading the Adapter Class and Associated Resource Files

	Appendix A Security
	Applying Constraints to Certificates
	initial_references
	IT_TLS_Toolkit:plugin
	plugins:atli2_tls
	cert_store_protocol
	cert_store_provider
	kmf_algorithm
	tmf_algorithm
	use_jsse_tk
	plugins:csi
	allow_csi_reply_without_service_context
	ClassName
	shlib_name
	use_legacy_policies
	plugins:gsp
	accept_asserted_authorization_info
	action_role_mapping_file
	assert_authorization_info
	authentication_cache_size
	authentication_cache_timeout
	authorization_policy_enforcement_point
	authorization_policy_store_type
	authorization_realm
	ClassName
	enable_authorization
	enable_gssup_sso
	enable_user_id_logging
	enable_x509_sso
	enforce_secure_comms_to_sso_server
	enable_security_service_cert_authentication
	retrieve_isf_auth_principal_info_for_all_realms
	sso_server_certificate_constraints
	use_client_load_balancing
	plugins:https
	ClassName
	plugins:iiop_tls
	buffer_pool:recycle_segments
	buffer_pool:segment_preallocation
	buffer_pools:max_incoming_buffers_in_pool
	buffer_pools:max_outgoing_buffers_in_pool
	cert_expiration_warning_days
	delay_credential_gathering_until_handshake
	enable_iiop_1_0_client_support
	enable_warning_for_approaching_cert_expiration
	incoming_connections:hard_limit
	incoming_connections:soft_limit
	outgoing_connections:hard_limit
	outgoing_connections:soft_limit
	own_credentials_warning_cert_constraints
	tcp_listener:reincarnate_attempts
	tcp_listener:reincarnation_retry_backoff_ratio
	tcp_listener:reincarnation_retry_delay
	plugins:kdm
	cert_constraints
	iiop_tls:port
	checksums_optional
	plugins:kdm_adm
	cert_constraints
	plugins:locator
	iiop_tls:port
	plugins:schannel
	prompt_with_credential_choice
	plugins:security
	share_credentials_across_orbs
	policies
	allow_unauthenticated_clients_policy
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	max_chain_length_policy
	mechanism_policy:accept_v2_hellos
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	session_caching_policy
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	trusted_ca_list_policy
	policies:csi
	attribute_service:backward_trust:enabled
	attribute_service:client_supports
	attribute_service:target_supports
	auth_over_transport:authentication_service
	auth_over_transport:client_supports
	auth_over_transport:server_domain_name
	auth_over_transport:target_requires
	auth_over_transport:target_supports
	policies:https
	allow_unauthenticated_clients_policy
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	max_chain_length_policy
	mechanism_policy:accept_v2_hellos
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	session_caching_policy
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	trusted_ca_list_policy
	policies:iiop_tls
	allow_unauthenticated_clients_policy
	buffer_sizes_policy:default_buffer_size
	buffer_sizes_policy:max_buffer_size
	certificate_constraints_policy
	client_secure_invocation_policy:requires
	client_secure_invocation_policy:supports
	client_version_policy
	connection_attempts
	connection_retry_delay
	load_balancing_mechanism
	max_chain_length_policy
	mechanism_policy:accept_v2_hellos
	mechanism_policy:ciphersuites
	mechanism_policy:protocol_version
	server_address_mode_policy:local_domain
	server_address_mode_policy:local_hostname
	server_address_mode_policy:port_range
	server_address_mode_policy:publish_hostname
	server_version_policy
	session_caching_policy
	target_secure_invocation_policy:requires
	target_secure_invocation_policy:supports
	tcp_options_policy:no_delay
	tcp_options_policy:recv_buffer_size
	tcp_options_policy:send_buffer_size
	trusted_ca_list_policy
	policies:tls
	use_external_cert_store
	principal_sponsor
	use_principal_sponsor
	auth_method_id
	auth_method_data
	callback_handler:ClassName
	login_attempts
	principal_sponsor:csi
	use_existing_credentials
	use_principal_sponsor
	auth_method_data
	auth_method_id
	principal_sponsor:https
	use_principal_sponsor
	auth_method_id
	auth_method_data

	Appendix B iSF Configuration
	Properties File Syntax
	iSF Properties File
	check.kdc.running
	check.kdc.principal
	com.iona.isp.adapters
	com.iona.isp.adapter.file.class
	com.iona.isp.adapter.file.param.filename
	com.iona.isp.adapter.file.params
	com.iona.isp.adapter.LDAP.class
	com.iona.isp.adapter.LDAP.param.CacheSize
	com.iona.isp.adapter.LDAP.param.CacheTimeToLive
	com.iona.isp.adapter.LDAP.param.GroupBaseDN
	com.iona.isp.adapter.LDAP.param.GroupNameAttr
	com.iona.isp.adapter.LDAP.param.GroupObjectClass
	com.iona.isp.adapter.LDAP.param.GroupSearchScope
	com.iona.isp.adapter.LDAP.param.host.<cluster_index>
	com.iona.isp.adapter.LDAP.param.MaxConnectionPoolSize
	com.iona.isp.adapter.LDAP.param.MemberDNAttr
	com.iona.isp.adapter.LDAP.param.MemberFilter
	com.iona.isp.adapter.LDAP.param.MinConnectionPoolSize
	com.iona.isp.adapter.LDAP.param.port.<cluster_index>
	com.iona.isp.adapter.LDAP.param.PrincipalUserDN.<cluster_index>
	com.iona.isp.adapter.LDAP.param.PrincipalUserPassword.<cluster_index>
	com.iona.isp.adapter.LDAP.param.RetrieveAuthInfo
	com.iona.isp.adapter.LDAP.param.RoleNameAttr
	com.iona.isp.adapter.LDAP.param.SSLCACertDir.<cluster_index>
	com.iona.isp.adapter.LDAP.param.SSLClientCertFile.<cluster_index>
	com.iona.isp.adapter.LDAP.param.SSLClientCertPassword.<cluster_index>
	com.iona.isp.adapter.LDAP.param.SSLEnabled.<cluster_index>
	com.iona.isp.adapter.LDAP.param.UseGroupAsRole
	com.iona.isp.adapter.LDAP.param.UserBaseDN
	com.iona.isp.adapter.LDAP.param.UserCertAttrName
	com.iona.isp.adapter.LDAP.param.UserNameAttr=uid
	com.iona.isp.adapter.LDAP.param.UserObjectClass
	com.iona.isp.adapter.LDAP.param.UserRoleDNAttr
	com.iona.isp.adapter.LDAP.param.UserSearchFilter
	com.iona.isp.adapter.LDAP.param.UserSearchScope
	com.iona.isp.adapter.LDAP.param.version
	com.iona.isp.adapter.LDAP.params
	com.iona.isp.authz.adapters
	com.iona.isp.authz.adapter.AdapterName.class
	com.iona.isp.authz.adapter.AdapterName.param.filelist
	is2.current.server.id
	is2.cluster.properties.filename
	is2.replication.required
	is2.replication.interval
	is2.replica.selector.classname
	is2.sso.cache.size
	is2.sso.enabled
	is2.sso.remote.token.cached
	is2.sso.session.idle.timeout
	is2.sso.session.timeout
	log4j.configuration
	Cluster Properties File
	com.iona.security.common.securityInstanceURL.<server_ID>
	com.iona.security.common.replicaURL.<server_ID>
	log4j Properties File
	log4j.appender.<AppenderHandle>
	log4j.appender.<AppenderHandle>.layout
	log4j.appender.<AppenderHandle>.layout.ConversionPattern
	log4j.rootCategory

	Appendix C ASN.1 and Distinguished Names
	ASN.1
	Distinguished Names

	Appendix D Association Options
	Association Option Semantics

	Appendix E Action-Role Mapping DTD
	Appendix F OpenSSL Utilities
	Using OpenSSL Utilities
	The x509 Utility
	The req Utility
	The rsa Utility
	The ca Utility

	The OpenSSL Configuration File
	[req] Variables
	[ca] Variables
	[policy] Variables
	Example openssl.cnf File

	Appendix G Security Recommendations
	General Recommendations
	Orbix Services

	Appendix H License Issues
	OpenSSL License

	Index

