Orbix 6.3.11

Security Guide

Micro Focus

The Lawn

22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 2014-2019 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Orbix are trademarks or
registered trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2019-01-31

http://www.microfocus.com

Contents

PrefacCe....ccucccciieeccieeccnssnsensssnsnssnssnsssnnnssnnnnnsnnnnnnnnnnnsnnnnnsnnnnnnns Xi

Contacting MICrO FOCUS ...t e et e e e as Xiii

Part I Introducing Security

Getting Started with Securityccociviiiinissinnssrrs s srr s s s e 3

Creating @ SecUre DOMIAiN .. .oiuiiiii it e r e s e e s a s raa e rn e aaneanes 3
Running a Secure CORBA Demonstration.........cooviiiiiiiii e 11
Debugging with the openssl Utility.......coooiiiiiiii e 14
Where do I go from here? ... 18

Orbix Security FrameworK......cciocccviiiccinninccssnnsssssnssnssnnnnnann 21

Introduction to the Security Frameworkc.ooeiiiiiiiii i e rneenaees 21
Security Framework FEaturescvvviiiiiiiiii e 21
Example of an iSF System . ..icviiiiiiii e 22
Y =Tel 8 gLV =T T =1 o [P 23

OrbiX SECUNTY SEIVICE .. et e e e eaees 24
Orbix Security Service Architecturecooiviiiiii e 24
iISF Server Development Kit......oooiiiiiiii e 25

SecuUre APPHCatioNS ..uii i e 26
ART SeCUrity PlUG-INS ..ot i e e e e e aes 26
Secure CORBA Applications ..uiiiiiiiiii i 27

Administering the ISF ..o 28
Overview of iISF AdMINIStrationccoviiiiiiii e 28
SECUME ASP SEIVICES ..utiitiiiiiiie s re e e 29

Transport Layer Securitycccccciviiinnnnsssmssssssssssnsssnssnssssnnna 31

What does OrbixX Provide?couiiiiiiiiii it aae e 31
HOW TLS Provides SECUNMLY . .eueiiiiiiiie ettt et e eraeaaeanens 32
Authentication IN TLS ..ot s e e aneaaes 32
Certificates in TLS Authentication.........cciiiiiiiiiiii i 34
Privacy of TLS CommuNICatioNS ...ciiviiiiiii i i i rine e aneas 35
Integrity of TLS CommuNicationsccvvviiiiiiiiiiiiir e e 35
Obtaining Credentials from X.509 Certificatescoovviiiiiiiiiiiiiiiic e 36
Obtaining Certificate Credentials from a Filecocovviiiiiiiiiiiiiiciie, 36
Obtaining Certificate Credentials from a Smart Cardccvvvviivnnnnn. 39

Securing CORBA Applicationsccvvveininccssnnnc s snnnnn s 43

Overview Of CORBA SECUNIEY . .uuutiiiitiie ettt e e aaenaees 43
Securing Communications With SSL/TLS.....ciiiiiiiiiiii e 44
Specifying Fixed Ports for SSL/TLS Connectionscccoviiiiiiiiiiiiiiiiiciee e 52
Securing Two-Tier CORBA Systems with CSI.......c.ccoiiiiiiiiiiii e 53
Securing Three-Tier CORBA Systems With CSI.......ccoiiiiiiiiiiiiiii e 57
X.509 Certificate-Based Authenticationccooviiiiiiiiiiii e 62
Caching of Credentials ..uou v e 66

Single Sign-On for CORBA Applicationsccccvvemminnsnsansnnes 69

Orbix Security Guide iii

SSO and the LOGIiN SeIVICE ..uiiiiiiiiiii i s e e e eneas 69

Username/Password-Based SSO .. .uiiiiiiiiiiiiiiii it ssiiiisssees s iannsssneesss 71
Three Tier Example with Identity Assertionc.ccoviiiiiiiii i e 77
X.509 Certificate-Based SSOccouiiiiiiiiiiiiei e 79
Enabling Re-Authentication at Each Tierccoviiiiiii e 85
Optimizing Retrieval of Realm Data.......ccoviiiiiiiiii e 88
SSO Sample Configurations ... e 92

Part II Orbix Security Framework Administration

Configuring the Orbix Security Serviceccvviiinccrnrnnnnnns 99

Configuring the File Adapter.o 99
Configuring the LDAP Adapler ..ottt 100
Clustering and Federation.......c.oviiiiiiii i e e e e eeees 104
Federating the Orbix Security Servicecooiiiiiiiiiiii i 104
Failover and Replicationcoooiiiiiiiiii e 108
Client Load BalanCing ..cioieiiiiiiiii i se e re e e eeenneens 115
Additional Security Configuration.......cccviiiiiiiiii i i e 116
Configuring Single Sign-0On Properties.....ccvivviiiii i vievienaeaas 116
Configuring the Log4] LOgging ...cuveiiiiiiiiiiiii it siesneeneaneanaans 117

Managing Users, Roles and Domains.......ccuveccmiinecnnnnanenenns 119

Introduction to Domains and REaIMS......cuiiiiiiiiiiii e 119
ISF SecUrity DOMainS . ..o e e 119
iISF Authorization REaIMS.. ... e 120
Example Domain and Realms.....cciiiiiiiiiii i i eea 124
Domain and Realm Terminologycccviiiiiiiiii i i i aeee 127
Managing a File Security DOmainciiiiiiiiiciici i e eea 129
Managing an LDAP Security DOmain....ccviieiiiiiiii i vnee e vinesnnennneennens 131

Managing Access Control ListS.......cccvvviinincnnnncccinnnnneenns 133

(10] 7N Y 0 I 133
Overview of CORBA ACL FilES...uiiiiii ittt i i i vnaeeens 133
CORBA Action-Role Mapping ACL.....ccuiuiiiiiiiiiiie et reeeeas 133

(O ol 7= 1 =T 1 136
o Yor- | I Y O BT o =] o - | o o TS 136
Centralized ACL SCENAIMO .viiiiitii it iie i i it e et s aae e raeeaes 138
Customizing Access Control Locally.....cooeiiiiiiiiiiiiic i 143

Securing OrbiX Servicesccciviiriisncsimsn s sssssssssssssnsssnnannss 145

Introduction to SecUring SEerviCeSoiviiiiii e 145
Secure File-Based DOmMain ..uuiiiiiiiii i i i i e 146
SY=Tel B S @ B Lo 0 4 1= 1 o [PP 147
Customizing @ SEeCUre DOMaiN ...ouviiii i e reeaes 154
Creating a Customized Secure Domain......ccoviiiiiiiiiiiiic i 154
Configuring an iSF Adapter for the Security Servicecccoiviviiiiinns 160
Configuring a Typical OrbiX Service......cooiiiiiiiiiiiiii s 161
Configuring the Security SErviCecoiiiiiiii i 168
Default Access Control LiStSciiuiiiiiiiiiii i i e 170
Configuration REPOSITOry ACL....cuiiiiiiiiiiii i i s aee e 170
o T or=] 01 ol o 174
NOdeE DAEMON ACL ..uiiiiiiiiiiii i e r e aae e 176
Naming ServiCe ACL ...uiuiiiiii i e 177

iv Orbix Security Guide

Trader SEIrVICE ACL ittt e r e e s s i a e e s s sranaaaaeeees 178

V7 o | Y <1 Y ol S A o P 180
NOLIfication SErVICE ACL....iueiriiiiii i e enes 183
BasiC LOG ServiCe ACL ..ivviiiiii i s it reee e rane s e e nnn e nneas 189
Event LOg ServiCe ACL...ciiiiiii i iiesieeniesanesne e sanesanesaneanneanneanns 191
NOLiIfy LOG SErvVIiCe ACL ..euriniieiie it e e e e 193

Part III SSL/TLS Administration

Choosing an SSL/TLS ToolKit......ccivverminmmmnnnsmsnsssnsssnnsnnnns 203

Toolkit Replaceability.....ouuiiii i e 203
OPENSSL ToOIKIE fOr Cad oot i i e e e et e e e eaeas 203
Schannel ToolKit fOr G i i e r i e eeeranas 204
JSSE/ICE ArchiteCtUIe oo i 205

Managing Certificates.........cccvvciviriinisnic s s s s s e 211

What are X.509 CertifiCates? ...o.viviiiiiiiii e e e e 211
Certification AUENOMITIES ...ovi e 212
Commercial Certification Authorities.........ccooviiiiiiii s 213
Private Certification AUthorities.......ccvvviiiiiii s 213
Certificate ChaiNing ... e 214
PR CSH 12 FilES .ttt ettt e e aens 216
Using the Demonstration Certificatescooviiiiiiii e 217
Creating Your Own Certificatesccviiiiiiiiiii e 218
Set Up YOUr OWN CA .o i et e e s e e e s rnenas 218
Use the CA to Create Signed Certificates.......ccovviiiiiiiiiiiiiiiiiciiiecies 221
Deploying CertifiCates ..o 224
Overview of Certificate Deployment......cccoiiiiiiiiiiiiiiic e 224
Providing a List of Trusted Certificate Authorities............ccovviiiiiiiinnns 225
Deploying Application Certificatesccvviiiiiii i 226
Deploying Certificates in Smart Cards.......coovviiiiiiiiiiiiiiiiiiiii e 227
Deploying Orbix Service Certificatesovvrviriiiiii i 228
Deploying itadmin Certificatesocviviiriiiiii i 231
Configuring Certificate Warningsccoovviiiii i 233
Deploying Certificates with Schannel ... 233
Schannel Certificate Store......ciieiiii e 234
Deploying Trusted Certificate Authorities........c.cooiiiiiiiiiiiiiiiiiiis 237
Deploying Application Certificatescooiviiiiiiiiiiii i 237
Deploying Certificates in Smart Cards.......covviiiiiiiiiiiiciii i e 239

Configuring SSL/TLS Secure Associationsccceccivineeeennn 243

Overview of Secure ASSOCIAtIoONS ..iuiiiiie it e 243
Setting Association OPtioNSivviiiiiiii 244
Secure INVoCation POlICIES....uive it e e 244
ASSOCIAtioN OPLiONS .. .uii i s 245
Choosing Client Behaviorccoeiiiiiiiiii e 247
Choosing Target Behavior ... e 248
Hints for Setting Association OptioNScoiiiii i 249
Specifying Cipher SUITES ...ciiiii i e e 253
Supported Cipher SUILES ...iiiiiii i e e neeas 254
Setting the Mechanism POlCYc.ooeiiiiiiiii e 258
(0= Lol a1 o o B I IS =171 o] o 1= PP 262

Orbix Security Guide V

Configuring SSL/TLS Authentication..........ccccecciiiiciiinnens 263

Requiring Authentication ... 263
Target Authentication Only ..o 263
Target and Client Authenticationcooiiiiiiiii e 266

Specifying Trusted CA Certificatesccoveiiiiiiiii e 268

Specifying an Application’s Own Certificatecoovviiiiiiiiiiiiiii 270

Providing @ Pass Phrase or PINc.ciiiiiiiiiiii i i s sie e s e raen e 273
Providing a Certificate Pass Phraseccccvviviiiiiiiiiiicii e 273
Providing @ Smart Card PINcviiiiiiiiiii i e e rneereeeeens 276

Advanced Configuration OPtiONSviiiiiiiiiii i 277
Setting a Maximum Certificate Chain Length ...t 278
Applying Constraints to Certificatescovviiiiiiiiiiii e 278
Delaying Credential Gathering.......cocvoviiiiiiiii e 280

Automatic Activation of Secure Serverscccverrrvrsrrnnssnnnnes 283

Managing Server Pass Phrasescciviiiiiiiiiiiiii ettt 283
Protecting against Server Impostersccvviiiiiiiiiii 285
How the KDM Activates @ SECUIe SEIrVEIciiiiiiiiiiiiiiiie e 286
KDM AdminisStrationo.o i e 288
Setting Up the KDM ... e e e s e e nes 290
RegiStering @ SECUINE SEIVEI ... ittt e 291

Part IV CSIv2 Administration

Introduction to CSIV2.....cceeriiiiercsssmsnnsssssnsnssnssnnsnnssnnnnssnnes 295

OIS YA =T |] == 295
T E] Lol OIS AV 27 Yo = o = [0 1 296
CSIv2 Authentication over Transport Scenario.......c.ccvveiiiiiiiiiiinnnnns 296
CSIv2 Identity AsSsertion SCENAIIO ..ovvviviieiie it aeeeens 297
Integration with the Orbix Security Framework.........c.coiiiiiiiiiiiiieienne 298

Configuring CSIv2 Authentication over Transport............. 301

CSIv2 Authentication SCeNAarioccvviiiiiiiii e 301
IS I A I S o =T =T [T 1= 304
Requiring CSIv2 Authenticationoviiiiiiiiii e 305
Providing an Authentication Servicecooviiiiiii e 307
Providing a Username and PassWOordoeieiiieiiiiiiiiineie e e e eneees 308
Sample ConfigUration.o 311

Sample Client Configurationccoiiiiiii e 311

Sample Server Configurationccoooiiiiiiii 312

Configuring CSIv2 Identity Assertioncccccvvemrvncsrvnnnnnass 315

CSIv2 Identity Assertion SCeNaMIO...iiuiiei i i i aee e rae e aeanes 315
IS I A I S o =T =T [T 1= 318
Enabling CSIv2 Identity ASSertion ...c.uiveeiiriiieiiiie i s s s sarerneraneannens 319
Sample Configuration 321
Sample Client Configurationcoooiiiiiii e 321
Sample Intermediate Server Configurationcccooviiiiiiiiiiiiiennnnen 322
Sample Target Server Configurationcoooiiiiiiiiiiie e 323

Vi Orbix Security Guide

Part V CORBA Security Programming

Programming Policies.......ciicimiimmmnmmsmmsssmssnssssnssssnsssnnsnnnn s 327

SettiNG POlICIES e e 327
Programmable SSL/TLS POlICIES ..uuiiuiiiiii i i e es 329
Introduction to SSL/TLS POlICIES .ivvviiiiiii it i i i e rinee s 329
The QOPPOICY « vttt i e e et ar e aeaas 330
The EstablisShTrustPOliCY ..oivviiiriiii i e 331
The InvocationCredentialSPoliCy ...ccoiveiiiii i e 332
Interaction between PoliCies.......ccoiiiiiiiii 333
Programmable CSIV2 POLICIES ..viiveiiiiiiii i v e e e raeanes 333

Authentication........ccciieiiiiericseecnsss s sssan s asassnssnnnnssnnnnnssnnnns 337

Using the Principal Authenticator.......c.ovviiiiii e 337
Introduction to the Principal Authenticatorc.ooviiiiiiiiiiiiinene. 337
Creating SSL/TLS CredentialScoviiiiiiiiiiiiii e e 339
Creating CSIV2 Credentialscovviiiiiiiii i e 342

Using a Credentials Objectoiiiiiiii i s e e 345

Retrieving Own Credentials ...c.ciiiiiiiiii i e 347
Retrieving Own Credentials from the Security Manager...................... 347
Parsing SSL/TLS Own Credentialsccoovviiiiiiiiii i 349
Parsing CSIv2 Own CredentialS.....couviiiei i i nneeneeas 350

Retrieving Target Credentials.oviii i e 351
Retrieving Target Credentials from an Object Reference..................... 351
Parsing SSL/TLS Target Credentials..........coovieiiiiiiiiiiiii e 353

Retrieving Received Credentialsooeiieiiiiiii e 355
Retrieving Received Credentials from the Current Object.................... 355
Parsing SSL/TLS Received Credentialsccoiiiiiiiiiiiiiiiiiiiic i 356
Parsing CSIv2 Received CredentialS.......covviiiiiiiiiiii i s 357

Copying CSI Credentials between Threads.......ccoooviiiiiiiiiiiiic e 360

Validating Certificatescccivicimiiininssnmissmss s ssssssnsnn e s 365

Overview of Certificate Validation.......ooovviiiiiiiiii e 365
The Contents of an X.509 Certificate.......ccoovviiiiiii e 367
Parsing an X.509 Certificatecoooiiiiiii e 368
Controlling Certificate Validationccoiiiiiiii e 369

Certificate Constraints PoOlICYcoeiiiiiiiii e 370

Certificate Validation POlICYoeiiiiiiii e 373
Obtaining an X.509 Certificatecoviiiii i e 376

Part VI iSF Programming

Developing an iSF Adapter......cccccciiicmnnmnn s snssss s sssssnssnnnna s 379

iISF Security ArchiteCture. ... e 379
iSF Server Module Deployment OptionS.......ccoviiiiiiiiiiiiii e 381
ISF Adapter OVEIVIEW . ..ueiiii ittt ettt e e e e e e e aeeas 383
Implementing the IS2Adapter Interfacecoviviiiiiiiiiiiiiic 384
Deploying the Adapler ..o 390
Configuring iSF to Load the Adapterc.ooviiiiiiiiiii e 391
Setting the Adapter Properties....c.coviiiiiiiii e 391
Loading the Adapter Class and Associated Resource Files 392

Orbix Security Guide vii

Appendix Security Variablesc.cccviiiiiiiiiic i i i 395

Applying Constraints to Certificates......ccoviiiiiiii e 396
(N0 To ol A= g L= T=] o = T o< 397
L= L = L1 =L 1= 398
password_retrieval_mechanism.......c.cooiiiiiiiiii e 398
PIUGINS: atli2 IS crri it e 399
] 18 T 1 [ok PP 400
] 18 Lo 1 T3 =] o 1P 402
9 18 T 1 T3 1ot o 1= 405
] 18 T 1 T3 1 o o T o £ 406
PIUGINS I KAM L. 409
PIUGINS I KAM @M o 410
118 T 1 F=34 [T o= o o PP 411
PIUGINSISChANNEL ...t e 411
(0] [0 e |1 g TS =T =T ol U [o | Y 411
970 Tl 1= P 412
0] [Tl [=T I ok PP 415
POlCIES I Nt DS et e 417
o] [Tl [=TSH [o] o N o [P 420
[0] [Tl [=T oY =Tl UL) VT =] oY= o 428
90 [T 1= ol £ PP 429
] g g TeT oY= 1 =] oo I={o] ol 429
(0] gT el o F=T =] o Yo] a1] ol ot H PR 432
PriNCIPal_SPONSOr TIPS ..ttt e 434
PriNCiPal_SPONSOr oD _tlS tuuiriiiii i e e 435
Appendix iSF Configuration.......ccccciiiccmminnsnnnsnsssnnn s 437
Properties File SYyntaX .ouviiiiiiiiiii i i e e 437
ISF Properties File.. ...t eeas 438
Cluster Properties File .o i i e e v s r e rneennes 449
10g4] Properties File ..ouieii i i e e e e e e e e ane 450

Appendix ASN.1 and Distinguished Names...........ccrvueenine: 453

AN . i e 453
Distinguished NamMES ..o e e e aee s 454
Appendix Association OptionS......cccvvirrrirrrnmsnsssasssnnnnas 457
Association Option SemMantiCS. . cviii i e e 457

Appendix Action-Role Mapping DTD.......cccuveermvnmsssnnssnnnsnnss 459

Appendix OpenSSL Utilities.......ccccviiiiminnnccsnnns s s 463

UsiNg OpenSSL ULIHTIES ..vuneiieiie et e e e 463
The X509 ULIHTY «oveeiiie it e e e e eenens 464
The req Uity . oo e e e e e e neas 465
The rSa ULt cuoiiei it e e e e 466
The Ca ULty «.ooe e e e e 467
The OpenSSL Configuration File.....cciviiiiiiic e 469
[req] Variables. ..o e e 469
[Ca] Variables v 470
[pOlicy] Variables ...cueieiii i e e 470
Example openssl.cnf File ..o 471

viii Orbix Security Guide

Appendix Security Recommendations..........ccoccvvemnieininnnns 475

General RecommeNdatioNSviiiiiiiii e 475
Appendix Sample TLS Configurationsccccvvmmmnemrrnnnnanss 477
DemOoNStration TLS SCOPES .. .uiiiiiii i i e e s e e e aannes 477
Appendix License ISSUES ...ccvvcervsnmrssnsmssnsssnnssssnnsssnnssnnnnnnnns 483
(@01 o 1S3 I IR o= 1= = PP 483
15 T = e 487

Orbix Security Guide ix

X Orbix Security Guide

Preface

What is covered in this book

This book is a guide to administering and programming secure
applications in Orbix, covering both secure CORBA applications.

The Orbix security framework provides the underlying security
infrastructure for performing authentication and authorization.

Who should read this book

This guide is intended for the following audience:
* Security administrators.

* CORBA C++ developers.

¢ CORBA Java developers.

A prior knowledge of CORBA is assumed.

Organization of this guide

This guide is divided into the following parts:

Part I “Introducing Security”

This part describes how TLS provides security, and how Orbix
works.

Part II “"Orbix Security Framework Administration”

This part describes how to administer the Orbix Security
Framework.

Part III “SSL/TLS Administration”

This part explains how to configure and manage Orbix in detail.

Part IV “"CSIv2 Administration”
This part explains how to configure and manage CSIv2 in detail.

Part V “CORBA Security Programming”

This part explains how to program the SSL/TLS and CSIv2 APIs in
your security-aware CORBA applications.

Part VI “iSF Programming”

This part explains how to explains how to develop a custom
Security Framework adapter implementation.

Appendices

The appendices list further technical details.

Orbix Security Guide xi

xii Orbix Security Guide

Typographical conventions

This book uses the following typographical conventions:

Constant width Constant width (courier font) in normal text
represents portions of code and literal names of
items such as classes, functions, variables, and
data structures. For example, text might refer to
the COorBa: :0bject class.

Constant width paragraphs represent code
examples or information a system displays on the
screen. For example:

#include <stdio.h>

Italic Italic words in normal text represent emphasis
and new terms.

Italic words or characters in code and commands
represent variable values you must supply, such
as arguments to commands or path names for
your particular system. For example:

% cd /users/your_name

Note: Some command examples may use angle
brackets to represent variable values you must
supply. This is an older convention that is replaced
with italic words or characters.

Keying conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for
multiple platforms, a prompt is not used.

A percent sign represents the UNIX command
shell prompt for a command that does not require
root privileges.

oe

A number sign represents the UNIX command
shell prompt for a command that requires root
privileges.

> The notation > represents the DOS or Windows

command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and
syntax descriptions.

{3 Braces enclose a list from which you must choose
an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices
enclosed in {} (braces) in format and syntax
descriptions.

Contacting Micro Focus

Our Web site gives up-to-date details of contact numbers and
addresses.

Further Information and Product
Support

Additional technical information or advice is available from several
sources.

The product support pages contain a considerable amount of

additional information, such as:

* The Product Updates section of the Micro Focus SupportLine
Web site, where you can download fixes and documentation
updates.

* The Examples and Utilities section of the Micro Focus Support-
Line Web site, including demos and additional product docu-
mentation.

To connect, enter http://www.microfocus.com in your browser to
go to the Micro Focus home page, then click Support.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us
as described on the Micro Focus Web site, http://www.microfocus.com. If
you obtained the product from another source, such as an
authorized distributor, contact them for help first. If they are
unable to help, contact us.

Also, visit:

e The Micro Focus Community Web site, where you can browse
the Knowledge Base, read articles and blogs, find demonstra-
tion programs and examples, and discuss this product with
other users and Micro Focus specialists.

¢ The Micro Focus YouTube channel for videos related to your
product.

Information We Need

However you contact us, please try to include the information
below, if you have it. The more information you can give, the
better Micro Focus SupportLine can help you. But if you don't
know all the answers, or you think some are irrelevant to your
problem, please give whatever information you have.

* The name and version number of all products that you think
might be causing a problem.

* Your computer make and model.

* Your operating system version number and details of any
networking software you are using.

e The amount of memory in your computer.
* The relevant page reference or section in the documentation.

Orbix Security Guide xiii

http://www.microfocus.com
http://www.microfocus.com

xiv Orbix Security Guide

* Your serial number. To find out these numbers, look in the
subject line and body of your Electronic Product Delivery
Notice email that you received from Micro Focus.

Contact information

Our Web site gives up-to-date details of contact numbers and
addresses.

Additional technical information or advice is available from several
sources.

The product support pages contain considerable additional
information, including the WebSync service, where you can
download fixes and documentation updates. To connect, enter
http://www.microfocus.com in your browser to go to the Micro Focus
home page.

If you are a Micro Focus SupportLine customer, please see your
SupportLine Handbook for contact information. You can download
it from our Web site or order it in printed form from your sales
representative. Support from Micro Focus may be available only to
customers who have maintenance agreements.

You may want to check these URLs in particular:

® http://www.microfocus.com/products/corba/orbix/orbix-6.aspx (trial software
download and Micro Focus Community files)

® https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online
form at:

http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscriptio
n.asp

http://www.microfocus.com
message URL http://www.microfocus.com/products/corba/orbix/orbix-6.aspx
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

Part I

Introducing Security

In this part

This part contains the following chapters:

Getting Started with Security page 3

Orbix Security Framework page 21
Transport Layer Security page 31
Securing CORBA Applications page 43

Single Sign-0On for CORBA Applications page 69

2 Orbix Security Guide

Getting Started with
Security

This chapter focuses on getting some security demonstrations up and
running quickly. The details and background of the various security
features are not discussed at this stage.

Creating a Secure Domain

This section describes how to create a secure configuration
domain, secure, which is required for the security demonstrations.
This domain deploys a minimal set of Orbix services.

WARNING: The secure domain created using this procedure is
not fully secure, because the X.509 certificates used in this
domain are insecure demonstration certificates. This secure
domain must be properly customized before deploying in a
production environment.

Prerequisites

Before creating a secure domain, the following prerequisites must
be satisfied:

* Your license allows you to use the security features of Orbix.

* Some basic system variables are set up (in particular, the
IT PRODUCT DIR, IT LICENSE FILE, and PATH variables).

Fore more details, please consult the Installation Guide.

Licensing

The location of the license file, 1icenses.txt, is specified by the
IT LICENSE FILE system variable. If this system variable is not
already set in your environment, you can set it now.

Steps

To create a secure configuration domain, secure, perform the
following steps:

1. Run itconfigure.

Choose the domain type.

Specify service startup options.

Specify security settings.

Specify fault tolerance settings.

Select services.

Confirm choices.

Finish configuration.

N A WN

Orbix Security Guide 3

4 Orbix Security Guide

Run itconfigure

To begin creating a new configuration domain, enter itconfigure
at a command prompt. An Orbix Configuration Welcome dialog
box appears, as shown in Figure 1.

Select Create a new domain and click OK.

{27 Orbix Configuration Welcome 3 x|

Wielcome to the Orhix Configuration tool. Please select an option:

(@ |Create a new domain
(0 Open an existing domain

O Go strainht into itconfigure

0K l | Cancel

Figure 1: The Orbix Configuration Welcome Dialog Box

Choose the domain type

A Domain Type window appears, as shown in Figure 2.

In the Configuration Domain Name text field, type secure.
Under Configuration Domain Type, click the Select Services
radiobutton.

Click Next> to continue.

{0} Create a Configuration Domain - Standard Mode x|

Steps Domain Type

. Domain Type Configuration Identification

- Service Startup You can create many different configuration domains and

1
2
3. Becurity access them by their unigue name.
4

Fault Tolerance What name do you wish to give this configuration domain?

Configuration Domain Mame: |secure

[=7}

- Confitm Choices Configuration Domain Type

-1

. Deplaving ...
The configuration tool can create configuration domains with

different comhbinations of Orbix services.
Which Orbix services doyou wantto include in this domain?

8. Summary

O All Licensed Serices

@ 5elect Services

Storage Location

configuration Directory: |c:1.0rhi}{_52_metc ||

Data Directony: |c:1.0rbi}{_62_A1\rar ||

" et ﬂl Einish J| cancel

Figure 2: The Domain Type Window

Orbix Security Guide 5

Specify service startup options

A Service Startup window appears, as shown in Figure 3.
You can leave the settings in this Window at their defaults.
Click Next> to continue.

ffﬂ Create a Configuration Domain - Standard Mode

Steps

—

. Domain Type
Service Startup
Security

Fault Tolerance
Select Services
Confirm Choices

Deplaying ...

@ N omom e N

Summary

Service Startup
Startup

The services you are configuring can be programmed to run
when your computer starts up or manually, All, except far a
minimal set, can start on demand. Do vou want...

@ A minimal set of services launched by 3 script | can run,
O &l selected senvices launched an machine startup (as system serices).

O Al selected services launched by a script! can run.

Port

The services need ports to listen for connections.
The easiestway to setthese portvalues is to set a base value.

Base Port:

<Back || Net || Finish || cancel

6 Orbix Security Guide

Figure 3: The Service Startup Window

Specify security settings

A Security window appears, as shown in Figure 4.

Under Transports, click the Secure Communication
(TLS/HTTPS) radiobutton. Under Security Features, select the
Orbix Security Service option and the Enable Access Control
for Core Services option.

Click Next> to continue.

{i}) Create a Configuration Domain - Standard Mode x|
Steps Security
1. Domain Type Transports
2. Sendce Startup What communication protocols do you weant enabled in the domain®?
3. Securi L AL
Tty O Insecure Comrunication (IOPHTTF)
4. Fault Talerance 5
O Secure and Insecure Comrmunication
4. Select Services
: (® Secure Communication (TLSHTTPS)
6. Confirm Choices =
7. Deploying ... Security Features
8. Bummary

What security features dao you want enabled in the domain®?

[lorA Security Service

[¥] Enahle Access Control for Core Services

<Back || New || Finish || cancel

Figure 4: The Security Window

Specify fault tolerance settings

A Fault Tolerance window appears, as shown in Figure 5.
You can leave the settings in this Window at their defaults.
Click Next> to continue.

Orbix Security Guide 7

{3} Create a Configuration Domain - Standard Mode

Steps

Fault Tolerance

—

e L

. Domain Type

Service Starfup
Security

Fault Tolerance
Select Services
Confirm Choices
Ceploying ...

Summary

Replication

Yau can run multiple replicas of the core Orbix serices to
make your system faulttolerant. The service instances an
the replica hosts act as backups.

Replication Hosts:

Host

[
| Bemaove |

| e

<Back || New || Finish || cancel

8 Orbix Security Guide

Figure 5: The Fault Tolerance Window

Select services

A Select Services window appears, as shown in Figure 6.

In the Select Services window, select the following services and
components for inclusion in the configuration domain: Location,
Node daemon, Management, CORBA Interface Repository,
CORBA Naming, Orbix Security, and demos.

Click Next> to continue.

fﬂ Create a Configuration Domain - Standard Mode

Steps

-

o R

. Domain Type

Service Startup
Security

Fault Talerance
Select Services
Confirm Choices
Ceploying ...

Summary

Select Services

Infrastructure

[¥] Management
[|Distributed Transaction
[Configuration

Directory

[¥] CORBA Interface Repository
[¥] CORBA Maming

[J coRBA Trader

CORBA Telco Logaing
[] Basic Logaing
[Event Logging
[Motify Logging

| selectal || clearal |

Messaging

[CORBA MNotification

[CORBA Events
[]UmME (Java Messaging
[JMSiMatification Bridge

Security

Components

¥ Demos

| =Back I|| Mext= " | Cancel

Figure 6: The Select Services Window

Orbix Security Guide 9

Confirm choices

You now have the opportunity to review the configuration settings
in the Confirm Choices window, Figure 7. If necessary, you can
use the <Back button to make corrections.

Click Next> to create the secure configuration domain and
progress to the next window.

{37 Create a Configuration Domain - Standard Mode x|

Steps

1. Diamain Type
. Bervice Startup
. Security

.Fault Tolerance

. Confirm Choices

2

3

4

4. Select Services
6.

7. Deploying ...

8

_Summary

Confirmation

This is your chance to review the chaices you have made.

To deploy the services on the local host, press Mexd. To modify any of your choices, press Back.
Ifyou don'twant to deploy now hut wish to save your choices for future use,

press Save to store them in a deployment descriptar, then press Cancel.

Management Service IE‘
tfanual Activation
TLS Port= 53086
HTTPS Port= 53186

Location Service
tfanual Activation —
TLS Port= 3077

IMode Diaeman Service
tanual Activation
TLS Paort= 53080

CORBA Interface Repositary Service
Autarmatic Activation
TLS Fort= Enabled

CORBA Maming Service
Autamatic Activation
TLS Port= Enabled

| Save |

=Back || Mext= Cancel

10 Orbix Security Guide

Figure 7: The Confirm Choices Window

Finish configuration

The itconfigure utility now creates and deploys the secure
configuration domain, writing files into the OrbixInstallDir/etc/bin,
OrbixInstallDir/etc/domain, OrbixInstallDir/etc/log, and OrbixInstallDir/var
directories.

If the configuration domain is created successfully, you should see
a Summary window with a message similar to that shown in
Figure 8.

Click Finish to quit the itconfigure utility.

(W Create a Configuration Domain - Standard Mode _ ﬂ

Steps Summary

. Domain Type Configuration is now complete, see details below.

- enice Startup Configuration completed successfully.

. Security ou canview the log in 'CAQrhiwansecurellogsisecure_2015_Dec_10_2 16_545log"

1

2

3

4. Fault Tolerance _ : . .

_ To setyour environment far this configuration domain run:

5. Select Services Caorbidetribinisacure_env.bat

& Confirm Choices

- Ta stattthe servdces in this configuration damain run:
-LERIONNG ... CA0rbideteihinistart_secure_serices bat

8. Summary

To stop the services in this configuration domain run:
CACrhikietcthinistop_secure_services hat

<gack || mew- |[L_Emisn || cance

Figure 8: Configuration Summary

Running a Secure CORBA Demonstration

This section describes how to run the secure CORBA
demonstration, which is a three-tier application that illustrates the
SSL/TLS, username/password authentication, and identity
assertion features.

Prerequisites

Before running this demonstration, you must have created a
secure configuration domain—see “Creating a Secure Domain” on
page 3.

Demonstration location

The secure CORBA demonstration is located in the following
directory:

OrbixInstallDir/asp/ Version/demos/common/is2
Where OrbixInstaliDir is the directory where Orbix is installed.

Orbix Security Guide 11

-

12 Orbix Security Guide

Demonstration overview

Figure 9 gives an overview of the secure CORBA demonstration.

propogats ussmame/password propogots user idesntity
~
Login
Client | Intermediate - Target
-) > N
IIOR/TLS | server J HOPTLS Server

&

authenticots
guthenticate

¥

Orbix Security

Service

Figure 9: CORBA Secure Demonstration Overview

Steps to run the demonstration in Java

To build and run the secure CORBA demonstration, perform the
following steps:

1. Build the demonstration.

Start the Orbix services.

Run the target server.

Run the intermediate server.

Run the client.

u b WN

Build the demonstration

To build the demonstration, open a new command prompt and
enter the following commands:

Windows

> OrbixInstallDir\etc\bin\secure env.bat
> cd OrbixInstallDir\asp\Version\demos\ common\is2
> itant

UNIX

. OrbixInstallDir/etc/bin/secure env.sh
% cd OrbixInstallDir/asp/Version/demos/common/is2
% itant

oe

Start the Orbix services
To start the Orbix services, enter the following command at the
command prompt:

Windows

> OrbixInstallDir\etc\bin\start secure services.bat

UNIX

% OrbixlnstallDir/etc/bin/start secure services

Run the target server

To run the target server, open a new command prompt and enter
the following commands:

Windows

> OrbixInstallDir\etc\bin\secure env.bat
> cd OrbixInstallDir\asp\Version\demos\common\is2
> java -classpath .\java\classes;"$CLASSPATHS" is2.Server

UNIX

. OrbixInstallDir/etc/bin/secure_env.sh
cd OrbixInstallDir/asp/ Version/demos/common/is2
java -classpath ./java/classes:SCLASSPATH is2.Server

o o o°

Run the intermediate server

To run the intermediate server, open a new command prompt and
enter the following commands:

Windows

> OrbixInstallDir\etc\bin\secure env.bat

> cd OrbixInstallDir\asp\Version\demos\ common\is2

> java -classpath .\java\classes;"%$CLASSPATHS"
is2.IntermediateServer

UNIX

. OrbixInstallDir/etc/bin/secure env.sh

cd OrbixInstallDir/asp/ Version/demos/common/is2
java -classpath ./java/classes:S$SCLASSPATH
is2.IntermediateServer

o o oo

Note: The intermediate server must run in the same directory as
the target server.

Run the client

To run the client, open a new command prompt and enter the
following commands:

Windows

> OrbixInstallDir\etc\bin\secure env.bat

> cd OrbixInstallDir\asp\Version\demos\common\is2

> java -classpath .\java\classes;"$CLASSPATH%" is2.Client -user
alice

Orbix Security Guide 13

UNIX

% . OrbixInstallDir/etc/bin/secure_env.sh
% cd OrbixInstallDir/asp/Version/demos/common/is2
java -classpath ./java/classes:$CLASSPATH is2.Client -user

oe

alice

Note: The client must run in the same directory as the target
and intermediate servers.

Debugging with the openssl Utility

14 Orbix Security Guide

The openss1 utility included with Orbix provides two powerful tools
for debugging SSL/TLS client and server applications, as follows:

®* openssl s client—an SSL/TLS test client, which can be used
to test secure Orbix servers. The test client can connect to a
secure port, while providing a detailed log of the steps
performed during the SSL/TLS handshake.

®* openssl s server—an SSL/TLS test server, which can be used
to test secure Orbix clients. The test server can simulate a
bare bones SSL/TLS server (handshake only). Additionally, by
supplying the -www switch, the test server can also simulate a
simple secure Web server.

References

For complete details of the openssl s client and the
openssl s _server commands, see the following OpenSSL
documentation pages:

® http://www.openssl.org/docs/apps/s_client.html

® http://www.openssl.org/docs/apps/s_server.html

Debugging example

Consider the is2 demonstration discussed in the previous section,
“Running a Secure CORBA Demonstration” on page 11. This
demonstration consists of a client, an intermediate server and a
target server.

To demonstrate SSL debugging, you can use the openss1 test
client to connect directly to the target server.

Debugging steps

The following table shows the steps required to debug a secure
server by connecting to that server using the openssi test client:

Step Action

1 | Convert the client certificate to PEM format.

2 | Run the target server.

3 | Obtain the target server’s IP port.

http://www.openssl.org/docs/apps/s_client.html
http://www.openssl.org/docs/apps/s_server.html

Step Action

4 | Run the test client.

Convert the client certificate to PEM

format

Certificates for Orbix applications are deployed in PKCS#12
format, whereas the openssi test client requires the certificate to
be in PEM format (a format that is proprietary to OpenSSL). It is,
therefore, necessary to convert the client certificate to the PEM

format.

For example, given the certificate admin.p12 (located in the
OrbixInstallDir/asp/Version/etc/t1s/x509/certs/demos directory), you
can convert the certificate to PEM format as follows.

1. Run the openssl pkecs12 command, as follows:

openssl pkcsl2 -in admin.pl2 -out admin.pem

When you run this command you are prompted to enter, first
of all, the pass phrase for the admin.pi2 file and then to enter
a pass phrase for the newly created admin.pen file.

2. The admin.pen file generated in the previous step contains a
CA certificate, an application certificate, and the application
certificate’s private key. Before you can use the admin.pen file
with the openssi test client, however, you must remove the CA
certificate from the file. That is, the file should contain only
the application certificate and its private key.

For example, after deleting the CA certificate from the
admin.pem file, the contents of the file should look something

like the following:

Bag Attributes

localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C 91 C1 El1 FF 4A

friendlyName: Administrator
subject=/C=US/ST=Massachusetts/O=ABigBank -- no warranty —— demo

purposes/OU=Administration/CN=Administrator/emailAddress=administrator@abigbank.com
issuer=/C=US/ST=Massachusetts/L=Boston/O=ABigBank -- no warranty —- demo
purposes/OU=Demonstration Section -- no warranty --/CN=ABigBank Certificate

Authority/emailAddress=info@abigbank.com

MIIEiTCCA/KgAwIBAGIBATANBgkghkiGIwOBAQQFADCRSELMAKGALUEBhMCVVMx
FjAUBGNVBAGTDU1hc3NhY2h1c2V0dHMxDzANBGNVBACTBkIvC3RvbjEXMC8GALUE
ChMoQUJpZ0JhbmsgLS0gbm8gd2FycmFudHkgLS0gZGVtbyBwdXJwb3N1czEwMCA4G
A1UECXMnRGVtb25zdHIhdG1vbiBTZWNOaWOuICOtIG5vIHdhecnJhbnR5ICOtMScw
JQYDVQODEx5BOm1nOmFuayBDZXJ0aWZpY2F0ZSBBdXRob3JpdHkxIDAeBgkghkiG
9wOBCQEWEW1 uZm9AYWJIpZ2JhbmsuY2 9tMB4XDTAOMTExODEWNTE 1NVoXDTEOMDgw
NzEwNTE1NVowgbQxCzAJBgNVBAYTALVTMRYWEFAYDVQOIEWINYXNZYWNOdXN1dHRzZ
MTEwLwYDVQOKEyhBOm1lnOmFuayAtLSBubyB3YXJyYWS50eSAtLSBkZW1vIHBlcnBv
c2VzMRcwFQYDVOQLEWSBZG1lpbml zdHIhdG1vbjEWMBOGA1UEAXMNOWRtaWSpc 3Ry
YXRvcjEpMCcGCSaGSIb3DOEJARYaYWRtaWSpc3RyYXRvckBhYmlnYmFuay5jb20w
gZ8wDQYJKoZ IThvcNAQEBBQADgY 0AMIGJAOGBANK7503YBkkjCvgy0pOPxAU+M6RE
00za08/Y1ciWlQ/oCT/17+3P/ZhHAJaT+QxmahQHAY5ePixGyaE7raut2MdjHOUO
wCKtZglhuNa8judSvsN51iTUupzp/mRQ/ j4rOxr8gWI5dh5d/kF4+H5s8yrxNjrDg
tY7£dxPIKt0x9sYPAGMBAAG) ggF1MI IBCTAJBGNVHRMEA) AAMCWGCWCGSAGGHEIB
DOQfFh1PcGVUUINMIEd1bmVyYXR1ZCBDZXJ0aWZpY2F0ZTAABgNVHOAEFgQUJIBAK
9LPZPsak9+a/FiWbCz2LOxWkwggEVBgNVHSMEggEMMI IBCIAUhJZ 9oNb6Yg8d1lnbH

Orbix Security Guide 15

BPjtS7ul0WyhgeykgekwgeYxCzAJBgNVBAYTAIVIMRYWFAYDVOOIEWINYXNZYWNO
dXN1dHRzMQ8wDQYDVQQOHEWZChb3N0b2 4xMTAVBgNVBAOTKEFCaWdCYW5rICOtIG5v
IHdhcnJhbnR5ICOtIGR1bW8gcHVYcGOz ZXMxMDAUBgNVBASTJOR1bWOuc3RyYXRp
b24gU2VjdGlvbiAtLSBubyB3YXJyYW50eSAt LTENMCUGALUEAXMeQUJIPZ0Jhbmsg
02VydGlmaWNhdGUgQXV0aG9yaXREMSAWHgY JKoZ ThveNAQkBFhEFpbmZvQGFiaWdi
YW5rILmNvbYIBADANBgkghkiGOwOBAQQFAAOBgQC7S5R1DsK3ZChIVpHPQrpQj SBA
J5DYTAmgzac 7pkxy8rQzYvGSFjHL 7beuzT3jdM2 £vQJI8M7t8EMKHKPgeguArnY+x
3VNGwIWv1kr5j0TDeOd7d9I102fknQA147 /wPFEDUwdz4n9TTh)E71p] 62zG2 7TELVE
cm/h2L/DpWgZK0TQIQ==

Bag Attributes

localKeyID: 6A F2 11 9B A4 69 16 3C 3B 08 32 87 A6 7D 7C 91 Cl El1 FF 4A

friendlyName: Administrator
Key Attributes: <No Attributes>

Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,AD8F864A0ES7FB4E

e3cexhY+kAujb6cOs9skerP2gZsauc33yyp4cdziAkAilcmfA/mLv2pfgao8gfu9
yroNvYyDADEZzagEyzF/4FGU1lnScZjA1y9Imi9mA/1SHD5glHH/wl2bgXclBgtC3
GrfiHzGMbWyzDUJj0PHjw/Ekbyx0OBJsCed fPuCGVH7 frgCPeE1gq2EQqRKBHCa3vkHr
6hrwuliS18TXn8Dt cCFFtugoulxwKeGj JXE5PY fKak18BOwKgiZqtj1DHY6G20ERL
ZgNtAB+XFIvrASXZHNSU6RBeXMVSrU10GzdVrCnojded8Be7Q7KBSHDVI9XzZ1PKp
7DYVn5DYFSEQ7kYs9dsaZ5Id5iNkMJ1scPp7AL2SJAWPY1UfENSGFnIYiwXP1ckE
STTig+BG8UPPM6G3KGGRZMZ0Ih7DySZufbE24NIrN74kXVOVE /RpxzNiMz /PbLdG
6wiypd7We/40gxLv8YIJGGEdYyaB/Y7XEYE9ZL74Dc3CcuSvtA2fC8hU3cXjKBu7
YsVz/Dg8G0w2230owpZ0Qz2KU19CLg/hmYLOJt1yLVoaGZuJ1CWXdgX0dComDOR8K
alaUagy/Gz2zys20NSWRK+s+HzgqoBOvneOy4Z1Ss71HfGAUemiRTAI8DX1izgyHYK
5m61SSB961xOM7YI58JYOGNLMX z 1 ImCUAYCOhk1WGIFEN4cZBrkh506r+U4FcwhE
dvDoBu39XiebgHFrJU86ghzxi202h0s02vexvu]jSGyNy009PJGKkEAhJGEOG+a2Qqg
VBwuUZgqo0zIJ6gUrMVILOAWWL7zFxyKaF511ijF1COKxtEKmM0393zag==

Run the target server

16 Orbix Security Guide

Run the target server, as described in "Running a Secure CORBA
Demonstration” on page 11.

Obtain the target server’s IP port

In this demonstration, the server writes an IOR file,

target server.ior, to the OrbixinstallDir/asp/Version/demos/common/is2
directory as it starts up. You can extract the target server’s IP port
from this IOR file using the iordump utility.

From a command prompt, use the iordump utility to parse the
target server.ior file as follows:

iordump target server.ior

This dumps the parsed contents of the IOR to the console window.
The relevant portion of the output is the ssi_sec Trans tagged
component, which looks something like the following:

Component 1:
>> +108 [00][00] [00][14]
Tag: (20) SSL_SEC TRANS

>> +112 [00] [00] [00] [08]
Component length: 8 bytes

>> +116 [00]
Component Byte Order: (0) Big Endian
>> +117 [00]
(padding)

>> +118 [00] [7e]
Target supports: Integrity
Confidentiality DetectReplay DetectMisordering
EstablishTrustInTarget EstablishTrustInClient
>> +120 [00] [5e]
Target requires: Integrity
Confidentiality DetectReplay DetectMisordering
EstablishTrustInClient
>> +122 [0b] [8b]
SSL port: 2955

In this example, the target server’s IP port is 2955.

Run the test client

To run the openssl1 test client, open a command prompt, change
directory to the directory containing the admin.pem file, and enter
the following command:

openssl s client -connect localhost:2955 -tlsl 2 -cert
admin.pem

When you enter the command, you are prompted to enter the
pass phrase for the admin.pen file.

The openssl s client command switches can be explained as
follows:

—-connect host:port
Open a secure connection to the specified host and port.

-tlsl 2
This option configures the client to initiate the handshake
using TLSv1_2. To see which SSL version (or versions) the
target server is configured to use, check the value of the
policies:mechanism policy:protocol version variable in the
Orbix configuration file.

-cert admin.pem
Specifies admin.pem as the test client’s own certificate. The
PEM file should contain only application certificate and the
application certificate’s private key. The PEM file should not
contain a complete certificate chain.
If your server is not configured to require a client certificate,
you can omit the -cert switch.

Other command switches

The openssl s client command supports numerous other
command switches, details of which can be found on the
OpenSSL document pages (see “References” on page 14).
Two of the more interesting switches are -state and -debug,
which log extra details to the command console during the
handshake.

Orbix Security Guide 17

Where do I go from here?

18 Orbix Security Guide

To help you get started in the wide-ranging field of security, you
might find it helpful to focus on one of the following fundamental
tasks:

¢ I want to customize the sample domain to make it fully
secure.

e I want to security-enable a CORBA application.

e I want to write a security-aware CORBA application.

e I want to integrate a third-party enterprise security system.
e I want to replace the default SSL/TLS toolkit.

I want to customize the sample domain
to make it fully secure

The sample configuration domains generated by the itconfigure
utility are not fully secure, because the X.509 certificates used by
the Orbix services are insecure demonstration certificates. To
perform basic customization of a secure configuration domain, see
the following reference:

e “Securing Orbix Services” on page 145.

I want to security-enable a CORBA
application

To security-enable a CORBA application, see the following
reference:

e “Securing CORBA Applications” on page 43.

I want to write a security-aware CORBA
application

To write a security-aware CORBA application, see the following
references:

* “Programming Policies” on page 327.
e “Authentication” on page 337.
* “Validating Certificates” on page 365.

I want to integrate a third-party
enterprise security system

The Orbix Security Framework provides a facility for integrating
with third-part enterprise security systems, such as LDAP, through
a pluggable system of security adapters. For details of how this
works, see the following reference:

* “Configuring the Orbix Security Service” on page 99.

For details of how to write your own custom adapter, see the
following reference:

e "Developing an iSF Adapter” on page 379.

I want to replace the default SSL/TLS
toolkit

By default, Orbix uses the OpenSSL toolkit to provide security on
C++, and uses JSSE on Java. Orbix’s SSL/TLS toolkit
replaceability feature enables you to replace the underlying
SSL/TLS toolkit used by an Orbix application (for example, to
replace OpenSSL with Schannel on Windows).

Note: The Baltimore toolkit formerly used to provide Orbix
security is no longer used. This toolkit was deprecated from
Orbix 6.3 SP4 onwards, and has now been removed from the
product.

For details, see the following chapter:
e "“Choosing an SSL/TLS Toolkit” on page 203.

Orbix Security Guide 19

20 Orbix Security Guide

Orbix Security
Framework

The Orbix Security Framework provides the common underlying security
framework for all types of applications in Orbix, including CORBA and
Web services applications. This chapter provides an introduction to the
main features of the Security Framework.

Introduction to the Security Framework

This section provides a brief overview of and introduction to the
Orbix Security Framework, which provides a common security
framework for all components of Orbix.

Security Framework Features
The Orbix Security Framework is a scalable, standards-based
security framework with the following features:

* Pluggable integration with third-party enterprise security
systems.

e Qut-of-the-box integration with flat file, or LDAP security
systems.

¢ Centralized management of user accounts.
* Role-Based Access Control.
* Role-to-permission mapping supported by access control lists.

* Unified security platform works across CORBA and Web
services.

* Security platform is ART-based.
* Logging.

Orbix Security Guide 21

Example of an iSF System

Figure 10 shows an example of an iSF system that features a
standalone Orbix security service, which can service remote
requests for security-related functions.

CORBA
Server

OP,TLS

Web
Services

HOR/TLS

CORBA
Server

CORBA on
05/390

Container

k3 W

Orbix Security Service

b J

Enterpriss Security Service

Figure 10: Example System with a Standalone Orbix Security Service

Orbix security service

The Orbix security service is the central component of the Orbix
Security Framework, providing an authentication service, an
authorization service and a repository of user information and
credentials. When the Orbix security service is deployed in
standalone mode, all kinds of application, including CORBA
applications and Web services, can call it remotely.

Enterprise security service

The Orbix security service is designed to integrate with a
third-party enterprise security service (ESS), which acts as the
primary repository for user information and credentials.
Integration with an ESS is supported by a variety of iSF adapters.
The following adapters are currently supported by iSF:

e LDAP adapter.

The following adapter is provided for use in simple demonstrations
(but is not supported in production environments):

* File adapter.

22 Orbix Security Guide

In addition, it is possible to build your own adapters using the iSF
Adapter SDK—see “iSF Server Development Kit” on page 25.

Propagating security credentials

The example in Figure 10 on page 22 assumes that a user’s
credentials can be propagated from one application to another.
There are fundamentally two different layers that can propagate
security credentials between processes in an iSF distributed
system:

* Transport layer.
e Application layer.

Transport layer

Security at the transport layer enables security information to be
exchanged during the security handshake, which happens while
the connection is being established. For example, the SSL/TLS
standard enables X.509 certificates to be exchanged between a
client and a server during a security handshake.

Application layer

Security at the application layer enables security information to be
propagated after connection establishment, using a protocol
layered above the transport. For example, the CORBA common
secure interoperability v2.0 (CSIv2) protocol propagates security
information by embedding security data in IIOP messages, which
are layered above TCP/IP.

The CSIv2 protocol can be used to propagate any of the following
kinds of credential:

e Username/password/domain.
e Username only.
* Single sign-on (SSO) token.

Security Standards

One of the goals of the iSF is to base the security framework on
established security standards, thereby maximizing the ability of
iSF to integrate and interoperate with other secure systems. This
section lists the security standards currently supported by the iSF.

Standards supported by iSF

The following security standards are supported by iSF:

e HTTP login mechanisms—that is, HTTP basic authentication
and HTTP form-based authentication.

Orbix Security Guide 23

* Secure Sockets Layer / Transport Layer Security (SSL/TLS),
from the Internet Engineering Task Force, which provides data
security for applications that communicate across networks.

e CCITT X.509, which governs the form of security certificates
based on public (asymmetric) key systems)

* OMG Common Secure Interoperability specification (CSIv2)

e WS-Security, which a proposed standard from Microsoft, IBM,
and VeriSign. It defines a standard set of SOAP extensions, or
message headers, that can be used to implement integrity
and confidentiality in Web services applications.

¢ Java Authentication and Authorization Service (JAAS)

Orbix Security Service

The Orbix security service is the central component of the Orbix
Security Framework. This section provides an overview of the
main Orbix security service features.

Orbix Security Service Architecture

24 Orbix Security Guide

iSF client API

The GSP plug-in accesses the Orbix security service through the
iSF client API, which is a private Orbix-proprietary API. This API
exposes general security operations, such as authenticating a
username and password, retrieving a user’s roles, and so on. Two
language versions of the iSF client API are used internally by
Orbix:

e C++.
* Java.

Remote connections to the Orbix security
service

Orbix plug-ins can communicate with the Orbix security service
through an IIOP/TLS connection.

Standalone or embedded deployment

The iSF server module can be packaged in the following different

ways:

* Standalone deployment (default)—the iSF server module is
packaged as a standalone server process, the Orbix security
service, that services requests through a CORBA interface
(IIOP or IIOP/TLS).

¢ Embedded deployment—the iSF server module is packaged as
a JAR library that can be loaded directly into a Java
application. In this case, service requests are made as local
calls.

iSF adapter API

Integration with third-party enterprise security systems is
facilitated by the /SF adapter API that enables the Orbix security
service to delegate security operations to other security systems.

iSF adapters

Orbix provides several ready-made adapters that are
implemented with the iSF adapter API. The following adapters are
available:

e LDAP adapter.

* File adapter (demonstration only—not supported in production
environments).

Optional iSF components

The Orbix security service includes the following optional
components that can be enabled to provide additional security
features:

* Single sign-on.

Single sign-on

Single sign-on means that once an application has authenticated a
particular user, it is relatively easy for other secure applications to
access that user’s security data.

When single sign-on is enabled, the Orbix security service creates
an association between an SSO token and a user session. Any
application that has the user’s SSO token can then use it to access
the user’s session data.

iISF Server Development Kit

The iSF server development kit (SDK) enables you to implement
custom extensions to the iSF. The iSF SDK is divided into the
following parts:

* |SF adapter SDK.
* |SF client SDK.

iSF adapter SDK

The iSF adapter SDK provides an API implementing custom iSF
adapters. Using this API, you can integrate any enterprise security
system with the iSF.

This API is available in both C++ and Java.

Orbix Security Guide 25

iSF client SDK

The iSF client SDK provides an API for Orbix to access the iSF
server module’s core functionality directly (usually through remote
calls).

This is a private API intended only for internal use by Orbix.

Secure Applications

This section explains how applications from various technology
domains are integrated into the Orbix Security Framework.

This section contains the following subsections:

ART Security Plug-Ins page 26

Secure CORBA Applications page 27

ART Security Plug-Ins

26 Orbix Security Guide

To participate in the Orbix Security Framework, applications load
one or more of the ART security plug-ins. Because Orbix is built
using a common ART platform, an identical set of security plug-ins
are used across the different technology domains of CORBA and
Web services. This has the advantage of ensuring maximum
security compatibility between these different technology
domains.

What is ART?

Orbix’s Adaptive Runtime Technology (ART) is a modular
framework for constructing distributed systems, based on a
lightweight core and an open-ended set of p/lug-ins. ART is the
underlying technology in Orbix.

Security plug-ins

An application can load any of the following security plug-ins to
enable particular security features and participate in the Orbix
Security Framework:

e IIOP/TLS.
* HTTPS.

e CSIv2.

« GSP.
IIOP/TLS

The IIOP/TLS plug-in provides applications with the capability to
establish secure connections using IIOP over a TLS transport.
Authentication is also performed using X.509 certificates. For
example, this plug-in is used by CORBA applications.

HTTPS

The HTTPS plug-in provides the capability to establish secure
connections using HTTP over a TLS transport. Authentication is
also performed using X.509 certificates. For example, this plug-in
is used by the Web container to enable secure communications
with Web clients.

CS1Iv2

The Common Secure Interoperability (CSIv2) plug-in provides
support for authentication based on a username and password.
The CSIv2 plug-in also enables applications to forward usernames
or security tokens to other applications over an IIOP or IIOP/TLS
connection.

GSP

The GSP plug-in provides an authorization capability for the iSF—
that is, the capability to restrict access to certain methods,
operations, or attributes, based on the configuration values stored
in an external action-role mapping XML file. The GSP plug-in
works in tandem with the Orbix security service to realize a
complete system of role-based access control.

Note: The GSP plug-in depends on the CSIv2 plug-in.
Whenever you include the GSP plug-in, gsp, in your ORB
plug-ins list, it automatically loads the CSIv2 plug-in, csi.

Secure CORBA Applications

Figure 11 shows how the security plug-ins in a CORBA application
cooperate to provide security for the application.

CORBA Application

Action-role

lloPy mapping file
TLg | CEN2and GSP

| | ACL
HOP/TLS
—é ‘ Authorizotion —

Authentication

Orbix Secure Service

Figure 11: Security Plug-Ins in a CORBA Application

Orbix Security Guide 27

IIOP/TLS plug-in in CORBA a application

The IIOP/TLS plug-in enables the CORBA application to establish
connections secured by SSL/TLS. This layer of security is essential
for providing data encryption.

CSIv2 plug-in in a CORBA application

The CSIv2 plug-in provides CORBA applications with the following
features:

* The capability to log in with a username and password.

* Screening incoming IIOP invocations by making sure that the
username/password combination is correct.

* Transmission of a username/password/domain combination to
other applications.

¢ Transmission of a username or security token to other
applications.

GSP plug-in in a CORBA application

The GSP plug-in restricts access to a CORBA server’s operations
and attributes, only allowing user’s with certain specified roles to
proceed with an invocation.

Administering the iSF

This section provides an overview of the main aspects of
configuring and administering the iSF.

Overview of iSF Administration

28 Orbix Security Guide

There are several different aspects of iSF administration to
consider, as follows:

* Orbix configuration file.

* |SF properties file.

* Enterprise security service administration.
* Access control lists.

Orbix configuration file

The Orbix configuration file, DomainName.cfg (or, alternatively, the
CFR service), is used to configure the security policies for all of the
applications and services in a particular location domain. For
example, the following kinds of security policy are specified in the
Orbix configuration file:

* The list of security plug-ins to be loaded by an application.

* Whether an application accepts both secure and insecure
connections, or secure connections only.

e The name of the iSF authorization realm to which an
application belongs.

These are just some of the security policies that can be
configured—see “Security Variables” on page 395.

iSF properties file

The iSF properties file is used to configure the core properties of
the Orbix security service. This file primarily configures the
properties of an iSF adapter that connects to an enterprise
security backend. This file also configures the optional single
sign-on and authorization manager features.

See “iS2 Configuration” on page 513 for details.

Enterprise security service
administration

Because the Orbix security service is capable of integrating with a
third-party enterprise security service, you can continue to use
the native third-party administration tools for your chosen
enterprise security service. These tools would be used to
administer user accounts, including such data as usernames,
passwords, user groups, and roles.

Access control lists

To complete a system of role-based access control, it is necessary
to provide individual applications with an access control list (ACL)
file that is responsible for mapping user roles to particular
permissions.

For example, the ACL associated with a CORBA server could
specify that only a specified set of roles are allowed to invoke a
particular IDL operation.

There is one type of ACL file used within the iSF, as follows:
e Action-role mapping (proprietary format).

Secure ASP Services

When you create a secure location domain, all of the standard ASP
services are secure by default. The default configuration can be
used to test sample applications, but is not genuinely secure.
Before the ASP services can be used in a real deployment, it is
necessary to customize the security configuration.

Customizing the security configuration

For a real deployment, certain aspects of the security
configuration for ASP services would be customized, as follows:

Orbix Security Guide 29

30 Orbix Security Guide

X.509 certificates associated with ASP services—the sample
certificates initially associated with the ASP services must all
be replaced, because they are not secure.

Default security policies—for the ASP services might need to
be changed before deployment.

Transport Layer
Security

Transport Layer Security provides encryption and authentication
mechanisms for your Orbix system.

What does Orbix Provide?

Security plug-ins

Orbix provides the core security infrastructure to a distributed
system based on Orbix’s Adaptive Runtime Technology (ART). It is
implemented as a symmetric set of plug-ins for Orbix (C++ and
Java). When the security plug-ins are installed in an application,
the communication layers consist of the CORBA standard Internet
Inter-ORB Protocol (IIOP), layered above TLS and TCP/IP.

Transport Layer Security

Transport Layer Security (TLS) is an IETF Open Standard. It is
based on, and is the successor to, Secure Sockets Layer (SSL),
long the standard for secure communications.

The TLS Protocol provides the most critical security features to
help you preserve the privacy and integrity of your system:

¢ Authentication (RSA with X.509v3 certificates).
* Encryption (based on, for example, AES, Triple DES, IDEA).
* Message integrity (SHA1, SHA256).

* A framework that allows new cryptographic algorithms to be
incorporated into the TLS specification.

CORBA Security Level 2

Orbix is based on the CORBA Security Level 2 policies and APIs
(RTF 1.7). It implements a set of policies from the CORBA
specification that enable you to control encryption and
authentication at a fine level.

Added-value policies and APIs

Orbix also has added-value policies and APIs that provide more
control for SSL/TLS applications than provided by CORBA Security.

Orbix Security Guide 31

SSL/TLS toolkit replaceability

Orbix has an SSL/TLS toolkit replaceability feature that enables
you to replace completely the underlying toolkit that implements
SSL/TLS in Orbix.

Security-unaware and security-aware
applications

There are two basic approaches to using security in your
applications:

* Security-unaware applications—Modify the Orbix configuration
to enable and configure security for your application. This
approach to security is completely transparent to the
application, requiring no code changes or recompilation.

* Security-aware applications—In addition to modifying the
Orbix configuration to enable security, you can customize
application security using both the standard CORBA security
API and the Orbix added-value APIs.

How TLS Provides Security

Basic TLS security features

TLS provides the following security for communications across
TCP/IP connections:

Authentication This allows an application to verify the
identity of another application with which it
communicates.

Privacy This ensures that data transmitted between
applications can not be eavesdropped on or
understood by a third party.

Integrity This allows applications to detect if data was
modified during transmission.

Authentication in TLS

32 Orbix Security Guide

Public key cryptography

TLS uses Rivest Shamir Adleman (RSA) public key cryptography
for authentication. In public key cryptography, each application
has an associated public key and private key. Data encrypted with
the public key can be decrypted only with the private key. Data
encrypted with the private key can be decrypted only with the
public key.

Public key cryptography allows an application to prove its identity
by encoding data with its private key. As no other application has
access to this key, the encoded data must derive from the true
application. Any application can check the content of the encoded
data by decoding it with the application’s public key.

The TLS Handshake Protocol

Consider the example of two applications, a client and a server.
The client connects to the server and wishes to send some
confidential data. Before sending application data, the client must
ensure that it is connected to the required server and not to an
impostor.

When the client connects to the server, it confirms the server
identity using the TLS handshake protocol. A simplified
explanation of how the client executes this handshake in order to
authenticate the server is as follows:

Stage Description

1 | The client initiates the TLS handshake by sending the
initial TLS handshake message to the server.

2 | The server responds by sending its certificate to the
client. This certificate verifies the server's identity and
contains the certificate’s public key.

3 | The client extracts the public key from the certificate and
encrypts a symmetric encryption algorithm session key
with the extracted public key.

4 | The server uses its private key to decrypt the encrypted
session key which it will use to encrypt and decrypt
application data passing to and from the client. The
client will also use the shared session key to encrypt and
decrypt messages passing to and from the server.

Optimized handshake

The TLS protocol permits a special optimized handshake in which
a previously established session can be resumed. This has the
advantage of not needing expensive private key computations.
The TLS handshake also facilitates the negotiation of ciphers to be
used in a connection.

Client authentication
The TLS protocol also allows the server to authenticate the client.

Client authentication, which is supported by Orbix, is optional in
TLS communications.

Orbix Security Guide 33

Certificates in TLS Authentication

34 Orbix Security Guide

Purpose of certificates

A public key is transmitted as part of a certificate. The certificate
is used to ensure that the submitted public key is, in fact, the
public key that belongs to the submitter. The client checks that
the certificate has been digitally signed by a certification authority
(CA) that the client explicitly trusts.

Certification authority

A CA is a trusted authority that verifies the validity of the
combination of entity name and public key in a certificate. You
must specify trusted CAs in order to use Orbix.

X.509 certificate format

The International Telecommunications Union (ITU)
recommendation, X.509, defines a standard format for
certificates. TLS authentication uses X.509 certificates to transfer
information about an application’s public key.

An X.509 certificate includes the following data:
e The name of the entity identified by the certificate.
* The public key of the entity.

* The name of the certification authority that issued the
certificate.

The role of a certificate is to match an entity name to a public key.

Access to certificates

According to the TLS protocol, it is unnecessary for applications to
have access to all certificates. Generally, each application only
needs to access its own certificate and the corresponding issuing
certificates. Clients and servers supply their certificates to
applications that they want to contact during the TLS handshake.
The nature of the TLS handshake is such that there is nothing
insecure in receiving the certificate from an as yet untrusted peer.
The certificate will be checked to make sure that it has been
digitally signed by a trusted CA and the peer will have to prove its
identity during the handshake.

Privacy of TLS Communications

Establishing a symmetric key

Immediately after authentication, the client sends an encoded
data value to the server (using the server’s public key). This
unique session encoded value is a key to a symmetric
cryptographic algorithm. Only the server is able to decode this
data (using the corresponding private key).

Symmetric cryptography

A symmetric cryptographic algorithm is an algorithm in which a
single key is used to encode and decode data. Once the server has
received such a key from the client, all subsequent
communications between the applications can be encoded using
the agreed symmetric cryptographic algorithm. This feature
strengthens TLS security.

Examples of symmetric cryptographic algorithms used to maintain
privacy in TLS communications are 3DES and AES.

Integrity of TLS Communications

Message authentication code

The authentication and privacy features of TLS ensure that
applications can exchange confidential data that cannot be
understood by an intermediary. However, these features do not
protect against the modification of encrypted messages
transmitted between applications.

To detect if an application has received data modified by an
intermediary, TLS adds a message authentication code (MAC) to
each message. This code is computed by applying a function to
the message content and the secret key used in the symmetric
cryptographic algorithm.

Guaranteeing message integrity

An intermediary cannot compute the MAC for a message without
knowing the secret key used to encrypt it. If the message is
corrupted or modified during transmission, the message content
will not match the MAC. TLS automatically detects this error and
rejects corrupted messages.

Orbix Security Guide 35

Obtaining Credentials from X.509 Certificates

Obtaining own credentials

This section discusses how an application’s own credentials are
initially obtained from an X.509 certificate. An application’s own
credentials are the credentials that the application normally uses
to identify itself to other applications.

Comparison of PKCS#12 and PKCS#11

Two mechanisms for obtaining own credentials are described in
this section:

e PKCS#12—credentials obtained from a PKCS#12 file.

e PKCS#11—credentials obtained from a smart card. Orbix uses
the PKCS#11 interface to communicate with the smart card.

Obtaining Certificate Credentials from a File

36 Orbix Security Guide

Creating credentials using the principal
sponsor

The simplest way for a client to obtain certificate credentials is to
configure an SSL/TLS principal sponsor for the client application.
This principal sponsor can be initialized by editing the Orbix
configuration—see “Specifying an Application’s Own Certificate” on
page 270.

Creating credentials from a PKCS#12 file

Figure 12 illustrates how the principal sponsor creates credentials
from a PKCS#12 file.

PHCS#LZ
File
-0

O—m

Client @ Load PKCS#12 file

ar -] Fle e
- Own credentials list
ORB @ r
1
_— : own credentials
Principal Authenticatar Creatas
O34

T
@ authenticate ()
l

L]

i

1

1

H

[.
| private key cache
1

H

[

1

Principal Sponsor

=

Config
File

Figure 12: Creating Credentials for a Client Application Using PKCS#12

Steps for creating credentials

The principal sponsor automates the steps to create credentials,

as follows:

1. The principal sponsor reads the client configuration file to
discover which authentication method to use.

2. If the authentication method is PKCS#12, the principal
sponsor obtains the pass phrase to decrypt the client’s
certificate chain and private key. The pass phrase is obtained
either by running a login utility that prompts the user for the
pass phrase, or by reading the client configuration file—see
“Providing a Certificate Pass Phrase” on page 273.

3. The principal sponsor requests the principal authenticator to
generate credentials for the client by invoking the
authenticate () operation, passing the following data as
parameters:

+ Pass phrase,
+ PKCS#12 file name.
4. The principal authenticator loads the PKCS#12 file to obtain

the client identity. The PKCS#12 file contains an encrypted
X.509 certificate chain and an encrypted private key.

Orbix Security Guide 37

If the authentication step is successful, the principal
authenticator creates an own credentials object, of
SecurityLevel2::Credentials type. The own credentials object
is cached in memory along with its private key.

How PKCS#12 credentials are used in an
SSL/TLS handshake
Figure 13 illustrates how PKCS#12 credentials are used during an

SSL/TLS handshake, showing only the portion of the handshake
where the server verifies the client’s identity.

-

Client

Own credentials list

Server

SSL/TLS Secure Handshake

own credentials -

T T L I e e e
(1) send certificate chain 3]

@ Chalienge client

ol
%

private key cache

-

38 Orbix Security Guide

Figure 13: Using PKCS#12 Credentials to Authenticate a Client to a Server

PKCS#12 handshake steps

During an SSL/TLS handshake, the client authenticates itself to
the server as follows:

1.

At a certain point during the SSL/TLS handshake, the client
sends an X.509 certificate chain (which has been cached in an
own credentials object) to the server.

The server sends a challenge message, encrypted using the
client’s public key.

The client uses the private key (cached in memory) to decrypt
the challenge message.

Having successfully answered the server challenge, the client
proceeds to the next stage of the handshake (not shown).

Obtaining Certificate Credentials from a Smart Card

Creating credentials using the PKCS#11
interface

Figure 14 illustrates how the SSL/TLS principal sponsor creates
certificate credentials using the PKCS#11 interface—see
“Specifying an Application’s Own Certificate” on page 270.

S 1 b ey
FRLCHFLT interfoce

Smart Card

O

O—m

Client @ Lood certificate chain

ORB

Own credentials [ist
-

ON
]
. : own credentials
Principal Authenticator | Creates Qi cred
[O+

T
® authenticate ()
I

Principal Sponsor J

G

Corfig
Filz

Figure 14: Creating Credentials for a Client Application Using PKCS#1 1

Steps for creating credentials

The principal sponsor automates the steps to create credentials,
as follows:

1.

2.

The principal sponsor reads the client configuration file to
discover which authentication method to use.

If the authentication method is PKCS#11, the principal
sponsor obtains the smart card’s PIN to gain access to the
smart card. The PIN is obtained either by running a login
utility that prompts the user for the PIN, or by reading the
client configuration file—see “Providing a Smart Card PIN” on
page 276.

The principal sponsor requests the principal authenticator to
generate credentials for the client by invoking the
authenticate () operation, passing the following data:

Orbix Security Guide 39

40 Orbix Security Guide

+ Provider name,

+ Slot number,

+ PIN or pass phrase.

The principal authenticator communicates with the smart card
using the PKCS#11 interface to obtain the client identity. The
principal authenticator uploads only the X.509 certificate
chain. The private key is left on the smart card.

If the authentication step is successful, the principal
authenticator creates an own credentials object, of
SecurityLevel?2::Credentials type. The own credentials object
is cached in memory but its private key is not stored in
memory.

How PKCS#11 credentials are used in an
SSL/TLS handshake
Figure 15 illustrates how PKCS#11 credentials are used during an

SSL/TLS handshake, showing only the portion of the handshake
where the server verifies the client’s identity.

-

Client

Own credentials [ist

Server

SSL/TLS Secure Handshake

own credentials

h 2

FICSELT Interfo

Smart Card
OO

Figure 15: Using PKCS#11 Credentials to Authenticate a Client to a Server

PKCS#11 handshake steps

During an SSL/TLS handshake, the client authenticates itself to
the server as follows:

1.

At a certain point during the SSL/TLS handshake, the client
sends an X.509 certificate chain (which has been cached in an
own credentials object) to the server.

The server sends a challenge message, encrypted using the
client’s public key.

The client delegates the challenge message to the smart card,
using the PKCS#11 interface. The smart card uses the
appropriate private key to decrypt the challenge message.
Because the smart card has a built-in processor, it is able to
perform the private key calculations in place. The private key
never leaves the smart card.

Having successfully answered the server challenge, the client
proceeds to the next stage of the handshake (not shown).

Note: At no point during the handshake is the smart
card’s private key loaded into memory.

Orbix Security Guide 41

42 Orbix Security Guide

Securing CORBA
Applications

This chapter describes how to enable security in the context of the Orbix
Security Framework for CORBA applications and services.

Overview of CORBA Security

There are two main components of security for CORBA
applications: IIOP over SSL/TLS (IIOP/TLS), which provides
secure communication between client and server; and the iSF,
which is concerned with higher-level security features such as
authentication and authorization.

The following combinations are recommended:
e IIOP/TLS only—for a pure SSL/TLS security solution.

e IIOP/TLS and iSF—for a highly scalable security solution,
based on username/password client authentication.

CORBA applications and iSF

Figure 16 shows the main features of a secure CORBA application
in the context of the iSF.

CORBA Application

Action-role

[HOP/

=}
o
"

C3l2 and GSP
| |

HOP/TLS |
‘ Authorization —

COrbix Secure Service

I=
]
=

Figure 16: A Secure CORBA Application within the iSF

Security plug-ins

Within the iSF, a CORBA application becomes fully secure by
loading the following plug-ins:

e IIOP/TLS plug-in

e (CSIv2 plug-in

¢ GSP plug-in

Orbix Security Guide 43

IIOP/TLS plug-in

The IIOP/TLS plug-in, iiop tls, enables a CORBA application to
transmit and receive IIOP requests over a secure SSL/TLS
connection. This plug-in can be enabled independently of the other
two plug-ins.

See “Securing Communications with SSL/TLS” on page 44 for
details on how to enable IIOP/TLS in a CORBA application.

CSIv2 plug-in

The CSIv2 plug-in, csi, provides a client authentication
mechanism for CORBA applications. The authentication
mechanism is based on a username and a password. When the
CSIv2 plug-in is configured for use with the iSF, the username and
password are forwarded to a central Orbix security service to be
authenticated. This plug-in is needed to support the iSF.

Note: The IIOP/TLS plug-in also provides a client
authentication mechanism (based on SSL/TLS and X.509
certificates). The SSL/TLS and CSIv2 authentication
mechanisms are independent of each other and can be
used simultaneously.

GSP plug-in

The GSP plug-in, gsp, provides authorization by checking a user’s
roles against the permissions stored in an action-role mapping file.
This plug-in is needed to support the iSF.

Note: The GSP plug-in depends on the CSIv2 plug-in.
Whenever you include the GSP plug-in, gsp, in your ORB
plug-ins list, it automatically loads the CSIv2 plug-in, csi.

Securing Communications with SSL/TLS

44 Orbix Security Guide

This section describes how to configure an application to use
SSL/TLS security. In this section, it is assumed that your initial
configuration comes from a secure location domain (generated by
the itconfigure utility with security enabled—see “Creating a
Secure Domain” on page 3).

WARNING: The default certificates used in the CORBA
configuration samples are for demonstration purposes only
and are completely insecure. You must generate your own
custom certificates for use in your own CORBA
applications.

Table 1:

Configuration samples

If a location domain, DomainName, is generated with security
enabled and demonstration configurations enabled, the domain
will include several sample configurations that can be used as
templates for configuring SSL/TLS. Within the default domain
configuration (either in the DomainName.cfg file or in the CFR
service), you can find the following sample SSL/TLS configuration
scopes:

demos
demos
demos
demos
demos
demos
demos
demos
demos

demos

.tls.
.tls.
.tls.
.tls.
.tls.
.tls.
.tls.
.tls.
.tls.
.tls.

secure client with no cert

secure client with cert

semi secure client with cert

semi secure client with no cert

secure server no client auth

secure server request client auth
secure server enforce client auth

semi secure server no client auth

semi secure server request client auth

semi secure server enforce client auth

Secure client terminology

The terminology used to describe the preceding client
configuration scopes is explained in Table 1.

Terminology Describing Secure Client Sample Configurations

Scope Name
Prefix/Suffix

Description

secure client

The client opens only secure SSL/TLS connections to the server.
If the server does not support secure connections, the connection
attempt will fail.

semi secure client

The type of connection opened by the client depends on the
disposition of the server:

If the server is insecure (listening only on an insecure IIOP
port), an insecure connection is established.

If the server is secure (listening only on a secure IIOP/TLS
port), a secure SSL/TLS connection is established.

If the server is semi-secure (listening on both an IIOP port
and on an IIOP/TLS port), the type of connection established
depends on the client’s binding:client binding list.

+ If, in the client’s binding:client binding list, a binding
with the 110P interceptor appears before a binding with
the 110P TLS interceptor, an insecure connection is
established.

+ Conversely, if a binding with the 110pP TLS interceptor
appears before a binding with the r10P interceptor, a
secure connection is established.

Orbix Security Guide 45

Table 1: Terminology Describing Secure Client Sample Configurations

Scope Name
Prefix/Suffix

Description

with no cert

No X.509 certificate is associated with the client (at least, not
through configuration).

with cert

An X.509 certificate is associated with the client by setting the
principal sponsor configuration variables.

Secure server terminology

The terminology used to describe the preceding server
configuration scopes is explained in Table 2.

Table 2: Terminology Describing Secure Server Sample Configurations

Scope Name
Prefix/Suffix

Description

secure_server

The server accepts only secure SSL/TLS connection attempts. If
a remote client does not support secure connections, the
connection attempt will fail.

semiisecuregserver

The server accepts both secure and insecure connection attempts
by remote clients.

no client auth

The server does not support client authentication over SSL/TLS.
That is, during an SSL/TLS handshake, the server will not
request the client to send an X.509 certificate.

request client auth

The server allows a connecting client the option of either
authenticating itself or not authenticating itself using an X.509
certificate.

enforce client auth

The server requires a connecting client to authenticate itself
using an X.509 certificate.

46 Orbix Security Guide

Outline of a sample configuration scope

For example, the demos.tls.secure server no client auth
configuration defines a server configuration that is secured by
SSL/TLS but does not expect clients to authenticate themselves.
This configuration has the following outline:

Orbix Configuration File
#.éeneral configuration at root scope.
c.iér.nos {
tls |
Common SSL/TLS configuration settings.

secure server no client auth {
Specific server configuration settings.

}r
}s
}s

Three significant groups of configuration variables contribute to
the secure server no client auth configuration, as follows:

1. General configuration at root scope—these configuration
settings are common to all applications, whether secure or
insecure.

2. Common SSL/TLS configuration settings—specify the basic
settings for SSL/TLS security. In particular, the orb plugins
list defined in this scope includes the iiop tls plug-in.

3. Specific server configuration settings—define the settings
specific to the secure server no client auth configuration.

Sample client configuration

For example, consider a secure SSL/TLS client whose
configuration is modeled on the
demos.tls.secure client with no cert configuration. Example 1
shows how to configure such a sample client.

Example 1: Sample SSL/TLS Client Configuration
Orbix Configuration File
General configuration at root scope.
my secure apps {
Common SSL/TLS configuration settings.
(copied from ’demos.tls’)

orb plugins = ["local log stream", "iiop profile", "giop",
"iiop tls"];

Orbix Security Guide 47

Example 1: Sample SSL/TLS Client Configuration

2 binding:client binding list = ["OTS+POA Coloc", "POA Coloc",
"OTS+TLS Coloc+POA Coloc", "TLS Coloc+POA Coloc", "OTS+GIOP+IIOP",
"GIOP+IIOP", "OTS+GIOP+IIOP TLS", "GIOP+IIOP TLS"];

3 policies:trusted ca list policy =
"OrbixInstallDir\asp\6.3\etc\t1ls\x509\trusted ca lists\ca listl.pem";

4 policies:mechanism policy:protocol version = "TLS V1 2";
policies:mechanism policy:ciphersuites = ["RSA WITH RC4 128 SHA",
"RSA WITH AES 256 CBC SHA256", "RSA WITH RC4 128 MD5",
"RSA WITH AES 256 CBC SHA", "RSA WITH DES CBC SHA",
"RSA WITH 3DES EDE CBC SHA", "RSA WITH AES 128 CBC SHA",
"RSA WITH AES 128 CBC SHA256"];

5 event log:filters = ["IT ATLI TLS=*", "IT IIOP=*",
"IT IIOP TLS=*", "IT TLS=*"];

my client ({
Specific SSL/TLS client configuration settings
(copied from ’demos.tls.secure client with no cert’)
6 principal sponsor:use principal sponsor = "false";

7 policies:client secure invocation policy:requires =
["Confidentiality", "EstablishTrustInTarget"];
policies:client secure invocation policy:supports
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];
}i

}i

The preceding client configuration can be described as follows:

1. Make sure that the orb plugins variable in this configuration
scope includes the iiop tls plug-in.

Note: For fully secure applications, you should exclude the
iiop plug-in (insecure IIOP) from the ORB plug-ins list. This
renders the application incapable of making insecure IIOP
connections.

For semi-secure applications, however, you should include
the iiop plug-in before the iiop tls plug-in in the ORB
plug-ins list.

If you plan to use the full Orbix Security Framework, you
should include the gsp plug-in in the ORB plug-ins list as well—
see “Securing Two-Tier CORBA Systems with CSI” on
page 53.

2. Make sure that the binding:client binding list variable
includes bindings with the 110P TLS interceptor. You can use
the value of the binding:client binding list shown here.

If you plan to use the full Orbix Security Framework, you
should use the binding:client binding list as shown in
“Client configuration” on page 55 instead.

48 Orbix Security Guide

3. An SSL/TLS application needs a list of trusted CA certificates,
which it uses to determine whether or not to trust certificates
received from other SSL/TLS applications. You must,
therefore, edit the policies:trusted ca list policy variable to
point at a list of trusted certificate authority (CA) certificates.

4. The SSL/TLS mechanism policy specifies the default security
protocol version and the available cipher suites—see
“Specifying Cipher Suites” on page 253.

5. This line enables console logging for security-related events,
which is useful for debugging and testing. Because there is a
performance penalty associated with this option, you might
want to comment out or delete this line in a production
system.

6. The SSL/TLS principal sponsor is a mechanism that can be
used to specify an application’s own X.509 certificate. Because
this client configuration does not use a certificate, the
principal sponsor is disabled by setting
principal sponsor:use principal sponsor tO false.

7. The following two lines set the required options and the
supported options for the client secure invocation policy. In
this example, the policy is set as follows:

+ Required options—the options shown here ensure that the
client can open only secure SSL/TLS connections.

+ Supported options—the options shown include all of the
association options, except for the EstablishTrustInClient
option. The client cannot support EstablishTrustInClient,
because it has no X.509 certificate.

Sample server configuration

Generally speaking, it is rarely necessary to configure such a thing
as a pure server (that is, a server that never makes any requests
of its own). Most real servers are applications that act in both a
server role and a client role. Hence, the sample server described
here is a hybrid of the following two demonstration configurations:

d demos.tls.secure server request client auth
® demos.tls.secure client with cert
Example 2 shows how to configure such a sample server.
Example 2: Sample SSL/TLS Server Configuration
Orbix Configuration File
General configuration at root scope.
my secure apps {
Common SSL/TLS configuration settings.
(copied from ’demos.tls’)
my server {
Specific SSL/TLS server configuration settings
(from ’demos.tls.secure server request client auth’)

policies:target secure invocation policy:requires =
["Confidentiality"];

Orbix Security Guide 49

50 Orbix Security Guide

Example 2: Sample SSL/TLS Server Configuration

}i

policies:target secure invocation policy:supports =
["EstablishTrustInClient", "Confidentiality", "Integrity",
"DetectReplay", "DetectMisordering",
"EstablishTrustInTarget"];

principal sponsor:use principal sponsor = "true";

principal sponsor:auth method id = "pkcsl2 file";

principal sponsor:auth method data =
["filename=0rbixInstallDir\asp\6.3\etc\t1ls\x509\certs\demos\bank

_server.p12"] 8

Specific SSL/TLS client configuration settings
(copied from ’demos.tls.secure client with cert’)
policies:client secure invocation policy:requires =
["Confidentiality", "EstablishTrustInTarget"];
policies:client secure invocation policy:supports =
["Confidentiality", "Integrity", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient",
"EstablishTrustInTarget"];
}i

The preceding server configuration can be described as follows:

1.

You can use the same common SSL/TLS settings here as

described in the preceding “"Sample client configuration” on

page 47

The following two lines set the required options and the

supported options for the target secure invocation policy. In

this example, the policy is set as follows:

+ Required options—the options shown here ensure that the
server accepts only secure SSL/TLS connection attempts.

+ Supported options—all of the target association options
are supported.

A server must always be associated with an X.509 certificate.

Hence, this line enables the SSL/TLS principal sponsor, which

specifies a certificate for the application.

This line specifies that the X.509 certificate is contained in a

PKCS#12 file. For alternative methods, see “Specifying an

Application’s Own Certificate” on page 270.

Note: If using Schannel as the underlying SSL/TLS
toolkit (Windows only), the

principal sponsor:auth method id value must be
security label instead of pkcsl2 file.

Replace the X.509 certificate, by editing the filename option in
the principal sponsor:auth method data configuration variable
to point at a custom X.509 certificate. The filename value

should be initialized with the location of a certificate file in
PKCS#12 format—see “Specifying an Application’s Own
Certificate” on page 270 for more details.

Note: If using Schannel as the underlying SSL/TLS
toolkit (Windows only), you would set the 1abel option
instead of the filename option in the

principal sponsor:auth method data configuration
variable. The label specifies the common name (CN)
from the application certificate’s subject DN.

For details of how to specify the certificate’s pass phrase, see

“Providing a Pass Phrase or PIN” on page 273.

6. The following two lines set the required options and the
supported options for the client secure invocation policy. In
this example, the policy is set as follows:

+ Required options—the options shown here ensure that the
application can open only secure SSL/TLS connections to
other servers.

+ Supported options—all of the client association options
are supported. In particular, the EstablishTrustInClient
option is supported when the application is in a client role,
because the application has an X.509 certificate.

Mixed security configurations

Most realistic secure server configurations are mixed in the sense
that they include both server settings (for the server role), and
client settings (for the client role). When combining server and
client security settings for an application, you must ensure that
the settings are consistent with each other.

For example, consider the case where the server settings are
secure and the client settings are insecure. To configure this case,
set up the server role as described in "Sample server
configuration” on page 49. Then configure the client role by
adding (or modifying) the following lines to the

my secure apps.my server configuration scope:

orb plugins = ["local log stream", "iiop profile",
"giop", "iiop", "iiop tls"];

policies:client secure invocation policy:requires
["NoProtection"];

policies:client secure invocation policy:supports =
["NoProtection"];

The first line sets the ORB plug-ins list to make sure that the iiop
plug-in (enabling insecure IIOP) is included. The NoProtection
association option, which appears in the required and supported
client secure invocation policy, effectively disables security for the
client role.

Orbix Security Guide 51

Customizing SSL/TLS security policies

You can, optionally, customize the SSL/TLS security policies in
various ways. For details, see the following references:

¢ “Configuring SSL/TLS Secure Associations” on page 243.
e “Configuring SSL/TLS Authentication” on page 263.

Key distribution management

It is possible to configure your CORBA server so that the
certificate pass phrase is supplied automatically by the key
distribution management (KDM) service. For details, see the
following reference:

e “Automatic Activation of Secure Servers” on page 283.

Specifying Fixed Ports for SSL/TLS Connections

Orbix allows you to specify a fixed IP port on which a server listens
for SSL/TLS connections. This subsection provides an overview of
the programming and configuration requirements for setting
IIOP/TLS fixed ports.

POA policies required for setting fixed
ports

The main prerequisite for configuring fixed ports is that a CORBA
developer programs the application to create a POA instance with
the following policies:

®* portableServer::LifespanPolicy—the value of this POA policy
should be set to pPERSISTENT, indicating that the objects
managed by this POA can outlive the server process.

d IT CORBA: :WellKnownAddressingPolicy—the value of this POA
policy is a string that defines a well-known addressing prefix,
<wka_prefix>, for host/port configuration variables that an
administrator can edit in the Orbix configuration.

® IT PortableServer::PersistenceModePolicy—the value of this
POA policy can be set to either of the following values:

+ DIRECT PERSISTENCE, indicating that the POA is configured
to receive connection attempts directly from clients. The
server listens on the fixed port (well-known address) and
exports IORs containing its own host and fixed port.

+ INDIRECT PERSISTENCE, indicating that connection attempts
will be redirected to the server by the locator service. The
server listens on the fixed port (well-known address), but
exports IORs containing the locator’s host and port.

Programming the required POA policies

For details of how to program POA policies, see the CORBA
Programmer’s Guide.

52 Orbix Security Guide

Fixed port configuration variables

The following IIOP/TLS configuration variables can be set for a
POA that supports the well-known addressing policy with the
<wka_prefix> prefix:
<wka_prefix>:iiop tls:host = "<host>";
Specifies the hostname, <host>, to publish in the IIOP/TLS
profile of server-generated IORs.
<wka_prefix>:iiop tls:port = "<port>";
Specifies the fixed IP port, <port>, on which the server listens
for incoming IIOP/TLS messages. This port value is also
published in the IIOP/TLS profile of generated IORs.
<wka_prefix>:iiop tls:listen addr = "<host>";
Restricts the IIOP/TLS listening point to listen only on the
specified host, <host>. It is generally used on multi-homed
hosts to limit incoming connections to a particular network
interface.
<wka_prefix>:iiop tls:addr list =
["<optional plus sign><host>:<port>", ... 1;
In the context of server clustering, this configuration variable
specifies a list of host and port combinations, <host>: <port>, for
the <wka prefix> persistent POA instance.
One of the host and port combinations, <host>:<port> (lacking a
+ prefix), specifies the POA’s own listening point. The other
host and port combinations, +<host>:<port> (including a +
prefix), specify the listening points for other servers in the
cluster.

Note: The *:addr list variable takes precedence over
the other host/port configuration variables (*:host,
*:port, and *:listen addr).

Securing Two-Tier CORBA Systems with CSI

This section describes how to secure a two-tier CORBA system
using the iSF. The client supplies username/password
authentication data which is then authenticated on the server
side. The following configurations are described in detail:

¢ Client configuration.
* Target configuration.

Orbix Security Guide 53

54 Orbix Security Guide

Two-tier CORBA system

Figure 17 shows a basic two-tier CORBA system in the iSF,
featuring a client and a target server.

outhentication

token

Propagate

N Apply access
@muh:‘n.-m.-on @ e
L control
LoOKEN
Request + m
1 Target
;L
ry
) Retrisve user’s
® authenticate () @ ")
realms ond roles
h 4

Orbixsecure
Service

Figure 17: Two-Tier CORBA System in the iSF

Scenario description

The scenario shown in Figure 17 can be described as follows:

Stage

Description

1

The user enters a username, password, and domain
name on the client side (user login).

Note: The domain name can either be an empty string
(acts as a wildcard) or must match the value of the
policies:csi:auth over transport:server domain name
configuration variable set on the server side.

When the client makes a remote invocation on the
server, the iSF transmits the
username/password/domain authentication data to the
target along with the invocation request.

The server authenticates the received username and
password by calling out to the external Orbix security
service.

If authentication is successful, the Orbix security service
returns the user’s realms and roles.

The iSF controls access to the target’s IDL interfaces by
consulting an action-role mapping file to determine what
the user is allowed to do.

Client configuration

The CORBA client from Example 17 on page 54 can be configured
as shown in Example 3.

Example 3: Configuration of a CORBA client in the iSF
Orbix Configuration File
General configuration at root scope.

my secure apps {
Common SSL/TLS configuration settings.

Common iSF configuration settings.

orb plugins = ["local log stream", "iiop profile", "giop",
"iiOpﬁtlS", "OtS", "gsp"];
binding:client binding list = ["GIOP+EGMIOP",

"OTS+TLS Coloc+POA Coloc", "TLS Coloc+POA Coloc",

"OTS+POA Coloc", "POA Coloc", "GIOP+SHMIOP",
"CSI+OTS+GIOP+IIOP TLS", "OTS+GIOP+IIOP TLS",
"CSI+GIOP+IIOP TLS", "GIOP+IIOP TLS", "CSI+OTS+GIOP+IIOP",
"OTS+GIOP+IIOP", "CSI+GIOP+IIOP", "GIOP+IIOP"];
binding:server binding list = ["CSI+GSP+OTS", "CSI+GSP",
"CSI+OTS", "CSI"];

my client {
Specific SSL/TLS configuration settings.

Specific i1SF configuration settings.

plugins:csi:allow csi reply without service context =
"false";

policies:csi:auth over transport:client supports =
["EstablishTrustInClient"];

principal sponsor:csi:use principal sponsor = "true";
principal sponsor:csi:auth method id = "GSSUPMech";
principal sponsor:csi:auth method data = [];

I
s

The preceding client configuration can be explained as follows:

1. The SSL/TLS configuration variables common to all of your
applications can be placed here—see “Securing
Communications with SSL/TLS” on page 44 for details of the
SSL/TLS configuration.

2. Make sure that the orb plugins variable in this configuration
scope includes both the iiop tls and the gsp plug-ins in the
order shown.

3. Make sure that the binding:client binding list variable
includes bindings with the cs1 interceptor. Your can use the
value of the binding:client binding list shown here.

4. Make sure that the binding:server binding list variable
includes bindings with both the cs1 and csp interceptors. Your
can use the value of the binding:server binding list shown
here.

Orbix Security Guide 55

56 Orbix Security Guide

5. The SSL/TLS configuration variables specific to the CORBA
client can be placed here—see “Securing Communications
with SSL/TLS"” on page 44.

6. This setting enforces strict checking of reply messages from
the server, to make sure the server actually supports CSIv2.

7. This configuration setting specifies that the client supports
sending username/password authentication data to a server.

8. The next three lines specify that the client uses the CSI
principal sponsor to obtain the user’s authentication data.
With the configuration as shown, the user would be prompted
to enter the username and password when the client
application starts up.

For more details on the CSI principal sponsor, see “Providing a
Username and Password” on page 308.

Target configuration

The CORBA target server from Figure 17 on page 54 can be
configured as shown in Example 4.

Example 4: Configuration of a Second-Tier Target Server in the iSF
Orbix Configuration File
General configuration at root scope.

my secure apps {
Common SSL/TLS configuration settings.

Common 1SF configuration settings.

orb plugins = [..., "iiop tls", "gsp", ... I’
binding:client binding list = [...];
binding:server binding list = [...];

my two tier target {
Specific SSL/TLS configuration settings.

Specific iSF configuration settings.

policies:csi:auth over transport:target supports =
["EstablishTrustInClient"];

policies:csi:auth over transport:target requires
["EstablishTrustInClient"];

policies:csi:auth over transport:server domain name =
"DEFAULT";

plugins:gsp:authorization realm = "AuthzRealm";
plugins:gsp:action role mapping file = "ActionRoleURL";

iSF client configuration settings.
policies:csi:auth over transport:client supports =
["EstablishTrustInClient"];

principal sponsor:csi:use principal sponsor = "true";
principal sponsor:csi:auth method id = "GSSUPMech";
principal sponsor:csi:auth method data = [];
}i
}i

The preceding target server configuration can be explained as
follows:

1. The SSL/TLS configuration variables specific to the CORBA
target server can be placed here—see “Securing
Communications with SSL/TLS” on page 44.

2. This configuration setting specifies that the target server
supports receiving username/password authentication data
from the client.

3. This configuration setting specifies that the target server
requires the client to send username/password authentication
data.

4. The server domain name configuration variable sets the server’s
CSIv2 authentication domain name. The domain name
embedded in a received CSIv2 credential must match the
value of the server domain name variable on the server side or
could be an empty string (acts as a wildcard).

5. This configuration setting specifies the iSF authorization
realm, AuthzRealm, to which this server belongs. For more
details about iSF authorization realms, see “iSF Authorization
Realms” on page 120.

6. The action role mapping configuration variable specifies the
location of an action-role mapping that controls access to the
IDL interfaces implemented by the server. The file location is
specified in an URL format, for example:
file:///security admin/action role mapping.xml (UNIX) or
file:///c:/security admin/action role mapping.xml (Windows) .

For more details about the action-role mapping file, see
“"CORBA Action-Role Mapping ACL"” on page 133.

7. You should also set iSF client configuration variables in the
server configuration scope, because a secure server
application usually behaves as a secure client of the core
CORBA services. For example, almost all CORBA servers need
to contact both the locator service and the CORBA naming
service.

Related administration tasks

After securing your CORBA applications with iSF, you might need
to perform related administration tasks, for example:

* See "Managing Users, Roles and Domains” on page 119.
¢ See "CORBA Action-Role Mapping ACL"” on page 133.

Securing Three-Tier CORBA Systems with CSI

This section describes how to secure a three-tier CORBA system
using the iSF. In this scenario there is a client, an intermediate
server, and a target server. The intermediate server is configured
to propagate the client identity when it invokes on the target
server in the third tier. The following configurations are described
in detail:

¢ Intermediate configuration.
* Target configuration.

Orbix Security Guide 57

l'li () set e dents .

58 Orbix Security Guide

Three-tier CORBA system

Figure 18 shows a basic three-tier CORBA system in the iSF,
featuring a client, an intermediate server and a target server.

"/"'} o,

t‘(Fropogote id:

Request+ |u/p/d) Request + “
1 Intermediate i [u] - Target

i
L N L -
‘ senver J server
[y

ient Apply access
P L ety ke ,

. otion identity token @ control

#+ 5

toker

h 4

Client

Orbixsecure

Service

Figure 18: Three-Tier CORBA System in the iSF

Scenario description

The second stage of the scenario shown in Figure 18 (intermediate
server invokes an operation on the target server) can be described
as follows:

Stage Description

1 | The intermediate server sets its own identity by
extracting the user identity from the received
username/password credentials. Hence, the
intermediate server assumes the same identity as
the client.

2 | When the intermediate server makes a remote
invocation on the target server, the iSF also
transmits the user identity data to the target.

3 | The target server then obtains the user’s realms
and roles.

4 | The iSF controls access to the target’s IDL
interfaces by consulting an action-role mapping
file to determine what the user is allowed to do.

Client configuration

The client configuration for the three-tier scenario is identical to
that of the two-tier scenario, as shown in “Client configuration” on
page 55.

Intermediate configuration

The CORBA intermediate server from Figure 18 on page 58 can be
configured as shown in Example 5.

Example 5: Configuration of a Second-Tier Intermediate Server in the iSF
Orbix Configuration File
General configuration at root scope.

my secure apps {
Common SSL/TLS configuration settings.

Common iSF configuration settings.

orb plugins = [..., "iiop tls", "gsp", ...];
binding:client binding list = [...];
binding:server binding list = [...];

my three tier intermediate {
Specific SSL/TLS configuration settings.

Specific i1SF configuration settings.

plugins:csi:allow csi reply without service context =
"false";

policies:csi:attribute service:client supports =
["IdentityAssertion"];

policies:csi:auth over transport:target supports
["EstablishTrustInClient"];

policies:csi:auth over transport:target requires =
["EstablishTrustInClient"];

policies:csi:auth over transport:server domain name =
"DEFAULT";

plugins:gsp:authorization realm = "AuthzRealm";
plugins:gsp:action role mapping file = "ActionRoleURL";

1SF client configuration settings.
policies:csi:auth over transport:client supports =
["EstablishTrustInClient"];

principal sponsor:csi:use principal sponsor = "true";
principal sponsor:csi:auth method id = "GSSUPMech";
principal sponsor:csi:auth method data = [];

1
};

The preceding intermediate server configuration can be explained
as follows:

1. The SSL/TLS configuration variables specific to the CORBA
intermediate server can be placed here—see “Securing
Communications with SSL/TLS"” on page 44.

2. This setting enforces strict checking of reply messages from
the target, to make sure the target actually supports CSIv2.

Orbix Security Guide 59

3. This configuration setting specifies that the intermediate
server is capable of propagating the identity it receives from a
client. In other words, the server is able to assume the
identity of the client when invoking operations on third-tier
servers.

4. This configuration setting specifies that the intermediate
server supports receiving username/password authentication
data from the client.

5. This configuration setting specifies that the intermediate
server requires the client to send username/password
authentication data.

6. The server domain name configuration variable sets the server’s
CSIv2 authentication domain name. The domain nhame
embedded in a received CSIv2 credential must match the
value of the server domain name variable on the server side or
could be an empty string (acts as a wildcard).

7. This configuration setting specifies the iSF authorization
realm, AuthzRealm, to which this server belongs. For more
details about iSF authorization realms, see “iSF Authorization
Realms” on page 120.

8. This configuration setting specifies the location of an
action-role mapping that controls access to the IDL interfaces
implemented by the server. The file location is specified in an
URL format, for example:
file:///security admin/action role mapping.xml (UNIX) or
file:///c:/security admin/action role mapping.xml (Windows).

For more details about the action-role mapping file, see
“CORBA Action-Role Mapping ACL"” on page 133.

9. You should also set iSF client configuration variables in the
intermediate server configuration scope, because a secure
server application usually behaves as a secure client of the
core CORBA services. For example, almost all CORBA servers
need to contact both the locator service and the CORBA
naming service.

Target configuration

The CORBA target server from Figure 18 on page 58 can be
configured as shown in Example 6.

Example 6: Configuration of a Third-Tier Target Server in the iSF
Orbix Configuration File
General configuration at root scope.

my secure apps {
Common SSL/TLS configuration settings.

Common iSF configuration settings.

orb plugins = [..., "iiop tls", "gsp", ... I;
binding:client binding list = [...];
binding:server binding list = [...];

60 Orbix Security Guide

Example 6: Configuration of a Third-Tier Target Server in the iSF

}r

my three tier target ({
Specific SSL/TLS configuration settings.

policies:iiop tls:target secure invocation policy:requires =
["Confidentiality", "DetectMisordering", "DetectReplay",
"Integrity", "EstablishTrustInClient"];

policies:iiop tls:certificate constraints policy =
[ConstraintStringl , ConstraintString2, ...1;

Specific i1SF configuration settings.
policies:csi:attribute service:target supports =
["IdentityAssertion"];

plugins:gsp:authorization realm = "AuthzRealm";
plugins:gsp:action role mapping file = "ActionRoleURL";

iSF client configuration settings.
policies:csi:auth over transport:client supports =
["EstablishTrustInClient"];

principal sponsor:csi:use principal sponsor = "true";
principal sponsor:csi:auth method id = "GSSUPMech";
principal sponsor:csi:auth method data = [];

}i

These target server configuration can be explained as follows:

1.

The SSL/TLS configuration variables specific to the CORBA
target server can be placed here—see “Securing
Communications with SSL/TLS"” on page 44.

It is recommended that the target server require its clients to
authenticate themselves using an X.509 certificate. For
example, the intermediate server (acting as a client of the
target) would then be required to send an X.509 certificate to
the target during the SSL/TLS handshake.

You can specify this option by including the
EstablishTrustInClient association option in the target secure
invocation policy, as shown here (thereby overriding the
policy value set in the outer configuration scope).

In addition to the preceding step, it is also advisable to restrict
access to the target server by setting a certificate constraints
policy, which allows access only to those clients whose X.509
certificates match one of the specified constraints—see
“Applying Constraints to Certificates” on page 278.

Note: The motivation for limiting access to the target server
is that clients of the target server obtain a special type of
privilege: propagated identities are granted access to the
target server without the target server performing
authentication on the propagated identities. Hence, the
target server trusts the intermediate server to do the
authentication on its behalf.

Orbix Security Guide 61

This configuration setting specifies that the target server
supports receiving propagated user identities from the client.
This configuration setting specifies the iSF authorization
realm, AuthzRealm, to which this server belongs. For more
details about iSF authorization realms, see “iSF Authorization
Realms” on page 120.

This configuration setting specifies the location of an
action-role mapping that controls access to the IDL interfaces
implemented by the server. The file location is specified in an
URL format, for example:

file:///security admin/action role mapping.xml.

For more details about the action-role mapping file, see
“CORBA Action-Role Mapping ACL” on page 133.

You should set iSF client configuration variables in the target
server configuration scope, because a secure server
application usually behaves as a secure client of the core
CORBA services. For example, almost all CORBA servers need
to contact both the locator service and the CORBA naming
service.

Related administration tasks

After securing your CORBA applications with iSF, you might need
to perform related administration tasks, for example:

See “"Managing Users, Roles and Domains” on page 119.
See "CORBA Action-Role Mapping ACL"” on page 133.

X.509 Certificate-Based Authentication

This section describes how to enable X.509 certificate
authentication with the iSF, based on a simple two-tier
client/server scenario. In this scenario, the Orbix security service
authenticates the client’s certificate and retrieves roles and realms
based on the identity of the certificate subject. When iSF
certificate-based authentication is enabled, the X.509 certificate is
effectively authenticated twice, as follows:

62 Orbix Security Guide

SSL/TLS-level authentication—this authentication step occurs
during the SSL/TLS handshake and is governed by Orbix
configuration settings and programmable SSL/TLS policies.
iSF-level authentication and authorization—this authentication
step occurs after the SSL/TLS handshake and is performed by
the Orbix security service working in tandem with the gsp
plug-in.

Certificate-based authentication
scenario

Figure 19 shows an example of a two-tier system, where
authentication of the client’s X.509 certificate is integrated with
iSF.

@ authenticate ()

h J

Orhix Security Service

Figure 19: Overview of iSF Certificate-Based Authentication

Scenario description

The scenario shown in Figure 19 can be described as follows:

Sage Description

1 | When the client opens a connection to the server, the
client sends its X.509 certificate as part of the SSL/TLS
handshake. The server then performs SSL/TLS-level
authentication, checking the certificate as follows:

* The certificate is checked against the server’s
trusted CA list to ensure that it is signed by a trusted
certification authority.

e If a certificate constraints policy is set, the
certificate is checked to make sure it satisfies the
specified constraints.

e If a certificate validator policy is set (by
programming), the certificate is also checked by this
policy.

2 | The server then performs iSF-level authentication by
calling authenticate () on the Orbix security service,
passing the client’s X.509 certificate as the argument.

Orbix Security Guide 63

64 Orbix Security Guide

Stage Description

3 | The Orbix security service authenticates the client’s
X.509 certificate by checking it against a cached copy of
the certificate. The type of checking performed depends
on the particular third-party enterprise security service
that is plugged into the Orbix security service.

4 | If authentication is successful, the Orbix security service
returns the user’s realms and roles.

5 | The iSF controls access to the target’s IDL interfaces by
consulting an action-role mapping file to determine what
the user is allowed to do.

Client configuration

Example 7 shows a sample client configuration that you can use
for the iSF certificate-based authentication scenario (Figure 19 on
page 63).

Example 7: Client Configuration for iSF Certificate-Based Authentication

Orbix Configuration File
corba cert auth
{
orb plugins = ["local log stream", "iiop profile", "giop",
"iiop tls", "gsp"];

event log:filters = ["IT GSpP=*", "IT CSI=*", "IT TLS=*",
"IT IIOP TLS=*", "IT ATLI2 TLS=*"];

binding:client binding list = ["GIOP+EGMIOP",
"OTS+POA Coloc", "POA Coloc", "OTS+TLS Coloc+POA Coloc",
"TLS Coloc+POA Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP TLS",
"CSI+GIOP+IIOP TLS", "GIOP+IIOP", "GIOP+IIOP TLS"];

client x509
{

policies:iiop tls:client secure invocation policy:supports
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop tls:client secure invocation policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering"];

principal sponsor:use principal sponsor = "true";
principal sponsor:auth method id = "pkcsl2 file";
principal sponsor:auth method data =
["filename=W: \art\etc\tls\x509\certs\demos\bob.pl2",
"password=bobpass"] ;
}i
}i

The preceding client configuration is a typical SSL/TLS
configuration. The only noteworthy feature is that the client must
have an associated X.509 certificate. Hence, the principal sponsor
settings are initialized with the location of an X.509 certificate
(provided in the form of a PKCS#12 file).

For a discussion of these client SSL/TLS settings, see "Sample
client configuration” on page 47.

Target configuration

Example 8 shows a sample server configuration that you can use
for the iSF certificate-based authentication scenario (Figure 19 on
page 63).

Example 8: Server Configuration for iSF Certificate-Based Authentication

Orbix Configuration File
corba cert auth
{
orb plugins = ["local log stream", "iiop profile", "giop",
"iiop tls", "gsp"];

event log:filters = ["IT GSP=*", "IT CSI=*", "IT TLS=*",
"IT IIOP TLS=*", "IT ATLI2 TLS=*"];

binding:client binding list = ["GIOP+EGMIOP",
"OTS+POA_Coloc", "POA Coloc", "OTS+TLS Coloc+POA Coloc",
"TLS Coloc+POA Coloc", "GIOP+SHMIOP", "CSI+OTS+GIOP+IIOP",
"CSI+GIOP+IIOP", "CSI+OTS+GIOP+IIOP TLS",
"CSI+GIOP+IIOP TLS", "GIOP+IIOP", "GIOP+IIOP TLS"];

server

{

policies:csi:auth over transport:authentication service =
"com.iona.corba.security.csi.AuthenticationService";

principal sponsor:use principal sponsor = "true";

principal sponsor:auth method id = "pkcsl2 file";

principal sponsor:auth method data =
["filename=0OrbixInstallDir\etc\t1ls\x509\certs\demos\bank server.
pl2", "password=bankserverpass"];

binding:server binding list = ["CSI+GSP", "CSI",
IIGSP":| ;

initial references:IS2Authorization:plugin =
"it is2 authorization";

plugins:it is2 authorization:ClassName =
"com.iona.corba.security.authorization.IS2AuthorizationPlugl
n";

plugins:gsp:action role mapping file =
"file://W:\art\etc\tls\x509\..\..\..\..\art sves\etc\actionr

olemapping with interfaces.xml";

auth x509

Orbix Security Guide 65

Example 8: Server Configuration for iSF Certificate-Based Authentication

}i

{
plugins:gsp:enable security service cert authentication =
" true n ,.

policies:iiop tls:target secure invocation policy:supports =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget",
"EstablishTrustInClient"];

policies:iiop tls:target secure invocation policy:requires =
["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInClient"];
}i
}i

The preceding server configuration can be explained as follows:

1.

As is normal for an SSL/TLS server, you must provide the
server with its own certificate. The simplest way to do this is
to specify the location of a PKCS#12 file using the principal
sponsor.

This configuration setting specifies the location of an
action-role mapping file, which controls access to the server’s
interfaces and operations.

The plugins:gsp: enable security service cert authentication
variable is the key to enabling iSF certificate-based
authentication. By setting this variable to true, you cause the
server to perform iSF-level certificate authentication.

The IIOP/TLS target secure invocation policy must require
EstablishTrustInClient. Evidently, if the client does not
provide a certificate during the SSL/TLS handshake, there will
be no certificate available to perform the iSF-level
authentication.

Related administration tasks

When using X.509 certificate-based authentication, it is necessary
to add the appropriate user data to your enterprise security
system (which is integrated with the Orbix security service
through an iSF adapter), as follows:

File adapter (do not use in deployed systems)—see
“Certificate-based authentication for the file adapter” on
page 131

LDAP adapter—see “Certificate-based authentication for the
LDAP adapter” on page 132.

Caching of Credentials

To improve the performance of servers within the Orbix Security
Framework, the GSP plug-in implements caching of credentials
(that is, the authentication and authorization data received from
the Orbix security service).

66 Orbix Security Guide

The GSP credentials cache reduces a server’s response time by
reducing the number of remote calls to the Orbix security service.
On the first call from a given user, the server calls the Orbix
security service and caches the received credentials. On
subsequent calls from the same user, the cached credentials are
used, thereby avoiding a remote call to the Orbix security service.

Cache time-out

The cache can be configured to time-out credentials, forcing the
server to call the Orbix security service again after using cached
credentials for a certain period.

Cache size

The cache can also be configured to limit the number of stored
credentials.

Configuration variables

The following variables configure the credentials cache in the
context of the Orbix Security Framework:

plugins:gsp:authentication cache size
The maximum number of credentials stored in the

authentication cache. If this size is exceeded the oldest
credential in the cache is removed.

A value of -1 (the default) means unlimited size. A value of 0
means disable the cache.
plugins:gsp:authentication cache timeout
The time (in seconds) after which a credential is considered
stale. Stale credentials are removed from the cache and the
server must re-authenticate with the Orbix security service on
the next call from that user. The cache timeout should be
configured to be smaller than the timeout set in the
is2.properties file (by default, that setting is
is2.sso.session.timeout=600).

A value of -1 (the default) means an infinite time-out. A value
of 0 means disable the cache.

Orbix Security Guide 67

68 Orbix Security Guide

Single Sign-On for
CORBA Applications

Single sign-on (SSO) is an Orbix security feature which minimizes the
exposure of usernames and passwords to snooping. After initially signing
on, a client communicates with other applications by passing an SSO
token in place of the original username and password.

SSO and the Login Service

The SSO feature is implemented by the following elements of
Orbix:

Login service—a central service which can authenticate
username/password combinations and generate SSO tokens.

GSP plug-in—the generic security plug-in, which is embedded
in a client application, is responsible for contacting the login
service to obtain an SSO token.

Advantages of SSO

SSO greatly increases the security of an application in the Orbix
Security Framework, offering the following advantages:

Password visibility is restricted to the Login Service.
Clients use SSO tokens to communicate with servers.
Clients can be configured to use SSO with no code changes.

SSO tokens are configured to expire after a specified length of
time.

When an SSO token expires, the CORBA client automatically
requests a new token from the login service. No additional
user code is required.

Embedded login service

Figure 20 shows an overview of the login service which, by
default, is embedded in the same process as the Orbix security
service. The client ORB automatically requests an SSO token by

Orbix Security Guide 69

70 Orbix Security Guide

sending a username and a password to the login service. If the
username and password are successfully authenticated, the login
service returns an SSO token.

@2&% e lomin “<token>
/

!
\ 4 Orbix
Client 2 Lagi

" e Security

P SErVicE

jﬂ Service

s
i

login(<usernames, <password>]

Figure 20: Client Requesting an SSO Token from the Login Service

SSO token

The SSO token is a compact key that the Orbix security service
uses to access a user’s session details, which are stored in a
cache.

SSO token expiry

The Orbix security service is configured to impose the following
kinds of timeout on an SSO token:

®* 5SSO0 session timeout—this timeout places an absolute limit on
the lifetime of an SSO token. When the timeout is exceeded,
the token expires.

®* SSO session idle timeout—this timeout places a limit on the
amount of time that elapses between authentication requests
involving the SSO token. If the central Orbix security service
receives no authentication requests in this time, the token
expires.

For more details, see “Configuring Single Sign-On Properties” on
page 116.

Automatic token refresh

In theory, the expiry of SSO tokens could prove a nuisance to
client applications, because servers will raise a

CORBA: :NO_PERMISSION exception whenever an SSO token expires.
In practice, however, when SSO is enabled, the GSP plug-in
catches the No PERMISSION exception on the client side and
contacts the login service again to refresh the SSO token
automatically. The GSP plug-in then automatically retries the
failed operation invocation.

Connection to the login server

It is imperative that a connection to the login service is strongly
protected by SSL/TLS, in order to avoid exposing usernames and
passwords to snooping. Hence, by default, the client-to-login
service connection is protected by strong SSL/TLS security policies
and the IIOP/TLS client secure invocation policy requires the
following association options:

["Integrity", "Confidentiality", "DetectReplay",
"DetectMisordering", "EstablishTrustInTarget"];

This protection remains in force, irrespective of the association

options set explicitly by the SSL/TLS client secure invocation

policy.

Note: The only way to reduce the level of protection on
login service connections is to set the
plugins:gsp:enforce secure comms to sso server variable to
false.

Standalone login service

It is possible, in principle, to reconfigure the login service as a
standalone server (that is, a standalone process that runs
independently of the Orbix security service). Currently, however,
the itconfigure utility can only generate domains with an
embedded login service.

Please contact Micro Focus for more details.

Username/Password-Based SSO

This section describes how to configure a client so that it transmits
an SSO token in place of a username and a password (that is, SSO
is used in conjunction with the CSI authentication over transport
mechanism).

CSI layers

The CSIv2 standard defines two layers for transmitting
credentials:

* CSI authentication over transport (GSSUP authentication)—
this layer is used to transmit username, password, and
domain data which can then be authenticated on the server
side.

e (CSI identity assertion—this layer is used to transmit just a
username (asserted identity). It is not needed for the
scenarios in this section.

Orbix Security Guide 71

72 Orbix Security Guide

GSSUP authentication without SSO

Figure 21 gives an overview of Generic Security Service
Username/Password (GSSUP) based authentication without SSO.
In this case, the username, <username>, and password, <password>,
are passed directly to the target server, which then contacts the
Orbix security service to authenticate the username/password
combination.

L
.l’ username = <usernamer
@5' User login password = <password>

Orbix Secure

Service

Figure 21: Overview of GSSUP Authentication without SSO

GSSUP authentication with SSO

Figure 22 gives an overview of username/password-based
(GSSUP) authentication when SSO is enabled.

.l" usernams = 3350 TOKEN

<token>

Userlogin password

<token>

: Orhix
login (<username, <password>) —] PL-_-gfn Sacurity
Service)

Service

Figure 22: Overview of GSSUP Authentication with SSO

Prior to contacting the target server for the first time, the client

ORB sends the username, <username>, and password, <password>, to
the login server, getting an SSO token, <token> in return. The client
ORB then includes a CSIv2 service context in the next request to
the target server, sending t