IONA

fﬁl Orbix®

CORBA Programmer's

Reference C++
Version 6.3, December 2005

Making Software Work Together™

IONA, IONA Technologies, the IONA logo, Orbix, Orbix/E, Orbacus, Artix, Orchestrator,
Mobile Orchestrator, Enterprise Integrator, Adaptive Runtime Technology, Transparent
Enterprise Deployment, and Total Business Integration are trademarks or registered
trademarks of IONA Technologies PLC and/or its subsidiaries.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

CORBA is a trademark or registered trademark of the Object Management Group, Inc. in
the United States and other countries. All other trademarks that appear herein are the
property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA Technologies PLC shall not be liable for errors contained herein, or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photocopying, recording or otherwise, without prior written consent of IONA Technologies PLC. No third
party intellectual property right liability is assumed with respect to the use of the information contained herein.
IONA Technologies PLC assumes no responsibility for errors or omissions contained in this book. This publication
and features described herein are subject to change without notice.

Copyright © 2001-2005 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this manual are covered by the trademarks, service marks, or product
names as designated by the companies who market those products.

Updated: 07-Jun-2006

Contents

List of Tables

Preface
Audience
Organization of this Reference
Related Documentation
Document Conventions

Introduction
Interface Repository Quick Reference
DIl and DSI Quick Reference
Value Type Quick Reference
About Standard Functions for all Interfaces
About Reference Types ptr, var, and _out
About Sequences
About Value Boxes

CORBA Overview

Common CORBA Methods

Common CORBA Data Types
CORBA::AbstractinterfaceDef Interface
CORBA::AliasDef Interface
CORBA::Any Class

CORBA::ArrayDef Interface

XXV

XXVii
XXvii
XXvii

XXviii

XXviii

= Pl
[Ce) PrOOUIAPRNK

[
(o]

27

65

67

69

83

CONTENTS

CORBA::AttributeDef Interface 85

CORBA::ConstantDef Interface 87
CORBA::ConstructionPolicy Interface 89
CORBA::Contained Interface 91
CORBA::Container Interface 97
CORBA::Context Class 117
CORBA::ContextList Class 123
CORBA::Current Interface 127
CORBA::CustomMarshal Value Type 129
CORBA::DatalnputStream Value Type 133
CORBA::DataOutputStream Value Type 147
CORBA::DomainManager Interface 163
CORBA::EnumDef Interface 165
CORBA::Environment Class 167
CORBA::Exception Class 171
CORBA::ExceptionDef Interface 173

CORBA::ExceptionList Class 175

CONTENTS

CORBA::FixedDef Interface 179

CORBA.InterfaceDefPackage.FulllnterfaceDescription Class 181
CORBA::IDLType Interface 183
CORBA::InterfaceDef Interface 185
CORBA::IRObject Interface 191
CORBA::ModuleDef Interface 193
CORBA::NamedValue Class 195
CORBA::NativeDef Interface 197
CORBA::NVList Class 199
CORBA::Object Class 207
CORBA::OperationDef Interface 221
CORBA::ORB Class 225
CORBA::Policy Interface 259

Quality of Service Framework 260

Policy Methods 262
CORBA::PolicyCurrent Class 265
CORBA::PolicyManager Class 269

CORBA::PrimitiveDef Interface 275

CONTENTS

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

CORBA::

Repository Interface
Request Class
SequenceDef Interface
ServerRequest Class
String_var Class
StringDef Interface
StructDef Interface
TypeCode Class
TypedefDef Interface
UnionDef Interface
ValueBase Class
ValueBoxDef Interface
ValueDef Interface

ValueFactory

CORBA::ValueFactory Type

CORBA::ValueFactoryBase Class

CORBA::ValueMemberDef Interface

CORBA::

Vi

WString_var Class

277

285

295

297

301

305

307

309

321

323

325

329

331

343
343
344

347

349

CONTENTS

CORBA::WstringDef Interface 353

CosEventChannelAdmin Module 355

CosEventChannelAdmin Exceptions 355
CosEventChannelAdmin::ConsumerAdmin Interface 357
CosEventChannelAdmin::EventChannel Interface 359
CosEventChannelAdmin::ProxyPullConsumer Interface 361
CosEventChannelAdmin::ProxyPullSupplier Interface 363
CosEventChannelAdmin::ProxyPushConsumer Interface 365
CosEventChannelAdmin::ProxyPushSupplier Interface 367
CosEventChannelAdmin::SupplierAdmin Interface 369
CosEventComm Module 371

CosEventComm Exceptions 371
CosEventComm::PullConsumer Interface 373
CosEventComm::PullSupplier Interface 375
CosEventComm::PushConsumer Interface 377
CosEventComm::PushSupplier Interface 379
CosNaming Overview 381

CosNaming::Bindinglterator Interface 385

vii

CONTENTS

CosNaming::NamingContext Interface

CosNaming::NamingContextExt Interface

CosNotification Module

CosNotification Data Types

QoS and Administrative

Constant Declarations

QoS and Admin Data Types
QoS and Admin Exceptions

CosNotification::AdminPropertiesAdmin Interface

CosNotification::QoSAdmin Interface

CosNotifyChannelAdmin Module

CosNotifyChannelAdmin
CosNotifyChannelAdmin

CosNotifyChannelAdmin::
CosNotifyChannelAdmin::
CosNotifyChannelAdmin::
CosNotifyChannelAdmin::
CosNotifyChannelAdmin::
CosNotifyChannelAdmin::
CosNotifyChannelAdmin::

CosNotifyChannelAdmin::

viii

Data Types
Exceptions

ConsumerAdmin Interface
EventChannel Interface
EventChannelFactory Interface
ProxyConsumer Interface
ProxyPullConsumer Interface
ProxyPullSupplier Interface
ProxyPushConsumer Interface

ProxyPushSupplier Interface

387

401

405
405
406
407
410

413

415

419
419
423

425

433

439

443

447

449

451

453

CosNotifyChannelAdmin::ProxySupplier Interface
CosNotifyChannelAdmin::SequenceProxyPullConsumer Interface
CosNotifyChannelAdmin::SequenceProxyPushConsumer Interface
CosNotifyChannelAdmin::SequenceProxyPullSupplier Interface
CosNotifyChannelAdmin::SequenceProxyPushSupplier Interface
CosNotifyChannelAdmin::StructuredProxyPullConsumer Interface
CosNotifyChannelAdmin::StructuredProxyPullSupplier Interface
CosNotifyChannelAdmin::StructuredProxyPushConsumer Interface
CosNotifyChannelAdmin::StructuredProxyPushSupplier Interface
CosNotifyChannelAdmin::SupplierAdmin Interface

CosNotifyComm Module
CosNotifyComm Exceptions

CosNotifyComm::NotifyPublish Interface
CosNotifyComm::NotifySubscribe Interface
CosNotifyComm::PullConsumer Interface
CosNotifyComm::PullSupplier Interface

CosNotifyComm::PushConsumer Interface

CONTENTS

457

461

463

465

467

471

473

475

477

481

489
489

491

493

495

497

499

CONTENTS

CosNotifyComm::
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:
CosNotifyComm:

CosNotifyComm:

PushSupplier Interface

:SequencePullConsumer Interface
:SequencePullSupplier Interface
:SequencePushConsumer Interface
:SequencePushSupplier Interface
:StructuredPullConsumer Interface
:StructuredPullSupplier Interface
:StructuredPushConsumer Interface

:StructuredPushSupplier Interface

CosNotifyFilter Module

CosNotifyFilter Data Types
CosNotifyFilter Exceptions

CosNotifyFilter::Filter Interface

CosNotifyFilter::FilterAdmin Interface

CosNotifyFilter::FilterFactory Interface

CosNotifyFilter::MappingFilter Interface

CosTrading Module
CosTrading Data Types
CosTrading Exceptions

501

503

505

509

511

513

515

517

519

521
521
524

527

535

539

541

551
551
556

CONTENTS

CosTrading::Admin Interface 561
CosTrading::ImportAttributes Interface 569
CosTrading::Link Interface 573

CosTrading::Link Exceptions 574
CosTrading::LinkAttributes Interface 579
CosTrading::Lookup Interface 581
CosTrading::Offerldlterator Interface 589
CosTrading::Offerlterator Interface 591
CosTrading::Proxy Interface 593
CosTrading::Register Interface 599
CosTrading::SupportAttributes Interface 607
CosTrading::TraderComponents Interface 609
CosTrading::Dynamic Module 611
CosTradingDynamic::DynamicPropEval Interface 613
CosTradingRepos Module 615
CosTradingRepos::ServiceTypeRepository Interface 617
CosTransactions Overview 627

Overview of Classes 627

General Exceptions 628

Xi

CONTENTS

General Data Types

CosTransactions::

CosTransactions:

CosTransactions:

CosTransactions:

CosTransactions::

CosTransactions:

CosTransactions:

CosTransactions:

CosTransactions:

CosTransactions:

Control Class

:Coordinator Class
:Current Class

:RecoveryCoordinator Class

Resource Class

:SubtransactionAwareResource Class
:Synchronization Class

:Terminator Class
:TransactionalObject Class

:TransactionFactory Class

CosTypedEventChannelAdmin Module
CosTypedEventChannelAdmin Exceptions
CosTypedEventChannelAdmin Data Types

CosTypedEventChannelAdmin::TypedConsumerAdmin Interface

CosTypedEventChannelAdmin::TypedEventChannel Interface

CosTypedEventChannelAdmin::TypedProxyPushConsumer Interface

CosTypedEventChannelAdmin::TypedSupplierAdmin Interface

Xii

632

639

641

651

657

659

663

665

667

669

671

673
673
674

675

677

679

681

CONTENTS

CosTypedEventComm Module 683

CosTypedEventComm::TypedPushConsumer Interface 685
CSI Overview 687
CSIIOP Overview 691
DsEventLogAdmin Module 697
DsEventLogAdmin::EventLog Interface 699
DsEventLogAdmin::EventLogFactory Interface 701
DsLogAdmin Module 703

DsLogAdmin Exceptions 703

DsLogAdmin Constants 706

DsLogAdmin Datatypes 707
DsLogAdmin::BasicLog Interface 715
DsLogAdmin::BasicLogFactory Interface 717
DsLogAdmin::Iterator Interface 719
DsLogAdmin::Log Interface 721
DsLogAdmin::LogMgr Interface 737
DsLogNotification Module 739
DsNotifyLogAdmin Module 743

DsNotifyLogAdmin::NotifyLog Interface 745

xiii

CONTENTS

DsNotifyLogAdmin::NotifyLogFactory Interface

Dynamic Module

DynamicAny Overview

DynamicAny::
DynamicAny::
DynamicAny::
DynamicAny::
DynamicAny::
DynamicAny::
DynamicAny::
DynamicAny::

DynamicAny::

DynAny Class
DynAnyFactory Class
DynArray Class
DynEnum Class
DynFixed Class
DynSequence Class
DynStruct Class
DynUnion Class

DynValue Class

GSSUP Overview

The IT_Buffer

Module

IT Buffer
IT_Buffer::Storage
IT_Buffer::Segment
IT_Buffer::Buffer
IT_Buffer::BufferManager

IT_Certificate Overview

Xiv

747

751

753

761

799

805

809

813

817

823

829

835

841

843
844
845
847
848
853

855

IT_Certificate::AVA Interface

IT Certificate::AVAList Interface

IT Certificate::Certificate Interface
IT_Certificate::Extension Interface
IT_Certificate::ExtensionList Interface

IT Certificate::X509Cert Interface
IT_Certificate::X509CertificateFactory Interface
IT_Config Overview

IT_Config::Configuration Interface
IT_Config::Listener Interface

IT_CORBA Overview
IT_CORBA::RefCountedLocalObject Class
IT_CORBA::RefCountedLocalObjectNC Class
IT_CORBA::WellKnownAddressingPolicy Class

The IT_CORBASEC Module
IT_CORBASEC
IT_CORBASEC::ExtendedReceivedCredentials

IT_CosTransactions Module

CONTENTS

865

869

873

875

877

881

887

891

895

903

909

911

913

915

917
918
921

925

Xv

CONTENTS

IT_CosTransactions::Current Class 927
IT_CSI Overview 929
IT_CSlI::AttributeServicePolicy Interface 939
IT_CSI::AttributeServiceProtocolClientPolicy Interface 941
IT_CSlI::AttributeServiceProtocolServerPolicy Interface 943
IT_CSI::AuthenticateGSSUPCredentials Interface 945
IT_CSI::AuthenticationServicePolicy Interface 949
IT_CSl::CredentialsListObject Interface 951
IT_CSI::CSICredentials Interface 953
IT_CSI::CSICurrent Interface 955
IT_CSI::CSICurrent2 Interface 957
IT_CSI::CSICurrent3 Interface 963
IT_CSI::CSIReceivedCredentials Interface 967
IT_EventChannelAdmin Module 971

IT_EventChannelAdmin Data Types 971

IT_EventChannelAdmin Exceptions 972
IT_EventChannelAdmin::EventChannelFactory Interface 973

IT_FPS Module 977

XVi

IT_FPS::InterdictionPolicy Interface

The IT_GIOP Module
IT_GIOP
IT_GIOP::ClientVersionConstraintsPolicy
IT_GIOP::ClientCodeSetConstraintsPolicy
IT_GIOP::Current
IT_GIOP::Current2

IT_LoadBalancing Overview

IT_LoadBalancing::ObjectGroup Interface

IT_LoadBalancing::ObjectGroupFactory Interface

IT_Logging Overview
IT_Logging::EventLog Interface
IT_Logging::LogStream Interface
IT_Logging::PrecisionLogStream Interface
IT_MessagingAdmin Module
IT_MessagingAdmin::Manager Interface

The IT_NamedKey Module
IT_NamedKey
IT_NamedKey::NamedKeyRegistry

IT_Naming Module

IT_Naming::IT_NamingContextExt Interface

CONTENTS

979

981
982
983
984
985
989

993

997

1003

1007

1017

1023

1027

1031

1033

1035
1036
1037

1041

1043

Xvii

CONTENTS

IT_NotifyChannelAdmin Module
IT_NotifyChannelAdmin::GroupProxyPushSupplier Interface
IT_NotifyChannelAdmin:GroupSequenceProxyPushSupplier Interface
IT_NotifyChannelAdmin::GroupStructuredProxyPushSupplier Interface
IT_NotifyComm Module

IT_NotifyComm::GroupNotifyPublish Interface
IT_NotifyComm::GroupPushConsumer Interface
IT_NotifyComm::GroupSequencePushConsumer Interface
IT_NotifyComm::GroupStructuredPushConsumer Interface
IT_NotifyLogAdmin Module

IT_NotifyLogAdmin::NotifyLog Interface
IT_NotifyLogAdmin::NotifyLogFactory Interface

The IT_PlainTextKey Module
IT_PlainTextKey
IT_PlainTextKey::Forwarder

IT_PortableServer Overview
IT_PortableServer::DispatchWorkQueuePolicy Interface

IT_PortableServer::ObjectDeactivationPolicy Class

Xviii

1045

1047

1051

1055

1059

1061

1063

1065

1067

1069

1071

1073

1075
1076
1077

1079

1083

1085

IT_PortableServer::PersistenceModePolicy Class

IT_TLS Overview

IT_TLS::CertValidator Interface

IT_TLS_API Overview

IT_TLS_API::
IT_TLS_API:
IT_TLS_API::
IT_TLS_API:
IT_TLS_API:
IT_TLS_API:
IT_TLS_API::
IT_TLS_API:

IT_TLS_API:

CertConstraintsPolicy Interface

:CertValidatorPolicy Interface

MaxChainLengthPolicy Interface

:SessionCachingPolicy Interface
:TLS Interface

:TLSCredentials Interface

TLSReceivedCredentials Interface

:TLSTargetCredentials Interface

:TrustedCAListPolicy Interface

IT_TypedEventChannelAdmin Module
IT_TypedEventChannelAdmin Data Types

IT_TypedEventChannelAdmin::TypedEventChannelFactory Interface

IT_WorkQueue Module

CONTENTS

1087

1089

1095

1097

1101

1103

1105

1107

1109

1111

1113

1115

1117

1119
1119

1121

1125

Xix

CONTENTS

IT_WorkQueue:
IT_WorkQueue:
IT_WorkQueue::
IT_WorkQueue::
IT_WorkQueue:
IT_WorkQueue:

IT_WorkQueue:

:AutomaticWorkQueue Interface

:AutomaticWorkQueueFactory Interface

ManualWorkQueue Interface

ManualWorkQueueFactory Interface

:Workltem Interface
:WorkQueue Interface

:WorkQueuePolicy Interface

The IT_ZIOP Module
IT ZIOP
IT_ZIOP::Compressor
IT_ZIOP::CompressorFactory
IT_ZIOP::CompressionManager
IT_ZIOP::CompressionComponent
IT_ZIOP::CompressionComponentFactory
IT_ZIOP::CompressionEnablingPolicy
IT_ZIOP::CompressorldPolicy

Messaging Overview

Messaging::ExceptionHolder Value Type

Messaging::RebindPolicy Class

Messaging::ReplyHandler Base Class

Messaging::RoutingPolicy Class

XX

1127

1129

1131

1133

1135

1137

1141

1143
1144
1146
1148
1150
1153
1154
1155
1156

1157

1163

1171

1175

1179

Messaging::SyncScopePolicy Class

OrbixEventsAdmin Module

OrbixEventsAdmin::ChannelManager

Portablelnterceptor Module

Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor::
Portablelnterceptor::
Portablelnterceptor::
Portablelnterceptor:
Portablelnterceptor:
Portablelnterceptor::
Portablelnterceptor::
Portablelnterceptor:

Portablelnterceptor:

ClientRequestinfo Interface

:ClientRequestinterceptor Interface

:Current Interface

Interceptor Interface
IORInfo Interface

IORInterceptor Interface

:ORBInitializer Interface

:ORBInitInfo Interface

PolicyFactory Interface

Requestinfo Interface

:ServerRequestinfo Interface

:ServerRequestinterceptor Interface

PortableServer Overview

CONTENTS

1183

1187

1189

1193

1195

1203

1209

1211

1213

1217

1219

1221

1229

1231

1239

1243

1249

XXi

CONTENTS

PortableServer Conversion Functions
PortableServer Data Types, Constants, and Exceptions

PortableServer:

PortableServer:

PortableServer::

PortableServer::

PortableServer::

PortableServer::

PortableServer::

PortableServer::

PortableServer:

PortableServer:

PortableServer:

PortableServer:

PortableServer:

PortableServer:

PortableServer:

PortableServer:

XXii

AdapterActivator Interface

:Current Interface

Dynamiclmplementation Class
IdAssignmentPolicy Interface
IdUniquenessPolicy Interface
ImplicitActivationPolicy Interface
LifespanPolicy Interface

POA Interface

:POAManager Interface
:RequestProcessingPolicy Interface
:ServantActivator Interface
:ServantBase

:ServantLocator Interface
:ServantManager Interface
:ServantRetentionPolicy Interface

:ThreadPolicy Interface

1250
1251

1259

1263

1265

1267

1269

1271

1273

1275

1301

1307

1311

1315

1319

1323

1325

1327

Security Overview

SecurityLevell Overview

SecurityLevell:

:Current Interface

SecurityLevel2 Overview

SecurityLevel2:
SecurityLevel2:
SecurityLevel2::
SecurityLevel2::
SecurityLevel2::
SecurityLevel2::
SecurityLevel2:
SecurityLevel2::
SecurityLevel2:

SecurityLevel2:

:Credentials Interface

:Current Interface

EstablishTrustPolicy Interface
InvocationCredentialsPolicy Interface
MechanismPolicy Interface

PrincipalAuthenticator Interface

:QOPPolicy Interface

ReceivedCredentials Interface

:SecurityManager Interface

:TargetCredentials Interface

System Exceptions

Index

CONTE

1329

1341

1343

1345

1347

1353

1355

1357

1359

1361

1365

1367

1369

1373

1375

1383

NTS

XXiii

CONTENTS

XXiv

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:

Interface Repository API

DIl and DSI API

Primitive C++ Data Types

PolicyErrorCode Constants

Methods of the Object Class

Methods and Types of the ORB Class

Policies

Operations of the Repository Interface

OTS Exceptions

System Exceptions

Log operational states

DynAny Methods

Return Values for DynAny::component_count()

Default Values When Using create dyn _any from_type code()
C++ Specifying Value Lists in Orbix Configuration

C+ + Specifying Value Lists in a Command-Line Parameter

Table 17:

Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:

IT_LoadBalancing Common Data Types and Exceptions

IT Logging Common Data Types, Methods, and Macros
Authentication Method Constants and Authentication Structures
The Messaging Module

ClientRequestInfo Validity

PortableServer Common Types

Policy Defaults for POAs

Corresponding Policies for Servant Managers

28
47
207
225
259
277
629
631
713
761
767
801
899
899
901
993
1007
1098
1157
1196
1251
1284
1323

XXV

LIST OF TABLES

XXvi

Preface

Orbix is a software environment for building and integrating distributed
object-oriented applications. Orbix is a full implementation of the Common
Object Request Broker Architecture (CORBA) from the Object Management
Group (OMG). Orbix fully supports CORBA version 2.3.

This document is based on the CORBA 2.3 standard with some additional
features and Orbix-specific enhancements. If you need help with this or any
other IONA products, contact IONA at support@iona.com . Comments on
IONA documentation can be sent to docs-support@iona.com

For the latest online versions of Orbix documentation, see the IONA website:
http:/Ammw.iona.com/docs

Audience

The reader is expected to understand the fundamentals of writing a
distributed application with Orbix. Familiarity with C++ is required.

Organization of this Reference

This reference presents core-product modules in alphabetical order,
disregarding IT_ prefixes in order to keep together related OMG-compliant
and Orbix-proprietary modules. For example, modules CORBAand IT_CORBA
are listed in sequence.

Modules that are specific to a service are also grouped together under the
service's name—for example, modules CosPersistentState , IT_PSS, and
IT_PSS DB are listed under Persistent State Service.

XXVii

Related Documentation

This document is part of a set that comes with the Orbix product. Other
books in this set include:

* Orbix Administrator’s Guide
® CORBA Programmer’s Guide
®* CORBA Code Generation Toolkit Guide

Document Conventions

Xxviii

This guide uses the following typographical conventions:

Constant width

Italic

Constant width (courier font) in normal text represents
portions of code and literal names of items such as
classes, methods, variables, and data structures. For
example, text might refer to the CORBA::Object class.

Constant width paragraphs represent code examples or
information a system displays on the screen. For exam-
ple:

#include <stdio.h>

Italic words in normal text represent emphasis and new
terms.

Italic words or characters in code and commands repre-
sent variable values you must supply, such as arguments
to commands or path names for your particular system.
For example:

% cd/users/ your_name

Note: some command examples may use angle brackets
to represent variable values you must supply. This is an
older convention that is replaced with italic words or char-
acters.

Document Conventions

This guide may use the following keying conventions:

No prompt

%

{}

When a command’s format is the same for multiple plat-
forms, a prompt is not used.

A percent sign represents the UNIX command shell
prompt for a command that does not require root privi-
leges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the DOS, WindowsNT,
Windows95, or Windows98 command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been eliminated to
simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an item
in format and syntax descriptions.

A vertical bar separates items in a list of choices enclosed
in { } (braces) in format and syntax descriptions.

XXiX

XXX

Introduction

This describes all of the standard programmer’s APl for CORBA and Orbix.
This introduction contains the following topics:

“Interface Repository Quick Reference”

“DIl and DSI Quick Reference”

“Value Type Quick Reference”

“About Standard Functions for all Interfaces”
“About Reference Types ptr, var, and _out”
“About Sequences”

“About Value Boxes”

The rest of the CORBA Programmer’s Reference contains the following mod-
ules and appendix:

CORBA IT_PSS

CosNaming IT_PSS DB

CosPersistentState Messaging

CosTransactions Portablelnterceptor

DynamicAny PortableServer

IT_Config _ “Threading and Synchronization Tool-
IT_CORBA . "

IT Loaaina kit Overview

IT_PolicyBase “System Exceptions”

IT PortableServer

http://www.iona.com/support/docs/orbix/6.2/reference/pss_pref/pss_pref.pdf
http://www.iona.com/support/docs/orbix/6.2/reference/pss_pref/pss_pref.pdf

Interface Repository Quick Reference

The interface repository (IFR) is the component of Orbix that provides persis-
tent storage of IDL definitions. Programs use the following API to query the
IFR at runtime to obtain information about IDL definitions:

Table 1: Interface Repository API

CORBA Types CORBA Sequences
Contextldentifier AttrDescriptionSeq
Identifier ContainedSeq
Repositoryld ContextldSeq
ScopedName ExceptionDefSeq
VersionSpec ExcDescriptionSeq
ValueModifier EnumMemberSeq
Visibility InitializerSeq
ValueModifier InterfaceDefSeq
Visibility OpDescriptionSeq
ParDescriptionSeq
RepositoryldSeq
StructMemberSeq
UnionMemberSeq
ValueDefSeq
ValueMemberSeq
CORBA Structures CORBA Enumerated Types
AttributeDescription AttributeMode
ConstantDescription DefinitionKind
ExceptionDescription OperationMode
Initializer ParameterMode
InterfaceDescription PrimitiveKind
ModuleDescription TCKind
OperationDescription
ParameterDescription
StructMember
TypeDescription
UnionMember
ValueDescription
ValueMember

Interface Repository Quick Reference

Table 1: Interface Repository API

CORBA Classes and Interfaces

Typecode Methods in CORBA::ORB

AliasDef
ArrayDef
AttributeDef
ConstantDef
Contained
Container
EnumDef
ExceptionDef
Environment
FixedDef

IDLType
InterfaceDef

IRObject
ModuleDef
NativeDef
OperationDef
PrimitiveDef
Repository
SequenceDef
StringDef
StructDef
TypeCode

TypedefDef
UnionDef

ValueBoxDef
ValueDef
ValueMemberDef

WstringDef

create_abstract interface tc()
create _alias _tc()
create_array tc()
create_enum_tc()
create_exception_tc()
create fixed tc()
create _interface tc()
create native _tc()
create _recursive tc()
create_sequence_tc()
create_string_tc()
create_struct_tc()
create_union_tc()
create value hox tc()
create value tc()
create_wstring_tc()

DIl and DSI Quick Reference

The client-side dynamic invocation interface (DII) provides for the dynamic
creation and invocation of requests for objects. The server-side counterpart to
the DIl is the dynamic Skeleton interface (DSI) which dynamically handles
object invocations. This dynamic system uses the following data structures,
interfaces, and classes:

Table 2: DI/ and DSI AP/

DIl Classes DSI Classes
CORBA::Context CORBA::ServerRequest
CORBA::ContextList PortableServer::Dynamicimplementation

CORBA::ExceptionList
CORBA::Request
CORBA::TypeCode

Key Data Types Dll-Related Methods
CORBA::Any CORBA::Object::_create_request()
CORBA::Flags CORBA::ORB::create_list()
CORBA::NamedValue CORBA::ORB::create_operation_list()
CORBA::NVList CORBA::ORB::get_default_context()

Value Type Quick Reference

A value type is the mechanism by which objects can be passed by value in
CORBA operations. Value types use the following data structures, methods,
and value types from the CORBA module:

Types

StringValue
ValueFactory
WStringValue

Value Types and Classes

CustomMarshal

About Standard Functions for all Interfaces

DatalnputStream
DataOutputStream
ValueBase
ValueFactory
ValueFactoryBase
ValueDef

Global Functions

add_ref()
remove_ref()

Sequences

AnySeq
BooleanSeq
CharSeq
DoubleSeq
FloatSeq
OctetSeq
ShortSeq
UShortSeq
ULongLongSeq

ULongSeq
WCharSeq

About Standard Functions for all Interfaces

Every IDL interface also has generated helper functions:

_duplicate()

inline static CLASS ptr _duplicate(
CLASS ptrp

)

This function returns a duplicate object reference and increments the reference
count of the object. Use this function to create a copy of an object reference.

Parameters

Notes

Parameters

Notes

p The current object reference to duplicate.

This is a standard function generated for all interfaces.

_narrow()

static ~ CLASS ptr _narrow(
CORBA::Object_ptr obj

)

This function returns a new object reference given an existing reference. Use
this function to narrow an object reference.

obj A reference to an object. The function returns a nil object ref-
erence if this parameter is a nil object reference.

This is a standard function generated for all interfaces.

When you have IDL interfaces that inherit from each other, you often need to
convert a reference of one type to a related type. This is analogous to casting
between pointers to classes which inherit from each other classes in C+ +.
For example suppose you have the following interfaces:

/I'DL
interface Base{ ... };
interface Derived : Base{ ... };

Now suppose you have a reference of type Base but it refers to an object
which is actually of type Derived . Converting the Base reference to a Derived
reference is called narrowing because you are converting from a more general
type to a more specific, or narrow, type. Conversely converting a Derived ref-
erence to a Base reference is called widening. Note that narrowed or widened
references still refer to the same object, they are simply different views of that
object.

Always check the results of _narrow() with CORBA:is_nil() . The
_narrow() function checks whether the reference actually refers to an object
of the type you are narrowing to. If not, narrow() returns a nil reference.

About Standard Functions for all Interfaces

Exceptions

See Also

Notes

Parameters

Notes
See Also

The _narrow() function does an implicit duplicate, so you are responsible for
releasing both the original reference and the new reference returned. The eas-
iest way to do this is by assigning both to _var variables.

The _narrow() function can actually both narrow and widen references. It
takes a CORBA::Object ptr ~ parameter and tests whether the requested inter-
face is compatible with the actual most-derived interface implemented by the
object, regardless of the inheritance relationships involved.

A standard system exception can be raised in some unusual cases where a
remote call occurs to the object being narrowed. However, normally _narrow()

is a local function call and it can figure out the conversion based on information
in the IDL compiler generated stub code.

_unchecked_narrow()

_nil()
inline static CLASS ptr _nil();
Returns a nil object reference to the object.

This is a standard function generated for all interfaces.

_unchecked_narrow()

static CLASS ptr _unchecked_narrow(
CORBA::Object_ptr obj

);

Returns a new object reference to the object given an existing reference.
However, unlike _narrow() , this function does not verify that the actual type
of the parameter at runtime can be widened to the requested interface’s type.

obj A reference to an object.

This is a standard function generated for all interfaces.

_harrow()

About Reference Types ptr, var, and out

Every IDL interface has generated helper pointer types that you use as object
references. The object reference pointer type names generated are based on
the interface name and include:

I nt er f aceNane_ptr Use the I nterf aceNane ptr type to reference I nt er -
f aceName objects in a manner similarto a C++
pointer.

I nt er f aceName_var Use the I nt er f aceName_var type to reference objects
so that the object’'s memory management is auto-
matic.

I nt er f aceNane_out The I nterfaceName_out type is used only in method
signatures when referring to I nt er f aceNane objects
as out parameters. This type gives Orbix the ability to
implicitly release a previous value of an I nt erf ace-
Narme_var when it is passed as an out parameter.

Reference Example

Assume the following interface for this discussion:

/I IDL
interface I nt er f aceNane {
I nt er f aceNane op(
in I nt er f aceNane argl,
out I nt er f aceNane arg2
);
3

The following example shows the C++ pointer helper classes that the IDL
compiler generates for the object reference pointer types. (No inline imple-
mentation details are shown):

class | nt er f aceNane; // forward reference

typedef I nterfaceNane* I nterfaceNane_ptr;

class I nterfaceNane_var: public_var{

About Reference Types _ptr, _var, and _out

public:
I nt erf aceNane_var() : ptr_(I nt er f aceNane::_nil()) {}
I nterfaceNane_var(| nterfaceNane_ptrp):ptr_(p){}
I nt er f aceNane_var(const I nt erf aceNane_var &a) :
ptr_(I nt er f aceNane::_duplicate(I nt er f aceNane_ptr(a){}

~ InterfaceNane_var(){}

I nt er f aceNane_var &operator=(I nt er f aceNane_ptrp) {}
I nt er f aceNane_var &operator=(const I nterfaceNane_var&a){}
I nt er f aceNane_ptrin() const {}
I nt er f aceNane_ptr& inout() { }

I nt er f aceNane_ptr& out() { }
I nt erf aceName_ptr_retn() {}
operator const I nt er f aceNane_ptr&() const {}
operator I nterfaceNane_ptr&() {}
I nt er f aceNane_ptr operator->() const { }
protected:
I nt er f aceName_ptr ptr_;
void free() { }
void reset(I nterfaceNane_ptrp){}
private:

b

class I nterfaceNane_out{

public:
I nterfaceNane_out(| nterfaceName_ptr&p): ptr_(p) {}
I nt erf aceNane_out(| nt er f aceNamre_var&p) : ptr_(p.ptr_) {}
I nt erf aceNanme_out(| nt er f aceName_out& a) : ptr_(a.ptr) {}

I nt er f aceName_out& operator=(I nt er f aceName_out& a) {}
I nt er f aceNane_out& operator=(const I nterfaceNane_var&a){}
I nt er f aceNane_out& operator=(I nt er f aceNane_ptrp) {}
operator I nterfaceNane_ptr&() {}
I nt er f aceNane_ptr& ptr() {}
I nt er f aceNane_ptr operator->() { }
private:

b

Widening and Narrowing References

As with C++ class pointers you can widen _ptr references by assignment.
For example:

/I C++

/I This is legal, but be careful of memory manageme nt with _ptr!
Derived_ptr derived_ref=...; // Geta Derived r eference.
Base_ptr base_ref = derived_ref; // Widening assign ment.

In general you should use _var references to avoid memory leaks. You cannot
widen by direct assignment of var types, instead you must use

_duplicate() explicitly. This is because of C++ problems in implementing
all the necessary conversion operators.

Derived_var derived_ref=...;
Base_var base_ref = Base::_duplicate(derived_ref);

As in C++ you cannot narrow references by simple assignment or duplica-
tion. Note that it is not legal to use C+ + casting to narrow CORBA object ref-
erences (even if your compiler supports dynamic casts.) Instead you use the
static _narrow() function on a class corresponding to the interface you want
to narrow to. For example:

/I C++
Base_var base_ref = ...; // Get a Base reference so mehow.
Derived_var derived_ref = Derived:;_narrow(base_ref);

if (CORBA::is_nil(derived_ref))

/I base_ref does not refer to an object of type Derived.
}
else
{
/I We can use derived_ref to call Derived opera tions.
}

About Sequences

10

An IDL sequence maps to a class of the same name. For example, an IDL
sequence named TypeSeq which is made up of a sequence of Type IDL data
types, has the class TypeSeq implemented.

/I'DL

About Sequences

typedef sequence< Type> TypeSeq;
The implemented TypeSeq class contains the following functions:

/I C++
class TypeSeq{
public:
/I default constructor
TypeSeq();
/l initial maximum length constructor
TypeSeq(ULong max);
/I data constructor
TypeSeq(
ULong max,
ULong length,
Type *data,
Boolean release = FALSE
)
/I copy constructor
TypeSeq(const TypeSeq&);

/I destructor
~ TypeSeq();

/I assignment operator
TypeSeq &operator=(const TypeSeq&);

ULong maximum() const;
void length(ULong);
ULong length() const;

/I subscript operators
Type &operatorJ(ULong index);
const Type &operator|(ULong index) const;

Boolean release() const;
void replace(
ULong max,
ULong length,
Type *data,
Boolean release = FALSE

)

/I buffer reference

11

Type* get_buffer(Boolean orphan = FALSE);
/I buffer access
const Type* get_buffer() const;

I3
Each function is described as follows.

TypeSeq() A sequence has four possible constructors:

* The default constructor sets the sequence length equal
to 0.

® The constructor with the single max parameter allows
you to set the initial value for the maximum length of
the sequence. This allows you to control how much
buffer space is initially allocated by the sequence. This
constructor also sets the length to O and the sequence
release flag to TRUE.

® The data constructor (the one with the *data parame-
ter) lets you set the length and contents of the
sequence. It also allows you to set the initial value for
the maximum length. For this constructor, ownership of
the buffer is determined by the release parameter.

®* The copy constructor creates a new sequence with the
same maximum and length as the given sequence
parameter, copies each of its current elements (items
zero through length-1), and sets the sequence release
flag to TRUE.

~TypeSeq() For the destructor, if the sequence release flag equals TRUE
the destructor destroys each of the current elements (items
zero through length-1), and destroys the underlying
sequence buffer. If the sequence release flag equals FALSE,
the calling code is responsible for managing the buffer's stor-
age.

&operator=() The assignment operator (=) deep-copies the sequence,
releasing old storage if necessary.

About Sequences

maximum()

length()

&operator{]()

release()

replace()

The maximum() function returns the total number of
sequence elements that can be stored in the current
sequence buffer. This allows you to know how many items
you can insert into an unbounded sequence without causing
a reallocation.

Use the length() functions to access and modify the length
of the sequence. Increasing the length of a sequence adds
new elements at the end. The newly-added elements behave
as if they are default-constructed when the sequence length
is increased.

The overloaded subscript operators ([]) return the item at
the given index.

The release() function returns the state of the sequence
release flag. FALSE means the caller owns the storage for the
buffer and its elements, while TRUE means that the
sequence manages its own storage for the buffer and its ele-
ments.

The replace() function lets you replace the buffer underly-

ing a sequence. The parameters to replace() are identical in
type, order, and purpose to those for the data constructor for
the sequence.

13

get_buffer() The overloaded get_buffer() functions allow direct access
to the buffer underlying a sequence. These can be very useful
when sending large blocks of data as sequences and the
per-element access provided by the overloaded subscript
operators is not sufficient.

About Value Boxes

The non-constant get_buffer() reference function
allows read-write access to the underlying buffer. If its
orphan argument is FALSE (the default), the sequence
returns a pointer to its buffer, allocating one if it has not
yet done so. The size of the buffer can be determined
using the sequence’s maximum() function. The number
of elements in the buffer can be determined from the
sequence’s length() function. The sequence maintains
ownership of the underlying buffer. Elements in the
returned buffer may be directly replaced by your code.
However, because the sequence maintains the length
and size of the buffer, code that calls get_buffer()

cannot lengthen or shorten the sequence by directly
adding elements to or removing elements from the
buffer.

The const get_buffer() access function allows
read-only access to the sequence buffer. The sequence
returns its buffer, allocating one if one has not yet been
allocated. No direct modification of the returned buffer
is allowed by the calling code.

A value box is a value type that is a form of simple containment. It is like an
additional namespace that contains only one name. A value box has no
inheritance or operations and it contains a single state member. This allows it
to be a concrete rather than abstract class.

The C++ mapping for a value box depends on the underlying type. CORBA
contains the two string value boxes Stingvalue ~ and WStringvalue . The

mapping as follows:

/I'DL

14

About Value Boxes

valuetype StringTypeVal ue stringtype;
The implemented Stri ngTypeVal ue class contains the following functions:

class StringTypeVal ue : public DefaultValueRefCountBase {
public:
/I constructors
StringTypeVal ue();
StringTypeVal ue(const StringTypeVal ue& val);
Stri ngTypeVal ue(char* str);
Stri ngTypeVal ue(const char* str);
Stri ngTypeVal ue(const String_var& var);

/I assignment operators
St ri ngTypeVal ue& operator=(char* str);
Stri ngTypeVal ue& operator=(const char* str);
Stri ngTypeVal ue& operator=(const String_var& var);

Il accessor
const char* _value() const;

/I modifiers

void _value(char* str);

void _value(const char* str);

void _value(const String_var& var);

/I explicit argument passing conversions for un derlying string
const char* _boxed_in() const;

char*& _boxed_inout();

char*& _boxed_out();

/I ...other String_var functions such as overlo aded

/I subscript operators, etc....

static St ri ngTypeVal ue* _downcast(ValueBase* base);
protected:

~ StringTypeVal ue();

b

In order to allow boxed strings to be treated as normal strings where appro-
priate, a boxed string provides most of the same interface as the String_var
class.

15

16

The function of the value box class for strings are described as follows:

StringTypeValue() Public constructors include:

The default constructor initializes the underlying
string to an empty string.

One constructor takes a char* argument which is
adopted.

One constructor takes a constchar which is
copied.

One constructor takes a const String_var& from
which the underlying string value is copied. If the
String_var holds no string, the boxed string
value is initialized to the empty string.

operator=() There are three public assignment operators. Each
returns a reference to the object being assigned to:

one that takes a parameter of type char* which is
adopted.

One that takes a parameter of type const char
which is copied.

One that takes a parameter of type const
Stiing_var& from which the underlying string
value is copied. If the String_var holds no string,
the boxed string value is set equal to the empty
string.

About Value Boxes

_value()

_boxed_in()

_boxed_inout()

_boxed_out()

operator{]()

_downcast()
~StringValue()

Public accessor and modifier functions for the
StringValue

® The single accessor function takes no arguments
and returns a const char*

There are three modifier functions, each taking a sin-
gle argument.

® One takes a char* argument which is adopted by
the value box class.

®* One modifier function takes a constchar* argu-
ment which is copied.

® One takes a const String_var& from which the
underlying string value is copied.

Allows the boxed value to be passed as an in parame-
ter. This is the boxed string counterpart to the
String_var::in() function.

Allows the boxed value to be passed as an inout
parameter. This is the boxed string counterpart to the
String_var::inout() function.

Allows the boxed value to be passed as an out param-
eter. This is the boxed string counterpart to the
String_var::out() function.

Note that even though the boxed string provides over-
loaded subscript operators, the fact that values are
normally handled by pointer means that they must be
dereferenced before the subscript operators can be
used.

A downcast function.
The destructor is not generally used.

17

18

CORBA Overview

The CORBA namespace implements the IDL CORBA module. Additional
introductory chapters describe the common methods and definitions found in
the scope of the CORBA namespace.

* “Common CORBA Methods”

e “Common CORBA Data Types”

All classes or interfaces defined in the CORBA namespace are described in
the following alphabetically ordered chapters:

AliasDef ExceptionDef Repository
Any ExceptionList Request
ArrayDef FixedDef SequenceDef
AttributeDef IDLType ServerRequest
ConstantDef InterfaceDef StringDef
ConstructionPolicy IRObject String_var
Contained ModuleDef StructDef
Container NamedValue TypeCode
Context NativeDef TypedefDef
ContextList NVList UnionDef
Current Object ValueBase
CustomMarshal OperationDef ValueBoxDef
DatalnputStream ORB ValueDef
DataOutputStream Policy ValueFactory
DomainManager PolicyCurrent ValueMemberDef
EnumDef PolicyManager WstringDef
Environment PrimitiveDef WString_var

Some standard system exceptions are also defined in the CORBA module.
However, these exceptions are described in Appendix A.

Common CORBA Methods

This section contains details of all common CORBA methods. The following
alphabetically ordered list contains a link to the details of each method:

19

Parameters

See Also

Parameters

20

® add_ref()

* duplicate()
® s nil(

. nil

®* ORB_init()
® release()

®* remove_ref()
® string_alloc()
¢ string_dup()
® string_free()

CORBA::add_ref()

void add_ref(ValueBase *vb);

Increments the reference count of the valuetype instance pointed to by the
method’s argument. This method does nothing if the argument is null.

vb Pointer to the object reference for the valuetype instance.

This method is provided for consistency with the reference counting method
for object references. Unlike the ValueBase::_add_ref() member method,
add ref() can be called with null valuetype pointers.

CORBA remove_ref()

CORBA ValueBase::_remove_ref()
CORBA ValueBase::_add ref()

CORBA::_duplicate()
static Type_ptr _duplicate(Type_ptr p);

Increments the reference count of the object reference, p and returns a copy
of the object reference. If p is nil, _duplicate() returns a nil object reference.

p Pointer to the object reference.

See Also

Parameters

See Also

CORBA Object::_duplicate()

CORBA::is_nil()
Boolean is_nil(Type_ptrp);

Returns a true value if the object reference contains the special value for a nil
object reference as defined by the ORB. Otherwise the method returns a false
value.

p Pointer to the object reference.
Object references cannot be compared using operator==; therefore,
is_nil() is the only compliant way an object reference can be checked to

see if it is nil. A compliant program cannot attempt to invoke a method
through a nil object reference, since a valid C++ implementation of a nil
object reference is a null pointer.

Overloaded versions of this method are generated for each IDL interface, and
for each pseudo object type. Object reference types include:

Context_ptr
Environment_ptr
NamedValue_ptr
NVList_ptr
Object _ptr
ORB_ptr

POA ptr
Request_ptr
TypeCode_ptr

CORBA Object
CORBA release()

CORBA::_nil()

“About Reference Types ptr, var, and _out”

21

CORBA::_nil()

static ~ Type_ptr _nil();

Returns a nil object reference for the Type interface.
See Also CORBA Object

CORBA is_nil()

CORBA::ORB_init()

static ORB_ptr ORB_init(
int& argc,
char* argv,
const char* orb_identifier ="

)
Initializes a client or server connection to an ORB.

22

Parameters

argc Number of arguments in the argument list, argv .

argv Pointer to an argument list of environment-specific data for
the call. Valid ORB arguments include:

® -ORBdomain val ue

Where to get the ORB actual configuration
information.

¢ -ORBid val ue
The ORB identifier.
® -ORBnameval ue
The ORB name.

Each ORB argument is a sequence of configuration strings
or options in either of the following forms:

-ORBsuf fi x val ue
-ORBsuf fi xval ue

The suf fi x is the name of the ORB option being set, and
val ue is the value to which the option is set. Spaces
between the suffi x and val ue are optional. Any string in
the argument list that is not in one of these formats is
ignored by the ORB _init) method.

orb_identifier The string identifier for the ORB initialized. For example,
the string "Orbix" identifies the Orbix ORB from IONA
Technologies.

When an application requires a CORBA environment, it uses ORB_init) to
get the ORB pseudo-object reference. This method first initializes an
application in the ORB environment and then it returns the ORB
pseudo-object reference to the application for use in future ORB calls.
Because applications do not initially have an object on which to invoke ORB
calls, ORB_init() is a bootstrap call into the CORBA environment. Thus, the
ORB_init) call is part of the CORBA module but not part of the CORBA::ORB
class.

Applications can be initialized in one or more ORBs. Special ORB identifiers
(indicated by either the orb_identifier parameter or the -ORBid argument)
are intended to uniquely identify each ORB used within the same address

23

Exceptions

See Also

Parameters

24

space in a multi-ORB application. The ORB identifiers are allocated by the
ORB administrator who is responsible for ensuring that the names are
unambiguous. Note the following when assigning ORB identifiers in an
ORB_init() call:

® |f the orb_identifier parameter has a value, any -ORBid arguments in
the argv are ignored. However, all other ORB arguments in argv might
be significant during the ORB initialization process.

® |f the orb_identifier parameter is null, then the ORB identifier is
obtained from the -ORBid argument of argv .
® |f the orb_identifier is null and there is no -ORBid argument in argv ,

the default ORB is returned in the call.

The argv arguments are also examined to determine if there are any other
ORB arguments (arguments of the form -ORBsuf fi x). These ORB arguments
are processed only by the ORB_init) method. In fact, before ORB _init()
returns, it removes from argv all ORB arguments. This unique format for
start-up arguments means that your servers do not have to be written to
handle ORB arguments.

ORB initialization must occur before POA initialization.

BAD_PARAM A string in argv that matches the ORB argument pattern
-ORBsuf f i x is not recognized by the ORB.

CORBA ORB

CORBA::release()

void release(Type_ptr);

Indicates that the caller will no longer access the object reference so that
associated resources can be deallocated.

Type_ptr Pointer to the object reference to be released.

If the given object reference is nil, release() does nothing.

Overloaded versions of this method are generated for each IDL interface, and
for each pseudo object type. Object reference types include:

See Also

Parameters

See Also

Context_ptr
Environment_ptr
NamedValue_ptr
NVList_ptr
Object _ptr
ORB_ptr

POA ptr
Request_ptr
TypeCode_ptr

CORBA Object
CORBA is_nil()

“About Reference Types ptr, var, and _out”

CORBA::remove_ref()

void remove_ref(ValueBase *vh);

Decrements the reference count of the valuetype instance pointed to by the
parameter vb. If the parameter value is a null pointer, this method does nothing.

vb Pointer to the object reference for the valuetype instance.

Unlike the _remove_ref() method, remove_ref() can be called with null
valuetype pointers.
CORBA add _ref()

CORBA ValueBase::_remove_ref()
CORBA ValueBase::_add ref()

CORBA::string_alloc()

char *string_alloc(ULong len);

Dynamically allocates a string. The method returns a pointer to the start of the
character array. It returns a zero pointer if it cannot perform the allocation. A
conforming program should use this method to dynamically allocate a string
that is passed between a client and a server.

25

Parameters

See Also

Parameters

See Also

Parameters

See Also

26

len A string of length len + 1 is allocated.

CORBA string_free()
CORBA string_dup()

CORBA::string_dup()

char* string_dup(const char* str);

Duplicates a string. The method returns a duplicate of the input string or it
returns a zero pointer if it is unable to perform the duplication. CORBA

string_alloc() can be used to allocate space for the string.
str The string to be duplicated.

CORBA string_alloc()
CORBA string_free()

CORBA::string_free()

void string_free(char* str);
Deallocates a string that was previously allocated using CORBA

string_alloc() .

str The string to be freed.

CORBA string_alloc()
CORBA string_dup()

Common CORBA Data Types

This chapter contains details of all common CORBA data types. Table 3
consists of descriptions of the primitive C++ data types such as Short , Long,
and so on. The following alphabetically ordered list contains a link to the

details of each data type:

AnySeq InvalidPolicies ServiceOption
AttrDescriptionSeq ModuleDescription ServiceType
AttributeDescription OctetSeq SetOverrideType
AttributeMode OpDescriptionSeq ShortSeq
BooleanSeq OperationDescription StringValue
CharSeq OperationMode StructMember
ConstantDescription ORBid StructMemberSeq
ContainedSeq ParameterDescription TCKind
Contextldentifier ParameterMode TypeDescription
ContextldSeq ParDescriptionSeq ULongLongSeq
DefinitionKind PolicyError ULongSeq
DomainManagersList PolicyErrorCode UnionMember
DoubleSeq PolicyList UnionMemberSeq
EnumMemberSeq PolicyType UShortSeq
ExcDescriptionSeq PolicyTypeSeq ValueDefSeq
ExceptionDefSeq PrimitiveKind ValueDescription
ExceptionDescription Repositoryld ValueMember
Flags RepositoryldSeq ValueMemberSeq
FloatSeq ScopedName ValueModifier
Identifier ServiceDetall VersionSpec
Initializer ServiceDetailType Visibility
InitializerSeq Servicelnformation WCharSeq
InterfaceDefSeq WStringValue
InterfaceDescription

27

28

Primitive C++ types are defined as shown in Table 3:

Table 3: Primitive C++ Data Types

Primitive C++ Type

C++ Definition

Boolean

Boolean_out
Char
Char_out
Double
Double_out
Float
Float_out
Long
Long_out
LongDouble
LongDouble_out
LongLong
LongLong_out
Octet
Octet_out
Short
Short_out
ULong

ULong_out

typedef unsigned char Boolean;

(Valid values are 1 for true or O for false.)

typedef Boolean& Boolean_out;
typedef unsigned char Char;
typedef Char& Char_out;
typedef double Double;
typedef Double& Double_out;
typedef float Float;
typedef Float& Float_out;
typedef long Long;
typedef Long& Long_out;
typedef long double LongDouble;
typedef LongDouble& LongDouble_out;
typedef ... LongLong;
typedef LongLongé& LongLong_out;
typedef unsigned char Octet;
typedef Octet& Octet_out;
typedef short Short;
typedef Short& Short_out;
typedef unsigned long ULong;

typedef ULongé& ULong_out;

Table 3: Primitive C++ Data Types

Primitive C++ Type C++ Definition

ULongLong typedef ... ULongLong;
ULongLong_out typedef ULongLong& ULonglLong_out;
UShort typedef unsigned short UShort;
UShort_out typedef UShort& UShort_out;

WChar typedef wchar_t WChar;

WChar_out typedef WChar& WChar_out;

CORBA::AnySeq Sequence

/DL
typedef sequence<any> AnySeq;

[IC++

class AnySeq {

h

A sequence of Any data values used for marshalling custom value types.

See Also CORBA DataOutputStream
CORBA DatalnputStream

“About Sequences”

CORBA::AttrDescriptionSeq Sequence

/NbL
typedef sequence <AttributeDescription> AttrDescrip tionSeq;

/I C++
class AttrDescriptionSeq {

See Also

See Also

30

I3

A sequence of AttributeDescription structures in the interface repository.

CORBA AttributeDescription
“About Sequences”

CORBA::AttributeDescription Structure

/I IDL

struct AttributeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

h

struct AttributeDescription {

|dentifier name;

Repositoryld id;
Repositoryld defined_in;
VersionSpec _ version;

TypeCode type;
AttributeMode mode;

3

The description of an interface attribute in the interface repository.

name The name of the attribute.

id The identifier of the attribute.

defined_in The identifier of the interface in which the attribute is defined.
version The version of the attribute.

type The data type of the attribute.

mode The mode of the attribute.

CORBA AttributeDef

See Also

See Also

CORBA::AttributeMode Enumeration

/I DL
enum AttributeMode { ATTR_NORMAL ATTR_READONBGY

/| C++
enum AttributeMode { ATTR_NORMAL ATTR_READONBY

typedef AttributeMode& AttributeMode_out;

The mode of an attribute in the interface repository.

ATTR_NORMAL Mode is read and write.
ATTR_READONLYMode is read-only.

CORBA AttributeDef

CORBA::BooleanSeq Sequence

/I DL
typedef sequence<boolean> BooleanSeq;

/I C++
class BooleanSeq {

b

A sequence of Boolean values used in marshalling custom value types.

CORBA DataOutputStream
CORBA DatalnputStream

“About Sequences”

CORBA::CharSeq Sequence

/I DL
typedef sequence<char> CharSeq;

/I C++
class CharSeq {

b

31

A sequence of character (char) values used in marshalling custom value
types.

See Also CORBA DataOutputStream
CORBA DatalnputStream

“About Sequences”

CORBA::CompletionStatus Enumeration

/I C++
enum CompletionStatus {

COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

I3

CORBA::ConstantDescription Structure

/I IDL
struct ConstantDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
any value;
h
I C++
struct ConstantDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec _ version;
TypeCode type;
any value;
8
The description of a constant in the interface repository.

name The name of the constant.

32

See Also

See Also

See Also

id The identifier of the constant.

defined_in The identifier of the interface in which the constant is defined.
version The version of the constant.

type The data type of the constant.

value The value of the constant.

CORBA ConstantDef

CORBA::ContainedSeq Sequence

//'IDL
typedef sequence <Contained> ContainedSeq;

/I C++

class ContainedSeq {

g

A sequence of Contained objects in the interface repository.

CORBA Contained
“About Sequences”

CORBA::Contextldentifier Type

// IDL
typedef Identifier Contextldentifier;

/| C++
typedef Identifer Contextldentifier;

A context identifier used in an IDL operation in the interface repository.

An IDL operation’s context expression specifies which elements of the client’s
context might affect the performance of a request by the object. The runtime
system makes the context values in the client’s context available to the object
implementation when the request is delivered.

CORBA OperationDef
CORBA ContextldSeq

33

CORBA::ContextldSeq Sequence

/IDL
typedef sequence <Contextldentifier> ContextldSeq;

/I C++

class ContextldSeq {

8

A sequence of Contextldentifier values in the interface repository.

See Also CORBA Contextldentifier
“About Sequences”

CORBA::DefinitionKind Enumeration

/I \DL
enum DefinitionKind {

dk_none, dk_all,

dk_Attribute, dk_Constant, dk_Exception, dk_Int erface,
dk_Module, dk_Operation, dk_Typedef,

dk_Alias, dk_Struct, dk_Union, dk_Enum,

dk_Primitive, dk_String, dk_Sequence, dk_Array,

dk_Repository,

dk_Wstring, dk_Fixed,

dk_Value, dk_ValueBox, dk_ValueMember,

dk_Native

I3

/I C++

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Int erface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native

3

typedef DefinitionKind& DefinitionKind_out;

34

See Also

See Also

See Also

Identifies the type of an interface repository object.

Each interface repository object has an attribute (CORBA IRObject :

def kind) of the type DefinitionKind that records the kind of the IFR
object. For example, the def kind attribute of an InterfaceDef object is
dk_interface . The enumeration constants dk_none and dk_all have special
meanings when searching for an object in a repository.

CORBA IRObject :: def kind

CORBA Contained

CORBA Container

CORBA::DomainManagersList Sequence

//'IDL
typedef sequence <DomainManager> DomainManagersList

/I C++

class DomainManagersList {

g

A sequence of DomainManager objects.

CORBA DomainManager
“About Sequences”

CORBA::DoubleSeq Sequence

/I''DL
typedef sequence<double> DoubleSeq;

/I C++

class DoubleSeq {

h

A sequence of Double values used in marshalling custom value types.

CORBA DataOutputStream
CORBA DatalnputStream

“About Sequences”

35

CORBA::EnumMemberSeq Sequence

/IDL
typedef sequence <Identifier> EnumMemberSeq;

/I C++
class EnumMemberSeq {
%

A sequence of Identifier strings representing the members of an enumeration
type in the interface repository.

See Also CORBA Identifier
CORBA ORB: create_enum_tc()

“About Sequences”

CORBA::ExcDescriptionSeq Sequence

/I \DL
typedef sequence <ExceptionDescription> ExcDescript ionSeq;

/I C++
class ExcDescriptionSeq {
3

A sequence of ExceptionDescription structures in the interface repository.
This sequence is used only in the OperationDescription structure.

See Also CORBA ExceptionDescription
CORBA OperationDescription

“About Sequences”

CORBA::ExceptionDefSeq Sequence

/I DL
typedef sequence <ExceptionDef> ExceptionDefSeq;

/I C++
class ExceptionDefSeq {

\

36

See Also

See Also

A sequence of ExceptionDef objects in the interface repository.

CORBA ExceptionDef
“About Sequences”

CORBA::ExceptionDescription

/I C++
struct ExceptionDescription {

Identifier name;

Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;

g

The description of an exception in the interface repository.

name The name of the exception.

id The identifier of the exception.

defined_in The identifier of the interface in which the exception is
defined.

version The version of the exception.

type The data type of the exception.

CORBA ExcDescriptionSeq

CORBA::ExceptionType Enumeration

/I DL

enum exception_type {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION},

37

38

CORBA::Flags Type

/IDL

typedef unsigned long Flags;

typedef string Identifier;

const Flags ARG_IN=1;

const Flags ARG_OUT =2;

const Flags ARG_INOUT =3;

const Flags CTX_RESTRICT_SCOPE =15;

JIC++
typedef ULong Flags;

A flag value is a bitmask long used to identify one or more modes.

Most flag values identify the argument passing mode for arguments. The
common argument passing flag values include:

ARG _IN Indicates that the associated value is an input-only
argument.
ARG_INOUT Flag value indicating that the associated value is an

input or output argument.

ARG _OUT Flag value indicating that the associated value is an
output-only argument.

Other flag values have specific meanings for request and list methods.

NVList methods that add a NamedVvalue to an NVList have a flags
parameter used to specify features of an argument. These additional flag
values include:

IN_COPY_VALUE Causes a copy of the argument value to be made and
used instead of the argument.
DEPENDENT_LIST If a list structure is added as an item such as in a

sublist, this flag indicates that the sublist should be
freed when the parent list is freed.

See Also

See Also

The Object :: create request() method has a request flags parameter
used to specify how storage is to be allocated for output parameters. The
additional flag value is:

OUT _LIST MEMORY Indicates that any out argument memory is associated
with the argument list of the requested IDL operation.

CORBA NVList
CORBA NamedValue

CORBA Object :: _create request()
CORBA Context :: get values()

CORBA::FloatSeq Sequence

/I DL
typedef sequence<float> FloatSeq;

/| C++

class FloatSeq {

3

A sequence of Float values used in marshalling custom value types.

CORBA DataOutputStream
CORBA DatalnputStream

“About Sequences”

CORBA::Identifier Type

/| C++
typedef char* Identifier;

A simple name that identifies modules, interfaces, constants, typedefs, excep-
tions, attributes, and operations in the interface repository. An identifier is not
necessarily unique within the entire interface repository; it is unique only within
a particular Repository , ModuleDef , InterfaceDef , or OperationDef

39

CORBA::Initializer Structure

/I \DL
struct Initializer {
StructMemberSeq members;
Identifier name;
h
/I C++
struct Initializer {
StructMemberSeq members;
Identifier name;

An initializer structure for a sequence in the interface repository.

members The sequence of structure members.
name The name of the initializer structure.
See Also CORBA InitializerSeq

CORBA::InitializerSeq Sequence

/| C++

class InitializerSeq {

8

A sequence of Initializer structures in the interface repository.

See Also CORBA ValueDef
“About Sequences”

CORBA::InterfaceDefSeq Sequence

/I C++
class InterfaceDefSeq {

\

A sequence of interface definitions in the interface repository.

40

See Also

CORBA InterfaceDef
CORBA Container :: create_interface()

CORBA Container :: create value()

“About Sequences”

CORBA::InterfaceDescription Structure

/I IDL
struct InterfaceDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
RepositoryldSeq base_interfaces;
boolean is_abstract;
h
/I C++
struct InterfaceDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;

VersionSpec _ version;
RepositoryldSeq base_interfaces;

boolean is_abstract;
J2
A description of an interface in the interface repository. This structure is

returned by the inherited describe() method in the InterfaceDef interface.
The structure members consist of the following:

name The name of the interface.

id The identifier of the interface.

defined_in The identifier of where the interface is defined.
version The version of the interface.

base_interfaces The sequence of base interfaces from which this

interface is derived.

is_abstract A true value if the interface is an abstract one, a false
value otherwise.

41

See Also

42

CORBA InterfaceDef::describe()

CORBA::InvalidPolicies Exception

/DL
exception InvalidPolicies {

sequence <unsigned short> indices;

3

This exception is thrown by operations that are passed a bad policy. The
indicated policies, although valid in some circumstances, are not valid in
conjunction with other policies requested or already overridden at this scope.

CORBA::ModuleDescription Structure

/I IDL
struct ModuleDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
8
struct ModuleDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec _ version;

The description of an IDL module in the interface repository. The structure
members consist of the following:

name The name of the module.

id The identifier of the module.

defined_in The identifier of where the module is defined.
version The version of the module.

See Also

See Also

See Also

CORBA ModuleDef

CORBA::OctetSeq Sequence

/I C++

class OctetSeq {

g

A sequence of Octet values used in marshalling custom value types.

CORBA DataOutputStream
CORBA DatalnputStream

“About Sequences”

CORBA::OpDescriptionSeq Sequence

/I C++
class OpDescriptionSeq {

yo

A sequence of OperationDescription structures in the interface repository
that describe each IDL operation of an interface or value type.

CORBA OperationDescription
CORBA InterfaceDef :: FullinterfaceDescription

CORBA ValueDef :: FullValueDescription

“About Sequences”

CORBA::OperationDescription Structure

/I IDL

struct OperationDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;

43

See Also

44

ContextldSeq contexts;
ParDescriptionSeq parameters;

ExcDescriptionSeq exceptions;

2

struct OperationDescription {
Identifier name;
Repositoryld id;

Repositoryld defined_in;
VersionSpec version;
TypeCode resul;
OperationMode mode;

ContextldSeq contexts;
ParDescriptionSeq parameters;

ExcDescriptionSeq exceptions;

I3

This structure describes an IDL operation in the interface repository. The
structure members consist of the following:

name
id
defined_in
version

result

mode

contexts

parameters

exceptions

The name of the IDL operation.

The identifier of the IDL operation.

The identifier of where the IDL operation is defined.
The version of the IDL operation.

The TypeCode of the result returned by the defined IDL
operation.

Specifies whether the IDL operation’s mode is normal
(OP_NORMAILor one-way (OP_ONEWAY

The sequence of context identifiers specified in the context
clause of the IDL operation.

The sequence of structures that give details of each
parameter of the IDL operation.

The sequence of structures containing details of exceptions
specified in the raises clause of the IDL operation.

CORBA OpDescriptionSeq

See Also

CORBA::OperationMode Enumeration

enum OperationMode {OP_NORMAL, OP_ONEWAY};
typedef OperationMode& OperationMode_out;

The mode of an IDL operation in the interface repository. An operation’s mode
indicates its invocation semantics.

OP_NORMAL The IDL operation’s invocation mode is normal.

OP_ONEWAY The IDL operation’s invocation mode is oneway which means
the operation is invoked only once with no guarantee that the
call is delivered.

CORBA::ORBid Type

/I IDL

typedef string ORBId;
/I C++

typedef char* ORBiId;

The name that identifies an ORB. ORBid strings uniquely identify each ORB

used within the same address space in a multi-ORB application. ORBid strings
(except the empty string) are not managed by the OMG but are allocated by
ORB administrators who must ensure that the names are unambiguous.

CORBA ORB._init()

CORBA::ParameterDescription Structure

/I IDL
struct ParameterDescription {
Identifier name;
TypeCode type;
IDLType type_def;
ParameterMode mode;
h
struct ParameterDescription {
Identifier name;
TypeCode type;
IDLType type def;

45

ParameterMode mode;
h

This structure describes an IDL operation’s parameter in the interface reposi-
tory. The structure members consist of the following:

name The name of the parameter.

type The TypeCode of the parameter.

type_def Identifies the definition of the type for the parameter.
mode Specifies whether the parameter is an in input, output, or

input and output parameter.

See Also CORBA ParDescriptionSeq

CORBA::ParameterMode Enumeration

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOU T}
typedef ParameterMode& ParameterMode_out;

The mode of an IDL operation’s parameter in the interface repository.
PARAM_IN The parameter is passed as input only.

PARAM_OUT The parameter is passed as output only.
PARAM_INOUT The parameter is passed as both input and output.

CORBA::ParDescriptionSeq Sequence

/I C++
class ParDescriptionSeq {

\

A sequence of ParameterDescription structures in the interface repository.

See Also CORBA ParameterDescription
CORBA OperationDef

CORBA OperationDescription
CORBA InterfaceDef
CORBA ValueDef

46

See Also

“About Sequences”

CORBA::PolicyError Exception

//'IDL
exception PolicyError {

PolicyErrorCode reason;

h
The PolicyError exception is thrown to indicate problems with parameter
values passed to ORB create_policy() . Possible reasons are described in

the PolicyErrorCode
CORBA ORB create_policy()

CORBA PolicyErrorCode

CORBA::PolicyErrorCode Type

typedef short PolicyErrorCode;
/1 C++
typedef Short PolicyErrorCode;

A value representing an error when creating a new Policy . The following
constants are defined to represent the reasons a request to create a Policy
might be invalid:

Table 4: PolicyErrorCode Constants

Constant Explanation

BAD_POLICY The requested Policy is not understood
by the ORB.

UNSUPPORTED_POLICY The requested Policy is understood to be
valid by the ORB, but is not currently
supported.

47

See Also

See Also

48

Table 4: PolicyErrorCode Constants

Constant Explanation

BAD_POLICY_TYPE The type of the value requested for the
Policy is not valid for that PolicyType .

BAD_POLICY_VALUE The value requested for the Policy is of a
valid type but is not within the valid range
for that type.

UNSUPPORTED_POLICY_VALUE The value requested for the Policy is of a
valid type and within the valid range for
that type, but this valid value is not
currently supported.

CORBA ORB: create_policy()

CORBA::PolicyList Sequence
/I C++

class PolicyList {
3
A list of Policy objects. Policies affect an ORB’s behavior.

CORBA Pali
CORBA Object ::set policy_overrides()

PortableServer::POA::POA create_POA()

“About Sequences”

CORBA::PolicyType Type

/I C++
typedef ULong PolicyType;

Defines the type of Policy object.
The CORBA module defines the following constant PolicyType
/I DL

See Also

See Also

const Policy Type SecConstruction =11,
/I C++
static const PolicyType SecConstruction =11,

Other valid constant values for a PolicyType are described with the definition

of the corresponding Policy object. There are standard OMG values and

IONA-specific values.

CORBA Poli
CORBA PolicyTypeSeq

CORBA ORB create_policy()
CORBA Object :: _get policy()
CORBA DomainManager :: get domain_policy()

CORBA::PolicyTypeSeq Sequence

/I''DL
typedef sequence<PolicyType> Policy TypeSeq;

/I C++
class PolicyTypeSeq {

h
A sequence of PolicyType data types.
CORBA Object ::get_policy_overrides()

CORBAPalicyManager:get_policy_overrides()

CORBA::PrimitiveKind Enumeration

//'IDL
enum PrimitiveKind {

pk_null, pk_void, pk_short, pk_long, pk_ushort,
pk_float, pk_double, pk_boolean, pk_char, pk_oc
pk_any, pk_TypeCode, pk_Principal, pk_string, p
pk_longlong, pk_ulonglong, pk_longdouble,
pk_wchar, pk_wstring, pk_value_base

g

typedef PrimitiveKind& PrimitiveKind_out;

Indicates the kind of primitive type a PrimitiveDef

interface repository.

pk_ulong,
tet,
k_objref,

object represents in the

49

See Also

See Also

50

Most kinds are self explanatory with the exception of the following:

® There are no PrimitiveDef objects with the kind pk_null

®* The kind pk_string represents an unbounded string.

® The kind pk_objref represents the IDL type Object .

®* The kind pk value_base represents the IDL type ValueBase .

CORBA PrimitiveDef
CORBA Repository

CORBA::Repositoryld Type

/I C++
typedef char* Repositoryld;

A string that uniquely identifies, in the interface repository, an IDL module,
interface, constant, typedef, exception, attribute, value type, value member,
value box, native type, or operation.

The format of Repositoryld types is a short format name followed by a colon
followed by characters, as follows:

format _nane: string

The most common format encountered is the OMG IDL format. For example:
IDL:Pre/B/C:5.3

This format contains three components separated by colons:

IDL The first component is the format name, IDL.

Pre/B/C The second component is a list of identifiers separated by '/’
characters that uniguely identify a repository item and its scope.
These identifiers can contain other characters including
underscores (_), hyphens (-), and dots (.).

5.3 The third component contains major and minor version numbers
separated by a dot (.).

CORBA Repository :: lookup_id()

See Also

Examples

See Also

CORBA::RepositoryldSeq Sequence

/| C++

class RepositoryldSeq {

h

A sequence of Repositoryld strings in the interface repository.

CORBA Repositoryld
“About Sequences”

CORBA::ScopedName Type

/I C++
typedef char* ScopedName;

A string that specifies an IDL item’s name relative to a scope in the interface
repository. A ScopedName correspond to an OMG IDL scoped name.

A ScopedName that begins with “:: " is an absolute scoped name; one that
uniquely identifies an item within a repository. For example:

::Account::makeWithdrawal

A ScopedName that does not begin with “: " is a relative scoped name; one
that identifies an item relative to some other item. For example:

makeWithdrawal
This example would be within the absolute scoped name of ::Account

CORBA Contained :: absolute name
CORBA Container :: lookup()

CORBA::ServiceDetail Structure

//'IDL
struct ServiceDetail {

ServiceDetailType service_detail_type;
sequence < Octet > service_detall;

3

51

Detailed information about a single service or facility available to an ORB.
Structure members consist of:

service_detail_type

service_detalil

See Also CORBA Servicelnformation

CORBA::ServiceDetailType Type

/I C++
typedef ULong ServiceDetailType;

The type of service.
See Also CORBA ServiceDetail

CORBA::Servicelnformation Structure

/NDbL
struct Servicelnformation {

sequence < ServiceOption > service_options;
sequence < ServiceDetail > service_details;

I3

Information about CORBA facilities and services that are supported by an ORB.
Structure members consist of:

service_options

service_details

See Also CORBA ORB: get_service_information()

CORBA::ServiceOption Type

/I C++
typedef ULong ServiceOption;

An option for a service.

52

See Also

See Also

See Also

CORBA Servicelnformation

CORBA::ServiceType Type

typedef UShort ServiceType;

Used as a parameter in get service_information() to obtain information
about CORBA facilities and services that are supported by an ORB. A possible
value consists of:

Security =1

CORBA::SetOverrideType Enumeration

/I'DL
enum SetOverrideType { SET_OVERRIDE ADD OVERRIDE

The type of override to use in the set policy overrides() method when

setting new policies for an object reference. Possible types consist of:

SET_OVERRIDE Indicates that new policies are to be associated with
an object reference.

ADD_OVERRIDE Indicates that new policies are to be added to the
existing set of policies and overrides for an object
reference.

CORBA Object :: _set policy overrides()

CORBA::ShortSeq Sequence

/| C++

class ShortSeq {

h

A sequence of Short values used in marshalling custom value types.

CORBA DataOutputStream
CORBA DatalnputStream

“About Sequences”

53

See Also

54

CORBA::StringValue Value Box

/I C++
class StringValue : public DefaultValueRefCountBase {

public:

/I constructors

StringValue();

StringValue(const StringValue& val);

StringValue(char* str);

StringValue(const char* str);

StringValue(const String_var& var);

/I assignment operators

StringValue& operator=(char* str);

StringValue& operator=(const char* str);

StringValue& operator=(const String_var& var);

Il accessor

const char* _value() const;

/I modifiers

void _value(char* str);

void _value(const char* str);

void _value(const String_var& var);

/I explicit argument passing conversions for un derlying string

const char* _boxed_in() const;

char*& _boxed_inout();

char*& _boxed_out();

/I ...other String_var methods such as overload ed

/I subscript operators, efc....

static StringValue* _downcast(ValueBase* base);
protected:

~StringValue();

,

StringValue is a value box class that provides a reference-counted version of
a string.

“About Value Boxes”

See Also

See Also

CORBA::StructMember Structure

/I C++
struct StructMember {

Identifier name;

TypeCode type;

IDLType type def;
g

This describes an IDL structure member in the interface repository. The
structure members consist of the following:

name The name of the member.
type The TypeCode for the member.
type_def Identifies the definition of the type for the member.

CORBA StructMemberSeq

CORBA::StructMemberSeq Sequence

/I C++
class StructMemberSeq {

3
A sequence of StructMember objects in the interface repository.

CORBA StructMember
CORBA ORB create_struct tc()

CORBA ORB create_exception_tc()
CORBA Container :: create_struct()
CORBA Container :: create_exception()
CORBA StructDef::members

CORBA ExceptionDef.:members
CORBA |Initializer

“About Sequences”

55

See Also

56

CORBA::TCKind Enumeration

/I \DL
enum TCKind {

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed,
tk_value, tk_value_box,
tk_native,
tk_abstract_interface

3

_objref,

A TCKind value indicates the kind of data type for a TypeCode . A TypeCode is
a value that represent an invocation argument type or attribute type, such as
that found in the interface repository or with a dynamic any type.

CORBA TypeCode:: kind()

DynamicAny::DynStruct::current_member_kind()

DynamicAny::DynUnion::discriminator_kind()
DynamicAny::DynUnion::member_kind()

DynamicAny::DynValue::current_member_kind()

CORBA:: TypeDescription Structure

/I IDL
struct TypeDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
3
/I C++
struct TypeDescription {
|dentifier name;
Repositoryld id;
Repositoryld defined_in;

See Also

See Also

VersionSpec _ version;
TypeCode type;
h

This structure describes an IDL data type in the interface repository. The
structure members consist of the following:

name The name of the data type.

id The identifier for the data type.

defined_in The identifier of where the data type is defined.
version The version of the data type.

type The TypeCode of the data type.

CORBA::ULongLongSeq Sequence

/| C++

class ULongLongSeq {

h

A sequence of ULongLong values used in marshalling custom value types.

CORBA DataOutputStream
CORBA DatalnputStream

“About Sequences”

CORBA::ULongSeq Sequence

/| C++

class ULongSeq {

3

A sequence of ULong values used in marshalling custom value types.

CORBA DataOutputStream
CORBA DatalnputStream

“About Sequences”

57

CORBA::UnionMember Structure

/IDL

struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type_def;

/I C++
struct UnionMember {
Identifier name;
any label;

TypeCode type;
IDLType type def;
3

This structure describes an IDL union member in the interface repository. The
structure members consist of the following:

name The name of the union member.

label The label of the union member.

type The TypeCode of the union member.

type_def The IDL data type of the union member.
See Also CORBA UnionMemberSeq

CORBA::UnionMemberSeq Sequence

/I C++
class UnionMemberSeq {

\

A sequence of UnionMember structures in the interface repository.

See Also CORBA UnionMember
CORBA ORB: create_union_tc()

CORBA Container :: create_union()
CORBA UnionDef::members

“About Sequences”

58

See Also

See Also

CORBA::UShortSeq Sequence

/| C++

class UShortSeq {

h

A sequence of UShort values used in marshalling custom value types.

CORBA DataOutputStream
CORBA DatalnputStream

“About Sequences”

CORBA::ValueDefSeq Sequence

/I C++

class ValueDefSeq {

g

A sequence of ValueDef objects in the interface repository.

CORBA ValueDef
CORBA Container : create_value()

“About Sequences”

CORBA::ValueDescription Structure

/I IDL
struct ValueDescription {
Identifier name;
Repositoryld id;
boolean is_abstract;
boolean is_custom;
Repositoryld defined_in;
VersionSpec version;
RepositoryldSeq supported_interfaces;
RepositoryldSeq abstract_base_values;
boolean is_truncatable;
Repositoryld base_value;

59

See Also

60

struct ValueDescription {
Identifier name;

Repositoryld id;
Boolean is_abstract;
Boolean is_custom;

Repositoryld defined_in;

VersionSpec _ version;
RepositoryldSeq supported_interfaces;

RepositoryldSeq abstract_base values;
Boolean is_truncatable;

Repositoryld base_value;

I3

The description of an IDL value type in the interface repository. Value types
enable the passing of objects by value rather than just passing by reference.
The structure members consist of the following:

name The name of the value type.

id The identifier of the value type.

is_abstract True of the value type is abstract. False if the value
type is not abstract.

is_custom True of the value type is custom. False if the value
type is not custom.

defined in The identifier of where the value type is defined.

version The version of the value type.

supported_interfaces
abstract_base_values
is_truncatable

base value

CORBA ValueDef::describe()

CORBA::ValueMember Structure

/I'DL
struct ValueMember {
|dentifier name;

See Also

Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
TypeCode type;
IDLType type_def;
Visibility access;
3
/I C++
struct ValueMember {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec _ version;
TypeCode type;
IDLType type def;
Visibility access;
3
This structure describes an IDL value type member in the interface repository.
The structure members consist of the following:

name The name of the value type member.

id The identifier of the value type member.

defined_in The identifier of where the value type member is defined.

version The version of the value type member.

type The TypeCode of the value type member.

type_def The type definition of the value type member.

access The accessibility of the value type member (public or
private).

CORBA ValueMemberSeq

CORBA::ValueMemberSeq Sequence

/I C++
class ValueMemberSeq {

Eo

61

See Also

See Also

See Also

62

A sequence of ValueMember structures in the interface repository.

CORBA ValueMember
CORBA ORB create_value_tc()

“About Sequences”

CORBA::ValueModifier Type

typedef Short ValueModifier;

A modifier for an IDL value type in the interface repository. Possible values
consist of:

VM_NONE The IDL value type has no modifiers.

VM_CUSTOM The IDL value type has the custom modifier. This
specifies that the value type uses custom marshalling.

VM_ABSTRACT The IDL value type has the abstract modifier. Value

types that are abstract can not be instantiated.
Essentially they are a bundle of IDL operation
signatures with a purely local implementation.

VM_TRUNCATABLE The IDL value type has the truncatable =~ modifier. A
value with a state that derives from another value
with a state can be specified as truncatable. A
truncatable type means the object can be truncated to
the base type.

CORBA ORB: create_value_tc()
CORBA TypeCode :: type_modifier()

CORBA::VersionSpec Type

/I C++
typedef char* VersionSpec;

A string that describes a version of an IDL item in the interface repository.
Version information can be associated with many IDL data types including
modules, constants, types, exceptions, attributes, and operations.

CORBA Contained :: version

See Also

See Also

CORBA Contained :: move()
CORBA Container

CORBA::Visibility Type
typedef Short Visibility;

Indicates the visibility of a state member of an IDL value type in the interface
repository. Possible values consist of:

PRIVATE_MEMBER
PUBLIC_MEMBER

IDL value types can have state members that are either public or private.
Private members are not visible to clients but are only visible to
implementation code and the marshalling routines.

CORBA ValueMember
CORBA ValueMemberDef :: access

CORBA ValueDef :: create value_member()
CORBA TypeCode :: member visibility()

CORBA::WCharSeq Sequence

/I C++

class WCharSeq {

J2

A sequence of WCharvalues used in marshalling custom value types.

CORBA DataOutputStream
CORBA DatalnputStream

“About Sequences”

CORBA::WStringValue Value Box

/I C++
class WStringValue : public DefaultValueRefCountBas ef{

public:
/I constructors

63

See Also

64

WStringValue();

WStringValue(const WStringValue& val);

WStringValue(char* str);

WStringValue(const char* str);

WStringValue(const String_var& var);

/I assignment operators

WStringValue& operator=(char* str);

WStringValue& operator=(const char* str);

WStringValue& operator=(const String_var& var);

/I accessor

const char* _value() const;

/I modifiers

void _value(char* str);

void _value(const char* str);

void _value(const String_var& var);

/I explicit argument passing conversions for un derlying string

const char* _boxed_in() const;

char*& _boxed_inout();

char*& boxed_out();

/I ...other String_var methods such as overload ed

/I subscript operators, efc....

static WStringValue* _downcast(ValueBase* base) ;
protected:

~WStringValue();

\

WStringValue is a value box class that provides a reference-counted version
of a wide string.

“About Value Boxes”

CORBA::AbstractinterfaceDef
Interface

AbstractinterfaceDef describes an abstract IDL interface in the interface
repository. It inherits from the InterfaceDef interface.

//IDL

interface AbstractinterfaceDef : InterfaceDef
{

J2

65

66

CORBA::AliasDef Interface

See Also

See Also

The AliasDef interface describes an IDL typedef that aliases another

definition in the interface repository. It is used to represent an IDL typedef .

//IDL in module CORBA.

interface AliasDef : TypedefDef {
attribute IDLType original_type_def;
h

The following items are described for this interface:
® The describe() IDL operation
® The original type def attribute

CORBA Contained
CORBA Container :: create_alias()

AliasDef::describe()

/I'DL
Description describe();

Inherited from Contained (which is inherited by TypedefDef), the describe()
operation returns a structure of type Contained::Description . The

DefinitionKind for the kind member is dk_Alias . The value member is an
any whose TypeCode is _tc_AliasDescription and whose value is a structure

of type TypeDescription
CORBA TypedefDef::describe()

AliasDef::original_type def Attribute

//'IDL
attribute IDLType original_type_def;

67

Identifies the type being aliased. Modifying the original type_ def attribute
will automatically update the type attribute (the type attribute is inherited

from TypedefDef which in turn inherits it from IDLType). Both attributes
contain the same information.

See Also CORBA IDLType:type

68

CORBA::Any Class

The class Any implements the IDL basic type any, which allows the
specification of values that can express an arbitrary IDL type. This allows a
program to handle values whose types are not known at compile time. The
IDL type any is most often used in code that uses the interface repository or
the dynamic invocation interface (DII) or with CORBA services in general.

Consider the following interface:

/I DL
interface Example {
void op(in any value);

3

A client can construct an any to contain an arbitrary type of value and then
pass this in a call to op() . A process receiving an any must determine what
type of value it stores and then extract the value (using the TypeCode). Refer
to the CORBA Programmer’s Guide for more details.

Methods and structures are as follows:

Any()

~Any()

from_boolean structure
from_char structure
from_fixed structure
from_octet structure
from_string structure
from_wchar structure
from_wstring structure
it_get streamable()
it_set_streamable()
it_take_streamable()

/| C++

operator=()
replace()
to_boolean structure
to_char structure
to_fixed structure
to_object structure
to_octet structure
to_string structure
to_wchar structure
to_wstring structure

type()

class IT_ART_API Any : public ITCxxMemBase

{
public:

Any() ;

69

70

Any(
const Any& any
)
Any(
TypeCode_ptr tc,
void* value,
Boolean release=0
)
Any(
IT_Streamable* strm,
IT_Streamable::MemPolicy policy
)
~Any();

Any& operator=(
const Any&

);

/

/I type-unsafe operations

/)

void replace(
TypeCode_ptr tc,
void* value,
Boolean release=0

);
TypeCode_ptr type() const;

void type(
TypeCode_ptr new_type

)
const void* value() const;

struct from_boolean {
from_boolean(
Boolean b
)
Boolean m_val;

¥

struct from_octet {

from_octet(
Octet octet

)i

Octetm_val;

I3

struct from_char {
from_char(
Charc
)
Char m_val;

I3

struct from_wchar {
from_wchar(
WChar ¢
).

Char m_val;
h

struct from_string {
from_string(
char* s,
ULong b,
Boolean nocopy =0
)i
from_string(
const char* s,
ULong b
)i
char* m_val;
ULong m_bound;
Boolean m_nocopy;

I

struct from_wstring {
from_wstring(
WChar*s,
ULong b,
Boolean nocopy =0
)
from_wstring(
const WChar* s,

71

72

ULong b
)
WChar* m_val;
ULong m_bound;
Boolean m_nocopy;

¥

struct from_fixed {
from_fixed(
const Fixed& f,
UShort digits,
Short scale
)
const Fixed& m_val;
UShort m_digits;
Short m_scale;
%

struct to_boolean {
to_boolean(
Boolean& b
)
Boolean& m_ref;

¥

struct to_char {
to_char(
Char&c
) .

har& m_ref;
h

struct to_wchar {
to_wchar(
WChar& ¢
)
Char& m_ref;
I

struct to_octet {
to_octet(
Octet& o

)

Octet& m_ref;
h

structto_object {
to_object(
Object_ptr& obj

).

I3

bject_ptr& m_ref;

struct to_string {
to_string(
char*& s,
ULong b
)
char*& m_ref;
ULong m_bound;
2

structto_wstring {
to_wstring(
WChar*& s,
ULong b
)i
WChar*& m_ref;
ULong m_bound;
h

structto_fixed {
to_fixed(
Fixed& f,
UShort digits,
Short scale
)
Fixed& m_ref;
UShort m_digits;
Short m_scale;
3

IT_Streamable* it_get_streamable(
Boolean make_copy =0
) const;

74

Boolean it_take_streamable(
IT_Streamable* &strm

);

void it_set_streamable(
IT_Streamable* strm,
IT_Streamable::MemPalicy policy

);

private:

Any::Any() Constructors

Any();

The default constructor creates an Any with a TypeCode of type tk null and
with a zero value.

Any(
const Any& any

)
This copy constructor duplicates the TypeCode_ptr of any and copies the value.

Any(
TypeCode_ptr tc,

void* value,
Boolean release =0

)

Constructs an Any with a specific TypeCode and value. This constructor is
needed for cases where it is not possible to use the default constructor and
operator<<=() . For example, since all strings are mapped to char* , it is not
possible to create an Any with a specific TypeCode for a bounded string.

This constructor is not type-safe; you must ensure consistency between the
TypeCode and the actual type of the argument value .

Any(
IT_Streamable* strm,

IT_Streamable::MemPalicy policy
)

Parameters

Examples

See Also

See Also

Constructs an Any from a stream.

type A reference to a CORBA::TypeCode . The constructor duplicates
this object reference.

val The value pointer. A conforming program should make no
assumptions about the lifetime of the value passed in this
parameter once it has been passed to this constructor with
release=1.

release A boolean variable to decide ownership of the storage pointed
to by value . If set to 1, the Any object assumes ownership of
the storage. If the release parameter is set to O (the default),

the calling program is responsible for managing the memory
pointed to by value .

IT_Streamable*
IT_Streamable:
:MemPolicy

The easiest and the type-safe way to construct an Any is to use the default
constructor and then use operator<<=() to insert a value into the Any. For
example:

/I C++

CORBA::Short s =10;
CORBA::Any a;
a<<=s;

CORBA::Any::operator<<=()

Any::~Any() Destructor

~Any();

Destructor for an Any. Depending on the value of the Boolean release parameter
to the complex constructor, it frees the value contained in the Any based on
the TypeCode of the Any. It then frees the TypeCode .

CORBA::Any::Any()

75

76

Any::from_type Structure

struct from_boolean {
from_boolean(

Boolean b
);
Boolean m_val;
2
struct from_char {
from_char(
Charc
);
Charm_val;
h
struct from_fixed {
from_fixed(
const Fixed& f,
UShort digits,
Short scale
);
const Fixed& m_val;
UShort m_digits;
Short m_scale;
h
struct from_octet {
from_octet(
Octet octet
)
Octetm_val;
2
struct from_string {
from_string(
char*s,
ULong b,
Boolean nocopy =0
)
from_string(
const char* s,
ULong b

)
char* m_val;

See Also

Enhancement

ULong m_bound;
Boolean m_nocopy;
h
struct from_wchar {
from_wchar(
WChar c
)
WChar m_val,
h
struct from_wstring {
from_wstring(
WChar* s,
ULong b,
Boolean nocopy =0
)
from_wstring(
const WChar* s,
ULong b
)i
WChar* m_val;
ULong m_bound;
Boolean m_nocopy;

I3

Inserts the specific IDL type into the any. These helper structures are nested
in the any class interface to distinguish these IDL data types from each other.
Because these IDL types are not required to map to distinct C+ + types, another
means of distinguishing them from each other is necessary so that they can
be used with the type-safe any interface.

CORBA:Any:ito_ type

Any::it_get_streamable()

IT_Streamable* it_get_streamable(
Boolean make_copy =0

) const;

IONA-specific enhancement.

77

Enhancement

Enhancement

Parameters

78

Any::it_set_streamable()

void it_set_streamable(
IT_Streamable* strm,

IT_Streamable::MemPalicy policy
)
IONA-specific enhancement.

Any::it_take_streamable()

Boolean it_take streamable(
IT_Streamable* &strm

)

IONA-specific enhancement.

Any::operator=()

Any& operator=(
const Any& a

)
The assignment operator releases its TypeCode and frees the value if necessary.

a The value to duplicate. The method duplicates the TypeCode
of a and deep copies the parameter’s value.

void replace(
TypeCode_ptr tc,
void* value,
Boolean release =0

)X

This method is needed for cases where it is not possible to use operator<<=()

to insert into an existing Any. For example, because all strings are mapped to
char* , itis not possible to create an Any with a specific TypeCode for a bounded
string.

Parameters

tc A reference to a CORBA:TypeCode . The method duplicates
this object reference.

value The value pointer. A conforming program should make no
assumptions about the lifetime of the value passed in this
parameter if it has been passed to Any:replace() with
release=1.

release A boolean variable to decide ownership of the storage pointed
to by value . If set to 1, the Any object assumes ownership of
the storage. If the release parameter is set to O (the default),
the calling program is responsible for managing the memory
pointed to by value .

This function is not type-safe; you must ensure consistency between the
TypeCode and the actual type of the argument value .

Any::to_type Structure

struct to_boolean {
to_boolean(

Boolean& b
)
Boolean& m_ref;

I3

struct to_char {
to_char(
Char&c
).

har& m_ref;
h

struct to_fixed {
to_fixed(
Fixed& f,
UShort digits,
Short scale
)

Fixed& m_ref;

79

80

UShort m_digits;
Short m_scale;

I3

struct to_object {
to_object(
Object_ptr& obj
);
bject_ptr& m_ref;
3

struct to_octet {
to_octet(
Octet& o
) .

ctet& m_ref;
J2

struct to_string {
to_string(
char*&s,
ULong b
)
chart& m_ref;
ULong m_bound,;
h

struct to_wchar {
to_wchar(
WChar& ¢

)
I3

Char& m_ref;

struct to_wstring {
to_wstring(
WChar*& s,
ULong b
);
WChar*& m_ref;
ULong m_bound,;
%

See Also

Parameters

Extracts the specific IDL type from the any. These helper structures are nested
in the any class interface to distinguish these IDL data types from each other.
Because these IDL types are not required to map to distinct C+ + types, another
means of distinguishing them from each other is necessary so that they can
be used with the type-safe any interface.

CORBA::Any:from_ type

Any::type()
TypeCode_ptr type() const;
Returns the Typecode of the Object encapsulated within the Any.

void type(TypeCode_pitr t);
Sets the Typecode of the Object encapsulated within the Any.

t The TypeCode of the object.

81

82

CORBA::ArrayDef Interface

See Also

See Also

The ArayDef interface represents a one-dimensional array in an interface
repository. A multi-dimensional array is represented by an ArrayDef with an
element type that is another array definition. The final element type
represents the type of element contained in the array. An instance of
interface ArrayDef can be created using create_array() .

// IDL in module CORBA.
interface ArrayDef : IDLType {

attribute unsigned long length ;
readonly attribute TypeCode element type ;
attribute IDLType element_type def ;

g

CORBA IDLType
CORBA ArrayDef::element_type def

CORBA Repository :: create_array()

ArrayDef::element_type Attribute

//'IDL
readonly attribute TypeCode element_type;

Identifies the type of the element contained in the array. This contains the
same information as in the element type def attribute.

CORBA ArrayDef::element_type def

ArrayDef::element_type def Attribute

//'IDL
attribute IDLType element type def;

Describes the type of the element contained within the array. This contains
the same information as in the attribute element_type attribute.

83

The type of elements contained in the array can be changed by changing this
attribute. Changing this attribute also changes the element type attribute.

See Also CORBA ArrayDef.:element type

ArrayDef::length Attribute

/I'DL
attribute unsigned long length;

Returns the number of elements in the array.

Specifies the number of elements in the array.

84

CORBA::AttributeDef Interface

See Also

See Also

The AttributeDef interface describes an attribute of an interface in the
interface repository.

// IDL in module CORBA.
interface AttributeDef : Contained {

readonly attribute TypeCode type ;
attribute IDLType type_def ;

attribute AttributeMode mode;
J2

The inherited describe() method is also described.

CORBA Contained
CORBA InterfaceDef::create_attribute()

AttributeDef::describe()

//'IDL
Description describe();

Inherited from Contained , the describe() ~ method returns a structure of type

Contained::Description . The DefinitionKind for the kind member of this
structure is dk_Attibute . The value member is an any whose TypeCode is
_tc_AttributeDescription . The value is a structure of type
AttributeDescription

CORBA Contained::describe()

AttributeDef::mode Attribute

//'IDL
attribute AttributeMode mode;

/I C++
virtual AttributeMode mode() = 0;

Returns the mode of the attribute.

85

See Also

See Also

86

/I C++
virtual void mode(

AttributeMode _itvar_mode
)=0,

Specifies whether the attribute is read and write (ATTR_NORMALor read-only
(ATTR_READONLY

AttributeDef::type Attribute

/I'DL
readonly attribute TypeCode type;
/I C++

virtual TypeCode_ptr type() =0;

Returns the type of this attribute. The same information is contained in the
type_def attribute.

CORBA TypeCode
CORBA AttributeDef::type_def

AttributeDef::type_def Attribute

/I'DL
attribute IDLType type def;

Il C++
virtual IDLType_ptr type_def() = 0;

Returns the type of this attribute.

/I C++
virtual void type_def(
IDLType_ptr _itvar_type_def
)=0;
Describes the type for this attribute. The same information is contained in the

type attribute. Changing the type_def attribute automatically changes the
type attribute.

CORBA IDLType
CORBA AttributeDef::type

CORBA::ConstantDef Interface

Interface ConstantDef describes an IDL constant in the interface repository.
The name of the constant is inherited from Contained

//'IDL
/lin module CORBA.
interface ConstantDef : Contained {

readonly attribute TypeCode type ;
attribute IDLType type_def ;
attribute any value ;

3

The inherited operation describe() is also described.

See Also CORBA Contained
CORBA Container :: create_constant()

ConstantDef::describe()

//'IDL
Description describe();

Inherited from Contained |, describe() returns a structure of type Contained :
:Description

The kind member is dk_Constant

The value member is an any whose TypeCode is _tc_ConstantDescription
and whose value is a structure of type ConstantDescription

See Also CORBA Contained::describe()

ConstantDef::type Attribute

/DL
readonly attribute TypeCode type;

87

Orbix 2000 Programmer’s Reference Java Edition

See Also

See Also

See Also

88

Identifies the type of this constant. The type must be a TypeCode for one of the
simple types (such as long , short , float , char , string , double , boolean |,
unsigned long , and unsigned short). The same information is contained in
the type_def attribute.

CORBA ConstantDef::type_def

ConstantDef::type def Attribute

/I \DL
attribute IDLType type def;

Returns the type of this constant.

Identifies the type of the constant. The same information is contained in the
type attribute.

The type of a constant can be changed by changing its type def attribute.
This also changes its type attribute.

CORBA ConstantDef::type

ConstantDef::value Attribute

/I \DL
attribute any value;

Returns the value of this attribute.

Contains the value for this constant. When changing the value attribute, the
TypeCode of the any must be the same as the type attribute.

CORBA TypeCode

CORBA::ConstructionPolicy Interface

When new object references are created, the ConstructionPolicy object
allows the caller to specify that the instance should be automatically
assigned membership in a newly created policy domain. When a policy
domain is created, it also has a DomainManager object associated with it. The
ConstructionPolicy object provides a single operation that makes the

DomainManager object.

// IDL in CORBA Module
interface ConstructionPoalicy: Policy {
void make_domain_manager (
in CORBA::InterfaceDef object_type,
in boolean constr_policy
)
g

ConstructionPolicy::make_domain_manager()

//'IDL
void make_domain_manager(
in CORBA:: InterfaceDef object_type,

in boolean constr_policy
);

This operation sets the construction policy that is to be in effect in the policy
domain for which this ConstructionPolicy object is associated.

89

Parameters

See Also

920

object_type

constr_policy

The type of the objects for which domain managers will be
created. If this is nil, the policy applies to all objects in the
policy domain.

A value of true indicates to the ORB that new object
references of the specified object type are to be associated
with their own separate policy domains (and associated
domain manager). Once such a construction policy is set, it
can be reversed by invoking make domain manager() again
with the value of false.

A value of false indicates the construction policy is set to
associate the newly created object with the policy domain of
the creator or a default policy domain.

You can obtain a reference to the newly created domain manager by calling
get_domain_managers() on the newly created object reference.

CORBA DomainManager

CORBA Object :

get_domain_managers()

CORBA::Contained Interface

Interface Contained is an abstract interface that describes interface
repository objects that can be contained in a module, interface, or repository.
It is a base interface for the following interfaces:

ModuleDef
InterfaceDef
ConstantDef

TypedefDef
ExceptionDef
AttributeDef
OperationDef
StructDef
EnumDef
UnionDef
AliasDef
ValueDef

The complete interface is shown here:

/DL
/I ln module CORBA.
interface Contained : IRObject {

Il read/write interface

attribute Repositoryld id ;
attribute Identifier name
attribute VersionSpec version ;

Il read interface
readonly attribute Container defined in ;
readonly attribute ScopedName absolute_name ;
readonly attribute Repository containing_repository
struct Description {

DefinitionKind kind;

any value;
h

Description describe ();

91

[write interface

void move(
in Container new_container,
in Identifier new_name,
in VVersionSpec new_version

);

See Also }, CORBA Container
CORBA IRObject

Contained::absolute_name Attribute

/DL
readonly attribute ScopedName absolute_name;

Gives the absolute scoped name of an object.
See Also CORBA ScopedName

Contained::containing_repository Attribute

/I \DL
readonly attribute Repository containing_repository;

Gives the Repository within which the object is contained.

Contained::defined_in Attribute

/I \DL
attribute Container defined_in;

Specifies the Container for the interface repository object in which the object
is contained.

An IFR object is said to be contained by the IFR object in which it is defined.
For example, an InterffaceDef ~ object is contained by the ModuleDef in which
it is defined.

92

See Also

See Also

A second notion of contained applies to objects of type AttributeDef or
OperationDef . These objects may also be said to be contained in an
InterfaceDef object if they are inherited into that interface. Note that
inheritance of operations and attributes across the boundaries of different
modules is also allowed.

CORBA Container::contents()

Contained::describe()

/I'DL
Description describe();

Returns a structure of type Contained::Description

The kind field of the Description ~ structure contains the same value as the
def kind attribute that Contained inherits from IRObject .

CORBA Container::describe _contents()
CORBA DefinitionKind

Contained::Description Structure

//'IDL
struct Description {

DefinitionKind kind;
any value;

I3

This is a generic form of description which is used as a wrapper for another
structure stored in the value field.

Depending on the type of the Contained object, the value field will contain a
corresponding description structure:

ConstantDescription
ExceptionDescription
AttributeDescription
OperationDescription
ModuleDescription
InterfaceDescription
TypeDescription

93

See Also

94

The last of these, TypeDescription is used for objects of type StructDef
UnionDef , EnumDef, and AliasDef (it is associated with interface TypedefDef
from which these four listed interfaces inherit).

Contained::id Attribute

//IDL
attribute Repositoryld id;

A Repositoryld provides an alternative method of naming an object which is
independent of the ScopedName.

In order to be CORBA compliant the naming conventions specified for
CORBA Repositorylds ~ should be followed. Changing the id attribute
changes the global identity of the contained object. It is an error to change
the id to a value that currently exists in the contained object’s Repository .

Contained::move()

/I DL

void move(
in Container new_container,
in Identifier new_name,

in VersionSpec new_version
)
Removes this object from its container, and adds it to the container specified
by new_container . The new container must:
®* Bein the same repository.
® Be capable of containing an object of this type.
* Not contain an object of the same name (unless multiple versions are
supported).

The name attribute of the object being moved is changed to that specified by
the new_name parameter. The version attribute is changed to that specified
by the new_version parameter.

CORBA Container

See Also

Contained::name Attribute

/DL
attribute Identifier name;

Return or set the name of the object within its scope. For example, in the
following definition:

/1'DL

interface Example {
void op();

g

the names are Example and op. A name must be unique within its scope but is
not necessarily unique within an interface repository. The name attribute can
be changed but it is an error to change it to a value that is currently in use
within the object’s Container .

CORBA Contained :: id

Contained::version Attribute

//IDL
attribute VersionSpec _ version,

Return or set the version number for this object. Each interface object is
identified by a version which distinguishes it from other versioned objects of
the same name.

95

96

CORBA::Container Interface

Interface Container ~ describes objects that can contain other objects in the
interface repository. A Container can contain any number of objects derived
from the Contained interface. Such objects include:

AttributeDef
ConstantDef
ExceptionDef
InterfaceDef
ModuleDef

OperationDef

TypedefDef
ValueDef

ValueMemberDef
The interface is shown here:

/DL
// In CORBA Module
interface Container : IRObject {
Il read interface
Contained lookup (
in ScopedName search_name);

ContainedSeq contents (
in DefinitionKind limit_type,
in boolean exclude_inherited

)

ContainedSeq lookup_name (
in Identifier search_name,

inlong levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited

)

struct Description {
Contained contained_object;

DefinitionKind kind;

97

any value;

h
typedef sequence<Description> DescriptionSeq ~ ;
DescriptionSeq describe_contents (

in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);

[write interface

ModuleDef create_module (
in Repositoryld id,
in Identifier name,
in VVersionSpec version

);

ConstantDef create_constant (
in Repositoryld id,
in Identifier name,
in VVersionSpec version,
in IDLType type,
in any value

)X

StructDef create_struct (
in Repositoryld id,
in Identifier name,

in VVersionSpec version,

in StructMemberSeq members
);
UnionDef create_union (

in Repositoryld id,

in Identifier name,

in VVersionSpec version,

in IDLType discriminator_type,
in UnionMemberSeq members

)

EnumDef create_enum (
in Repositoryld id,

in Identifier name,
in VersionSpec version,
in EnumMemberSeq members

)

AliasDef create alias (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType original_type

)

InterfaceDef create_interface

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in InterfaceDefSeq base_interfaces
in boolean is_abstract

)

ValueDef create value (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base values,
in InterfaceDef supported_interface,
in InitializerSeq initializers

)

ValueBoxDef create value box

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in IDLType original_type_def

)

ExceptionDef create_exception

in Repositoryld id,
in Identifier name,

See Also

Parameters

See Also

100

in VVersionSpec version,

in StructMemberSeq members

)X

NativeDef create native (

in Repositoryld id,

in Identifier name,

in VVersionSpec version,
)
}; I End Interface Container

CORBA IRObject

Container::contents()

/I'DL

ContainedSeq contents(
in DefinitionKind

limit_type,

in boolean exclude_inherited

)X

Returns a sequence of Contained objects that are directly contained in (defined

in or inherited into) the

target object. This operation can be used to navigate

through the hierarchy of definitions—starting, for example, at a Repository .

limit_type

exclude_inherited

If set to dk_all , all of the contained interface reposi-
tory objects are returned. If set to the

DefinitionKind for a specific interface type, it
returns only interfaces of that type. For example, if
set to, dk_Operation , then it returns contained oper-
ations only.

Applies only to interfaces. If true, no inherited objects
are returned. If false, objects are returned even if they
are inherited.

CORBA Container:describe_contents()

CORBA DefinitionKind

Parameters

Exceptions

See Also

Container::create_alias()

//'IDL
AliasDef create_alias(

in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType original_type
)
Creates a new AliasDef object within the target Container . The defined_in

attribute is set to the target Container . The containing_repository attribute
is set to the Repository in which the new AliasDef object is defined.

id The repository ID for the new AliasDef object. An excep-
tion is raised if an interface repository object with the same
ID already exists within the object’s repository.

name The name for the new AliasDef object. It is an error to
specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version for the new AliasDef .
original_type The original type that is being aliased.

BAD_PARAM An object with the specified id already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified name already exists within this Container and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Container . Certain
minor code 4 interfaces derived from Container may restrict the types of
definitions that they may contain.

CORBA AliasDef

Container::create_constant()

//'IDL
ConstantDef create_constant(

101

in Repositoryld id,
Identifier name,

n VersionSpec _ version,
n IDLType type,

in any value

)

Creates a ConstantDef object within the target Container . The defined in
attribute is set to the target Container . The containing_repository attribute
is set to the Repository in which the new ConstantDef object is defined.

555

Parameters
id The repository ID of the new ConstantDef object. It is an error to
specify an ID that already exists within the object’s repository.
name The name of the new ConstantDef object. It is an error to specify a
name that already exists within the object’s Container ~when multi-
ple versions are not supported.
version The version number of the new ConstantDef object.
type The type of the defined constant. This must be one of the simple
types (long , short , ulong , ushort , float , double , char , string
boolean).
value The value of the defined constant.
Exceptions
BAD_PARAM An object with the specified id already exists in the reposi-
minor code 2tory.
BAD_PARAM The specified name already exists within this Container and
minor code 3 multiple versions are not supported.
BAD_PARAM The created object is not allowed by the Container . Certain
minor code 4 interfaces derived from Container may restrict the types of
definitions that they may contain.
See Also CORBA ConstantDef

Container::create_enum()

/I \DL
EnumDef create_enum(

102

Parameters

Exceptions

See Also

in Repositoryld id,

in Identifier name,
in VersionSpec _ version,
in EnumMemberSegmembers

)i

Creates a new EnumDef object within the target Container . The defined in
attribute is set to Container . The containing_repository attribute is set to
the Repository in which the new EnumDef object is defined.

id The repository ID of the new EnumbDef object. It is an error to spec-
ify an ID that already exists within the Repository .

name The name of the EnumDef object. It is an error to specify a name
that already exists within the object’s Container when multiple
versions are not supported.

version The version number of the new EnumbDef object.

members A sequence of structures that describes the members of the new
EnumbDef object.

BAD_PARAM An object with the specified id already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified name already exists within this Container ~and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Container . Certain
minor code 4 interfaces derived from Container may restrict the types of
definitions that they may contain.

CORBA EnumbDef

Container::create_exception()

/I''DL

ExceptionDef create_exception(
in Repositoryld id,
in Identifier name,

in VersionSpec _ version,

103

Parameters

Exceptions

See Also

104

in StructMemberSeq members

)

Creates a new ExceptionDef object within the target Container . The

defined in attribute is set to Container . The containing_repository at-
tribute is set to the Repository in which new ExceptionDef object is defined.
The type attribute of the StructMember structures is ignored and should be set
to _tc void .

id The repository ID of the new ExceptionDef object. It is an error to
specify an ID that already exists within the object’s repository.

name The name of the new ExceptionDef object. It is an error to spec-
ify a name that already exists within the object’s Container ~when
multiple versions are not supported.

version A version number for the new ExceptionDef object.

members A sequence of StructMember structures that describes the mem-
bers of the new ExceptionDef object.

BAD_PARAM An object with the specified id already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified name already exists within this Container and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Container . Certain
minor code 4 interfaces derived from Container may restrict the types of
definitions that they may contain.

CORBA ExceptionDef

Container::create_interface()

/I'DL
InterfaceDef create_interface(

in Repositoryld id,

in Identifier name,
in VersionSpec _ version,
in InterfaceDefSeq base_interfaces

Parameters

Exceptions

See Also

in boolean is_abstract
);

Creates a new empty InterfaceDef object within the target Container. The
defined in attribute is set to Container . The containing_repository at-
tribute is set to the Repository in which the new InterfaceDef object is
defined.

id The repository ID of the new InterfaceDef object. It is
an error to specify an ID that already exists within the
object’s repository.

name The name of the new InterfaceDef object. It is an error
to specify a name that already exists within the object’s
Container when multiple versions are not supported.

version A version for the new InterfaceDef object.

base_interfaces A sequence of InterfaceDef objects from which the
new interface inherits.

is_abstract If true the interface is abstract.

BAD_PARAM An object with the specified id already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified name already exists within this Container and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Container . Certain
minor code 4 interfaces derived from Container ~may restrict the types of
definitions that they may contain.

CORBA InterfaceDef

Container::create_module()
/DL

ModuleDef create_module (

in Repositoryld id,
in Identifier name,

in VersionSpec _ version

105

Parameters

Exceptions

106

)X

Creates an empty ModuleDef object within the target Container . The

defined in attribute is set to Container . The containing_repository at-
tribute is set to the repository in which the newly created ModuleDef object is
defined.

id The repository ID of the new ModuleDef object. It is an error to
specify an ID that already exists within the object’s repository.

name The name of the new ModuleDef object. It is an error to specify a
name that already exists within the object’s Container ~when mul-
tiple versions are not supported.

version A version for the ModuleDef object to be created.

BAD_PARAM An object with the specified id already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified name already exists within this Container and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Container . Certain
minor code 4 interfaces derived from Container may restrict the types of
definitions that they may contain.

Container::create_native()

/I \DL
NativeDef create_native(

in Repositoryld id,

in Identifier name,

in VersionSpec version,
)

Creates a NativeDef object within the target Container . The defined in
attribute is set to Container . The containing_repository attribute is set to
the repository in which the newly created NativeDef object is defined.

Parameters

Exceptions

id The repository ID of the new NativeDef object. It is an error to
specify an ID that already exists within the object’s repository.

name The name of the new NativeDef object. It is an error to specify a
name that already exists within the object’s Container ~when mul-
tiple versions are not supported.

version A version for the NativeDef object to be created.

BAD_PARAM An object with the specified id already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified name already exists within this Container and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Container . Certain
minor code 4 interfaces derived from Container ~may restrict the types of
definitions that they may contain.

Container::create_struct()

// IDL
StructDef create_struct(

in Repositoryld id,
in Identifier name,

in VersionSpec version,
in StructMemberSeq members

)i

Creates a new StructDef object within the target Container . The defined_in
attribute is set to Container . The containing_repository attribute is set to
the repository in which the new StructDef ~ object is defined. The type attribute
of the StructMember structures is ignored and should be set to _tc void .

107

Parameters

Exceptions

See Also

108

id The repository ID of the new StructDef object. It is an error to
specify an ID that already exists within the object’s repository.

name The name of the new StructDef object. It is an error to specify a
name that already exists within the object’s Container ~when mul-
tiple versions are not supported.

version A version for the new StructDef object.

members A sequence of StructMember structures that describes the mem-
bers of the new StructDef object.

BAD_PARAM An object with the specified id already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified name already exists within this Container and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Container . Certain
minor code 4 interfaces derived from Container may restrict the types of
definitions that they may contain.

CORBA StructDef

Container::create_union()

/I \DL
UnionDef create_union(

in Repositoryld id,
in Identifier name,

in VersionSpec version,

in IDLType discriminator_type,

in UnionMemberSeq members
)
Creates a new UnionDef object within the target Container . The defined_in
attribute is set to the target Container . The containing_repository attribute
is set to the repository in which the new UnionDef object is defined. The type
attribute of the UnionMember structures is ignored and should be set to

tc void .

Parameters

Exceptions

See Also

id The repository ID of the new UnionDef object. It is
an error to specify an ID that already exists within
the object’s repository.

name The name of the new UnionDef object. It is an error
to specify a name that already exists within the
object’'s Container when multiple versions are not

supported.
version A version for the new UnionDef object.
discriminator_type The type of the union discriminator.
members A sequence of UnionMember structures that

describes the members of the new UnionDef object.

BAD_PARAM An object with the specified id already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified name already exists within this Container and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Container . Certain
minor code 4 interfaces derived from Container may restrict the types of
definitions that they may contain.

CORBA UnionDef

Container::create_value()

/I IDL
ValueDef create_value(
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,

109

Parameters

Exceptions

110

in InterfaceDef supported_interfaces,
in InitializerSeq initializers
)
Creates a new empty ValueDef object within the target Container . The

defined in attribute is set to Container . The containing_repository at-
tribute is set to the repository in which the new ValueDef object is defined.

id The repository ID of the new ValueDef object. It is
an error to specify an ID that already exists within
the object’s repository.

name The name of the new ValueDef object. It is an error
to specify a name that already exists within the
object’'s Container when multiple versions are not

supported.
version A version for the new ValueDef object.
is_custom If true the value type is custom.
is_abstract If true the value type is abstract.
base value The base value for this value type.
is_truncatable if true the value type is truncatable.
abstract_base_values A sequence of ValueDef structures that describes the
base values of the new ValueDef object.
supported_interfaces The interface the value type supports.
initializers A sequence of initializers for the new ValueDef
object.

BAD_PARAM An object with the specified id already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified name already exists within this Container and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Container . Certain
minor code 4 interfaces derived from Container may restrict the types of
definitions that they may contain.

Parameters

Exceptions

Container::create_value_box()

//'IDL
ValueBoxDef create_value_box(

in Repositoryld _id,
in Identifier name,
in VersionSpec version,
in IDLType original_type_def
);
Creates a new empty ValueBoxDef object within the target Container . The

defined in attribute is set to Container . The containing_repository at-
tribute is set to the repository in which the new ValueBoxDef object is defined.

id The repository ID of the new ValueBoxDef object. It
is an error to specify an ID that already exists within
the object’s repository.

name The name of the new ValueBoxDef object. It is an
error to specify a name that already exists within the
object’s Container when multiple versions are not

supported.
version A version for the new ValueBoxDef object.
original_type_def The IDL data type of the value box.

BAD_PARAM An object with the specified id already exists in the reposi-
minor code 2tory.

BAD_PARAM The specified name already exists within this Container and
minor code 3 multiple versions are not supported.

BAD_PARAM The created object is not allowed by the Container . Certain
minor code 4 interfaces derived from Container may restrict the types of
definitions that they may contain.

Container::describe_contents()

//'IDL
DescriptionSeq describe_contents(

111

Parameters

See Also

112

in DefinitionKind

limit_type,

in boolean exclude_inherited,

)

in long max_returned_objs

Returns a sequence of structures of type Container::Description

describe_contents()

is a combination of operations Contained::describe()

and Container::contents()

limit_type

exclude_inherited

max_returned_objs

If this is set to dk_all , then all of the contained inter-
face repository objects are returned. If set to the
DefinitionKind for a particular interface repository
kind, it returns only objects of that kind. For example,
if set to dk_Operation , then it returns contained oper-
ations only.

Applies only to interfaces. If true, no inherited objects
are returned. If false, objects are returned even if they
are inherited.

The number of objects that can be returned in the call.
Setting a value of -1 means return all contained
objects.

CORBA Container::contents()

CORBA Contained::describe()

Container::Description Structure

/I \DL
struct Description {

Contained contained_object;

DefinitionKind

any value;

I3

kind;

This structure gives the object reference of a contained object, together with

its kind and value .

See Also

See Also

Each structure has the following members:

contained_object

kind

value

The object reference, of type Contained , of the con-
tained top level object. The describe() function can
be called on an object reference, of type Contained
to get further information on a top level object in the
repository.

The kind of the object being described.

An any type that may contain one of the following
structures:

ModuleDescription
ConstantDescription
TypeDescription
ExceptionDescription
AttributeDescription
ParameterDescription
OperationDescription
InterfaceDescription

CORBA Container::describe_contents()

CORBA Contained::describe()

Container::DescriptionSeq Sequence

/DL

typedef sequence<Description> DescriptionSeq;

A sequence of Container::Description structures in the interface repository.

CORBA Container::Description

“About Sequences”

Container::lookup()

/DL

Contained lookup(

in ScopedName search_name

)

113

Parameters

See Also

Parameters

114

Locates an object name within the target container. The objects can be directly
or indirectly defined in or inherited into the target container.

search_name The name of the object to search for relative to the target con-
tainer. If a relative name is given, the object is looked up rel-
ative to the target container. If search_ name is an absolute
scoped name (prefixed by “: "), the object is located relative
to the containing Repository .

CORBA Container :: lookup _name()
CORBA ScopedName

Container::lookup_name()

/I DL

ContainedSeq lookup_name (
in Identifier search_name,
inlong levels_to_search,
in DefinitionKind limit_type,

in boolean exclude_inherited
)
Locates an object or objects by name within the target container and returns
asequence of contained objects. The named objects can be directly or indirectly

defined in or inherited into the target container. (More than one object, having
the same simple name can exist within a nested scope structure.)

search_name The simple name of the object to search for.

levels to_search Defines whether the search is confined to the current
object or should include all interface repository
objects contained by the object. If set to -1, the cur-
rent object and all contained interface repository
objects are searched. If set to 1, only the current
object is searched.

See Also

limit_type

exclude_inherited

CORBA DefinitionKind

If this is set to dk_all , then all of the contained inter-
face repository objects are returned. If set to the
DefinitionKind for a particular interface repository
kind, it returns only objects of that kind. For example,
if set to dk_Operation , then it returns contained oper-
ations only.

Applies only to interfaces. If true, no inherited objects
are returned. If false, objects are returned even if they
are inherited.

115

116

CORBA::Context Class

Class CORBA:Context implements the OMG pseudo-interface Context . A
context is intended to represent information about the client that is
inconvenient to pass via parameters. An IDL operation can specify that it is
to be provided with the client’s mapping for particular identifiers (properties).
It does this by listing these identifiers following the operation declaration in a
context clause.

An IDL operation that specifies a context clause is mapped to a C++
member method that takes an extra input parameter of type Context ptr
just before the Environment parameter. A client can optionally maintain one
or more CORBA Context objects, that provide a mapping from identifiers
(string names) to string values. A Context object contains a list of properties;
each property consists of a name and a string value associated with that
name and can be passed to a method that takes a Context parameter.

You can arrange Context objects in a hierarchy by specifying parent-child
relationships among them. Then, a child passed to an operation also
includes the identifiers of its parent(s). The called method can decide
whether to use just the context actually passed, or the hierarchy above it.

The Context class is as follows:

/I''DL
pseudo interface Context {
readonly attribute Identifier context_name;
readonly attribute Context parent;
Context create_child(in Identifier child_ctx_name);
void set_one_value(in Identifier propname, in any p ropvalue);
void set_values(in NVList values);
void delete_values(in Identifier propname);
NVList get_values(in Identifier start_scope,
in Flags op_flags,
in Identifier pattern);

I8

class Context {
public:

117

const char * context name () const;
Context_ptr parent () const;
void create _child (
const char *,
Context_out
)i
void set one value (
const char *,
const Any &
)i
void set values (
NVList_ptr

void delete values (
const char *
)
void get values (
const char*,
Flags,
const char*,
NVList_out
);
2

Context::context_name()

const char *context_name() const;

Returns the name of the Context object. Ownership of the returned value is
maintained by the Context and must not be freed by the caller.

See Also CORBA Context :: create child()

Context::create_child()

void create_child(
const char *ctx_name,

Context_out child_ctx
)

118

Parameters

See Also

Parameters

Exceptions

Creates a child context of the current context. When a child context is passed
as a parameter to an operation, any searches (using CORBA Context ::

get values()) look in parent contexts if necessary to find matching property
names.

ctx_name The name of the child context. Context object names follow
the rules for IDL identifiers.

child_ctx The newly created context.

CORBA Context :: get values()

Context::delete_values()

void delete_values(
const char *prop_name

)i

Deletes the specified property value(s) from the context. The search scope is
limited to the Context object on which the invocation is made.

prop_name The property name to be deleted. If prop_name has a trailing
asterisk (*), all matching properties are deleted.

An exception is raised if no matching property is found.

Context::get values()

void get_values(
const char* start_scope,
Flags op_flags,
const char* prop_name,
NVList _outvalues

)

Retrieves the specified context property values.

119

Parameters

See Also

Parameters

See Also

120

start_scope The context in which the search for the values requested
should be started. The name of a direct or indirect parent
context may be specified to this parameter. If O is passed in,
the search begins in the context which is the target of the
call.

op_flags By default, searching of identifiers propagates upwards to
parent contexts; if the value CORBA::CTX_RESTRICT_SCOPHES
specified, then searching is limited to the specified search
scope or context object.

prop_name If prop_name has a trailing asterisk (*), all matching
properties and their values are returned.

values An NVList to contain the returned property values.

Context::parent()

Context_ptr parent() const;

Returns the parent of the Context object. Ownership of the return value is
maintained by the Context and must not be freed by the caller.

CORBA Context :: create child()

Context::set_one_value()

void set_one_value(
const char * prop_name,

const Any &value
);

Adds a property name and value to the Context . Although the value member
is of type Any, the type of the Any must be a string.

prop_name The name of the property to add.
value The value of the property to add.

CORBA Context :: set values()

Context::set_values()
void set_values(

NVList _ptrvalues
);

Sets one or more property values in the Context . The previous value of a
property, if any, is discarded.

Parameters
values An NVList containing the property_name:values to add or
change. In the NVList , the flags field must be set to zero, and
the TypeCode associated with an attribute value must be
CORBA _tc_string
See Also CORBA Context :: set one value()

121

122

CORBA::ContextList Class

See Also

A ContextList allows an application to provide a list of Context strings that
must be supplied when a dynamic invocation Request is invoked.

The Context is where the actual values are obtained by the ORB. The
ContextList ~ supplies only the context strings whose values are to be looked
up and sent with the request invocation. The serverless ContextList ~ object
allows the application to specify context information in a way that avoids
potentially expensive interface repository lookups for the information by the
ORB during a request.

/DL
pseudo interface ContextList {
readonly attribute unsigned long count;
void add(in string ctx);
string item(in unsigned long index) raises (CORBA:: Bounds);
void remove(in unsigned long index) raises (CORBA:: Bounds);

I3

/I C++
class ContextList {
public:
ULong count ();
void add (
const char* ctxt

void add_consume (
char* ctxt

)

const char* item (
ULong index

)

void remove (
ULong index

)

g

CORBA Object :: _create_request()

CORBA Reguest :: contexts

123

CORBA::ContextList Class

Parameters

See Also

Parameters

See Also

124

CORBA ORB: create_context_list()

ContextList::add()

void add(
const char* ctxt

)
Adds a context string to the context list.

ctxt A string representing context information.

CORBA ContextlList::add_consume()

ContextList::add_consume()

void add_consume(
char* ctxt

)X

Adds a context string to the context list. The memory of the ctxt parameter is
managed by the method. The caller cannot access the memory of ctxt after
it has been passed in because this method could copy and free the original
immediately.

ctxt A string representing context information.

CORBA ContextList::add()

ContextList::count()

ULong count();
Returns the number of context strings in the context list.

CORBA::ContextList Class

Parameters

ContextList::item()

const char* item(
ULong index
);

Returns the context item at the indexed location of the list. This return value
must not be released by the caller because ownership of the return value is
maintained by the ContextList

index The indexed location of the desired context item.

ContextList::remove()
void remove(

ULong index
)i

Removes from the context list the context item at the indexed location.

125

CORBA::ContextList Class

126

CORBA::Current Interface

See Also

The Current interface is the base interface for providing information about
the current thread of execution. Each ORB or CORBA service that needs its
own context derives an interface from Current to provide information that is
associated with the thread of execution in which the ORB or CORBA service
is running. Interfaces that derives from Cumrent include:

PortableServer::Current

Your application can obtain an instance of the appropriate Current interface
by invoking resolve _initial_references()

Operations on interfaces derived from Current access the state associated
with the thread in which they are invoked, not the state associated with the
thread from which the Current was obtained.

The IDL interface follows:

/DL

module CORBA {

Il interface for the Current object
interface Current {

I3

PortableServer::Current
CORBA ORB resolve_initial_references()

127

128

CORBA::CustomMarshal Value Type

Custom value types can override the default marshaling/unmarshaling
mechanism and provide their own way to encode/decode their state. If an
application’s value type is marked as custom, you use custom marshaling to
facilitate integration of such mechanisms as existing class libraries and other
legacy systems. Custom marshaling is not to be used as the standard
marshaling mechanism.

CustomMarshal is an abstract value type that is meant to be implemented by
the application programmer and used by the ORB. For example, if an
application’s value type needs to use custom marshaling, the IDL declares it
explicitly as follows:

/I Application-specific IDL
custom valuetype type {
// optional state definition

b

When implementing a custom value type such as this, you must provide a
concrete implementation of the CustomMarshal operations so that the ORB is
able to marshal and unmarshal the value type. Each custom marshaled value
type needs its own implementation.

You can use the skeletons generated by the IDL compiler as the basis for
your implementation. These operations provide the streams for marshaling.
Your implemented CustomMarshal code encapsulates the application code
that can marshal and unmarshal instances of the value type over a stream
using the CDR encoding. It is the responsibility of your implementation to
marshal the value type’s state of all of its base types (if it has any).

The implementation requirements of the streaming mechanism require that
the implementations must be local because local memory addresses such as
those for the marshal buffers have to be manipulated by the ORB.

Semantically, CustomMarshal is treated as a custom value type’s implicit
base class, although the custom value type does not actually inherit it in IDL.
While nothing prevents you from writing IDL that inherits from

129

Parameters

See Also

Parameters

130

CustomMarshal , doing so will not in itself make the type custom, nor will it
cause the ORB to treat it as a custom value type. You must implement these
CustomMarshal operations.

Implement the following IDL operations for a custom value type:

/I'DL in module CORBA
abstract valuetype CustomMarshal {
void marshal (
in DataOutputStream os
);
void unmarshal (
in DatalnputStream is
)i
%

CustomMarshal::marshal()

The operation you implement so that the ORB can marshal a custom value type.

0s A handle to the output stream the ORB uses to marshal the
custom value type.

Use the operations of the DataOutputStream in your implementation to write
the custom value type’s data to the stream as appropriate.

CORBA DataOutputStream

CustomMarshal::unmarshal()

The operation you implement so that the ORB can unmarshal a custom value
type.

is A handle to the input stream the ORB uses to unmarshal the
custom value type.

Use the operations of the DatalnputStream in your implementation to read
the custom value type’s data from the stream as appropriate.

See Also CORBA DatalnputStream

131

132

CORBA::DatalnputStream Value Type

The DatalnputStream value type is a stream used by unmarshal() for
unmarshaling an application’s custom value type. You use the
DatalnputStream operations in your implementation of unmarshal() to read
specific types of data from the stream, as defined in the custom value type.
The stream takes care of breaking the data into chunks if necessary. The IDL
code is as follows:

// IDL in module CORBA
abstract valuetype DatalnputStream {

any read_any ();

boolean read boolean ();

char read char ();

wchar read_wchar ();

octet read octet ();

short read short ();

unsigned short read ushort ();
long read _long ();

unsigned long read ulong ();
unsigned long long read ulonglong ();
float read float ();

double read double ();

long double read _longdouble ();

string read_string ();

wstring read wstring ();

Object read Object ();
AbstractBase read_Abstract ();
ValueBase read Value ();

TypeCode read_TypeCode ();

void read_any array (
inout AnySeq seq,
in unsigned long offset,
in unsigned long length

);

void read boolean array (
inout BooleanSeq seq,
in unsigned long offset,

133

in unsigned long length
);
void read char array (
inout CharSeq seq,
in unsigned long offset,
in unsigned long length
);
void read wchar array (
inout WcharSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read octet array (
inout OctetSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_short_array (
inout ShortSeq seq,
in unsigned long offset,
in unsigned long length
)i
void read_ushort_array (
inout UShortSeq seq,
in unsigned long offset,
in unsigned long length
);
void read long array (
inout LongSeq seq,
in unsigned long offset,
in unsigned long length
);
void read ulong array (
inout ULongSeq seq,
in unsigned long offset,
in unsigned long length
);
void read ulonglong_array (
inout ULongLongSeq seq,
in unsigned long offset,
in unsigned long length
)i

void read longlong_array (

134

Exceptions

See Also

inout LongLongSeq seq,
in unsigned long offset,
in unsigned long length
)
void read float_array (
inout FloatSeq seq,
in unsigned long offset,
in unsigned long length
)
void read double array (
inout DoubleSeq seq,
in unsigned long offset,
in unsigned long length
)
g

MARSHAL An inconsistency is detected for any operations.

CORBA CustomMarshal
CORBA DataOutputStream

DatalnputStreamread_Abstract()

//'IDL
AbstractBase read_Abstract();

Returns an abstract data type from the stream.

DatalnputStream::read_any()

/DL
any read_any();

Returns an any data type from the stream.

DatalnputStream::read_any_array()

//'IDL
void read_any_array(

135

Parameters

Parameters

136

inout AnySeq seq,
in unsigned long offset,

in unsigned long length

)
Reads an array of any data from the stream.

seq The sequence into which the data is placed.
offset The starting index from which to read from the sequence.
length The number of items to read from the array.

DatalnputStream::read_boolean()

// IDL
boolean read_boolean();

Returns a boolean data type from the stream.

DatalnputStream::read_boolean_array()

/I'DL
void read_boolean_array(

inout BooleanSeq seq,
in unsigned long offset,

in unsigned long length

)

Reads an array of boolean data from the stream.

seq The sequence into which the data is placed.
offset The starting index from which to read from the sequence.
length The number of items to read from the array.

Parameters

DatalnputStream::read_char()

//'IDL
char read_char();

Returns a char data type from the stream.

DatalnputStream::read _char_array()

/DL
void read_char_array(

inout CharSeq seq,
in unsigned long offset,
in unsigned long length

)i
Reads an array of char data from the stream.

seq The sequence into which the data is placed.
offset The starting index from which to read from the sequence.
length The number of items to read from the array.

DatalnputStream::read_double()
/DL
double read_double();

Returns a double data type from the stream.

DatalnputStream::read_double_array()

/DL
void read_double_array(

inout DoubleSeq seq,
in unsigned long offset,

in unsigned long length

137

Parameters

Parameters

138

Reads an array of double data from the stream.

seq The sequence into which the data is placed.
offset The starting index from which to read from the sequence.
length The number of items to read from the array.

DatalnputStream::read_float()

/I'DL
float read_float();

Returns a float data type from the stream.

DatalnputStream::read_float_array()

/I \DL
void read_float_array(

inout FloatSeq seq,
in unsigned long offset,

in unsigned long length

)

Reads an array of float data from the stream.

seq The sequence into which the data is placed.
offset The starting index from which to read from the sequence.
length The number of items to read from the array.

Parameters

DatalnputStream::read_long()

//'IDL
long read_long();

Returns a long data type from the stream.

DatalnputStream::read long_ array()

/DL
void read_long_array(

inout LongSeq seq,
in unsigned long offset,
in unsigned long length

);

Reads an array of long data from the stream.

seq The sequence into which the data is placed.
offset The starting index from which to read from the sequence.
length The number of items to read from the array.

DatalnputStream::read_longdouble()

//'IDL
long double read_longdouble();

Unsupported.

DatalnputStream::read_longlong_array()

//'IDL
void read_longlong_array(

inout LongLongSeq seq,
in unsigned long offset,

139

Parameters

140

in unsigned long length

)

Reads an array of longlong data from the stream.

seq The sequence into which the data is placed.
offset The starting index from which to read from the sequence.
length The number of items to read from the array.

DatalnputStream::read_Object()

/I'DL
Object read_Object();

Returns an Object (object reference) data type from the stream.

DatalnputStream::read_octet()

/I DL
octet read_octet();

Returns an octet data type from the stream.

DatalnputStream::read_octet_array()

/I \DL
void read_octet_array(

inout OctetSeq seq,
in unsigned long offset,
in unsigned long length

)

Reads an array of octet data from the stream.

Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the sequence.
length The number of items to read from the array.
DatalnputStream::read_short()
//'IDL
short read_short();
Returns a short data type from the stream.
DatalnputStream::read_short_array()
/I DL
void read_short_array(
inout ShortSeq _ seq,
in unsigned long offset,
in unsigned long length
);
Reads an array of shot data from the stream.
Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the sequence.
length The number of items to read from the array.

DatalnputStream::read_string()

/DL
string read_string();

Returns a string data type from the stream.

141

Parameters

142

DatalnputStream::read_TypeCode()

/I \DL
TypeCode read_TypeCode();

Returns a TypeCode data type from the stream.

DatalnputStream::read_ulong()

/I'DL
unsigned long read_ulong();

Returns an unsignedlong data type from the stream.

DatalnputStream::read_ulong_array()

/I \DL
void read_ulong_array(

inout ULongSeq seq,
in unsigned long offset,

in unsigned long length

)

Reads an array of unsignedlong data from the stream.

seq The sequence into which the data is placed.
offset The starting index from which to read from the sequence.
length The number of items to read from the array.

DatalnputStream::read_ulonglong()

/I'DL
unsigned long long read_ulonglong();

Returns an unsigned long long data type from the stream.

Parameters

DatalnputStream::read_ulonglong_array()

//'IDL
void read_ulonglong_array(

inout ULongLongSeq seq,
in unsigned long offset,
in unsigned long length

);

Reads an array of unsigned long long data from the stream.
seq The sequence into which the data is placed.
offset The starting index from which to read from the sequence.
length The number of items to read from the array.

DatalnputStream::read_ushort()
/I''DL
unsigned short read_ushort();

Returns an unsigned short data type from the stream.

DatalnputStream::read_ushort_array()
/DL

void read_ushort_array(

inout UShortSeq _ seq,
in unsigned long offset,

in unsigned long length

);

Reads an array of unsigned short data from the stream.

143

Parameters

seq The sequence into which the data is placed.
offset The starting index from which to read from the sequence.
length The number of items to read from the array.

DatalnputStream::read_Value()

/I DL
ValueBase read Value();

Returns a value type from the stream.

DatalnputStream::read_wchar()

/I'DL
wchar read_wchar();

Returns a wchar data type from the stream.

DatalnputStream::read_wchar_array()

/I'DL
void read_wchar_array(

inout WCharSeqgseq,
in unsigned long offset,
in unsigned long length

)X

Reads an array of wchar data from the stream.

Parameters
seq The sequence into which the data is placed.
offset The starting index from which to read from the sequence.
length The number of items to read from the array.

144

DatalnputStream::read_wstring()
/DL
wstring read_wstring();

Returns a wstring data type from the stream.

145

146

CORBA::DataOutputStream Value
Type

The DataOutputStream value type is a stream used by marshal() for
marshaling an application’s custom value type. You use the
DataOutputStream operations in your implementation of marshal() to write
specific types of data to the stream, as defined in the custom value type. The
stream takes care of breaking the data into chunks if necessary. The IDL
code is as follows:

/DL in module CORBA
abstract valuetype DataOutputStream {
void write_any (inany value);

void write_boolean (in boolean value);

void write_char (iin char value);

void write_wchar (iinwchar value);

void write_octet (iin octet value);

void write_short (iin shortvalue);

void write_ushort (in unsigned short value);

void write_long (inlong value);
void write_ulong (in unsigned long value);

void write_longlong (in long long value);

void write_ulonglong (in unsigned long long value);
void write_float (infloat value);

void write_double (iin double value);

void write_longdouble (in long double value);

void write_string (in string value);
void write_wstring (in wstring value);
void write_Object (iin Object value);

void write_Abstract (in AbstractBase value);
void write_ Value (iin ValueBase value);
void write_TypeCode (iin TypeCode value);
void write_any array (

in AnySeq seq,

in unsigned long offset,
in unsigned long length);
void write_boolean_array (

147

in BooleanSeq seq,
in unsigned long offset,
in unsigned long length);
void write_char_array (
in CharSeq seq,
in unsigned long offset,
in unsigned long length);
void write_wchar_array (
in WcharSeq seq,
in unsigned long offset,
in unsigned long length);
void write_octet_array (
in OctetSeq seq,
in unsigned long offset,
in unsigned long length);
void write_short_array (
in ShortSeq seq,
in unsigned long offset,
in unsigned long length);
void write_ushort_array (
in UShortSeq seq,
in unsigned long offset,
in unsigned long length);
void write_long_array (
in LongSeq seq,
in unsigned long offset,
in unsigned long length);
void write_ulong_array (
in ULongSeq seq,
in unsigned long offset,
in unsigned long length);
void write_ulonglong_array

in ULongLongSeq seq,
in unsigned long offset,
in unsigned long length);
void write_longlong_array (
in LongLongSeq seq,
in unsigned long offset,
in unsigned long length);
void write_float_array (
in FloatSeq seq,
in unsigned long offset,
in unsigned long length);

148

Exceptions

See Also

Parameters

Parameters

void write_double_array (
in DoubleSeq seq,
in unsigned long offset,
in unsigned long length);

MARSHAL An inconsistency is detected for any operations.

CORBA CustomMarshal
CORBA DatalnputStream

DataOutputStream::write_Abstract()

/DL
void write_Abstract(

in AbstractBase value
);
Writes an abstract data type to the stream.

value The value written to the stream.

DataOutputStream::write_any()

//'IDL
void write_any(
in any value

)

Writes an any data type to the stream.

value The value written to the stream.

149

Parameters

Parameters

150

DataOutputStream::write_any_array()

/I \DL
void write_any_array(
in AnySeq sedq,

in unsigned long offset,
in unsigned long length

):

Writes an array of any data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_boolean()

/I'DL
void write_boolean(

in boolean value
)
Writes a boolean data type to the stream.

value The value written to the stream.

DataOutputStream::write_boolean_array()

/DL
void write_boolean_array(

in BooleanSeq seq,
in unsigned long offset,

in unsigned long length
)

Writes an array of boolean data to the stream.

Parameters

Parameters

Parameters

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_char()

//'IDL
void write_char(

in char value
)i
Writes a char data type to the stream.

value The value written to the stream.

DataOutputStream::write_char_array()

//'IDL
void write_char_array(

in CharSeq seq,
in unsigned long offset,

in unsigned long length
);
Writes an array of char data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

151

Parameters

Parameters

Parameters

152

DataOutputStream::write_double()

/I \DL
void write_double(

in double value
)
Writes a double data type to the stream.

value The value written to the stream.

DataOutputStream::write_double_array()

// \DL
void write_double_array(

in DoubleSeq seq,
in unsigned long offset,

in unsigned long length
)

Writes an array of double data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_float()

/I'DL
void write_float(

in float value
)
Writes a float data type to the stream.

value The value written to the stream.

Parameters

Parameters

DataOutputStream::write_float_array()

//'IDL
void write_float_array(

in FloatSeq seq,
in unsigned long offset,

in unsigned long length
);
Writes an array of float data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_long()

//'IDL
void write_long(

in long value
);
Writes a long data type to the stream.

value The value written to the stream.

DataOutputStream::write_long_array()

/DL
void write_long_array(

in LongSeq seq,
in unsigned long offset,
in unsigned long length

)i

Writes an array of long data to the stream.

153

Parameters

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_longdouble()

/I \DL
void write_longdouble(

in long double value
)
Writes a longdouble data type to the stream.

Parameters

value The value written to the stream.

DataOutputStream::write_longlong()

// IDL

void write_longlong(

in long long value

)

Writes a longlong data type to the stream.
Parameters

value The value written to the stream.

DataOutputStream::write longlong_array()

/I'DL
void write_longlong_array(

in LongLongSeq seq,
in unsigned long offset,
in unsigned long length

154

Parameters

Parameters

Parameters

)

Writes an array of longlong data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_Object()
/I IDL
void write_Object(
in Object value
);
Writes an Object data type (object reference) to the stream.

value The value written to the stream.

DataOutputStream::write_octet()

/DL
void write_octet(

in octet value
)
Writes an octet data type to the stream.

value The value written to the stream.

DataOutputStream::write_octet_array()

/DL
void write_octet_array(

155

Parameters

Parameters

Parameters

156

in OctetSeq _ seq,
in unsigned long offset,

in unsigned long length

)
Writes an array of octet data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_short()

/I \DL
void write_short(

in short value
)
Writes a short data type to the stream.

value The value written to the stream.

DataOutputStream::write_short_array()
/DL

void write_short_array(

in ShortSeq _ seq,
in unsigned long offset,

in unsigned long length
)
Writes an array of short data to the stream.

seq The sequence of data to write to the stream.

Parameters

Parameters

offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_string()

/DL
void write_string(
in string value

)i
Writes a string data type to the stream.

value The value written to the stream.

DataOutputStream::write_TypeCode()

/I''DL
void write_TypeCode(

in TypeCode value
)

Writes a TypeCode data type to the stream.

value The value written to the stream.

DataOutputStream::write_ulong()

/DL
void write_ulong(

in unsigned long value
);

Writes an unsignedlong data type to the stream.

157

Parameters

Parameters

Parameters

158

value The value written to the stream.

DataOutputStream::write_ulong_array()

/I'DL
void write_ulong_array(

in ULongSeq seq,
in unsigned long offset,

in unsigned long length
)

Writes an array of unsignedlong data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_ulonglong()

/DL
void write_ulonglong(

in unsigned long long value
)
Writes an unsigned long long data type to the stream.

value The value written to the stream.

DataOutputStream::write_ulonglong_array()

/DL
void write_ulonglong_array(

in ULonglLongSeq seq,

Parameters

Parameters

Parameters

in unsigned long offset,
in unsigned long length

)

Writes an array of unsigned long long data to the stream.

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_ushort()

/I''DL
void write_ushort(

in unsigned short value
);

Writes an unsigned short data type to the stream.

value The value written to the stream.

DataOutputStream::write_ushort_array()

//'IDL
void write_ushort_array(

in UShortSeq _ seq,
in unsigned long offset,

in unsigned long length
);
Writes an array of unsigned short data to the stream.

seq The sequence of data to write to the stream.

159

Parameters

Parameters

160

offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_Value()

// \DL
void write_Value(
in ValueBase value

)
Writes a value type to the stream.

value The value written to the stream.

DataOutputStream::write_wchar()

/I'DL
void write_wchar(

in wchar value
)

Writes a wchar data type to the stream.

value The value written to the stream.

DataOutputStream::write_wchar_array()

/I'DL
void write_wchar_array(

in WCharSeq seq,
in unsigned long offset,

in unsigned long length
)

Writes an array of wchar data to the stream.

Parameters

Parameters

seq The sequence of data to write to the stream.
offset The offset in seq from which to start writing data.
length The number of data items to write.

DataOutputStream::write_wstring()

//'IDL
void write_wstring(

in wstring value

);

Writes a wstring data type to the stream.

value The value written to the stream.

161

162

CORBA::DomainManager Interface

The DomainManager interface provides an operation to find the Policy
objects associated with a policy domain. Each policy domain includes one
policy domain manager object (DomainManager). The DomainManager has
associated with it the policy objects for that domain and it records the
membership of the domain.

// IDL in CORBA Module
interface DomainManager {
Policy get domain_policy (
in Policy Type policy_type
)i
h

A policy domain is a set of objects with an associated set of policies. These
objects are the policy domain members. The policies represent the rules and
criteria that constrain activities of the objects of the policy domain. Policy
domains provide a higher granularity for policy management than an
individual object instance provides.

When a new object reference is created, the ORB implicitly associates the
object reference (and hence the object that it is associated with) with one or
more policy domains, thus defining all the policies to which the object is
subject. If an object is simultaneously a member of more than one policy
domain, it is governed by all policies of all of its domains.

Each DomainManager has a ConstructionPolicy object associated with it
which has the make_domain_manager() operation. This operation controls
whether a new DomainManager is created or an existing one is used when the
new object reference is created.

The DomainManager does not include operations to manage domain
membership, structure of domains, or to manage which policies are
associated with domains. However, because a DomainManager is a CORBA
object, it has access to the CORBA::Object interface, which is available to all
CORBA objects. The Object interface includes the following related
operations:

163

Parameters

Exceptions

See Also

164

get_domain_managers() allows your applications to retrieve the
domain managers and hence the security and other policies applicable
to individual objects that are members of the policy domain.

You can also obtain an object’s policy using _get_policy() .

DomainManager::get_domain_policy()

Policy get_domain_policy (
in PolicyType policy_type
);
Returns a reference to the policy object of the specified policy type for objects
in this policy domain.

policy _type The type of policy for objects in the domain which the
application wants to administer.

There may be several policies associated with a domain, with a policy object
for each. There is at most one policy of each type associated with a policy
domain. The policy objects are thus shared between objects in the domain,
rather than being associated with individual objects. Consequently, if an
object needs to have an individual policy, then it must be a singleton member
of a policy domain.

INV_POLICY The value of policy type is not valid either because the speci-
fied type is not supported by this ORB or because a policy
object of that type is not associated with this object.

CORBA Pali
CORBA Object :: _get domain_managers()
CORBA ConstructionPolicy :: make_domain_manager()

CORBA Object :: _get policy()

CORBA::EnumDef Interface

See Also

See Also

Interface EnumDef describes an IDL enumeration definition in the interface
repository.
/I IDL in module CORBA.

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

I3

The inherited operation describe() s also described.

EnumDef::describe()

//'IDL
Description describe();

Inherited from Contained (which TypedefDef inherits), describe() ~ returns a
structure of type Contained::Description . The DefinitionKind for the
description’s kind member is dk_Enum. The value member is an any whose
TypeCode is _tc_TypeDescription and whose value is a structure of type
TypeDescripton . The type field of the struct gives the TypeCode of the
defined enumeration.

CORBA TypedefDef::describe()

EnumDef::members Attribute

/I IDL
attribute EnumMemberSegmembers;

Returns or changes the enumeration’s list of identifiers (its set of enumerated
constants).

CORBA Identifier

165

166

CORBA::Environment Class

The Environment class provides a way to handle exceptions in situations
where true exception-handling mechanisms are unavailable or undesirable.

For example, in the DIl you can use the Environment class to pass
information between a client and a server where the C+ + host compiler
does not support C++ exception handling.

/I IDL

pseudo interface Environment {
attribute exception exception;
void clear();

3

/I C++

class Environment {

public:
void exception (Exception* e);
Exception * exception () const;
void clear ();

_duplicate (Environment_ptr oby);
_nil_Q;

%
See Also CORBA ORB: create_environment()

Environment::clear()

/IC++
void clear();

Deletes the Exception, if any, contained in the Environment . This is equivalent
to passing zero to exception() . It is not an error to call clear) on an
Environment that holds no exception.

See Also CORBA Environment :: exception()

167

See Also

Parameters

Examples

168

Environment::_duplicate()

/I C++
static Environment_ptr _duplicate(

Environment_ptr obj

)
Returns a reference to obj and increments the reference count of obj .
CORBA release()

Environment::exception()

Extracts the exception contained in the Environment object.

/I C++

Exception* exception() const;

Returns the exception, if any, raised by a preceding remote request. The
returned pointer refers to memory owned by the Environment and must not be

freed by the caller. Once the Environment is destroyed, the pointer is no longer
valid.

/I C++
void exception(

Exception* e

)X

Assigns the Exception denoted by the parameter e into the Environment

e The Exception assigned to the Environment The
Environment does not copy the parameter but it assumes
ownership of it. The Exception must be dynamically
allocated.

Following is an example of usage:

/I C++

CORBA::Environment env;

A varobj=..

obj->op(env);

if(CORBA::Exception* ex = env.exception()) {

See Also

See Also

}

You can make a number of remote requests using the same Environment
variable. Each attempt at a request immediately aborts if the Exception
referenced by the Environment is not O, and thus any failure causes
subsequent requests not to be attempted, until the exception pointer is reset
to 0. Any failed call may also generate one or more null proxies, so that any
attempts to use these proxies prior to the end of a TRY macro (for
non-exception handling compilers) are null operations.

The Environment retains ownership of the Exception returned. Thus, once
the Environment is destroyed, or its Exception cleared, the reference is no
longer valid.

CORBA Environment :: clear()

Environment::_nil()

/1 C++
static Environment_ptr _nil();

Returns a nil object reference for an Environment object.
CORBA is_nil()

169

170

CORBA::Exception Class

Details of this class can be found in the CORBA specification. The C++
Language Mapping document provides the following explanation of the
CORBA::Exception class:

/I C++
class Exception

{

public:

virtual ~Exception();

virtual void _raise() const = 0;

virtual const char * _name() const;

virtual const char * _rep_id() const;
3
The Exception base class is abstract and may not be instantiated except as
part of an instance of a derived class. It supplies one pure virtual function to
the exception hierarchy: the raise() function. This function can be used to
tell an exception instance to throw itself so that a catch clause can catch it
by a more derived type.

Each class derived from Exception implements raise() as follows:

/I C++
void SomeDerivedException::_raise() const

{
throw *this;

}

For environments that do not support exception handling, please refer to
Section 1.42.2, "Without Exception Handling," on page 1-169 of the CORBA
specification for information about the raise() function.

The name() function returns the unqualified (unscoped) name of the
exception. The _rep id() function returns the repository ID of the exception.

171

172

CORBA::ExceptionDef Interface

See Also

See Also

Interface ExceptionDef ~ describes an IDL exception in the interface
repository. It inherits from interface Contained and Container

// IDL in module CORBA.

interface ExceptionDef : Contained, Container {
readonly attribute TypeCode type ;
attribute StructMemberSeq members;

3

The inherited operation describe() s also described.

CORBA Contained
CORBA Container

ExceptionDef::describe()

//'IDL

Description describe();

Inherited from Contained |, describe() returns a structure of type Contained:
:Description .

The DefinitionKind for the kind member of this structure is dk_Exception
The value member is an any whose TypeCode is _tc_ExceptionDescription

and whose value is a structure of type ExceptionDescription

The type field of the ExceptionDescription structure gives the TypeCode of
the defined exception.

CORBA Contained::describe()
CORBA TypeCode

ExceptionDef::members Attribute

//'IDL
attribute StructMemberSeq members;

173

See Also

See Also

174

In a sequence of StructMember structures, the members attribute describes the
exception’s members.

The members attribute can be modified to change the structure’s members.
Only the name and type_def fields of each StructMember should be set. The
type field should be set to tc void , and it will be set automatically to the
TypeCode of the type_def field.

CORBA StructDef
CORBA ExceptionDef::type

ExceptionDef::type Attribute

/I \DL
readonly attribute TypeCode type;

The type of the exception (from which the definition of the exception can be
understood). The TypeCode kind for an exception is tk_except

CORBA TypeCode
CORBA ExceptionDef::members

CORBA::ExceptionList Class

See Also

An ExceptionList object allows an application to provide a list of TypeCodes
for all application-specific (user-defined) exceptions that may result when a
dynamic invocation Request is invoked. This server-less ExceptionList

object allows the ORB to avoid potentially expensive interface repository
lookups for the exception information during a request.

/I PIDL
pseudo interface ExceptionList {
readonly attribute unsigned long count;
void add(in TypeCode exc);
TypeCode item(in unsigned long index) raises(Bo unds);
void remove(in unsigned long index) raises(Boun ds);
%
/I C++
class ExceptionList {
public:
ULong count ();
void add (TypeCode_ptr tc);
void add_consume (TypeCode_ptr tc);
TypeCode_ptr item (ULong index);
void remove (ULong index);
3
CORBA Object :: _create request()
CORBA Reguest :: exceptions
CORBA ORB create_exception_list()

ExceptionList::add()

/I C++
void add(

TypeCode _ptr tc
)i

Adds a TypeCode to the exception list.

175

Parameters

See Also

Parameters

See Also

176

tc A TypeCode representing exception information.

CORBA ExceptionList::add_consume()

ExceptionList::add_consume()

/I C++
void add_consume(

TypeCode ptrtc
);

Adds an item to the exception list. The memory of the tc parameter is managed
by the function. The caller cannot access the memory of tc after it has been
passed in because this function could copy and free the original immediately.

tc A TypeCode representing exception information.

CORBA ExceptionList::add()

ExceptionList::count()

/I C++
ULong count();

Returns the number of items in the exception list.

ExceptionList::item()

/I C++

TypeCode _ptr item(
ULong index

)

Returns the exception item at the indexed location of the list. This return value
must not be released by the caller because ownership of the return value is
maintained by the ExceptionList

Parameters

index The indexed location of the desired item.

ExceptionList::remove()

/I C++
void remove(

ULong index
)i
Removes from the exception list the item at the indexed location.
Parameters

index The indexed location of the desired item.

177

178

CORBA::FixedDef Interface

See Also

The FixedDef interface describes an IDL fixed-point type in the interface
repository. A fixed-point decimal literal consists of an integer part, a decimal
point, a fraction part, and a d or D.

// IDL in module CORBA.

interface FixedDef : IDLType {
attribute unsigned short digits _;
attribute short scale ;

% The inherited IDLType attribute is a tk_fixed TypeCode , which describes a
fixed-point decimal number.

CORBA Repository :: create fixed()

FixedDef::digits Attribute

/I''DL
attribute unsigned short digits;

The digits attribute specifies the total number of decimal digits in the
fixed-point number, and must be in the range of 1 to 31, inclusive.

FixedDef::scale Attribute

/1DL
attribute short scale;

The scale attribute specifies the position of the decimal point.

179

180

CORBA.InterfaceDefPackage.Fulllnter
faceDescription Class

InterfaceDefPackage.FulllnterfaceDescription.FulllnterfaceDes
cription()

//'IDL
struct FullinterfaceDescription {

Identifier name;

Repositoryld id;

Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;

TypeCode type;
boolean is_abstract;
g
Describes an interface including its operations and attributes.
name The name of the interface.
id An identifier of the interface.
defined_in The identifier where the interface is defined.
version The version of the interface.
operations A sequence of interface operations.
attributes A sequence of interface attributes.
base_interfaces A sequence of base interfaces from which this
interface is derived.
type The type of the interface.
is_abstract True if the interface is an abstract one, false
otherwise.

181

See Also CORBA InterfaceDef :: describe_interface()

182

CORBA::IDLType Interface

The abstract base interface IDLType describes interface repository objects
that represent IDL types. These types include interfaces, type definitions,
structures, unions, enumerations, and others. Thus, the IDLType is a base
interface for the following interfaces:

ArrayDef
AliasDef
EnumDef
FixedDef
InterfaceDef
NativeDef
PrimitiveDef
SequenceDef
StringDef
StructDef
TypedefDef
UnionDef
ValueBoxDef
ValueDef

WstringDef

The IDLType provides access to the TypeCode describing the type, and is
used in defining other interfaces wherever definitions of IDL types must be
referenced.

// IDL in module CORBA.
interface IDLType : IRObject {
readonly attribute TypeCode type ;
g
See Also CORBA IRObject
CORBA TypeCode
CORBA TypedefDef

183

IDLType::type Attribute

/DL
readonly attribute TypeCode type;

Encodes the type information of an interface repository object. Most type
information can also be extracted using operations and attributes defined for
derived types of the IDLType .

See Also CORBA TypeCode

184

CORBA::InterfaceDef Interface

InterfaceDef describes an IDL interface definition in the interface
repository. It may contain lists of constants, typedefs, exceptions, operations,
and attributes. it inherits from the interfaces Container , Contained , and
IDLType .

Calling _get_interface() on a reference to an object (i nterface ptr or

i nterface var) returns a reference to the InterfaceDef object that defines
the CORBA obiject’s interface.

/I IDL in module CORBA.

interface InterfaceDef : Container, Contained, IDLT ype {
/I read/write interface
attribute InterfaceDefSeq base_interfaces ;

Il read interface
boolean is a (
in Repositoryld interface_id

)

struct FullinterfaceDescription {
|dentifier name;
Repositoryld id;
Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

3

FullinterfaceDescription describe _interface 0;

Il write interface

AttributeDef create_attribute (
in Repositoryld id,
in Identifier name,
in VersionSpec version,

185

in IDLType type,
in AttributeMode mode

)X

OperationDef create_operation (
in Repositoryld id,
in ldentifier name,
in VVersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextldSeq contexts
).

}; I End interface InterfaceDef

The inherited operation describe() is also described.

See Also CORBA Contained
CORBA Container

CORBA Object :: _get interface()

InterfaceDef::base_interfaces Attribute

/I \DL
attribute InterfaceDefSeq base_interfaces;

The base_interfaces attribute lists in a sequence of InterfaceDef objects
the interfaces from which this interface inherits.

The inheritance specification of an InterfaceDef object can be changed by
changing its base_interfaces attribute.

Exceptions
BAD_PARAM The name of any definition contained in the interface conflicts
minor code 5 with the name of a definition in any of the base interfaces.
See Also CORBA Object : _get interface()

186

Parameters

Exceptions

See Also

InterfaceDef::create_attribute()

//'IDL
AttributeDef create_attribute(

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in IDLType type,

in AttributeMode mode
)

Creates a new AttributeDef within the target InterffaceDef . The defined_in

attribute of the new AttributeDef is set to the target InterfaceDef

id The identifier of the new attribute. It is an error to specify an id
that already exists within the target object’s repository.

name The name of the attribute. It is an error to specify a name that
already exists within this InterfaceDef

version A version for this attribute.

type The IDLType for this attribute.

mode Specifies whether the attribute is read only (ATTR_READONLYor

read/write (ATTR_NORMAL

BAD_PARAM An object with the specified id already exists in the reposi-
minor code 2 tory.

BAD_PARAM An object with the same name already exists in this
minor code 3 InterfaceDef

CORBA AttributeDef

InterfaceDef::create_operation()

/I IDL

OperationDef create_operation(
in Repositoryld id,
in Identifier name,

in VersionSpec version,

187

Parameters

See Also

See Also

188

in IDLType result,

in OperationMode mode,
in ParDescriptionSeq params,

in ExceptionDefSeq exceptions,

in ContextldSeq contexts
)

Creates a new OperationDef within the target InterfaceDef . The defined_in
attribute of the new OperationDef is set to the target InterfaceDef

id The identifier of the new attribute. It is an error to specify an
id that already exists within the target object’s repository.

name The name of the attribute. It is an error to specify a name that
already exists within this InterfaceDef

version A version number for this operation.

result The return type for this operation.

mode Specifies whether this operation is normal (OP_NORMALor
oneway (OP_ONEWAY

params A sequence of ParameterDescription structures that

describes the parameters to this operation.

exceptions A sequence of ExceptionDef objects that describes the
exceptions this operation can raise.

contexts A sequence of context identifiers for this operation.

CORBA OperationDef
CORBA ExceptionDef

InterfaceDef::describe()

/I \DL
Description describe();

Inherited from Contained |, describe() returns a structure of type Contained:
:Description . The DefinitionKind for the kind member is dk_Interface
The value member is an any whose TypeCode is _tc_InterfaceDescription

and whose value is a structure of type InterfaceDescription

CORBA Contained::describe()

InterfaceDef::describe_interface()

//'IDL
FullinterfaceDescription describe_interface();

Returns a description of the interface, including its operations, attributes, and
base interfaces in a FullinterfaceDescription

Details of exceptions and contexts can be determined via the returned
sequence of OperationDescription structures.

See Also CORBA OperationDef::describe()
CORBA AttributeDef::describe()

InterfaceDef::FulllnterfaceDescription Structure

/I''DL
struct FullinterfaceDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;

VersionSpec _ version;
OpDescriptionSeq operations;

AttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;

TypeCode type;

g

Describes an interface including its operations and attributes.

name The name of the interface.

id An identifier of the interface.

defined_in The identifier where the interface is defined.

version The version of the interface.

operations A sequence of interface operations.

attributes A sequence of interface attributes.

base_interfaces A sequence of base interfaces from which this
interface is derived.

type The type of the interface.

189

See Also

Parameters

190

CORBA InterfaceDef :: describe _interface()

InterfaceDef::is_al()

/I IDL
booleanis_a(
in Repositoryld interface_id
)
Returns TRUEIf the interface is either identical to or inherits (directly or

indirectly) from the interface represented by interface id . Otherwise the
operation returns FALSE

interface_id The repository ID of another InterfaceDef ~ object.

CORBA::IRObject Interface

The interface IRObject is the base interface from which all interface
repository interfaces are derived.

//IDL in module CORBA.

interface IRObject {
readonly attribute DefinitionKind def kind ;

void destroy ();
J2

IRObject::def kind Attribute

//'IDL
readonly attribute DefinitionKind def_kind;

Identifies the kind of an IFR object. For example, an OperationDef object,
describing an IDL operation, has the kind dk_Operation

See Also CORBA DefinitionKind

IRObject::destroy()

//'IDL
void destroy();
Deletes an IFR object. This also deletes any objects contained within the target
object.
Exceptions BAD_INV_ORDERvith a minor value of:
2 destroy() is invoked on a Repository or on a PrimitiveDef
object.
1 An attempt is made to destroy an object that would leave the

repository in an incoherent state.

191

192

CORBA::ModuleDef Interface

See Also

The interface ModuleDef describes an IDL module in the interface repository.
It inherits from the interfaces Container and Contained

// IDL in module CORBA.
interface ModuleDef : Container, Contained { };

The inherited operation describe() is also described.

ModuleDef::describe()

/I'DL
Description describe();

Inherited from Contained |, describe() returns a structure of type Contained:
:Description .

The kind member is dk_Module . The value member is an any whose
TypeCode is _tc_ModuleDescription and whose value is a structure of type
ModuleDescription

CORBA Contained::describe()

193

194

CORBA::NamedValue Class

See Also

Parameters

A NamedValue object describes an argument to a request or a return value,
especially in the DII, and is used as an element of an NVList object. A
NamedValue object maintains an any value, parameter-passing mode flags,
and an (optional) name.

/I IDL

pseudo interface NamedValue {
readonly attribute Identifier name;
readonly attribute any value;
readonly attribute Flags flags;

3

/I C++

class NamedValue {

public:
const char * name() const;
Any* value ()const;

Flags flags () const;

static NamedValue_ptr _duplicate (NamedValue_ptr nv);
static NamedValue_ptr —nil ()
h

CORBA NVList
CORBA ORB create_named_value()

CORBA Request::result()
CORBA Object :: _create_request()

NamedValue::_duplicate()

static NamedValue_ptr _duplicate(NamedValue_ptr nv)

Returns a new reference to the Namedvalue object input and increments its
reference count.

nv The NamedValue object reference to be duplicated.

195

See Also

See Also

See Also

196

CORBA release()

NamedValue::flags()

Flags flags() const;

Returns the flags associated with the Namedvalue . Flags identify the parameter
passing mode for arguments of an NVList .

CORBA Flags

NamedValue::name()

const char *name() const;

Returns a pointer to the optional name associated with the Namedvalue . This
is the name of a parameter or argument of a request. The return value is a
pointer to the internal memory of the NamedVvalue object and must not be freed
by the caller.

NamedValue:: _nil()

static NamedValue_ptr _nil();

Returns a nil object reference for a Namedvalue .
CORBA is_nil()

NamedValue::value()
Any *value() const;
Returns a pointer to Any value contained in the Namedvalue .

The return value is a pointer to the internal memory of the NamedValue object
and must not be freed by the caller. However, the value in a NamedValue may
be manipulated via standard operations on any values.

CORBA::NativeDef Interface

See Also

The interface NativeDef describes an IDL native type in the interface
repository. It inherits from the interface TypedefDef . The inherited type
attribute is a tk_native ~ TypeCode that describes the native type.

// IDL in module CORBA
interface NativeDef : TypedefDef {};

CORBA Container :: create_native()

197

198

CORBA::NVList Class

An NVList is a pseudo-object used for constructing parameter lists. It is a list
of NamedValue elements where each NamedValue describes an argument to a
request.

The NamedValue and NVList types are used mostly in the DIl in the request
operations to describe arguments and return values. They are also used in

the context object routines to pass lists of property names and values. The

NVList is also used in the DSI operation ServerRequest::arguments()

The NvList class is partially opaque and may only be created by using ORB:
create_list() . The NVList class is as follows:

/DL
pseudo interface NVList {
readonly attribute unsigned long count;
NamedValue add(in Flags flags);
NamedValue add_item(in Identifier item_name, in Flags flags);
NamedValue add_value(in Identifier item_name,
in any val, in Flags flags);
NamedValue item(in unsigned long index) raises(Bounds);
void remove(in unsigned long index) raises(Boun ds);

I3

/1 C++
class NVList {
public:
ULong count() const;
NamedValue_ptr add (Flags);
NamedValue_ptr add_item (const char*, Flags);
NamedValue_ptr add value (const char*, const Any&, Flags);

NamedValue_ptr add item consume (char*, Flags);
NamedValue_ptr add value consume (char*, Any*, Flags);
NamedValue_ptr item (ULong);
void remove (ULong);
static NVList_ptr _duplicate (NVList_ptr nv);
static NVList_ptr _nil_0;

h

199

See Also

Parameters

See Also

200

CORBA NamedValue

CORBA ORB create_list()
CORBA Object :: _create request()

NVList::count()

ULong count() const;

Returns the number of elements in the list.

NVList::add()

NamedValue _ptr add(
Flags flags
)
Creates an unnamed value, initializes only the flags, and adds it to the list.
The new NamedValue is returned.

flags Possible values include:

ARG_IN
ARG_OUT
ARG_INOUT
IN_COPY_VALUE
DEPENDENT_LIST

The reference count of the returned Namedvalue pseudo object is not
incremented. Therefore, the caller should not release the returned reference
when no longer needed, nor assign it to a t ype_var variable.

CORBA NVList :: add item()
CORBA NVList :: add value()

CORBA NVList :: add item consume()
CORBA NVList :: add value consume()

Parameters

See Also

NVList::add_item()

NamedValue ptradd_item(
const char* item_name,
Flags flags
);

Creates and returns a NamedVvalue with name and flags initialized, and adds it
to the list.

item_name Name of item.

flags Possible values include:
ARG IN
ARG OUT
ARG INOUT

IN_COPY_VALUE
DEPENDENT_LIST

The reference count of the returned Namedvalue pseudo object is not
incremented. Therefore, the caller should not release the returned reference
when no longer needed, nor assign it to a t ype_var variable.

CORBA NVList:add()

CORBA NVList :: add value()

CORBA NVList :: add item_consume()

CORBA NVList :: add value consume()

NVList::add_item_consume()

NamedValue ptr add_item_consume(
char*item_name,
Flags flags
);

Creates and returns a NamedValue with name and flags initialised, and adds it
to the list. The NVList takes over memory management responsibilities for the
item_name parameter.

201

Parameters

item_name Name of item. This parameter is consumed by the NVList .
The caller may not access this data after it has been passed
to this function.

flags Possible values include:

ARG _IN
ARG_OUT
ARG_INOUT
IN_COPY_VALUE
DEPENDENT_LIST

The reference count of the returned NamedVvalue pseudo object is not
incremented. Therefore, the caller should not release the returned reference
when no longer needed, nor assign it to a t ype_var variable.

See Also CORBA NVList:add()
CORBA NVList :: add_item()
CORBA NVList :: add value()
CORBA NVList :: add value _consume()

NVList::add_value()

NamedValue ptr add_value(
const char* item_name,
const Any& value,

Flags flags
);

Creates and returns a NamedVvalue with name, value, and flags initialized and
adds it to the list.

Parameters

item_name Name of item.

202

See Also

Parameters

value Value of item.
flags Possible values include:

ARG _IN
ARG_OUT
ARG_INOUT
IN_COPY_VALUE
DEPENDENT_LIST

The reference count of the returned Namedvalue pseudo object is not
incremented. Therefore, the caller should not release the returned reference
when no longer needed, nor assign it to a type_var variable.

CORBA NVList::add()
CORBA NVList :: add item()

CORBA NVList :: add item_consume()
CORBA NVList :: add value consume()

NVList::add_value_consume()

NamedValue ptr add_value_consume(
char* item_name,

Any* value,
Flags flags
)
Creates and returns a NamedValue with name, value, and flags initialised, and

adds it to the list. The NVList takes over memory management responsibilities
for both the name and value parameters.

item_name Name of item. This parameter is consumed by the NVList .
The caller may not access this data after it has been passed
to this function.

203

See Also

Parameters

204

value Value of item. This parameter is consumed by the NVList .
The caller may not access this data after it has been passed
to this function.

flags Possible values include:

ARG _IN

ARG _OUT
ARG_INOUT
IN_COPY_VALUE
DEPENDENT_LIST

The caller should use NamedValue :: value() to modify the value attribute of
the underlying NamedValue , if needed.

The reference count of the returned NamedVvalue pseudo object is not
incremented. Therefore, the caller should not release the returned reference
when no longer needed, nor assign it to a t ype_var variable.

CORBA NamedValue :: value()
CORBA NVList:add()

CORBA NVList :: add_item()
CORBA NVList :: add item_consume()
CORBA NVList :: add value()

NVList::count()

ULong count() const;
Returns the number of Namedvalue elements in the NVList .

NVList:: _duplicate()

static NVList _ptr_duplicate(
NVList_ptr nv

):

Returns a new reference to the NVList and increments the reference count of
the nv object.

nv The NamedValue for which to get a duplicate reference.

See Also

Parameters

Exceptions

See Also

Parameters

CORBA release()

NVList::item()

NamedValue _ptr item(
ULong index

)i

Returns the NamedValue list item at the given index. The first item is at index
0. This method can be used to access existing elements in the list.

index Index of item.

Bounds The index is out of range.

NVList::_nil()

static NVList_ptr _nil();

Returns a nil object reference for an NVList object.
CORBA is_nil()

NVList::remove()
void remove(

ULong index
)i

Removes the item at the given index. The first item is at index 0. The method
calls CORBA release() on the item.

index Index of item

205

Exceptions
Bounds The index is out of range.

See Also CORBA release()

206

CORBA::Object Class

The Object class is the base class for all normal CORBA objects. This class
has some common methods that operate on any CORBA object. These
operations are implemented directly by the ORB, not passed on to your
object’s implementation.

On the client side, the methods of this class are called on a proxy (unless
collocation is set). On the server side, they are called on the real object.

Table 5 shows the methods provided by the CORBA::Object class:

Table 5: Methods of the Object Class

Manage Object References Create Requests for the DIl
duplicate() create_request()

hash() request()

is_a()

is_equivalent() Access Information in the IFR
nil() .

non_existent() get_interface()

release()

Manage Policies and Domains Orbix Enhancements

get client_policy() it_get_orb()
get_domain_managers() it proxy_for()

get_policy() it_marshal()

get policy overrides() it get type id()

set_policy overrides()
validate _connection()

The CORBA namespace provides the is_nil() and release() operations
that are defined in the Object interface’s IDL. All other IDL operations for the
Object interface map to C++ functions with leading underscores.

/I''DL
interface Object {
boolean is_nil();

207

208

Object duplicate();
void release();
ImplementationDef get_implementation();
InterfaceDef get_interface();
boolean is_a(in string logical_type_id);
boolean non_existent();
boolean is_equivalent(in Object other_object);
unsigned long hash(in unsigned long maximum);
void create_request(

in Context ctx,

in Identifier operation,

in N\VList arg_list,

in NamedValue result,

out Request request,

in Flags req_flags
)i
void create_request2(

in Context ctx,

in Identifier operation,

in N\VList arg_list,

in NamedValue result,

in ExceptionList exclist,

in ContextList ctxtlist,

out Request request,

in Flags req_flags
);
Poalicy_ptr get_policy(in PolicyType policy_type
DomainManagerList get_domain_managers();
Object set_policy _overrides(

in PolicyList policies,
in SetOverrideType set_or_add

);

/I DL Additions from CORBA Messaging
Palicy get_policy(
in PolicyType type
);
Policy get_client_policy(
in PolicyType type
)i
Object set_policy _overrides(
in PolicyList policies,
in SetOverrideType set_add

)
raises (InvalidPolicies);
PolicyList get_policy_overrides(
in Policy TypeSeq types
)
boolean validate_connection(
out PolicyList inconsistent_policies
)
h
class Object {
public:
static Object_ptr duplicate (Object_ptr obj);
static Object_ptr _nil_0;
InterfaceDef _ptr get_interface 0;
Boolean is_a (const char* logical_type_id);
Boolean non_existent ();
Boolean is_equivalent (Object_ptr other_object);
ULong hash (ULong maximum);
void create request (
Context_ptr ctx,
constchar *operation,
NVList ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags
)
void create request (
Context_ptr ctx,
const char *operation,
NVList ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr ,
Request out request,
Flags req_flags
);
Request_ptr request _(const char* operation);
Policy_ptr get_policy (PolicyType policy_type);
DomainManagerList* get domain_managers ();
Object _ptr set_policy overrides (
const PolicyList &policies,
SetOverrideType set_add
)

209

210

virtual Policy_ptr get client_policy
PolicyType type

)=0;

virtual PolicyList * get policy overrides

const PolicyTypeSeq & types

)=0;

virtual Boolean validate connection (
PalicyList &inconsistent_policies

)=0;

I
/I Non-CORBA pseudo-operations.
/)

virtual ORB_ptr it_get_orb() =0;
virtual Object _ptr it_proxy_for() =0;
virtual void it marshal (
IT_OutStream_ptr os,
ORB_ptr orb
)=0;
virtual char* it get type id() =0;

Object:: create_request()

void _create_request(

Context _ptr ctx,
const char *operation,
NVList _ptrarg_list,
NamedValue ptr result,
Request _out request,
Flags req_flags

)

void _create_request(

Context _ptr ctx,
const char *operation,

NVList _ptrarg_list,

(

Parameters

NamedValue _ptr result,

ExceptionList ptr exceptions,

ContextList ptr contexts,

Request _out request,

Flags req_flags
);
These construct a CORBA::Request object. These methods are part of the DIl
and create an ORB request on an object by constructing one of the object’s
operations.

See _request() for a simpler alternative way to create a Request .

ctx Context object, if any, to be sent in the request .

If the ctx argument to _create request() is a nil
Context object reference, then you can add the
Context later by calling the Request:ctx() function
on the Request object.

operation The name of the request operation. The operation
name is the same operation identifier that is specified
in the IDL definition for this operation.

arg_list The parameters, for the operation, each of type
NamedValue .

If this value is zero, you can add the arguments later
by calling the Request::arguments() function. You
can also add each argument one at a time by calling
the appropriate helper function such as add_in_arg()
on the Request object.

result The result of the operation invocation is placed in this
argument after the invocation completes. Use ORR
create_named value() to create the NamedValue
object to be used as this return value parameter.

request Contains the newly created Request .

req_flags If you specify flag values they are ignored because
argument insertion or extraction is handled using the
Any type.

211

Exceptions

See Also

Parameters

See Also

212

exceptions A reference to a list of TypeCodes for all
application-specific (user-defined) exceptions that may
result when the Request is invoked.

contexts A reference to a list of context strings for the operation.
The only implicit object reference operations allowed with the
_create_request() call include:

non_existent()
is_a()

get interface()

BAD_PARAM The name of an implicit operation that is not allowed is
passed to _create request() —for example, _is_equivalent
is passed to _create_request() as the operation parameter.

CORBA Object :: _request()
CORBA Request

CORBA Request::arguments()
CORBA Request::ctx()
CORBA NVList

CORBA NamedValue

Object:: duplicate()
static Object_ptr _duplicate(
Object_ptr obj

);
Returns a new reference to obj and increments the reference count of the
object. Because object references are opague and ORB-dependent, it is not
possible for your application to allocate storage for them. Therefore, if more
than one copy of an object reference is needed, use this method to create a
duplicate.

obj Pointer to the object to duplicate.

CORBA release()

Parameters

See Also

See Also

Object::_get client_policy()

virtual Policy _ptr_get_client_policy(

PolicyType type
)=0;
Returns the effective overriding policy for the object reference. The effective
override is obtained by first checking for an override of the given PolicyType
at the Object scope, then at the Current scope, and finally at the ORBscope.
If no override is present for the requested PolicyType , the system-dependent
default value for that PolicyType is used.

Portable applications should set the desired defaults at the ORBscope since
default policy values are not specified.

type The type of policy desired.

CORBA Object :: _get policy()
CORBA Object :: _set policy overrides()

CORBA Object :: _get policy overrides()

Object:: get domain_managers()

DomainManagersList * _get domain_managers();

Returns the list of immediately enclosing domain managers of this object. At
least one domain manager is always returned in the list since by default each
object is associated with at least one domain manager at creation.

The _get domain_managers() method allows applications such as
administration services to retrieve the domain managers and hence the
security and other policies applicable to individual objects that are members
of the domain.

CORBA DomainManager

213

See Also

Parameters

Exceptions

See Also

214

Object:: _get_interface()

InterfaceDef ptr _get_interface();

Returns a reference to an object in the interface repository that describes this
object’s interface.

CORBAX InterfaceDef

Object::_get_policy()

Policy _ptr_get_policy(
PolicyType _ policy_type
)

Returns a reference to the Policy object of the type specified by the
policy_type parameter.

policy _type The type of policy to get.

_get_policy() returns the effective policy which is the one that would be
used if a request were made. Note that the effective policy may change from
invocation to invocation due to transparent rebinding. Invoking

non_existent() on an object reference prior to _get_policy() ensures the
accuracy of the returned effective policy.

Quality of Service (see “Quality of Service Framework”) is managed on a
per-object reference basis with _get policy() , _set_policy overrides() ,
get policy overrides() , and _get client_policy()

INV_POLICY The value of policy type is not valid either because the
specified type is not supported by this ORB or because a pol-
icy object of that type is not associated with this object.

CORBA Object :: _non_existent()
CORBA Object :: _set policy overrides()

CORBA Object :: _get policy overrides()
CORBA Object :: _get client policy()
CORBA Object :: _validate connection()

Parameters

See Also

Parameters

Object:: _get policy overrides()

virtual PolicyList * _get_policy_overrides(

const PolicyTypeSeq &types
)=0,
Returns the list of policy overrides of the specified policy types set at the Object
scope. If the specified sequence is empty, all policy overrides at this scope will
be returned. If none of the requested policy types are overridden at the Object
scope, an empty sequence is returned.

types A sequence of policy types for which the overrides are
desired.

CORBA Object :: _get policy()
CORBA Object :: _set policy overrides()

CORBA Object :: _get client policy()

Object:: hash()

ULong _hash(
ULong maximum
)i

Returns a hashed value for the object reference in the range 0...maximum

maximum The maximum value that is to be returned from the hash
method.

Use _hash() to quickly guarantee that objects references refer to different
objects. For example, if _hash() returns the same hash number for two
object references, the objects might or might not be the same, however, if the
method returns different numbers for object references, these object
references are guaranteed to be for different objects.

In order to efficiently manage large numbers of object references, some
applications need to support a notion of object reference identity. Object
references are associated with internal identifiers that you can access
indirectly by using _hash() . The value of this internal identifier does not
change during the lifetime of the object reference.

215

See Also

Parameters

Exceptions

See Also

216

You can use _hash() and _is_equivalent() to support efficient
maintenance and search of tables keyed by object references. hash() allows
you to partition the space of object references into sub-spaces of potentially
equivalent object references. For example, setting maximumto 7 partitions the
object reference space into a maximum of 8 sub-spaces (0 - 7).

CORBA Object :: _is_equivalent()

Object:: is_al()

Boolean _is_a(
const char* logical_type_id

)X

Returns 1 (true) if the target object is either an instance of the type specified
in logical_type _id or of a derived type of the type in logical_type id . Ifthe
target object is neither, it returns O (false).

logical_type_id The fully scoped name of the IDL interface. This is a string
denoting a shared type identifier (Repositoryld). Use an
underscore (‘") rather than a scope operator (::) to
delimit the scope.

The ORB maintains type-safety for object references over the scope of an

ORB, but you can use this method to help maintaining type-safety when

working in environments that do not have compile time type checking to

explicitly maintain type safety.

If is_a) cannot make a reliable determination of type compatibility due to
failure, it raises an exception in the calling application code. This enables the
application to distinguish among the true, false, and indeterminate cases.

CORBA Object :: _non_existent()

Object::_is_equivalent()

Boolean _is_equivalent(
Object_ptr other_object

)

Parameters

See Also

Enhancement

Enhancement

Returns 1 (true) if the object references definitely refer to the same object. A
return value of O (false) does not necessarily mean that the object references
are not equivalent, only that the ORB cannot confirm that they reference the
same object. Two objects are equivalent if they have the same object reference,
or they both refer to the same object.

other_object An object reference of other object.

A typical application use of _is_equivalent() is to match object references
in a hash table. Bridges could use the method to shorten the lengths of
chains of proxy object references. Externalization services could use it to
flatten graphs that represent cyclical relationships between objects.

CORBA Object :: _is a()
CORBA Object :: _hash()

Object:: it _get orb()
virtual ORB_ptr _it_get orb() =0;
Returns the ORB.

This is an Orbix enhancement.

Object:: it get type id()

virtual char* _it_get type_id() =0;

Returns the repository ID string contained within the Interoperable Object
Reference (I0R). If the IOR contains no type ID the return value is an empty
string. This function follows the standard C++ mapping rules for string
return values, which means the caller of this function must take responsibility
for the returned string and ensure that it is freed via CORBA::string_free()
when they are finished with it.

This is an Orbix enhancement.

217

Enhancement

Enhancement

See Also

218

Object::_it_marshal()
virtual void _it_marshal(
IT_OutStream_ptr os,

ORB_ptr orb
)=0,

This is an Orbix enhancement.

Object::_it_proxy for()
virtual Object_ptr _it_proxy for() =0;
Returns a proxy for this object.

This is an Orbix enhancement.

Object:: nil()

static Object_ptr _nil();

Returns a nil object reference.
CORBA is_nil()

Object::_non_existent()

Boolean _non_existent();

Returns 1 (true) if the object does not exist or returns O (false) otherwise.

Normally you might invoke this method on a proxy to determine whether the
real object still exists. This method may be used to test whether an object
has been destroyed because the method does not raise an exception if the
object does not exist.

Applications that maintain state that includes object references, (such as
bridges, event channels, and base relationship services) might use this
method to sift through object tables for objects that no longer exist, deleting
them as they go, as a form of garbage collection.

Parameters

See Also

Parameters

Object:: _request()

Request _ptr_request(
const char* operation

)

Returns a reference to a constructed Request on the target object. This is the
simpler form of _create request()

operation The name of the operation.

You can add arguments and contexts after construction using Request:
arguments() and Request::ctx()
CORBA Object :: _create_request()

CORBA Request::arguments()
CORBA Request::ctx()

Object:: set policy overrides()
Object _ptr _set policy_overrides(

const PolicyList & policies,
SetOverrideType set_add
)i

Returns a new object reference with the overriding policies associated with it.

policies A sequence of Policy object references that are to be
associated with the new copy of the object reference
returned.

set_add Indicates whether the policies are in addition to

(ADD OVERRIDEOY as replacement of (SET_OVERRIDIE any
existing overrides already associated with the object
reference.

219

Exceptions

See Also

Parameters

Exceptions

220

NO_PERMISSION An attempt is made to override any policy that cannot be
overridden. Only certain policies that pertain to the invocation
of an operation at the client end can be overridden using this
operation.

CORBA Object :: _get policy()
CORBA Object :: _get policy_overrides()

CORBA Object :: _get client policy()

Object:: validate_connection()

virtual Boolean _validate _connection(
PolicyList &inconsistent_policies

)=0;
Returns true if the current effective policies for the object will allow an

invocation to be made. Returns false if the current effective policies would
cause an invocation to raise the system exception INV_POLICY.

inconsistent_policies If the current effective policies are incompatible,
This parameter contains those policies causing the
incompatibility. This returned list of policies is not
guaranteed to be exhaustive.

If the object reference is not yet bound, a binding will occur as part of this
operation. If the object reference is already bound, but current policy
overrides have changed or for any other reason the binding is no longer valid,
a rebind will be attempted regardless of the setting of any RebindPolicy
override. This method is the only way to force such a rebind when implicit
rebinds are disallowed by the current effective RebindPolicy

The appropriate system exception is raised if the binding fails due to some
reason unrelated to policy overrides.

CORBA::OperationDef Interface

Interface OperationDef ~ describes an IDL operation that is defined in an IDL
interface stored in the interface repository.

One way you can use the OperationDef is to construct an NVList for a
specific operation for use in the Dynamic Invocation Interface. For details see
ORB create_operation_list()

/I IDL in module CORBA.
interface OperationDef : Contained {

readonly attribute TypeCode result
attribute IDLType result def ;
attribute ParDescriptionSeq params ;
attribute OperationMode mode;
attribute ContextldSeq contexts
attribute ExceptionDefSeq exceptions__;
g
The inherited operation describe() is also described.
See Also CORBA Contained

CORBA ORB create_operation_list()
CORBA ExceptionDef

OperationDef::contexts Attribute

// IDL
attribute ContextldSeq contexts;

The list of context identifiers specified in the context clause of the operation.

OperationDef::exceptions Attribute

// DL
attribute ExceptionDefSeq exceptions;

The list of exceptions that the operation can raise.

221

See Also

See Also

222

CORBA ExceptionDef

OperationDef::describe()

/DL
Description describe();

Inherited from Contained |, describe() returns a structure of type Contained:
:Description .
The DefinitionKind for the kind member of this structure is dk_Operation

The value member is an any whose TypeCode is _tc_OperationDescription
and whose value is a structure of type OperationDescription

CORBA Contained::describe()
CORBA ExceptionDef

OperationDef::mode Attribute

//IDL
attribute OperationMode mode;

Specifies whether the operation is normal (OP_NORMAlor oneway (OP_ONEWAY
The mode attribute can only be set to OP_ONEWAiYthe result is _tc void and
all parameters have a mode of PARAM IN

OperationDef::params Attribute

/I \DL
attribute ParDescriptionSeq params;

Specifies the parameters for this operation. It is a sequence of structures of
type ParameterDescription

The name member of the ParameterDescription structure provides the name
for the parameter. The type member identifies the TypeCode for the
parameter. The type_def member identifies the definition of the type for the
parameter. The mode specifies whether the parameter is anin (PARAM _IN, an
out (PARAM_OUTor an inout (PARAM_INOUY parameter. The order of the
ParameterDescription s is significant.

See Also

See Also

See Also

CORBA TypeCode
CORBA IDLType

OperationDef::result Attribute

//'IDL
readonly attribute TypeCode result;

The return type of this operation. The attribute result_def
information.

CORBA TypeCode
CORBA OperationDef :: result_def

OperationDef::result_def Attribute

//'IDL
attribute IDLType result_def;

contains the same

Describes the return type for this operation. The attribute result contains the

same information.
Setting the result def attribute also updates the result

CORBA IDLType
CORBA OperationDef :: result

attribute.

223

224

CORBA::ORB Class

The ORB class provides a set of methods and data types that control the ORB
from both the client and the server. See Table 6:

Table 6: Methods and Types of the ORB Class

Object Reference Manipulation

ORB Operation and Threads

duplicate()
list_initial_services()

nil()

Objectld type
ObjectldList sequence

destroy()
perform_work()
run()
shutdown()
work_pending()

object to_string()
resolve_initial _references()

ORB Policies and Services

string_to_object()

create_policy()
get_service_information()

Dynamic Invocation Interface (DII)

TypeCode Creation Methods

create_environment()
create_exception _list()
create_list()
create_named_value()
create_operation_list()
get_next_response()

poll_next response()

RequestSeq sequence
send_multiple_requests_deferred()
send_multiple_requests_oneway()

Value Type Factory Methods

lookup_value factory()
register value factory()
unregister_value_factory()

create_abstract interface tc()

create_alias _tc()
create_array tc()
create_enum_tc()
create_exception_tc()
create fixed tc()
create_interface tc()
create_native _tc()
create_recursive tc()
create_sequence_tc()
create_string_tc()
create_struct_tc()
create_union_tc()
create_value box tc()
create value tc()
create_wstring_tc()

You initialize the ORB using ORB_init) .

225

226

The ORBclass is defined as follows:

/I'DL

pseudo interface ORB {

typedef sequence<Request> RequestSeq;
string object_to_string(in Object obyj);
Object string_to_object(in string str);
void create_list(in long count, out NVList new_list
void create_operation_list(

in OperationDef oper,

out NVList

new_list

)

void create_named_value(out NamedValue nmval);

void create_exception_list(out ExceptionList exclis
void create_context_list(out ContextList ctxtlist);
void get default_context (out Context ctx);

void create_environment(out Environment new_env);
void send_multiple_requests_oneway(in RequestSeq re
void send_multiple_requests_deferred(in RequestSeq

boolean poll_next_response();

void get_next_response(out Request req);
Boolean work_pending();

void perform_work();

void shutdown(in Boolean wait_for_completion);
void run();

void destroy();

Boolean get_service_information (

in ServiceType service_type,
out Servicelnformation service_information
)i
typedef string Objectld;
typedef sequence<Objectld> ObjectldList;
Object resolve_initial_references(
in Objectld id
) raises(InvalidName);
ObjectldList list_initial_services();
Palicy create_policy(in Policy Type type, in any val

t);

Q)
req);

I3

raises(PolicyError);

/I C++
class ORB {
public:

class RequestSeq {..};
char* object to_string (Object_var);

Object var string_to_object (const char *);

void create list (Long, NVList_out);

void create_operation _list (OperationDef_ptr, NVList_out);
void create named value (NamedValue_out);

void create_exception _list (ExceptionList_out);

void create_context list (ContextList_out);

void get default context (Context_out);

void create_environment (Environment_out);

void send multiple_requests_oneway (const RequestSeq &);
void send multiple_requests_deferred (const RequestSeq &);

Boolean poll_next_response 0;
void get next response (Request_out);

Boolean work_pending ();

void perform_work ();
void shutdown (Boolean wait_for_completion);

void run ();

Boolean get service information (
ServiceType svc_type,
Servicelnformation_out svc_info

)i
void destroy ();
typedef char* Objectld ;

class ObjectldList {.};
Object_ptr resolve initial _references (const char* id);

ObjectldList* list_initial_services ;
Policy_ptr create_policy (PolicyType type, const Any& val);

static ORB_ptr duplicate (ORB_ptr orb);
static ORB_ptr nil ();

virtual TypeCode_ptr
create_struct_tc (
const char* id,
const char* name,
const StructMemberSeq & members

227

228

)=0;

virtual TypeCode_ptr
create_union_tc (
const char* id,
const char* name,
TypeCode_ptr discriminator_type,
const UnionMemberSeq & members
)=0;

virtual TypeCode_ptr
create_enum_tc (

const char* id,

const char* name,

const EnumMemberSeq & members
)=0,

virtual TypeCode_ptr
create alias tc (
const char* id,
const char* name,
TypeCode_ptr original_type
)=0,

virtual TypeCode_ptr
create_exception tc (

const char* id,

const char* name,

const StructMemberSeq & members
)=0,

virtual TypeCode_ptr
create interface tc (
const char* id,
const char* name
)=0,

virtual TypeCode_ptr
create_string_tc (

CORBA::ULong bound
)=0,

virtual TypeCode_ptr

create_wstring_tc (
CORBA::ULong bound
)=0;

virtual TypeCode_ptr

create fixed tc (
CORBA::UShort digits,
CORBA::Short scale

)=0;

virtual TypeCode_ptr
create_sequence tc (
CORBA::ULong bound,
TypeCode_ptr element_type
)=0;

virtual TypeCode_ptr

create_recursive_tc (
const char* id

)=0;

virtual TypeCode_ptr

create_array tc (
CORBA::ULong length,
TypeCode_ptr element_type
)=0;

virtual TypeCode_ptr
create value tc (
const char* id,
const char* name,
ValueModifier type_modifier,
TypeCode_ptr concrete_base,
const ValueMemberSeq & members
)=0;

virtual TypeCode_ptr

create value bhox tc (
const char* id,

const char* name,
TypeCode_ptr original_type
)=0,

229

230

virtual TypeCode_ptr
create native tc (
const char* id,
const char* name
)=0,

virtual TypeCode_ptr

create_abstract interface tc (
const char* id,
const char* name

)=0,

virtual ValueFactory
register_value factory (
const char* id,
ValueFactory factory
)=0,

virtual void

unregister_value_factory (
const char* id

)=0,

virtual ValueFactory

lookup_value factory (
const char* id

)=0,

ORB::create_abstract_interface_tc()

virtual T¥I9eCode ptr create_abstract_interface_tc(
const char* id,

const char* name
)=0;

Returns a pointer to a new TypeCode of kind tk_abstract_interface
senting an IDL abstract interface.

repre-

Parameters

See Also

Parameters

See Also

id The repository ID that globally identifies the TypeCode object.
name The simple name identifying the TypeCode object within its
enclosing scope.

CORBA: TypeCode
CORBA:TCKind

ORB::create_alias_tc()

virtual TypeCode ptr create_alias_tc(
const char* id,

const char* name,

TypeCode ptr original_type
)=0;

Returns a pointer to a new TypeCode of kind tk_alias representingan IDL alias.

id The repository ID that globally identifies the TypeCode object.
name The simple name identifying the TypeCode object within its

enclosing scope.
original_type A pointer to the actual TypeCode object this alias represents.

CORBA: TypeCode
CORBA:TCKind

ORB::create_array tc()

virtual TypeCode _ptr create_array_tc(
CORBA::ULong length,

TypeCode _ptr element_type
)=0;

Returns a pointer to a new TypeCode of kind tk_array representing an IDL
array.

231

Parameters

See Also

Parameters

See Also

Parameters

See Also

232

length The length of the array.
element_type The data type for the elements of the array.

CORBA: TypeCode
CORBA: TCKind

ORB::create_context_list()

void create_context_list(ContextList out list);
Creates an empty ContexiList ~ object for use with a DIl request. You can add
context strings to the list using ContextList::add() and then pass the list as

a parameter to Object :: _create request()

list A reference to the new ContextList .

CORBA ContextList
CORBA Object :: _create request()

ORB::create_enum_tc()

virtual TypeCode _ptr create_enum_tc(
const char* id,

const char* name,
const EnumMemberSeg& members
)=0;

Returns a pointer to a new TypeCode of kind tk_ enum representing an IDL
enumeration.

id The repository ID that globally identifies the TypeCode object.

name The simple name identifying the TypeCode object within its
enclosing scope.

members The sequence of enumeration members.

CORBA: TypeCode

Parameters

See Also

Parameters

See Also

CORBA:TCKind

ORB::create_environment()

void create_environment(
Environment _out environment
)i

Gets a newly created Environment object.

new_env New environment created.

CORBA Environment

ORB::create_exception_list()

void create_exception_list(
ExceptionList out list
);

Creates an empty ExceptionList object for use with a DIl request. You can

add user-defined exceptions to the list using ExceptionList::add()

pass the list as a parameter to Object :: create request()

list A reference to the new ExceptionList .

CORBA ExceptionList
CORBA Object :: _create_request()

ORB::create_exception_tc()

virtual T%QeCOde ptr create_exception_tc(
const char* id,

const char* name,
const StructMemberSeq & members
)=0;

and then

233

Returns a pointer to a new TypeCode of kind tk_except representing an IDL
exception.

Parameters

id The repository ID that globally identifies the TypeCode object.

name The simple name identifying the TypeCode object within its
enclosing scope.

members The sequence of members.

See Also CORBA: TypeCode
CORBA:TCKind

ORB::create_fixed_tc()

virtual TypeCode _ptr create_fixed_tc(
CORBA::UShort digits,
CORBA::Short scale

)=0;

Returns a pointer to a new TypeCode of kind tk_fixed representing an IDL
fixed point type.

Parameters
digits The number of digits for the fixed point type.
scale The scale of the fixed point type.

See Also CORBA: TypeCode
CORBA:TCKind

ORB::create _interface tc()

virtual TypeCode _ptr create_interface_tc(
const char* id,

const char* name
)=0;

Returns a pointer to a new TypeCode representing an IDL interface.

234

Parameters

See Also

Parameters

See Also

id The repository ID that globally identifies the TypeCode object.
name The simple name identifying the TypeCode object within its
enclosing scope.

CORBA: TypeCode
CORBA:TCKind

ORB::create _list()

void create_list(
Long count,

NVList _out list

)

Allocates space for an empty NVList of the size specified by count to contain
NamedValue objects. A list of NamedValue object can be used to describe
arguments to a request when using the Dynamic Invocation Interface. You can
add NamedValue items to list using the NVList :: add item() routine.

count Number of elements anticipated for the new NVList . This is a
hint to help with storage allocation.

list A pointer to the start of the list. The caller must release the
reference when it is no longer needed, or assign it to an
NVList var variable for automatic management.

CORBA:NVList
CORBA:NamedValue

CORBA:ORB:create_operation_list()
CORB#:Request ()

ORB::create_named_value()

void create_named_value(
NamedValue _out value
)

235

Parameters

See Also

Parameters

See Also

236

Creates NamedValue objects you can use as return value parameters in the
Object ::_create request() method.

value A pointer to the NamedValue object created. You must
release the reference when it is no longer needed, or assign
it to a NamedValue var variable for automatic management.

CORBA:NVList
CORBA:NamedValue

CORBA: Any
CORBA:ORB:create_list()

ORB::create_native_tc()

virtual T¥I9eCode ptr create_native_tc(
const char* id,

const char* name
)=0;

Returns a pointer to a new TypeCode of kind tk_native representing an IDL
native type.

id The repository ID that globally identifies the TypeCode object.

name The simple name identifying the TypeCode object within its
enclosing scope.

CORBA: TypeCode
CORBA: TCKind

ORB::create_operation_list()

void create_operation_list(

OperationDef ptr operation,
NVList _out list

)

Creates an NVList and returns it in the list parameter, initialized with the
argument descriptions for the operation specified in operation

Parameters

See Also

Parameters

operation A pointer to the interface repository object describing the
operation.
list A pointer to the start of the list. The caller must release the

reference when it is no longer needed, or assign it to a
NVList var variable for automatic management.

The returned NVList is of the correct length with one element
per argument, and each NamedValue element of the list has a
valid name and valid flags (denoting the argument passing
mode).

Each element in the list is of type Namedvalue whose value member (of type
CORB#:Any) has a valid type that denotes the type of the argument. The
value of the argument is not filled in.

Use of this method requires that the relevant IDL file be compiled with the -R
option.

CORBA:NVList

CORBA:NamedValue

CORBA:Any

CORBA:ORB:create_list()

ORB::create_policy()

Policy _ptr create_policy(
PolicyType type,
const Any& value

)i
Returns a reference to a newly created Policy object.

type The PolicyType of the Policy object to be created.
value The value for the initial state of the Policy object created.

237

Exceptions

See Also

Parameters

Examples

238

PolicyError The requested policy type or initial state for the policy is not
supported. The appropriate reason as described in the
PolicyErrorCode

CORBA Poli
CORBA PolicyType

CORBA PolicyErrorCode

ORB::create_recursive tc()

virtual TypeCode ptr create_recursive_tc(
const char* id

)=0;

Returns a pointer to a recursive TypeCode, which serves as a place holder for
a concrete TypeCode during the process of creating type codes that contain
recursion. After the recursive TypeCode has been properly embedded in the

enclosing TypeCode , which corresponds to the specified repository id , it will
act as a normal TypeCode .

id The repository ID of the enclosing type for which the recursive
TypeCode is serving as a place holder.

Invoking operations on the recursive TypeCode before it has been embedded
in the enclosing TypeCode will result in undefined behavior.

The following IDL type declarations contains TypeCode recursion:

// \DL

struct foo {
long value;
sequence<foo> chain;

I3

valuetype V {
public V member;

h
To create a TypeCode for valuetype V, you invoke the TypeCode creation
functions as follows:

See Also

Parameters

See Also

/I C++
TypeCode_var recursive_tc = orb->create_recursive_t c("IDL:V:1.0");
ValueMemberSeq v_seq;
v_seq.length(1);
v_seq[0].name = string_dup("member");
v_seq[0].type = recursive_tc;
v_seq[0].access = PUBLIC_MEMBER;
TypeCode_var v_val_tc = orb->create_value_tc(
"IDL:V:1.0",
"

VM_NONE,

TypeCode::_nil(),

v_seq
)
CORBA: TypeCode

ORB::create_sequence_tc()

virtual TypeCode _ptr create_sequence._tc(
CORBA::ULong bound,

TypeCode ptr element_type
)=0;

Returns a pointer to a new TypeCode of kind tk_sequence representing an IDL
sequence.

bound The upper bound of the sequence.
element_type The data type for the elements of the sequence.

CORBA: TypeCode
CORBA:TCKind

ORB::create_string_tc()
virtual TypeCode ptr create_string_tc(

CORBA::ULong bound
)=0;

239

Returns a pointer to a new TypeCode of kind tk_string representing an IDL
string.

Parameters

bound The upper bound of the string.

See Also CORBA: TypeCode
CORBA:TCKind

ORB::create_struct tc()

virtual TypeCode _ptr create_struct_tc(
const char* id,

const char* name,
const StructMemberSeq & members
)=0;

Returns a pointer to a new TypeCode of kind tk_struct representing an IDL
structure.

Parameters

id The repository ID that globally identifies the TypeCode object.

name The simple name identifying the TypeCode object within its
enclosing scope.

members The sequence of structure members.

See Also CORBA: TypeCode
CORBA:TCKind

ORB::create_union_tc()

virtual TypeCode _ptr create_union_tc(
const char* id,

const char* name,

TypeCode _ptr discriminator_type,

const UnionMemberSeq & members
)=0;

Returns a pointer to a TypeCode of kind tk_union representing an IDL union.

240

Parameters

See Also

Parameters

See Also

id The repository ID that globally identifies the
TypeCode object.

name The simple name identifying the TypeCode object
within its enclosing scope.

discriminator_type The union discriminator type.

members The sequence of union members.

CORBA: TypeCode

CORBA:TCKind

ORB::create_value_box_tc()

virtual T%QeCOde ptr create_value_box_tc(
const char* id,

const char* name,
TypeCode _ptr original_type
)=0,

Returns a pointer to a new TypeCode of kind tk_value_box representing an
IDL boxed value.

id The repository ID that globally identifies the TypeCode object.
name The simple name identifying the TypeCode object within its

enclosing scope.

original_type A pointer to the original TypeCode object this boxed value
represents.

CORBA: TypeCode
CORBA:TCKind

ORB::create_value_tc()

virtual T%QeCOde ptr create_value_tc(
const char* id,

const char* name,

241

Parameters

See Also

Parameters

See Also

242

ValueModifier type_modifier,

TypeCode ptr concrete_base,

const ValueMemberSeq & members
)=0;

Returns a pointer to a TypeCode of kind tk_value representing an IDL value
type.

id The repository ID that globally identifies the TypeCode
object.

name The simple name identifying the TypeCode object within its
enclosing scope.

type_modifier A value type modifier.

concrete_base A TypeCode for the immediate concrete value type base of

the value type for which the TypeCode is being created. If
the value type does not have a concrete base, use a nil
TypeCode reference.

members The sequence of value type members.

CORBA: TypeCode
CORBA: TCKind

ORB::create_wstring_tc()

virtual TypeCode ptr create_wstring_tc(
CORBA::ULong bound

)=0;

Returns a pointer to a new TypeCode of kind tk_wstring representing an IDL
wide string.

bound The upper bound of the string.

CORB#A: TypeCode
CORBA TCKind

Exceptions

See Also

ORB::destroy()

void destroy();

This thread operation destroys the ORB so that its resources can be reclaimed
by the application.

If destroy() is called on an ORB that has not been shut down (see
shutdown()) it will start the shut down process and block until the ORB has
shut down before it destroys the ORB. For maximum portability and to avoid
resource leaks, applications should always call shutdown() and destroy()

on all ORB instances before exiting.

After an ORB is destroyed, another call to ORB_init) with the same ORB ID
will return a reference to a newly constructed ORB.

BAD_INV_ORDERAn application calls destroy() in a thread that is currently
minor code 3 servicing an invocation because blocking would result in a
deadlock.

OBJECT_NOT_EXAn operation is invoked on a destroyed ORB reference.
ST
The exception is raise if

CORBA ORB: run()
CORBA ORB shutdown()

CORBA ORB._init()

ORB::_duplicate()

static ORB_ptr _duplicate(
ORB_ptr obj
);

Returns a new reference to obj and increments the reference count of the
object. Because object references are opaque and ORB-dependent, it is not
possible for your application to allocate storage for them. Therefore, if more
than one copy of an object reference is needed, use this method to create a
duplicate.

243

Parameters
obj Pointer to the object to duplicate.

See Also CORBA release()

ORB::get_default_context()

void get_default_context(Context _out context);

Obtains a CORBA:Context object representing the default context of the
process.

Parameters

context The default context of the process.

See Also CORBA: Context
CORBA:NVList

ORB::get_next_response()
void get_next_response(
Request _out request
)
Gets the next response for a request that has been sent.

Parameters
request A pointer to the Request whose completion is being reported.

You can call get_next_response() successively to determine the outcomes
of the individual requests from send_multiple requests_deferred() calls.
The order in which responses are returned is not necessarily related to the
order in which the requests are completed.

Exceptions

WrongTransacti ~ The thread invoking this method has a non-null transaction
on context that differs from that of the request and the request
has an associated transaction context.

See Also CORBA:ORB:send_multiple_requests_deferred()

244

Parameters

See Also

CORBA:Request ::get response()
CORBA:Request ::send_deferred()
CORBA:ORB: poll_next_response()

ORB::get_service_information()

Boolean get_service_information(

ServiceType svc_type,
Servicelnformation out svc_info
%

Gets the service information about CORBA facilities and services that this
ORB supports. Returns 1 (true) if service information is available for the
svc_type and returns O (false) otherwise.

svc_type The service type for which information is being requested.

svc_info The service information available for svc_type, if that
information is available.

CORBA Servicelnformation

ORB::list_initial_services()
ObjectldList *list_initial_services();

Returns a sequence of Objectid strings, each of which names a service
provided by Orbix. This method allows your application to determine which
objects have references available. Before you can use some services such as
the naming service in your application you have to first obtain an object
reference to the service.

The ObjectldList may include the following names:

DynAnyFactory
IT_Configuration
InterfaceRepository
NameService
ORBPolicyManager
POACurrent

PSS

245

See Also

Parameters

See Also

See Also

See Also

246

RootPOA
SecurityCurrent
TradingService
TransactionCurrent

CORBA ORB: resolve_initial_references()

ORB::lookup value_factory()

virtual ValueFactory lookup_value_factory(
const char* id

)=0;

Returns a pointer to the factory method.

id A repository ID that identifies a value type factory method.

Your application assumes ownership of the returned reference to the factory.
When you are done with the factory, invoke ValueFactoryBase::

remove ref() once on that factory.

CORBA ValueFactory
CORBA ORB: register_value_factory()

CORBA ORB: unregister_value_factory()

Object:: nil()

static ORB_ptr _nil();

Returns a nil object reference.
CORBA is_nil()

ORB::Objectld

typedef char* Objectld;

The name that identifies an object for a service. Objectld strings uniquely
identify each service used by an ORB.

CORBA ORE: ObjectldList

CORBA ORB list_initial_services()

ORB::ObjectldList Sequence Class

class ObjectldList {
public:
/I default constructor
ObjectldList();
/l'initial maximum length constructor
ObjectldList(ULong max);
// data constructor
ObjectldList(
ULong max,
ULong length,
Objectld *data,
Boolean release = FALSE
)
/I copy constructor
ObjectldList(const ObjectldList&);

/I destructor
~ObjectldList();

/I assignment operator
ObjectldList &operator=(const ObjectldList&);

ULong maximum() const;
void length(ULong);
ULong length() const;

/I subscript operators
Objectld &operator]](ULong index);
const Objectld &operator[J(ULong index) const;

Boolean release() const;
void replace(
ULong max,
ULong length,
Objectld *data,
Boolean release = FALSE

247

See Also

Parameters

248

Il buffer reference
Objectld* get_buffer(Boolean orphan = FALSE);
I buffer access
const Objectld* get_buffer() const;
8
A sequence of Objectld objects.

CORBA ORB: Objectld
CORBA ORB: list_initial_services()

“About Sequences”

ORB::object_to_string()
char *object_to_string(

Object _var obj
)

Returns a string representation of an object reference. An object reference can
be translated into a string by this method and the resulting value stored or
communicated in whatever ways strings are manipulated.

obj Object reference to be translated to a string.

Use string_to_object() to translate the string back to the corresponding
object reference.

A string representation of an object reference has the prefix IOR: followed by
a series of hexadecimal octets. The hexadecimal strings are generated by first
turning an object reference into an interoperable object reference (IOR), and
then encapsulating the 10R using the encoding rules of common data
representation (CDR). The content of the encapsulated IOR is then turned into
hexadecimal digit pairs, starting with the first octet in the encapsulation and
going until the end. The high four bits of each octet are encoded as a
hexadecimal digit, then the low four bits are encoded.

See Also

Exceptions

See Also

Note: Because an object reference is opaque and may differ from ORB to
ORB, the object reference itself is not a convenient value for storing
references to objects in persistent storage or communicating references by
means other than invocation.

CORB#:ORB:string_to_object()

ORB::perform_work()

void perform_work();

Athread function that provides execution resources to your application if called
by the main thread. This function does nothing if called by any other thread.

You can use perform_work() and work_pending() for a simple polling loop
that multiplexes the main thread among the ORB and other activities. Such a
loop would most likely be used in a single-threaded server. A multi-threaded
server would need a polling loop only if there were both ORB and other code
that required use of the main thread. Here is a simple example of such a
polling loop:

/I C++
for ;) {
if (orb->work_pending()) {
orb->perform_work();
J§
/I do other things
Il sleep

BAD_INV_ORDERThe method is called after the ORB has shut down. You can
minor code 4 catch this exception to determine when to terminate a polling
loop.

CORBA ORB: run()
CORBA ORB work pending()

249

See Also

Parameters

250

ORB::poll_next_response()

Boolean poll_next_response();

Returns 1 (true) if any request has completed or returns O (false) if none have
completed. This method returns immediately, whether any request has com-
pleted or not.

You can call this method successively to determine whether the individual
requests specified in a send_multiple_requests_oneway() or
send_multiple requests_deferred() call have completed successfully.

Alternatively you can call Request :: poll response() on the individual
Request objects in the sequence of requests passed to
send_multiple_requests _oneway() or

send _multiple requests_deferred()

CORBA ORB: get next response()

CORBA ORB: send_multiple_requests_oneway()

CORBA ORB send multiple_requests_deferred()

CORBA @uest = poll_response()

ORB::register_value_factory()

virtual ValueFactory register_value_factory(
const char* id,

ValueFactory factory
)=0;
Registers a value type factory method with the ORB for a particular value type.
The method returns a null pointer if no previous factory was registered for the
type. If a factory is already registered for the value type, the method replaces
the factory and returns a pointer to the previous factory for which the caller
assumes ownership.

id A repository ID that identifies the factory.

factory The application-specific factory method that the ORB calls
whenever it needs to create the value type during the
unmarshaling of value instances.

See Also

When a value type factory is registered with the ORB, the ORB invokes
ValueFactoryBase::_add_ref() once on the factory before returning from
register_value_factory() . When the ORB is done using that factory, the
reference count is decremented once with ValueFactoryBase::

remove ref() . This can occur in any of the following circumstances:

* |fthe factory is explicitly unregistered via unregister value_factory()

the ORB invokes ValueFactoryBase::_remove_ref() once on the
factory.

® |f the factory is implicitly unregistered due to a call to shutdown() , the
ORB invokes ValueFactoryBase::_remove ref() once on each
registered factory.

* |fyou replace a factory by calling this register_value_factory() again,
you should invoke ValueFactoryBase::_remove_ref() once on the

previous factory.

CORBA ValueFactory
CORBA ORB lookup_value_factory()

CORBA ORB unregister_value_factory()

ORB::RequestSeq Sequence

class RequestSeq {
public:

/I default constructor
RequestSeq();
/l'initial maximum length constructor
RequestSeq(ULong max);
/I data constructor
RequestSeq(

ULong max,

ULong length,

Request *data,

Boolean release = FALSE
)
/I copy constructor
RequestSeq(const RequestSeq&);

/I destructor
~RequestSeq();

251

See Also

252

/l assignment operator
RequestSeq &operator=(const RequestSeq&);

ULong maximum() const;
void length(ULong);
ULong length() const;

/I subscript operators
Request &operator]](ULong index);
const Request &operatorfJ(ULong index) const;

Boolean release() const;
void replace(

ULong max,
ULong length,
Request *data,
Boolean release = FALSE
)
I/ buffer reference
Request* get_buffer(Boolean orphan = FALSE);
// buffer access

const Request* get_buffer() const;
3
A sequence of Request objects.

CORBA Request
CORBA ORB: send_multiple_requests_oneway()

CORBA ORB: send_multiple_requests_deferred()

“About Sequences”

ORB::resolve_initial_references()

Object _ptr resolve_initial_references(
const char* id
);

Returns an object reference for a desired service.

Parameters

See Also

See Also

id The name of the desired service. Use
list_initial_services() to obtain the list of services
supported.

Applications require a portable means by which to obtain some initial object
references such as the root POA, the interface repository, and various object
services instances. The functionality of resolve_initial_references() and
list_initial_services() is like a simplified, local version of the naming
service that has only a small set of objects in a flattened single-level name
space.

The object reference returned must be narrowed to the correct object type.
For example, the object reference returned from resolving the id name
InterfaceRepository must be narrowed to the type CORBA Repository

CORBA ORB: list_initial_services()

ORB::run()

void run();

A thread method that enables the ORB to perform work using the main thread.
If called by any thread other than the main thread, this method simply waits
until the ORB has shut down.

This method provides execution resources to the ORB so that it can perform
its internal functions. Single threaded ORB implementations, and some
multi-threaded ORB implementations need to use the main thread. For
maximum portability, your applications should call either run() or

perform_work() on the main thread.

run() returns after the ORB has completed the shutdown process, initiated
when some thread calls shutdown() .

CORBA ORB: perform_work()
CORBA ORB work pending()
CORBA ORB shutdown()

CORBA ORB::destroy()

“Threading and Synchronization Toolkit Overview”

253

Parameters

See Also

Parameters

See Also

254

ORB::send_multiple_requests_deferred()

void send_multiple_requests_deferred(
const RequestSeq &req
);

Initiates a number of requests in parallel.

req A sequence of requests.

The method does not wait for the requests to finish before returning to the
caller. The caller can use get_next response() or Request ::

get_response() to determine the outcome of the requests. Memory leakage
will result if one of these methods is not called for a request issued with
send_multiple_requests_oneway() or Request :: send_deferred()

CORBA ORB: send_multiple_requests_oneway()
CORBA Request :: get response()

CORBA Request :: send_deferred()
CORBA ORB: get next response()

ORB::send_multiple_requests_oneway()

void send_multiple_requests_oneway(
const RequestSeq &req
);

Initiates a number of requests in parallel. It does not wait for the requests to
finish before returning to the caller.

req A sequence of requests. The operations in this sequence do
not have to be IDL oneway operations. The caller does not
expect a response, nor does it expect out or inout parameters
to be updated.

CORBA Request :: send_oneway()
CORBA ORB: send_multiple_requests_deferred()

Parameters

Exceptions

See Also

ORB::shutdown()

void shutdown(
Boolean wait_for_completion
);

This thread method instructs the ORB to shut down in preparation for ORB
destruction.

wait_for_completion Designates whether or not to wait for completion
before continuing.

If the value is 1 (true), this method blocks until all
ORB processing has completed, including request
processing and object deactivation or other methods
associated with object adapters.

If the value is O (false), then shut down may not have
completed upon return of the method.

While the ORB is in the process of shutting down, the ORB operates as
normal, servicing incoming and outgoing requests until all requests have
been completed. Shutting down the ORB causes all object adapters to be
shut down because they cannot exist without an ORB.

Once an ORB has shutdown, you can invoke only object reference
management methods including CORBA::_duplicate() , release() , and
is_nil() on the ORB or any object reference obtained from the ORB. An
application may also invoke ORB::destroy() on the ORB itself. Invoking any
other method raises exception BAD_INV_ORDERystem with the OMG minor
code 4.

BAD_INV_ORDERAn application calls this method in a thread that is currently
minorcode servicing an invocation because blocking would result in a
3 deadlock.

CORBA ORB: run()
CORBA ORB::destroy()

255

ORB::string_to_object()

Object _var string_to_object(
const char *obj_ref_string
)

Returns an object reference by converting a string representation of an object
reference.

Parameters
obj ref string String representation of an object reference to be converted.

To guarantee that an ORB will understand the string form of an object
reference, the string must have been produced by a call to
object to_string()

See Also CORBA: ORB:object_to_string()

ORB::unregister_value_factory()

virtual void unregister_value_factory(
const char* id

)=0;
Unregisters a value type factory method from the ORB.
Parameters

id A repository ID that identifies a value type factory method.

See Also CORBA ValueFactory
CORBA ORB: lookup_value_factory()

CORBA ORB: register_value_factory()

ORB::work_pending()

Boolean work_pending();

This thread method returns an indication of whether the ORB needs the main
thread to perform some work. A return value of 1 (true) indicates that the ORB
needs the main thread to perform some work and a return value of O (false)
indicates that the ORB does not need the main thread.

256

Exceptions

BAD_INV_ORDERThe method is called after the ORB has shutdown.
minor code 4

See Also CORBA ORB: run()
CORBA ORB perform_work()

257

258

CORBA::Policy Interface

An ORB or CORBA service may choose to allow access to certain choices
that affect its operation. This information is accessed in a structured manner
using interfaces derived from the Policy interface defined in the CORBA
module. A CORBA service is not required to use this method of accessing
operating options, but may choose to do so.

This chapter is divided into the following sections:

® “Quality of Service Framework”
* “Policy Methods”

The following policies are available. These are classes that inherit from the
CORBA::Policy class:

Table 7: Policies

Category Policy
CORBA and CORBA ConstructionPolicy
IT_CO RBA IT_CORBA::WellKnownAddressingPolicy

PortableServerand PortableServer:ThreadPolicy
IT PortableServer PortableServer::LifespanPolicy
h PortableServer::ldUniquenessPolicy

PortableServer::ldAssignmentPolicy
PortableServer:ImplicitActivationPolicy
PortableServer::ServantRetentionPolicy
PortableServer::RequestProcessingPolicy
IT_PortableServer::ObjectDeactivationPolicy
IT_PortableServer::PersistenceModePolicy

Messaging RehindPolicy
SyncScopePolicy

RoutingPolicy

You create instances of a policy by calling CORBA ORB create_policy()

259

Quality of Service Framework

A Policy is the key component for a standard Quality of Service framework
(QoS). In this framework, all qualities are defined as interfaces derived from
CORBA::Policy . This framework is how all service-specific qualities are
defined. The components of the framework include:

Policy This base interface from which all QoS objects derive.

PolicyList A sequence of Policy objects.

PolicyManager An interface with operations for querying and
overriding QoS policy settings.

Policy Transport Mechanisms for transporting policy values as part of

Mechanisms interoperable object references and within requests.

These include:

® TAG POLICIES - A Profile Component containing
the sequence of QoS policies exported with the
object reference by an object adapter.

®* INVOCATION POLICIES - A Service Context
containing a sequence of QoS policies in effect
for the invocation.

Most policies are appropriate only for management at either the server or
client, but not both. Server-side policies are associated with a POA.
Client-side policies are divided into ORB-level, thread-level, and object-level
policies. At the thread and ORB levels, use the PolicyManager interface to
query the current set of policies and override these settings.

POA Policies for Servers

260

Server-side policy management is handled by associating QoS Policy objects
with a POA. Since all QoS are derived from interface Policy , those that are
applicable to server-side behavior can be passed as arguments to POA:
create POA() . Any such policies that affect the behavior of requests (and
therefore must be accessible by the ORB at the client side) are exported
within the object references that the POA creates. It is clearly noted in a POA
policy definition when that policy is of interest to the client. For those policies

Quality of Service Framework

that can be exported within an object reference, the absence of a value for
that policy type implies that the target supports any legal value of that

PolicyType .

ORB-level Policies for Clients

You obtained the ORB’s locality-constrained PolicyManager through an
invocation of CORBA ORB resolve_initial_references() , specifying an
identifier of ORBPolicyManager . This PolicyManager has operations through
which a set of policies can be applied and the current overriding policy
settings can be obtained. Policies applied at the ORB level override any
system defaults.

Thread-level Policies for Clients

You obtained a thread’s locality-constrained PolicyCurrent through an
invocation of CORBA ORB resolve_initial_references() , specifying an
identifier of PolicyCurrent . Policies applied at the thread-level override any
system defaults or values set at the ORB level. When accessed from a newly
spawned thread, the PolicyCurrent initially has no overridden policies. The
PolicyCurrent also has no overridden values when a POA with

ThreadPolicy of ORB_CONTROL_MOD#ispatches an invocation to a servant.
Each time an invocation is dispatched through a SINGLE_THREAD MODHEROA
the thread-level overrides are reset to have no overridden values.

Object-level Policies for Clients

Operations are defined on the base Object interface through which a set of
policies can be applied. Policies applied at the object level override any
system defaults or values set at the ORB or thread levels. In addition,
accessors are defined for querying the current overriding policies set at the
object level, and for obtaining the current effective client-side policy of a
given PolicyType . The effective client-side policy is the value of a
PolicyType that would be in effect if a request were made. This is
determined by checking for overrides at the object level, then at the thread
level, and finally at the ORB level. If no overriding policies are set at any

261

level, the system-dependent default value is returned. Portable applications
are expected to override the ORB-level policies since default values are not
specified in most cases.

Policy Methods

262

The Policy interface is as follows:

/I DL in module CORBA
interface Policy {

readonly attribute PolicyType policy_type ;
Palicy copy() ;

void destroy()
h

Policy::policy type Attribute

// IDL
readonly attribute PolicyType policy_type;

This read-only attribute returns the constant value of type PolicyType that
corresponds to the type of the Policy object.

Policy::copy()

/I \DL
Policy copy();

This operation copies the Policy object. The copy does not retain any
relationships that the original policy had with any domain, or object.

Policy::destroy()

/I \DL
void destroy();

This operation destroys the Policy object. It is the responsibility of the Policy
object to determine whether it can be destroyed.

Policy Methods

Enhancement

Exceptions

Orbix guarantees to always destroy all local objects it creates when the last
reference to them is released so you do not have to call destroy() . However,
code that relies on this feature is not strictly CORBA compliant and may leak
resources with other ORBs. (According to the CORBA specification, simply
calling CORBA release() on all references to a policy object does not delete
the object or its components so each policy object created must be explicitly
destroyed to avoid memory leaks.)

NO_PERMISSION The policy object determines that it cannot be destroyed.

263

264

CORBA::PolicyCurrent Class

The PolicyCurrent interface allows access to policy settings at the current
programming context level. Within a client, you obtain a PolicyCurrent

object reference to set the quality of service for all invocations in the current
thread. You obtain a reference to this interface by invoking ORB

resolve initial_references() with the Objectld PolicyCurrent

The PolicyCurrent interface is derived from the PolicyManager and the
Current _interfaces. The PolicyManager interface allows you to change the
policies for each invocation and the Current interface allows control from the
current thread.

Policies applied at the thread level override any system defaults or values set
at the ORB level. When accessed from a newly spawned thread, the
PolicyCurrent initially has no overridden policies. The PolicyCurrent also
has no overridden values when a POA with ThreadPolicy — of
ORB_CONTROL_MOD#fispatches an invocation to a servant. Each time an
invocation is dispatched through a POA of the SINGLE_THREAD MODELhe
thread-level overrides are reset to have no overridden values.

class IT_ART_API PolicyCurrent :
public virtual PolicyManager,
public virtual Current
{
public:
typedef CORBA::PolicyCurrent_ptr _ptr_type;
typedef CORBA::PolicyCurrent_var _var_type;
virtual ~PoalicyCurrent()
static PolicyCurrent_ptr _narrow (
CORBA::Object_ptr obj
)
static PolicyCurrent_ptr _unchecked narrow (
CORBA::Object_ptr obj
)
inline static PolicyCurrent_ptr _duplicate (
PolicyCurrent_ptr p
)

inline static PolicyCurrent_ptr _nil

265

Parameters

See Also

Parameters

See Also

266

static const IT_FWString _it_fw_type_id;
h

PolicyCurrent::_duplicate()

inline static PolicyCurrent_ptr _duplicate(
PalicyCurrent_ptr p

)

Returns a duplicate object reference and increments the reference count of the
object.

p The current object reference to duplicate.

“About Standard Functions for all Interfaces”

PolicyCurrent::_narrow()

static PolicyCurrent_ptr _narrow(
CORBA Object _ptr obj
);

Returns a new object reference to a PolicyCurrent object given an existing
reference.

obj A reference to an object.

CORBA PolicyCurrent::_unchecked narrow()

“About Standard Functions for all Interfaces”

PolicyCurrent::_nil()

inline static PolicyCurrent_ptr _nil();
Returns a nil object reference to a PolicyCurrent object.

See Also

Parameters

See Also

“About Standard Functions for all Interfaces”

PolicyCurrent:: ~PolicyCurrent() Destructor

virtual ~PolicyCurrent();
The destructor for the object.

PolicyCurrent::_unchecked_narrow()

static PolicyCurrent_ptr _unchecked_narrow(
CORBA Object _ptr obj
)

Returns a new object reference to a PolicyCurrent
reference.

obj A reference to an object.

CORBA PolicyCurrent::_narrow()
“About Standard Functions for all Interfaces”

object given an existing

267

268

CORBA::PolicyManager Class

PolicyManager is an interface with operations for querying and overriding
QoS policy settings. It includes mechanisms for obtaining policy override
management operations at each relevant application scope. You obtain the
ORB'’s PolicyManager by invoking ORB::resolve_initial_references()

with the Objectld ORBPolicyManager .

You use a CORBA::PolicyCurrent object, derived from CORBA:Current , for
managing the thread’s QoS policies. You obtain a reference to this interface
by invoking ORB::resolve_initial_references() with the Objectld
PolicyCurrent

® Accessor operations on CORBA::Object allow querying and overriding of
QoS at the object reference scope.

®* The application of QoS on a POA is done through the currently existing
mechanism of passing a PolicyList to POA:create_POA()

class IT_ART_API PolicyManager : public virtual COR BA::Object {
public:
typedef CORBA::PolicyManager_ptr _ptr_type;
typedef CORBA::PolicyManager_var _var_type;
virtual ~PoalicyManager()
static PolicyManager_ptr _narrow (
CORBA::Object_ptr obj
)
static PolicyManager_ptr _unchecked narrow (
CORBA::Object_ptr obj
)
inline static PolicyManager_ptr _duplicate (
PolicyManager_ptr p
)

inline static PolicyManager_ptr _nil ;

virtual PolicyList* get policy overrides (
const Policy TypeSeq & ts

)=0;

virtual void set_policy _overrides (
const PolicyList & policies,
SetOverrideType set_add

269

Parameters

See Also

Parameters

Parameters

See Also

270

)=0;
static const IT_FWString _it_fw_type_id;
h

PolicyManager::_duplicate()

inline static PolicyManager_ptr _duplicate(
PolicyManager_ptr p

):

Returns a duplicate object reference and increments the reference count of the
object.

p The current object reference to duplicate.

“About Standard Functions for all Interfaces”

PolicyManager::get_policy overrides()

virtual PolicyList *get_policy_overrides(

const PolicyTypeSeq & ts
)=0,
Returns a list containing the overridden polices for the requested policy types.
This returns only those policy overrides that have been set at the specific scope
corresponding to the target PolicyManager (no evaluation is done with respect
to overrides at other scopes). If none of the requested policy types are
overridden at the target PolicyManager , an empty sequence is returned.

ts A sequence of policy types to get. If the specified sequence is
empty, the method returns all policy overrides at this scope.

CORBA PolicyManager :: set policy overrides()

Parameters

See Also

See Also

PolicyManager::_narrow()

static PolicyManager_ptr _narrow(
CORBA Object _ptr obj
)

Returns a new object reference to a PolicyManager object given an existing

reference.

obj A reference to an object.

CORBA PolicyManager::_unchecked narrow()
“About Standard Functions for all Interfaces”

PolicyManager::_nil()

inline static PolicyManager_ptr _nil();

Returns a nil object reference to a PolicyManager object.

“About Standard Functions for all Interfaces”

PolicyManager:: ~PolicyManager() Destructor

virtual ~PolicyManager();
The destructor for the object.

PolicyManager::set_policy_overrides()

virtual void set_policy _overrides(
const PolicyList & policies,
SetOverrideType set add
)=0;

Modifies the current set of overrides with the requested list of policy overrides.

271

Parameters

Exceptions

Parameters

See Also

272

policies A sequence of references to policy objects.

set_add Indicates whether the policies in the policies parameter
should be added to existing overrides in the PolicyManager ~ or
used to replace existing overrides:

®* Use ADD_OVERRIDEO add policies onto any other
overrides that already exist in the PolicyManager

®* Use SET OVERRIDEO create a clean PolicyManager free
of any other overrides.

Invoking the method with an empty sequence of policies and a mode of
SET_OVERRIDEemoves all overrides from a PolicyManager

There is no evaluation of compatibility with policies set within other policy
managers.

NO_PERMISSION Only certain policies that pertain to the invocation of an oper-
ation at the client end can be overridden using this operation.
This exception is raised if you attempt to override any other

policy.
InvalidPolicie The request would put the set of overriding policies for the
d target PolicyManager in an inconsistent state. No policies are

changed or added.

PolicyManager::_unchecked_narrow()

static PolicyManager_ptr _unchecked_narrow(
CORBA Object _ptr obj
)

Returns a new object reference to a PolicyManager ~ object given an existing
reference.

obj A reference to an object.

CORBA PolicyManager::_narrow()

“About Standard Functions for all Interfaces”

273

274

CORBA::PrimitiveDef Interface

See Also

See Also

Interface PrimitiveDef represents an IDL primitive type such as short ,
long , and others. PrimitiveDef objects are anonymous (unnamed) and
owned by the interface repository.

Objects of type PrimitiveDef cannot be created directly. You can obtain a
reference to a PrimitiveDef by calling Repository = get_primitive()

/I IDL in module CORBA.
interface PrimitiveDef: IDLType {
readonly attribute PrimitiveKind kind ;

3

CORBA PrimitiveKind
CORBA IDLType

CORBA Repository :: get primitive()

PrimitiveDef::kind Attribute

//'IDL
readonly attribute PrimitiveKind kind;

Identifies which of the IDL primitive types is represented by this PrimitiveDef

A PrimitiveDef with a kind of type pk string represents an unbounded
string, a bounded string is represented by the interface StringDef . A
PrimitiveDef with a kind of type pk_objref represents the IDL type Object .
A PrimitiveDef with a kind of type pk value_base represents the IDL type
ValueBase .

CORBA IDLType
CORBA Object

CORBA StringDef

275

276

CORBA::Repository Interface

The interface repository itself is a container for IDL type definitions. Each
interface repository is represented by a global root Repository object.

The Repository interface describes the top-level object for a repository name
space. It contains definitions of constants, typedefs, exceptions, interfaces,
value types, value boxes, native types, and modules.

You can use the Repository operations to look up any IDL definition, by
either name or identity, that is defined in the global name space, in a
module, or in an interface. You can also use other Repository operations to
create information for the interface repository. See Table 8:

Table 8: Operations of the Repository Interface

Read Operations Write Operations
describe_contents() create_array()
get_canonical_typecode() create_fixed()

get primitive() create_sequence()
lookup_id() create_string()

create_wstring()

The five create_ t ype operations create new interface repository objects
defining anonymous types. Each anonymous type definition must be used in
defining exactly one other object. Because the interfaces for these
anonymous types are not derived from Contained |, it is your responsibility to
invoke in your application destroy() on the returned object if it is not
successfully used in creating a definition that is derived from Contained .

The Repository interface is as follows:

// IDL in module CORBA.
interface Repository : Container {
Contained lookup_id (
in Repositoryld search_id
);
TypeCode get_canonical_typecode (
in TypeCode tc

277

See Also

278

);
PrimitiveDef get_primitive (
in PrimitiveKind kind
)i
StringDef create_string (
in unsigned long bound
);
WstringDef create_wstring (
in unsigned long bound
)i
SequenceDef create_sequence (
in unsigned long bound,
in IDLType element_type
);

ArrayDef create_array (
in unsigned long length,

in IDLType element_type

)i
FixedDef create fixed (
in unsigned short digits,
in short scale
)i
8
The inherited describe_contents() is also described.

Note that although a Repository does not have a Repositoryld associated
with it (because it derives only from Container and not from Contained) you
can assume that its default Repositoryld . is an empty string. This allows a
value to be assigned to the defined in field of each description structure for
ModuleDef , InterfaceDef |, ValueDef , ValueBoxDef , TypedefDef |,
ExceptionDef and ConstantDef that may be contained immediately within a
Repository object.

CORBA Container

Repository::create_array()

/I \DL
ArrayDef create_array(

in unsigned long length,
in IDLType element_type

Parameters

See Also

Parameters

)

Returns a new array object defining an anonymous (unnamed) type. The new
array object must be used in the definition of exactly one other object. It is
deleted when the object it is contained in is deleted. If the created object is
not successfully used in the definition of a Contained object, it is your
application’s responsibility to delete it.

length The number of elements in the array.
element_type The type of element that the array will contain.

CORBA ArrayDef
CORBA IRObject

Repository::create_fixed()

/I'DL
FixedDef create_fixed (

in unsigned short digits,
in short scale

)i

Returns a new fixed-point object defining an anonymous (unnamed) type. The
new object must be used in the definition of exactly one other object. It is
deleted when the object it is contained in is deleted. If the created object is
not successfully used in the definition of a Contained object, it is your
application’s responsibility to delete it.

digits The number of digits in the fixed-point number. Valid values
must be between 1 and 31, inclusive.
scale The scale.

Repository::create_sequence()

//'IDL
SequenceDef create_sequence (
in unsigned long bound,

279

Parameters

See Also

Parameters

See Also

280

in IDLType element_type
)
Returns a new sequence object defining an anonymous (unnamed) type. The
new sequence object must be used in the definition of exactly one other object.
It is deleted when the object it is contained in is deleted. If the created object
is not successfully used in the definition of a Contained object, it is your
application’s responsibility to delete it.

bound The number of elements in the sequence. A bound of 0 indi-
cates an unbounded sequence.

element_type The type of element that the sequence will contain.

CORBA SequenceDef

Repository::create_string()

/I'DL
StringDef create_string(
in unsigned long bound

)X

Returns a new string object defining an anonymous (unnamed) type. The new
string object must be used in the definition of exactly one other object. It is
deleted when the object it is contained in is deleted. If the created object is
not successfully used in the definition of a Contained object, it is your
application’s responsibility to delete it.

bound The maximum number of characters in the string. (This
cannot be 0.)
Use get_primitive() to create unbounded strings.

CORBA StringDef
CORBA Repository :: get_primitive()

Parameters

See Also

Repository::create_wstring()

//'IDL
StringDef create_wstring (
in unsigned long bound

);
Returns a new wide string object defining an anonymous (unnamed) type. The
new wide string object must be used in the definition of exactly one other
object. It is deleted when the object it is contained in is deleted. If the created
object is not successfully used in the definition of a Contained object, it is your
application’s responsibility to delete it.

bound The maximum number of characters in the string. (This
cannot be 0.)
Use get_primitive() to create unbounded strings.

CORBA WstringDef
CORBA Repository :: get primitive()

Repository::describe_contents()

//'IDL
sequence<Description> describe_contents(

in InterfaceName restrict_type,
in boolean exclude_inherited,
inlong max_returned_objs

)i
The operation describe_contents() is inherited from interface Container . It
returns a sequence of Container ::Description structures; one such structure

for each top level item in the repository.

281

Parameters

See Also

Parameters

282

restrict_type If this is set to dk_all , then all of the contained inter-
face repository objects are returned. If set to the
DefinitionKind for a particular interface repository
kind, it returns only objects of that kind. For example,
if set to dk_Operation , then it returns contained oper-
ations only.

exclude_inherited Applies only to interfaces. If true, no inherited objects
are returned. If false, objects are returned even if they
are inherited.

max_retumned_objs The number of objects that can be returned in the call.
Setting a value of -1 means return all contained
objects.

CORBA Container::describe_contents()
CORBA Container::Description

CORBA DefinitionKind

Repository::get_canonical_typecode()

/I \DL
TypeCode get canonical_typecode(

in TypeCode tc
)
Returns a TypeCode that is equivalent to tc that also includes all repository
ids, names, and member names.

tc The TypeCode to lookup.

If the top level TypeCode does not contain a Repositoryld (such as array and
sequence type codes or type codes from older ORBs) or if it contains a
Repositoryld that is not found in the target Repository , then a new
TypeCode is constructed by recursively calling get_canonical_typecode() on
each member TypeCode of the original TypeCode .

Parameters

See Also

Parameters

See Also

Repository::get_primitive()
//'IDL
PrimitiveDef get_primitive(
in PrimitiveKind kind
)i
Returns a reference to a PrimitiveDef of the specified PrimitiveKind Al
PrimitiveDef objects are owned by the Repository , one primitive object per

primitive type (for example, short , long , unsignedshort ~ , unsignedlong and
so on).

kind The kind of primitive to get.

CORBA PrimitiveDef

Repository::lookup id()

/I'DL
Contained lookup_id(

in Repositoryld search_id
);

Returns an object reference to a Contained object within the repository given
its Repositoryld . If the repository does not contain a definition for the given
ID, a nil object reference is returned.

search _id The Repositoryld of the IDL definition to lookup.

CORBA Contained

283

284

CORBA::Request Class

This class is the key support class for the Dynamic Invocation Interface (Dll),
whereby an application may issue a request for any interface, even if that
interface was unknown at the time the application was compiled.

Orbix allows invocations, that are instances of class Request , to be
constructed by specifying at runtime the target object reference, the
operation name and the parameters. Such calls are termed dynamic because
the IDL interfaces used by a program do not have to be statically determined
at the time the program is designed and implemented.

You create a request using methods Object :: _create request() or Object :

. _request() .

class Request {

public:
Object _ptr target () const;
const char * operation () const;
NVList_ptr arguments ();
NamedValue_ptr result ();
Environment_ptr env();
ExceptionList_ptr exceptions _ ();
ContextList_ptr contexts ();
void ctx_(Context_pitr);
Context_ptr ctx () const;

/I argument manipulation helper functions

Any& add_in_arg ()

Any & add_in_arg (constchar* name);
Any& add_inout arg ()

Any & add_inout arg (const char* name);
Any& add out arg ();

Any& add out arg (constchar* name);
void set_return_type (TypeCode_ptr tc);
Any & retun value ()

void invoke ();
void send_oneway ();
void send_deferred ();

void get_response ();

285

See Also

Parameters

See Also

Parameters

See Also

286

Boolean poll_response ();

/I additional Messaging functions

virtual void sendc (CORBA::Object_ptr handler) = 0;
virtual CORBA::Object_ptr sendp() =0;
virtual void prepare (CORBA::Object_ptr p) =0;

3

CORBA Object :: _request()
CORBA Object :: _create _request()

Request::add_in_arg()
Any &add_in_arg();

Any &add_in_arg(
const char* name

)X

Returns an any value for the input argument that is added.

name The name for the argument that is added to the request.

CORBA Request::arguments()
CORBA Request :: add inout_arg()

CORBA Request :: add out arg()

Request::add_inout_arg()

Any &add_inout_arg();

Any &add_inout_arg(
const char* name

)

Returns an any value for the in/out argument that is added.

name The name for the argument that is added to the request.

CORBA Request::arguments()

Parameters

See Also

See Also

See Also

CORBA Request :: add in_arg()
CORBA Request :: add out arg()

Request::add_out_arg()

Any &add_out_arg();

Any &add_out_arg(
const char* name

)

Returns an any value for the output argument that is added.

name The name for the argument that is added to the request.

CORBA Request::arguments()
CORBA Request :: add in_arg()

CORBA Request :: add inout_arg()

Request::arguments()

NVList _ptr arguments();

Returns the arguments to the requested operation in an NVList . Ownership of
the return value is maintained by the Request and must not be freed by the
caller. You can add additional arguments to the request using the add_* arg()
helper methods.

CORBA NVList
CORBA Request :: add in_arg()

CORBA Request :: add inout arg()
CORBA Request :: add out arg()

Request::contexts()

ContextList ptr contexts();

Returns a pointer to a list of contexts for the request. Ownership of the return
value is maintained by the Request and must not be freed by the caller.

CORBA ContextList

287

Parameters

See Also

See Also

See Also

288

Request::ctx()

Context _ptr ctx() const;

Returns the Context associated with a request. Ownership of the return value
is maintained by the Request and must not be freed by the caller.

void ctx(
Context ptrc
)

Inserts a Context into a request.

c The context to insert with the request.

CORBA Context

Request::env()

Environment _ ptr env();

Returns the Environment associated with the request from which exceptions
raised in DIl calls can be accessed. Ownership of the return value is maintained
by the Request and must not be freed by the caller.

CORBA Environment

Request::exceptions()

ExceptionList ptr exceptions();

Returns a pointer to list of possible application-specific exceptions for the
request. Ownership of the return value is maintained by the Request and must
not be freed by the caller.

CORBA ExceptionList

See Also

See Also

Request::get_response()
void get_response();

Determines whether a request has completed successfully. It returns only when
the request, invoked previously using send deferred() , has completed.

CORBA Request:result()
CORBA Request :: send_deferred()

Request::invoke()

void invoke();

Instructs the ORB to make a request. The parameters to the request must
already be set up. The caller is blocked until the request has been processed
by the target object or an exception occurs.

To make a non-blocking request, see send deferred() and send_oneway/()

CORBA Request :: send_oneway()
CORBA Request :: send_deferred()

CORBA Request:result()

Request::operation()

const char *operation() const;

Returns the operation name of the request. Ownership of the return value is
maintained by the Request and must not be freed by the caller.

Request::poll_response()

Boolean poll_response();

Returns 1 (true) if the operation has completed successfully and indicates that
the return value and out and inout parameters in the request are valid. Returns
0O (false) otherwise. The method returns immediately.

289

See Also

Parameters

Exceptions

See Also

290

If your application makes an operation request using send deferred() , it can
call poll_response() to determine whether the operation has completed. If
the operation has completed, you can get the result by calling Request:

result() .

CORBA Request :: send_deferred()
CORBA Request :: get response()

CORBA Request::result()

Request::prepare()

virtual void prepare(

CORBA Object ptr p
)=0,
Associates an initialized Request with a previous operation that was initiated
via sendp() . The Request must be created and associated with the operation’s
out arguments and return value prior to calling prepare() . Once prepare()
has been called, it is as if that prepared Request was the one that actually had

sendp() used.

p An object reference.

This function along with sendp() and sendc() enable dynamic
time-Independent invocations and dynamic use of the Messaging callback
model.

BAD_INV_ORDERprepare() is invoked on a Request that had previously been
used for a send or one of its variants.

BAD_PARAM prepare() is invoked with an object reference that was not
previously returned from an invocation of sendp() .

CORBA Request :: sendp()
CORBA Request :: sendc()

Parameters

Exceptions

See Also

Request::result()

NamedValue _ptr result();

Returns the result of the operation request in a NamedValue . Ownership of the
return value is maintained by the Request and must not be freed by the caller.

Request::return_value()

Any &return_value();
Returns an any value for the returned value of the operation.

Request::sendc()

virtual void sendc(
CORBA Object _ptr handler

)=0;

Initiates an operation according to the information in the Request .

handler Pass in the callback Messaging :: ReplyHandler as a base
CORBA::Object . The results of invocations made with
sendc() will be available through this handler.

A truly dynamic client can implement the ReplyHandler using the DSI.

A system exception may be raise if a failure is detected before control is returned
to the client, but this is not guaranteed. Any other exceptions are passed to

the ReplyHandler .

CORBA Request :: sendp()
CORBA Request :: prepare()

291

See Also

See Also

292

Request::send_deferred()

void send_deferred();

Instructs the ORB to make the request. The arguments to the request must
already be set up. The caller is not blocked, and thus may continue in parallel
with the processing of the call by the target object.

To make a blocking request, use invoke() . You can use poll_response() to
determine whether the operation completed.

CORBA Request :: send_oneway()
CORBA ORB: send_multiple_requests_deferred()

CORBA Request :: invoke()
CORBA Request :: poll_response()
CORBA Request :: get response()

Request::send_oneway()

void send_oneway();

Instructs Orbix to make the oneway request. The arguments to the request
must already be set up. The caller is not blocked, and thus may continue in
parallel with the processing of the call by the target object.

You can use this method even if the operation has not been defined to be
oneway in its IDL definition, however, do not expect any output or inout
parameters to be updated.

To make a blocking request, use invoke() .

CORBA Request :: send_deferred()
CORBA ORB: send_multiple_requests_oneway()

CORBA @uest : invoke()
CORBA Request :: poll_response()
CORBA Request :: get response()

Request::sendp()
virtual CORBA Object _ptr sendp() =0;

Initiates an operation according to the information in the Request . The results
of invocations made with sendp() will be available once the caller uses

Exceptions

See Also

Parameters

get response() or get_next_response() . The out parameters and return
value of the initiated operation must not be used before the operation is done.

A system exception may be raise if a failure is detected before control is returned
to the client, but this is not guaranteed. Any other exceptions will be raised

when get_response() is called.

CORBA Request :: sendc()
CORBA Request :: prepare()

Request::set_return_type()
void set_return_type(

TypeCode _ptrtc
);

Sets the TypeCode associated with a Request object. When using the DIl with
the Internet Inter-ORB Protocol (I10P), you must set the return type of a request
before invoking the request.

tc The TypeCode for the return type of the operation associated
with the Request object.

Request::target()

Object _ ptr target() const;

Gets the target object of the Request . Ownership of the return value is
maintained by the Request and must not be freed by the caller.

293

294

CORBA::SequenceDef Interface

See Also

See Also

See Also

Interface SequenceDef represents an IDL sequence definition in the interface
repository. It inherits from the interface IDLType .

// IDL in module CORBA.
interface SequenceDef : IDLType {

attribute unsigned long bound ;
readonly attribute TypeCode element type ;
attribute IDLType element_type def ;

g

The inherited type attribute is also described.
CORBA IDLType

CORBA Repository :: create_sequence()

SequenceDef::bound Attribute

//'IDL
attribute unsigned long bound;

The maximum number of elements in the sequence. A bound of 0 indicates an
unbounded sequence.

Changing the bound attribute will also update the inherited type attribute.
CORBA SequenceDef::type

SequenceDef::element_type Attribute

//'IDL
readonly attribute TypeCode element_type;

The type of element contained within this sequence. The attribute
element_type def contains the same information.

CORBA SequenceDef::element type def

295

See Also

See Also

296

SequenceDef::element_type_def Attribute

/I \DL
attribute IDLType element type def;

Describes the type of element contained within this sequence. The attribute
element_type contains the same information. Setting the element_type_def
attribute also updates the element type and IDLType:type attributes.

CORBA SequenceDef::element type
CORBA IDLType::type

SequenceDef::type Attribute

/I'DL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType . This attribute is a
tk_sequence TypeCode that describes the sequence. It is updated automati-
cally whenever the attributes bound or element_type def are changed.

CORBA SequenceDef::element type def
CORBA SequenceDef::bound

CORBA::ServerRequest Class

Class ServerRequest ~ describes a Dynamic Skeleton Interface (DSI) operation
request. It is analogous to the Request class used in the Dynamic Invocation
Interface (DII).

An instance of ServerRequest is created by the ORB when it receives an
incoming request that is to be handled by the DSI—that is, an instance of the
PortableServer::Dynamicimplementation class has been registered to
handle the target interface.

An instance of ServerRequest is a pseudo-object so an instance of a
ServerRequest cannot be transmitted in an IDL operation.

You should not define derived classes of ServerRequest
The following code is the complete class definition:

//in CORBA namespace
class ServerRequest {
public:
const char* operation () const;
void arguments_ (
NVList_ptr& parameters
)
Context_ptr cx ();
void set_result(
const Any& value
)
void set_exception (
const Any& value

)

ServerRequest::arguments()

void arguments(
NVList _ptr& parameters
);

297

Parameters

See Also

See Also

Parameters

See Also

See Also

298

Allows a redefinition of the following method to specify the values of incoming
arguments:

PortableServer::Dynamiclmplementation::invoke()

parameters Obtains output and input arguments.

This method must be called exactly once in each execution of invoke()

CORBA ServerRequest :: params ()
PortableServer::Dynamicimplementation::invoke()

ServerRequest::ctx()
Context _ptr ctx();
Returns the Context associated with the call.

This function can be called once or not at all. If it is called, it must be called
before params() or ServerRequest::arguments()

CORBA: Context

ServerRequest::operation()
const char* operation() const;
Returns the name of the operation being invoked.

This method must be called at least once in each execution of the dynamic
implementation routine, that is, in each redefinition of the method:

PortableServer::Dynamicimplementation::invoke()

CORBA ServerRequest :: op_name()
PortableServer::Dynamicimplementation::invoke()

Parameters

See Also

Parameters

See Also

ServerRequest::set_exception()

void set_exception(
const Any& value

)

Allows (a redefinition of) PortableServer::Dynamiclmplementation::
invoke() to return an exception to the caller.

value A pointer to an Any, which holds the
exception returned to the caller.

CORBA Environment ()
PortableServer::Dynamiclmplementation::invoke()

ServerRequest::set_result()

void set_result(
const Any& value

)

Allows PortableServer::Dynamicimplementation::invoke() to return the
result of an operation request in an Any.

value A pointer to a Any, which holds the result
returned to the caller.

This method must be called once for operations with non-void return types
and not at all for operations with void return types. If it is called, then
set_exception() cannot be used.

CORBA ServerRequest :: set exception()

299

300

CORBA::String_var Class

See Also

The class Sting_var implements the _var type for IDL strings required by
the standard C++ mapping. The String_var class contains a char* value
and ensures that this is properly freed when a String_var object is deallo-
cated, for example when exectution goes out of scope.

class String_var {
public:
String_var _ ();
String_var __ (char *p);
String_var __ (const char *p);
String_var _ (const String_var &s);

~String_var _ ();
String_var & operator=__(char *p);
String_var & operator=__(const char *p);
String_var & operator=__ (const String_var &s);
operator char* ();
operator const char* () const;
const char* in () const;

char*& inout ();

char*& out ();

char* _retn ();

char & operator| (ULong index);
char operator| (ULong index) const;

String_var::char*()

operator char();

operator const char*() const;

Converts a String_var object to a char* .

CORBA String_var::operator=()

301

Orbix 2000 Programmer’s Reference Guide C+ + Edition

See Also

See Also

Parameters

See Also

302

String_var::in()
const char* in() const;
Returns the proper string for use as an input parameter.

CORBA String_var::out()
CORBA String_var::inout()

CORBA String_var::_retn()

String_var::inout()
char*& inout();
Returns the proper string for use as an inout parameter.

CORBA String_var::in()
CORBA String_var::out()

CORBA String_var::_retn()

String_var::operator=() Assignment Operators

String_var &operator=(
char*p

)

String_var &operator=(
const char *p

)

String_var &operator=(
const String_var &s

)

Assignment operators allow you to assign values to a String_var
or from another String_var type.

p A character string to assign to the String_var
A String_var to assign to the String_var

CORBA String_var::char*()

from a char*

String_var::operator[l() Subscript Operators

char &operatorf](
ULong index

)
char operator{](

ULong index
) const;

Return the character at the given location of the string. Subscript operators
allow access to the individual characters in the string.

Parameters
index The index location in the string.
String_var::out()
char*& out();
Returns the proper string for use as an output parameter.
See Also CORBA String_var:in()

CORBA String_var:iinout()
CORBA String_var::_retn()

String_var::String_var() Constructors
String_var();
The default constructor.

String_var(
char *p
)

String_var(
const char *p

)
Constructors that convert from a chart to a String_var

String_var(
const String_var &s

)

303

Orbix 2000 Programmer’s Reference Guide C+ + Edition

The copy constructor.

Parameters
p The character string to convert to a String_var . The
Sting_var assumes ownership of the parameter.
s The original String_var that is copied.
See Also CORBA String var = ~String_var()
String_var::~String_var() Destructor
~String_var();
The destructor.
See Also CORBA String var = String_var()
String_var::_retn()
char*_retn();
Returns the proper string for use as a method’s return value.
See Also CORBA String_var:inout()

CORBA String_var::in()
CORBA String_var::out()

304

CORBA::StringDef Interface

See Also

See Also

Interface StringDef represents an IDL bounded string type in the interface
repository. A StringDef object is anonymous, which means it is unnamed.

Use Repository :: create_string() to obtain a new StringDef . Use
Repository :: get_primitive() for unbounded strings.

/I IDL in module CORBA.
interface StringDef : IDLType {
attribute unsigned long bound ;

3

The inherited type attribute is also described.
CORBA IDLType

CORBA Repository :: create_string()

StringDef::bound Attribute

//'IDL
attribute unsigned long bound;

Specifies the maximum number of characters in the string. This cannot be zero.

StringDef::type Attribute

/I''DL
readonly attribute TypeCode type;

The type attribute is inherited from interface IDLType . This attribute is a
tk_string TypeCode that describes the string.

CORBA IDLType:type

305

306

CORBA::StructDef Interface

See Also

See Also

Interface StructDef describes an IDL structure in the interface repository.

// IDL in module CORBA.
interface StructDef : TypedefDef, Container {
attribute StructMemberSeq members;

3

The inherited operation describe() s also described.

CORBA Contained
CORBA Container :: create_struct()

StructDef::describe()

/I''DL
Description describe();

describe(returns a Contained::Description structure. describe() is inher-
ited from Contained (which TypedefDef inherits).

The DefinitionKind for the kind member is dk_Struct . The value member
is an any whose TypeCode is _tc_TypeDescription and whose value is a
structure of type TypeDescription

CORBA TypedefDef::describe()

StructDef::members Attribute

// DL
attribute StructMemberSeq members;

Describes the members of the structure.

You can modify this attribute to change the members of a structure. Only the
name and type_def fields of each StructMember should be set (the type field
should be set to _tc void and it will be set automatically to the TypeCode of
the type_def field).

307

See Also CORBA TypedefDef

308

CORBA::TypeCode Class

The class TypeCode is used to describe IDL type structures at runtime. A
TypeCode is a value that represents an IDL invocation argument type or an
IDL attribute type. A TypeCode is typically used as follows:

* |nthe dynamic invocation interface (DIl) to indicate the type of an actual
argument.

® By the interface repository to represent the type specification that is part
of an OMG IDL declaration.

® To describe the data held by an any type.
A TypeCode consists of a kind that classifies the TypeCode as to whether it is

a basic type, a structure, a sequence and so on. See the data type TCKind for
all possible kinds of TypeCode objects.

A TypeCode may also include a sequence of parameters. The parameters give
the details of the type definition. For example, the IDL type

sequence<long, 20> has the kind tk_sequence and has parameters long
and 20.

You typically obtain a TypeCode from the interface repository or it may be
generated by the IDL compiler. You do not normally create a TypeCode in
your code so the class contains no constructors, only methods to decompose
the components of an existing TypeCode. However, if your application does
require that you create a TypeCode, see the set of create_ Type_tc()

methods in the ORBclass.

309

For functions that require TypeCode parameters, such as with the DII, you
can use the appropriate constant from the following list:

CORBA:_tc_any CORBA:_tc_octet
CORBA::_tc_boolean CORBA::_tc_Principal
CORBA:._tc_char CORBA:._tc_short
CORBA:._tc_double CORBA:._tc_string
CORBA:._tc_float CORBA:._tc_TypeCode
CORBA:_tc_long CORBA::_tc_ulong
CORBA:._tc_longdouble CORBA::_tc_ulonglong
CORBA:._tc_longlong CORBA::_tc_ushort
CORBA:._tc_NamedValue CORBA:._tc_void
CORBA:_tc_null CORBA:._tc_wchar
CORBA:_tc_Object CORBA:._tc_wstring

The class TypeCode contains the following methods:

/I C++
class TypeCode {
public:
class Bounds : public UserException{... };

class BadKind : public UserException{ ... };
Boolean equal (TypeCode_ptr) const;

Boolean equivalent (TypeCode_ptr) const;
TCKind kind () const;

TypeCode_ptr get_compact typecode () const;
const char* id () const;

const char* name() const;

ULong member_count () const;

const char* member_namegULong index) const;

TypeCode_ptr member_type (ULong index) const;
Any* member_label (ULong index) const;

TypeCode_ptr discriminator_type () const;
Long default index () const;
ULong length () const;

TypeCode_ptr content type () const;

UShort fixed_digits () const;
Short fixed_scale () const;

Visibility member _visibility (ULong index) const;
ValueModifier type_modifier () const;
TypeCode_ptr concrete _base type () const;

static TypeCode_ptr duplicate (TypeCode_pitr tc);

310

See Also

See Also

static TypeCode_ptr —nil ()

I3
CORBA TCKind

TypeCode::BadKind Exception

class BadKind : public UserException { ... };

The BadKind exception is raised if a TypeCode member method is invoked for
a kind that is not appropriate.

TypeCode::Bounds Exception

class Bounds : public UserException{ ... };

The Bounds exception is raised if an attempt is made to use an index for a
type’'s member that is greater than or equal to the number of members for the

type.

The type of IDL constructs that have members include enumerations,
structures, unions, value types, and exceptions. Some of the TypeCode
methods return information about specific members of these IDL constructs.
The first member has index value 0, the second has index value 1, and so on
up to n-1 where n is the count of the total number of members.

The order in which members are presented in the interface repository is the
same as the order in which they appeared in the IDL specification.

This exception is not the same as the CORBA::Bounds exception.

CORBA TypeCode:: member_count()
CORBA TypeCode :: member_label()

CORBA TypeCode:: member_name()
CORBA TypeCode:: member_type()
CORBA TypeCode:: member _visibility()

311

Exceptions

Exceptions

Exceptions

See Also

312

TypeCode::concrete_base_type()

TypeCode_ptr concrete_base_type() const;

Returns a TypeCode for the concrete base if the value type represented by this
TypeCode has a concrete base value type. Otherwise it returns a nil TypeCode
reference. This method is valid to use only if the kind of TypeCode has a TCKind
value of tk_value

BadKind The kind of TypeCode is not valid for this method.

TypeCode::content_type()

TypeCode_ptr content_type() const;

For sequences and arrays this method returns a reference to the element
type. For aliases it returns a reference to the original type. For a boxed value
type it returns a reference to the boxed type. This method is valid to use if the
kind of TypeCode is one of the following TCKind values:

tk_alias

tk_array

tk_sequence
tk_value_box

BadKind The kind of TypeCode is not valid for this method.

TypeCode::default_index()

Long default_index() const;

Returns the index of the default union member, or -1 if there is no default
member. This method is valid to use only if the kind of TypeCode has a TCKind
value of tk_union

BadKind The kind of TypeCode is not valid for this method.
CORBA TypeCode:: member_label()

Exceptions

See Also

Parameters

See Also

Parameters

See Also

TypeCode::discriminator_type()

TypeCode_ptr discriminator_type() const;

Returns a TypeCode for the union discriminator type. This method is valid to
use only if the kind of TypeCode has a TCKind value of tk_union

BadKind The kind of TypeCode is not valid for this method.

CORBA TypeCode:: default_index()
CORBA TypeCode:: member_label()

TypeCode::_duplicate()

static TypeCode_ptr _duplicate(
TypeCode_ptr obj

);

Increments the reference count of obj and returns a new reference to the
TypeCode object.

obj A reference to the original TypeCode to duplicate.

CORBA release()

TypeCode::equal()

Boolean equal(
TypeCode_ptr tc

) const;

Returns 1 (true) if this TypeCode and the tc parameter are equal. Returns O
(false) otherwise. Two type codes are equal if the set of legal operations is the
same and invoking an operation from one set returns the same results as
invoking the operation from the other set.

tc The TypeCode to compare.

CORBA TypeCode:: equivalent()

313

Parameters

See Also

Exceptions

See Also

Exceptions

See Also

314

TypeCode::equivalent()

Boolean equivalent(
TypeCode_ptr tc

) const;

Returns 1 (true) if this TypeCode and the tc parameter are equivalent. Returns
0 (false) otherwise.

tc The TypeCode to compare.

equivalent() is typically used by the ORB to determine type equivalence for
values stored in an IDL any. You can use equal() to compare type codes in
your application. equivalent() would return true if used to compare a type
and an alias of that type while equal) would return false.

CORBA TypeCode:: equal()

TypeCode::fixed_digits()
UShort fixed_digits() const;

Returns the number of digits in the fixed point type. This method is valid to
use only if the kind of TypeCode has a TCKind value of tk_fixed

BadKind The kind of TypeCode is not valid for this method.
CORBA TypeCode:: fixed_scale()

TypeCode::fixed_scale()

Short fixed_scale() const;

Returns the scale of the fixed point type. This method is valid to use only if the
kind of TypeCode has a TCKind value of tk_fixed

BadKind The kind of TypeCode is not valid for this method.
CORBA TypeCode:: fixed_digits()

Exceptions

TypeCode::get_compact_typecode()

TypeCode_ptr get_compact_typecode() const;

Removes all optional name and member name fields from the TypeCode and
returns a reference to the compact TypeCode . This method leaves all alias type
codes intact.

TypeCode::id()
const char* id() const;
Returns the Repositoryld that globally identifies the type.

Type codes that always have a Repositoryld . include object references,
value types, boxed value types, native, and exceptions. Other type codes that
also always have a Repositoryld and are obtained from the interface
repository or ORB: create_operation_list() include structures, unions,
enumerations, and aliases. In other cases id() could return an empty string.

The TypeCode object maintains the memory of the return value; this return
value must not be freed by the caller.

This method is valid to use if the kind of TypeCode has a TCKind value of one
of the following:

tk_abstract_interface
tk_alias

tk_enum

tk_except

tk_native

tk_objref

tk_struct

tk_union

tk_value
tk_value_box

BadKind The kind of TypeCode is not valid for this method.

315

See Also

Exceptions

Exceptions

316

TypeCode::kind()

TCKind kind() const;

Returns the kind of the TypeCode which is an enumerated value of type TCKind .
You can use kind() on any TypeCode to help determine which other TypeCode
methods can be invoked on the TypeCode .

CORBA TCKind

TypeCode::length()

ULong length() const;

For strings, wide strings, and sequences, length() returns the bound, with
zero indicating an unbounded string or sequence. For arrays, length() returns
the number of elements in the array. This method is valid to use if the kind of
TypeCode has a TCKind value of one of the following:

tk_array
tk_sequence
tk_string
tk_wstring

BadKind The kind of TypeCode is not valid for this method.

TypeCode::member_count()

ULong member_count() const;

Returns the number of members in the type. This method is valid to use if the
kind of TypeCode has a TCKind value of one of the following:

tk_enum
tk_except
tk_struct
tk_union
tk_value

BadKind The kind of TypeCode is not valid for this method.

Parameters

Exceptions

See Also

Parameters

TypeCode::member_label()

Any *member_label(
ULong index

) const;

Returns the label of the union member. For the default member, the label is
the zero octet. This method is valid to use only if the kind of TypeCode has a
TCKind value of tk_union

index The index indicating which union member you want.
BadKind The kind of TypeCode is not valid for this method.
Bounds The index parameter is greater than or equal to the number

of members for the type.

CORBA TypeCode:: default_index()
CORBA TypeCode :: member_count()

TypeCode::member_name()

const char* member_name(
ULong index

) const;

Returns the simple name of the member. Because names are local to a
repository, the name returned from a TypeCode may not match the name of
the member in any particular repository, and may even be an empty string.

index The index indicating which member to use.

This method is valid to use if the kind of TypeCode has a TCKind value of one
of the following:

tk_enum
tk_except
tk_struct
tk_union
tk_value

317

Exceptions

See Also

Parameters

Exceptions

See Also

318

The TypeCode object maintains the memory of the return value; this return
value must not be freed by the caller.

BadKind The kind of TypeCode is not valid for this method.

Bounds The index parameter is greater than or equal to the number
of members for the type.

CORBA TypeCode:: member_count()

TypeCode::member_type()

TypeCode_ptr member_type(
ULong index

) const;

Returns a reference to the TypeCode of the member identified by index .

index The index indicating which member you want.

This method is valid to use if the kind of TypeCode has a TCKind value of one
of the following:

tk_except
tk_struct
tk_union
tk_value

BadKind The kind of TypeCode is not valid for this method.

Bounds The index parameter is greater than or equal to the number
of members for the type.

CORBA TypeCode:: member_count()

TypeCode::member visibility()

Visibility member_visibility(
ULong index

Parameters

Exceptions

See Also

) const;

Returns the Visibility of a value type member. This method is valid to use
only if the kind of TypeCode has a TCKind value of tk_value

index The index indicating which value type member you want.
BadKind The kind of TypeCode is not valid for this method.
Bounds The index parameter is greater than or equal to the number

of members