
PVCS Version Manager
IDE Client Implementation Guide

Copyright © 2020 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors
(“Micro Focus”) are as may be set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional
warranty. Micro Focus shall not be liable for technical or editorial errors or omissions contained
herein. The information contained herein is subject to change without notice.

Product version: 8.6.3

Last updated: January 15, 2021

The most recent edition of this manual (with errata included) can be downloaded here:
https://www.microfocus.com/documentation/pvcs-version-manager/8.6.3/devintug.pdf

https://www.microfocus.com/documentation/pvcs-version-manager/8.6.3/devintug.pdf

IDE Client Implementation Guide 3

Table of Contents

Part 1 The Version Manager IDE Client 9
Introduction . 10

Chapter 1 Overview of Version Manager Source Control. 11

Introduction . 12

Source Control Concepts. 12
Project Databases . 12
Projects and Subprojects . 12
Archives. 12
Revisions . 13
Workfiles . 13
Locks . 13
Version Labels . 13
Promotion . 13
Branches . 14
Sharing . 14
Workspaces . 14

Available Source Control Information . 14
Viewing Properties of Files Under Source Control. 14
Monitoring Source Control Activity. 14
Viewing Historical Archive or Revision Activity. 14
Comparing Files or Revisions . 15

How Version Manager Integrates with IDEs. 15

Chapter 2 Setting Up Source Control with SCC IDEs 17

Introduction . 18

Recommended Workflow . 18
Administrators . 18
All Users . 18

About Selecting a Source Control Provider . 19
Selecting an SCC Provider . 19
Testing an SCC Provider. 19
Stopping the PVCSCLIServ Service . 20

Creating and Configuring Project Databases . 20
About Version Manager Workspaces . 21
Launching the Version Manager Desktop Client 21

About Setting Defaults for Version Manager Options 22
Setting Defaults . 22

About Creating Source Control Projects . 23

About Adding Files to Source Control . 24
Returning Files to Source Control . 24
Advanced Add Options . 24

4 PVCS Version Manager

Table of Contents

About Sharing Files Across Projects . 25
Sharing Files. 25

About Removing Files from Source Control . 26

Chapter 3 Using Source Control . 27

Introduction . 28

Logging In to Version Manager Projects . 28

About Getting Files. 28
Advanced Get Options . 29
Getting IDE Projects from Source Control. 30

About Checking Out Files . 30
Advanced Checkout Options . 31

About Undoing Checkout. 32
Advanced Undo Checkout Options . 32

About Checking In Files . 33
Advanced Check-In Options . 33

About Version Labels . 34
Assigning Version Labels . 34
Renaming Version Labels . 36
Deleting Version Labels . 37

About Promotion Groups. 38
Checking Out Revisions Assigned to a Promotion Group 38
Assigning a Promotion Group to Revisions . 39
Promoting Revisions to the Next Promotion Group. 40
Changing a Promotion Group . 41
Removing a Promotion Group . 42

Chapter 4 Accessing Source Control Information 45

Introduction . 46

About Properties . 46
Reviewing Properties . 46

Monitoring Source Control Activity with Pulse . 47
Configuring Pulse . 47
About Starting Pulse . 48
Viewing Source Control Activity. 49
Suspending Project Activity Monitoring . 50
Closing Pulse . 50

About History Reports . 50
Generating History Reports. 51

About Difference Reports . 52
Generating Difference Reports . 52

Part 2 IDE Reference . 55
Introduction . 56

Table of Contents

IDE Client Implementation Guide 5

Chapter 5 ColdFusion Studio . 57

Introduction . 58

Accessing Supported Features . 58

Setting Up Source Control Projects . 59
Setting Up Projects for Access by Multiple-Users 59
Selecting a Source Control Provider. 60
Mapping Projects to Source Control . 60
Adding Files to Source Control . 61
Removing Files from Source Control . 62

Using Source Control . 62
Getting Files . 63
Checking Out Files. 63
Undoing Checkout . 63
Checking In Files. 63

Chapter 6 PowerBuilder . 65

Introduction . 66

About Version Manager Project Structure . 66

Accessing Supported Features in PowerBuilder . 67

Setting Up Source Control Projects in PowerBuilder 68
Connecting PowerBuilder Workspaces to Source Control 68
Adding Objects to Source Control . 70
Configuring Workstations in a Multi-User Environment 71
Removing Objects from Source Control . 72
Disconnecting Workspaces from Source Control 72

Using Source Control with PowerBuilder . 73
Getting Objects . 73
Checking Out Objects . 73
Undoing Checkout . 74
Checking In Objects . 74
Adding New Objects . 75
Adding New Targets or PBLs . 75

Chapter 7 Rational Application Developer (Eclipse 3 and 4) 77

Introduction . 78

Accessing Supported Features . 78

Setting Up Source Control Projects . 79
Excluding Files and Directories from Source Control 80
Connecting Projects to Source Control . 80
Connecting Additional Workstations to a Source Control Project 82
Adding New Files to Source Control . 83
Disconnecting Projects from Source Control 84
Removing Files from Source Control . 84

Using Source Control . 84
Viewing Source Control Status . 84
Getting Files . 85
Checking Out Files. 86
Locking Files. 86

6 PVCS Version Manager

Table of Contents

Undoing Checkout . 87
Checking In Files. 87
Using Rename or Move (Refactoring). 88
Using Local Mode . 89
Working Offline . 90
Synchronizing Your Workspace with Source Control. 91
Comparing with Local History . 94
Replacing with Local History . 94

Chapter 8 Rational Application Developer Rich Integration
(Eclipse 3 and 4) . 95

Introduction . 96

Accessing Supported Features . 97

Integration Overview . 98
Working Offline . 99
SBM Integration . 99

Collaborative Process Overview . 99
Using Workspaces . 100
Working on Files Without Locking Them . 101
Checking Out Files with Locks . 102

Setting Up Source Control Projects . 102
Excluding Files and Directories from Source Control 103
Migrating Projects from the Previous Source Control Integration 103
Adding Projects to Source Control . 104
Connecting Additional Workstations to an Existing
Source Control Project . 106
Disconnecting Projects from Source Control 108

Using Source Control . 108
Viewing Connection Information . 108
Viewing Source Control Status . 109
Working in the History View . 109
Assigning Version Labels . 111
Getting Files . 112
Checking Out Files. 113
Undoing Checkout . 114
Checking In Files. 115
Using Rename or Move (Refactoring). 118
Comparing and Synchronizing Your Workspace with Source Control . . 118
Comparing with the Latest Revision. 122
Comparing with Local History . 123
Comparing Workfiles with Each Other . 123
Replacing with Local History . 124
Replacing with Latest Revision . 125

Associating and Working on SBM Issues . 125
Issue Management Workflow . 126
Setting Up Your IDE Folder. 127
Changing SBM Connection Information . 128
Displaying Reports and Issues . 128
Submitting and Modifying Issues. 129
Associating Issues with Files. 130

Setting Default Options . 131

Table of Contents

IDE Client Implementation Guide 7

Source Control Options . 131
Issue Management Options . 137

Chapter 9 Visual Studio SCC Integration . 139

Introduction . 140

Accessing Supported Features . 140

About Visual Basic Files . 141

Setting Up Source Control Projects . 142
Upgrading to Visual Studio 2005 from Visual Studio .NET 2003. 142
Configuring Source Control Behavior . 142
Configuring Web Projects . 142
Excluding or Removing Files from Source Control 143
Adding Visual Studio Files to Source Control 143
Connecting Additional Workstations to a Source Control Project 145

Using Source Control . 146
Getting Files . 146
Checking Out Files. 146
Undoing Checkout . 147
Checking In Files. 148

Chapter 10 Visual Studio Rich Integration . 149

Introduction . 150

Accessing Supported Features . 151
About the Source Control Toolbar . 152

Visual Studio Rich Integration Overview . 152
Solutions Business Manager Integration . 153
Supported Project Types . 153
Rebinding a Solution . 153

Collaborative Process Overview . 153
Using Workspaces . 154
Working on Files Without Locking Them . 155
Checking Out (Locking) Files. 156

Migrating and Converting Visual Studio Solutions 157
Migrating from Visual Studio 2003 to Visual Studio RIDE 157
Migrating from Visual Studio SCC to Visual Studio RIDE. 158
Migrating from Visual Studio 2005 to Visual Studio RIDE 160

Working with Web Projects . 161

Working with Branches . 161
Viewing Branched Files . 162
How Should I Branch My Files? . 163
Automatic Label-Based Branching . 163
Manual Branching . 165
Editing Revisions on a Branch . 166
Checking In Branched Files. 167

Setting Up Source Control Projects . 167
Adding Solutions and Projects to Version Manager. 168
Opening Solutions and Projects from Source Control 170
Opening Solutions not Added using RIDE . 174

8 PVCS Version Manager

Table of Contents

Editing Files . 174
Reviewing File History . 175
Getting Specific Files or Folders. 176
Checking Out Files. 178
Undoing Checkout . 180
Editing Files . 181
Refreshing File Status . 181
Reviewing Local Changes . 181
Checking In Files. 182
Labeling Revisions . 186
Promoting Revisions . 188
Working While Offline . 188

Setting Default Options for Dialog Boxes . 189
Configuring Client/Server-Side Processing . 191
Setting Encoding and Display Options . 192

Comparing and Synchronizing Workspaces . 193
About the Merge Process . 193
Important Refactoring Considerations . 193
Comparing Workspaces . 194
Getting All Updates from Version Manager . 195
Committing Local Changes to Version Manager 197
Synchronizing Workspaces . 198

Comparing Files and Resolving Conflicts . 199
About File Comparison . 199
Comparing Files . 199
Reviewing and Resolving Conflicts . 201

Associating and Working on SBM Issues . 204
Issue Management Workflow . 204
Setting Up Your IDE Folder. 205
Defining Association Options. 206
Logging into SBM . 207
Displaying Reports and Issues . 208
Submitting and Modifying Issues. 208
Associating Issues . 209

Appendix A: Naming Conventions and Restrictions 211

General Naming Conventions and Restrictions . 212
Prohibited Characters for Files and Directories 212
Naming Considerations for Cross-Platform Environments 212

Specific Naming Conventions and Restrictions . 213

Index. 215

IDE Client Implementation Guide 9

Part 1
The Version Manager IDE Client

Overview of Version Manager Source Control 11
Setting Up Source Control with SCC IDEs 17
Using Source Control 27
Accessing Source Control Information 45

10 PVCS Version Manager

Part 1 The Version Manager IDE Client

Introduction
Contents This part of the manual contains conceptual and procedural information common to

setting up and using the Version Manager IDE client with any IDE.

Purpose The purpose of this part of the manual is to provide a conceptual and procedural overview
of how to set up and use the Version Manager IDE client outside the context of a specific
IDE.

Unsupported
features

Some IDEs do not support all of the features described in this part of the manual. For
information on which features are supported and how to access them, see Part 2, "IDE
Reference," on page 55.

Additional
information

Use this part of the manual in conjunction with these additional sources of information.

For more information about... See the...

Setting up and configuring Version
Manager

Version Manager Administrator's Guide

Version Manager features and concepts Version Manager User's Guide

Setting up and using your IDE with source
control

Documentation and online help provided
by the vendor of your IDE

IDE Client Implementation Guide 11

Chapter 1
Overview of Version Manager Source
Control

Introduction 12
Source Control Concepts 12
Available Source Control Information 14
How Version Manager Integrates with IDEs 15

12 PVCS Version Manager

Chapter 1 Overview of Version Manager Source Control

Introduction
Purpose This chapter is an introduction to key source control concepts and the options available to

users of Version Manager. This chapter describes Version Manager features, such as
nested project support and project-wide version labeling, that are now available from
within supported IDEs.

For more
information

For more detailed conceptual information about source control and working with Version
Manager, see the Version Manager User's Guide.

IDE-specific
information

For information about the Version Manager features supported in your IDE, see Part 2,
"IDE Reference," on page 55.

Source Control Concepts
Source control Source control is a way to manage changes to the individual components of software (or

other content) being developed by a team. You can control access and manage change to
any file by placing it under source control.

Project Databases
Definition A project database is a hierarchical collection of projects, subprojects, and files under

source control. A project database defines a common source control configuration for all
projects and subprojects contained within it. See "Creating and Configuring Project
Databases" on page 20.

Projects and Subprojects
Definition Projects are logical groupings of subprojects and files under source control. Subprojects

are projects contained within other projects.

Archives
Definition An archive is a Version Manager file that stores the changes you make to a workfile.

Whenever you check in a modified workfile, its archive is updated. Archives also store the
following:

 A description of the changes

 The ID of the user who made the changes

 The date and time when the changes were made

 Version label and promotion group information

An archive is created for each file you add to source control.

Source Control Concepts

IDE Client Implementation Guide 13

Revisions
Definition A revision is a record within an archive that stores the changes you made to a workfile

and checked in on a particular occasion. When you check out a revision, Version Manager
re-creates that version of the workfile in the specified workfile location.

Initial and tip
revisions

The oldest revision is called the initial revision and is, by default, numbered 1.0. For each
new revision you check in, the revision number increments by one; for example, 1.1 to
1.2. The newest revision in the archive is called the tip.

Default revision The default revision is the revision that is acted on if no other is selected. The default
revision is, by default, the tip revision. Through the Version Manager desktop client, you
can set the default revision to a specific version label or revision.

Workfiles
Definition A workfile is any file that you check in to Version Manager to create a new revision or

archive. When you check out a revision, Version Manager copies it as a workfile to your
workfile location.

Locks
Definition A lock is a way to keep other team members from modifying a revision while you are

working on it. They can always view or get the file, but they cannot check in changes and
overwrite the locked revision.

Duration of lock When you check out a revision, Version Manager locks it. The lock stays in place until you
either check in the workfile or undo the checkout on the revision.

Version Labels
Definition A version label is a tag used to identify a specific revision within an archive. Version labels

enable you to efficiently work with revisions from multiple archives that belong together,
such as all of the revisions that make up a beta version of an application. See "About
Version Labels" on page 34.

Promotion
Definition Promotion is a means to control development based on milestones in the development

cycle, from the design phase to final release. Promotion must be set up through the
Version Manager desktop client.

Promotion model A promotion model is a hierarchy of milestones in a development cycle that enforces
active development work to the lowest level of the model.

Promotion groups Each milestone in a promotion model is represented by a promotion group. Examples of
promotion groups include Development, QA, and Production.

At checkout, you can select revisions based on promotion groups. At check-in, you can
assign promotion groups to new revisions. From the Options dialog box, you can assign
promotion groups to revisions, promote revisions to the next group, change which
promotion group is assigned to revisions, and remove promotion groups from revisions.
See "About Promotion Groups" on page 38.

14 PVCS Version Manager

Chapter 1 Overview of Version Manager Source Control

Branches
Definition A branch is a separate line of development consisting of one or more revisions that

diverge from a revision on the main line of development (trunk) or on another branch. You
can create branches when checking in new revisions.

Why use
branching?

Branching lets you develop alternate variations of a file in parallel with the continued
development of the revision from which it was branched.

Sharing
Definition Sharing lets you access a file from multiple Version Manager projects while keeping all

changes in a single shared archive. You share an archive when you want to use and edit a
given file from within multiple IDE projects. See "About Sharing Files Across Projects" on
page 25.

Workspaces
Definition A workspace is a collection of work settings defined for a project database, which includes

the work settings for all of the projects and archives contained within the project
database. These work settings include workfile location, default version, base version, and
branch version. See "About Version Manager Workspaces" on page 21.

Available Source Control Information
You can access four types of information about the files you have placed under source
control.

Viewing Properties of Files Under Source Control
Properties dialog

box
You can use the Version Manager Properties dialog box to view information on the
following: archives, revisions, version labels, and promotion groups. See "About
Properties" on page 46.

Monitoring Source Control Activity
Pulse Pulse allows users who are logged into the same projects to monitor certain source control

events. For example, Pulse notifies you when another user has added a new file or
checked in changes to an existing file. You can also view results messages for your own
source control actions. See "Monitoring Source Control Activity with Pulse" on page 47.

Viewing Historical Archive or Revision Activity
History report A history report summarizes information about archives and/or revisions. You can select

revisions for the report by version label, promotion group, date, author, owner, and lock.
See "About History Reports" on page 50.

How Version Manager Integrates with IDEs

IDE Client Implementation Guide 15

Comparing Files or Revisions
Difference report A difference report allows you to compare two files side-by-side to see the additions,

deletions, and changes made to the files. You can compare specific revisions, workfiles
with revisions, or two workfiles. See "About Difference Reports" on page 52.

How Version Manager Integrates with IDEs
Version Manager supports two conventions for integrating with IDEs: SCC and Eclipse.
The following list shows the method used by each supported IDE:

 Source Code Control (SCC):

• ColdFusion Studio

• PowerBuilder

• Rational Rose

• Visual Studio

 Eclipse:

• Eclipse

• Rational Application Developer

In addition to the above, Version Manager leverages the issue management features of
TeamTrack to support rich integrations to the following IDEs:

 Eclipse 3 and Rational Application Developer 6 & 7
(See "Rational Application Developer Rich Integration (Eclipse 3 and 4)" on page 95.)

 Visual Studio
(See "Visual Studio Rich Integration" on page 149.)

Additional
information

For information on setting up Version Manager with your IDE, see the following:

NOTE See the Version Manager readme for a list of the specific IDE versions supported
in this release of Version Manager.

For more information about ... See ...

Procedures common to integrating with
SCC compliant IDEs

Chapter 2, "Setting Up Source Control
with SCC IDEs" on page 17

Procedures for integrating with specific
IDEs

Part 2, "IDE Reference," on page 55

16 PVCS Version Manager

Chapter 1 Overview of Version Manager Source Control

IDE Client Implementation Guide 17

Chapter 2
Setting Up Source Control with SCC
IDEs

Introduction 18
Recommended Workflow 18
About Selecting a Source Control Provider 19
Creating and Configuring Project Databases 20
About Setting Defaults for Version Manager Options 22
About Creating Source Control Projects 23
About Adding Files to Source Control 24
About Sharing Files Across Projects 25
About Removing Files from Source Control 26

18 PVCS Version Manager

Chapter 2 Setting Up Source Control with SCC IDEs

Introduction
Contents and

purpose
This chapter contains conceptual and procedural information common to setting up the
Version Manager IDE client with supported SCC compliant IDEs. The purpose of this
chapter is to help administrators create and configure project databases and projects.

IDE-specific
information

For information specific to your IDE, see Part 2, "IDE Reference," on page 55.

Recommended Workflow
We recommend that a project lead or administrator create and set up source control
project databases and projects. Once these are established, all users can begin using
source control from within their IDE.

Administrators
We recommend that Project leads or administrators first follow these steps:

1 Create a Version Manager project database which will contain the source control
project associated with the IDE project. Use the Version Manager desktop client to
create the project database. See "Creating and Configuring Project Databases" on
page 20.

2 Add the IDE project and files to source control. See Part 2, "IDE Reference," on page
55.

3 Configure the source control project in the Version Manager desktop client.
Configuration includes setting up security and promotion groups. For more
information on project configuration, see the Version Manager Administrator's Guide.

All Users
All users can then perform the following source control tasks:

 Define user settings.

 Get or check out and edit files. See "About Getting Files" on page 28 or "About
Checking Out Files" on page 30.

 Check in files. Users can assign version labels and revision numbers to revisions
during check-in. See "About Checking In Files" on page 33.

 View source control information:

• Archive and revision properties. See "About Properties" on page 46.

• Project activity. See "Monitoring Source Control Activity with Pulse" on page 47.

• History and difference reports. See "About History Reports" on page 50 and "About
Difference Reports" on page 52.

IDE-specific
information

For information on accessing these functions, see Part 2, "IDE Reference," on page 55.

About Selecting a Source Control Provider

IDE Client Implementation Guide 19

About Selecting a Source Control Provider
If multiple IDE clients are installed on your system, you can choose which one is active.
For example, if the Version Manager Source Code Control (SCC) Interface 6.0 is installed
to your system and you wish to continue using it with existing 5.3/6.0 projects, you can
make it the active source control provider.

By default, the Version Manager IDE client becomes the active source control provider
when it is installed.

Selecting an SCC Provider
To select a provider, complete the following steps:

1 Exit any application you intend to use with a IDE client.

2 Select Programs | Serena | Version Manager | Version Manager IDE Client | Version
Manager SCC Admin from the Start menu. The SCC Admin tool appears.

Available source control providers are listed under Available Source Control
Providers. Information about the selected provider appears in the Description frame.

3 Select the provider you wish to activate from the list.

4 Click OK.

Restart your IDE The provider you selected will be active the next time you launch your IDE. Every time
you change source control providers, you must restart your IDE for the change to take
effect.

Testing an SCC Provider
You can test the currently active provider to make sure it initiates correctly.

To work with this project format… Select this source control provider…

Version Manager 8.0 or higher Version Manager

Version Manager 6.5 to 7.5 PVCS Source Control

Version Manager 5.3/6.0 PVCS Version Manager

Dimensions 10 or higher Dimensions

Dimensions 6 to 9 Dimensions

NOTE If PVCS Version Manager SourceBridge or Trackerlink is installed to your system,
it appears as an available source control provider. Selecting it activates the source control
provider that it is configured to work with. For more information, see the TeamTrack and/
or Tracker documentation.

NOTE For information on the CLI Service button, see "Stopping the PVCSCLIServ
Service" on page 20.

20 PVCS Version Manager

Chapter 2 Setting Up Source Control with SCC IDEs

To test an SCC provider:

1 Exit any application you intend to use with a IDE client.

2 Select Programs | Serena | Version Manager | Version Manager IDE Client | Version
Manager SCC Admin from the Start menu. The SCC Admin tool appears.

3 Click the Test SCC button.

4 One of the following will occur:

 Success: A dialog from your SCC provider appears. Dismiss it. In the Test column,
a green check mark appears next to each item indicating that SCC initiated
successfully.

 Failure: In the Test column, a red check mark appears next to the steps that
failed.

Stopping the PVCSCLIServ Service
The PVCSCLIServ service is launched if your IDE uses the same JVM as Version Manager.
This ensures that each JVM is run in a separate process space. Once this service is
launched, it will continue to run until you reboot or manually unload it.

To stop the PVCSCLIServ service:

1 Select Programs | Serena | Version Manager | Version Manager IDE Client | Version
Manager SCC Admin from the Start menu. The SCC Admin tool appears.

2 Click the button with the red dot. If the dot is brown, the service is not running.

3 A prompt appears asking if you really want to stop the service. Click Yes.

Creating and Configuring Project Databases
About project

databases
A Version Manager project database is a hierarchical collection of projects, subprojects,
and versioned files. It defines a common configuration for all projects and subprojects
contained within it.

Default project
database

When you install the Version Manager IDE client, you can create a default project
database for your source control projects. By default, this database is located at:

%ALLUSERSPROFILE%\Application Data\Serena\VM\vmdevint

For example:

IMPORTANT! If the SCC provider you want to test is not the currently active
provider, follow the procedure "Selecting an SCC Provider" on page 19 and exit the
SCC Admin tool before returning to this procedure.

NOTE This information may be requested by technical support if you call with a
problem.

Creating and Configuring Project Databases

IDE Client Implementation Guide 21

C:\Documents and Settings\All Users\Application Data\Serena\VM\vmdevint.

You can set up this database for use with your source control projects, or create and
configure a different database using the Version Manager desktop client.

Configuration
options

You can set up security, promotion models, and version labels for your project from the
Version Manager desktop client. You can also configure workspace settings such as default
version, default promotion group, branch version, and base branch.

For more
information

See the Serena ChangeMan Version Manager Administrator's Guide for information on
planning, creating, and configuring project databases and projects.

About Version Manager Workspaces
Definition A Version Manager workspace is a collection of work settings defined for a project

database which includes all of the projects and archives contained within the project
database. With Version Manager IDE client projects, you can set the default version,
default promotion group, branch version, and base branch.

Public, private and
root workspaces

You can define both public and private workspaces. The root workspace is the default
public workspace. The root workspace is the active workspace for all users for whom
private workspaces are not defined.

Workspaces in a
team environment

Private workspaces are typically created by individual project team members so they can
customize the project work settings without affecting other team members. For settings in
a particular workspace to take effect when a user logs into a Version Manager project,
that workspace must be made the default for that user. If no default private workspace is
set, the work settings defined in the root workspace will take effect.

For more
information

See the Version Manager User's Guide.

Launching the Version Manager Desktop Client
Configuring

projects
To configure your Version Manager projects, you can launch the Version Manager desktop
client from within your IDE.

To launch the Version Manager desktop client:

1 Open the Version Manager Options dialog box. (For the IDE-specific menu command,
see Part 2, "IDE Reference," on page 55.)

2 Select the General tab.

3 Click the Version Manager button in the Launch group.

NOTE You cannot override the existing project workfile location with workspace settings.
If you will use the Version Manager desktop client or project command line interface with
your IDE projects, set your workspace to reference the existing workfile directories. This
will ensure that files will always check out to the correct location.

IMPORTANT! You must exit and restart your IDE for new workspace settings to take
effect.

22 PVCS Version Manager

Chapter 2 Setting Up Source Control with SCC IDEs

For more
information

See the Version Manager Administrator's Guide.

About Setting Defaults for Version Manager Options
To save time and improve workflow, you can configure the Version Manager IDE client to
reflect the way you normally work. This section describes how to set the following
defaults:

 The default behavior for check-in and undo checkout operations

 Which program is used to display history reports

 Which Version Manager workspace to use

 Which Version Manager project database to open by default for operations such as
version labeling

Scope of settings The settings described in this section are not project specific. Any changes to these
settings will affect your working environment and persist from project to project.

Setting Defaults
To set defaults:

1 Open the Version Manager Options dialog box. (For the IDE-specific menu command,
see Part 2, "IDE Reference," on page 55.)

2 Under the Version Manager tab do any of the following:

Default project
database

 To specify which project database will appear by default every time you add
projects to source control, get projects from source control, or assign or modify
version labels, enter the project database name and path in the Default Project
Database field, or click the Browse button to select one. You can override this
selection at the time of the operation.

History report
viewer

 To specify a text viewer for viewing history reports, enter a text viewer executable
name and path in the History Report Viewer field, or click the Browse button to
select one. If no viewer is selected, Version Manager uses the default Windows .txt
file viewer.

Workspaces  Specify the Version Manager workspace to use. Your IDE controls the actual
workfile location regardless of the Version Manager workspace you select, but the
following values, as defined in the workspace, will be in effect:

• Default Version: The revision Version Manager operates on (for actions such
as checking out) when you do not specify a revision number or version label.
For example, you could set the default version to be a specific floating label on
a branch.

• Base Version: Used to facilitate automatic branching.

• Branch Version: Used to facilitate automatic branching.

• Default Promotion Group: The lowest-level promotion group of the
promotion model, if one is in effect.

About Creating Source Control Projects

IDE Client Implementation Guide 23

In the Workspace field you can:

 Select the Default Workspace as defined in Version Manager.

 Select the Root Workspace as defined in Version Manager.

 Enter or select a workspace that is defined in Version Manager. The last 5
entries are retained in the list.

To enter a nested workspace, enter it as:
ParentWorkspace/ChildWorkspace.

To enter a private workspace, select the Private check box and enter the user
ID of the owner of the workspace in the Owner field.

For more information on defining and using workspaces, see the Serena
ChangeMan Version Manager Administrator's Guide.

Check-in options  To specify default behavior when you check in a workfile that is unchanged or older
than the previous revision, select one of the following from the If workfile
unchanged or older drop-down menu in the Check In Options group:

• Prompt asks what you want to do if the workfile is unchanged.

• Check in, which is the default option, checks in the workfile even if it is
unchanged.

• Don't check in does not check in the workfile.

Undo checkout
options

 To specify what happens to workfiles by default when you undo a checkout, select
one of the following from the Replace options drop-down list in the Undo
Check Out Options group:

• Replace with latest revision, which is the default option, replaces the
workfile with the tip revision.

• Replace with original replaces the workfile with a fresh copy of the revision
that was originally checked out.

• Leave alone leaves the workfile as it is at the time of the operation.

 To make workfiles writable by default after you undo a checkout, select the Make
workfile writable check box. This option is available only if you chose to replace
the workfile via the Replace options drop-down list.

3 Click OK.

About Creating Source Control Projects
Once you have created and saved a project in your IDE, you can add it to an existing
Version Manager project database. By default, when you add an IDE project to source
control, a new Version Manager project is created.

IDE-specific
instructions

For instructions specific to your IDE, see Part 2, "IDE Reference," on page 55.

NOTE If a private workspace is nested below a public workspace, you cannot
access it from the IDE client.

24 PVCS Version Manager

Chapter 2 Setting Up Source Control with SCC IDEs

About Adding Files to Source Control
By default, the following occurs when you add files to source control:

 If any project files are located in nested subdirectories under the root working
directory of the IDE project, Version Manager creates nested subprojects that mirror
the directory structure of the IDE project's workspace.

 Archives are created in the Version Manager project directories for each file that is
added. By default, the name of each archive matches its originating workfile with the
addition of an -arc suffix. Custom suffixes can be defined in the project database or
project configuration.

 For each archive, the initial revision is checked in and no version label is assigned to
the initial revision.

IDE-specific
instructions

For instructions specific to your IDE, see Part 2, "IDE Reference," on page 55.

Advanced options If your IDE supports advanced options, you can assign a promotion group or version label
to the initial revision.

Returning Files to Source Control
If you re-add a file that was previously removed from source control, one of the following
will occur:

 If the original archive is still present in the project archive directory, you will be
prompted to check the file into the existing archive as a new revision.

 If the archive has been moved or deleted from the project archive directory, a new
archive will be created, and the file will be checked in as the initial revision.

Advanced Add Options
After you click the Advanced button in your IDE's add dialog box, the Advanced Add dialog
box appears.

To set advanced add options:

General tab
options

1 If you are adding files to a project database or project with a defined promotion
model, you can assign a promotion group to the initial revision by entering a lowest-
level promotion group in the Lowest-level promotion group field, or by clicking the
Browse button to select one. (Use the Version Manager desktop client to define a
promotion model.)

Advanced tab
options

2 Under the Advanced tab, do any of the following:

 To assign a version label to the initial revision, enter the version label in the
Version Label field or click the Browse button to select one.

 To keep the version label assigned to the latest revision in the archive, select the
Float label with tip check box.

3 Click OK.

4 Your IDE's add dialog box may reappear; click OK.

About Sharing Files Across Projects

IDE Client Implementation Guide 25

The selected files are added to source control, creating archives in the archive
directory specified for the project.

Shared file If you want to share a file with multiple Version Manager projects, see the next section.

About Sharing Files Across Projects
Why share? It may be necessary for multiple development projects to access and edit the same file. To

do this, multiple projects within a Version Manager project database can share a single
Version Manager archive.

How share works When you share an archive, Version Manager copies the tip revision to your working
directory. You can then check out, modify, and check in the file like any other. The archive
is not physically copied, but changes to the file are stored in the shared archive.

NOTE You cannot share files across projects that are located in separate project
databases. To share files across projects, the projects must be located in the current
project database.

Sharing Files
To share a file:

1 Open the Share Files dialog box. (For the IDE-specific menu command, see Part 2,
"IDE Reference," on page 55.)

The Share Files dialog box appears with the current Version Manager project
displayed.

2 Under Select Project, select the project that contains the file(s) you want to share.
Click the plus signs to expand the project database tree. The File(s) to Share pane
displays all files in the selected project.

3 Under File(s) to Share, select the files whose archives you want to access.

26 PVCS Version Manager

Chapter 2 Setting Up Source Control with SCC IDEs

4 Click OK. The latest revision of each file is copied to your project working directory.

About Removing Files from Source Control
When you remove a file from source control, Version Manager does not delete the workfile
or Version Manager archive. The IDE project remains unchanged.

IDE-specific
information

For the IDE-specific menu command, see Part 2, "IDE Reference," on page 55.

Returning files to
source control

For information on returning files to source control, see "Returning Files to Source
Control" on page 24.

IDE Client Implementation Guide 27

Chapter 3
Using Source Control

Introduction 28
Logging In to Version Manager Projects 28
About Getting Files 28
About Checking Out Files 30
About Undoing Checkout 32
About Checking In Files 33
About Version Labels 34
About Promotion Groups 38

28 PVCS Version Manager

Chapter 3 Using Source Control

Introduction
Contents This chapter contains information common to performing the following operations with

supported IDEs, including default behaviors and advanced options:

 Logging in

 Getting files

 Checking out files

 Undoing a checkout

 Checking in files

 Managing version labels

Purpose The purpose of this chapter is to help your development team effectively use the source
control features available through the Version Manager IDE client.

IDE-specific
information

For information specific to your IDE, see Part 2, "IDE Reference," on page 55.

Logging In to Version Manager Projects
Depending on how security is configured for the Version Manager project, you may be
prompted for a user ID and password when opening a project.

If the Version Manager Login dialog box appears, do the following:

1 Enter your user ID in the User Name field and your password in the Password field.

The Location field displays the name of the project database that contains the
project you are logging in to.

2 Click OK.

About Getting Files
Defaults When you get a file, the following occurs by default:

 A read-only copy of the default revision is created in the workfile location.

 If a writable workfile exists in the current workfile location, a prompt displays before
overwriting the workfile. If a read-only workfile exists in the current workfile location,
there is no prompt for confirmation.

 The archive remains unlocked, allowing other users to check out and edit the file.

NOTE Your IDE may not support some of the features described in this chapter, such as
advanced options and certain default behaviors.

About Getting Files

IDE Client Implementation Guide 29

IDE-specific
instructions

For instructions specific to your IDE, see Part 2, "IDE Reference," on page 55.

Advanced options If your IDE supports advanced options, you can select a different revision or browse for a
revision associated with a particular version label or promotion group in the Advanced Get
dialog box.

Advanced Get Options
After you click the Advanced button in your IDE's get dialog box, the Advanced Get dialog
box appears.

To select advanced get options:

General tab
options

1 Under the General tab, do any of the following:

 To select a revision other than the default revision, enter a revision number or
version label in the Revision field or click the Browse button to select one.

 To specify what to do if a writable copy of the file already exists in the working
directory, select one of the following from the If Workfile Exists drop-down list:

• Prompt: asks what you want to do if a duplicate file is detected during a get

• Overwrite: replaces the existing workfile with the new file

• Don't Overwrite: does not add the file to the workfile location

 To get a revision by promotion group, enter a promotion group in the Promotion
Group field, or click the Browse button to select one. The files must belong to a
project or project database that has a defined promotion model.

 To get a writable copy of the workfile so that you can edit it, select the Make
workfile writable check box.

 Lookup: (Applies only if a promotion model is in effect.) Select one of the
following options:

• Lookup revision based on Revision: The revision specified in the Revision
field will be acted on. You can enter/select a revision number, version label, or
promotion group to specify the desired revision.

If you select [Default Revision] in the Revision field, the revision specified
by the workspace settings or configuration file will be acted on; if no default
value is found, the Tip of the Trunk will be acted on.

• Lookup revision based on Promotion Group: The revision assigned to the
promotion group in the Promotion Group field will be retrieved. If such a
revision is not found, the operation will climb the promotion model and act on
the revision assigned to the lowest currently assigned group in the promotion
model.

Advanced tab
options

2 Under the Advanced tab of the Advanced Get dialog box, do any of the following:

NOTE To specify a version label that begins with a numeral, precede the version
label with a backslash (\).

30 PVCS Version Manager

Chapter 3 Using Source Control

 To select a revision by date, select the Check out by date check box and then
select one of the following:

• Revision newer than workfile: gets the revision only if it is newer than the
date of its corresponding workfile

• Revision newer than: gets a revision that was last checked in after the
specified date and time

• Revision checked in before: gets a revision that was last checked in before
the specified date and time

 To update the timestamp of the file to the current date and time, select the Set
workfile time to current time check box.

3 Click OK.

4 Your IDE's get dialog box may redisplay; click OK.

The selected revisions are copied to the workfile location.

Getting IDE Projects from Source Control
Getting a project from source control copies the latest revision of every file in the project
to a directory of your choice. This is useful if you must update your working copy of the
project with all recent changes made by other team members.

IDE-specific
instructions

Some IDEs do not support this feature. For instructions specific to your IDE, see Part 2,
"IDE Reference," on page 55.

About Checking Out Files
Defaults To edit a file that is under source control, you must first check it out. When you check out

a file, the following occurs by default:

 The default revision is locked.

 A writable copy of the default revision is created in the workfile location.

 If a writable workfile exists in the current workfile location, a prompt displays before
the workfile is overwritten. If a read-only workfile exists in the current workfile
location, there is no prompt for confirmation.

 The promotion group currently assigned to the revision is retained, if a promotion
model is in effect.

Shared files When you check a file out from a shared archive, Version Manager copies a revision of the
file to your working directory and locks the shared archive. Changes to the file are stored
in the file's shared archive.

IDE-specific
instructions

For instructions specific to your IDE, see Part 2, "IDE Reference," on page 55.

Advanced options If your IDE supports advanced options, you can select a different revision or browse for a
revision associated with a particular date, promotion group, or version label.

About Checking Out Files

IDE Client Implementation Guide 31

Advanced Checkout Options
After you click the Advanced button in your IDE's checkout dialog box, the Advanced
Check Out dialog box appears.

To select advanced checkout options:

General tab
options

1 Under the General tab, do any of the following:

 To check out a revision other than the default revision, enter a revision number,
version label, or promotion group in the Revision field, or click the Browse button
to select one.

 To specify what to do if a writable copy of the file already exists in the working
directory, select one of the following from the If Workfile Exists drop-down list:

• Prompt: displays a prompt asking what to do when a duplicate workfile exists

• Overwrite: replaces the duplicate file with the new file

• Don't overwrite: does not add the file to the workfile location

 If the selected files are associated with a project database or project with a defined
promotion model, enter a promotion group to associate with the workfile, or click
the Browse button in the Lowest-level promotion group field to select one.

 Lookup: (Applies only if a promotion model is in effect.) Select one of the
following options:

• Based on Revision: The revision specified in the Revision field will be acted
on. You can enter/select a revision number, version label, or promotion group to
specify the desired revision.

If you select [Default Revision] in the Revision field, the revision specified
by the workspace settings or configuration file will be acted on; if no default
value is found, the Tip of the Trunk will be acted on.

The promotion group specified in the Lowest-level promotion group field will
be assigned to the revision.

• Based on Promotion group: The revision assigned to the promotion group
specified in the Lowest-level promotion group field will be acted on.

If you select [Default Promotion Group] in the Lowest-level promotion
group field, the revision currently assigned to the promotion group specified by
the workspace settings or configuration file will be acted on. If a default is not
defined, the lowest-level group in the promotion model will be used. If there are
multiple lowest-level groups, you will be prompted to select one. If such a
revision is not found, the operation will climb the promotion model and act on
the revision assigned to the lowest currently assigned group in the promotion
model.

Advanced tab
options

2 Under the Advanced tab of the Advanced Check Out dialog box, do any of the
following:

 To select a revision by date, select the Check out by date check box and then
select one of the following:

NOTE To specify a version label that begins with a numeral, precede the version
label with a backslash (\).

32 PVCS Version Manager

Chapter 3 Using Source Control

• Revision newer than workfile: checks out the revision only if it is newer than
the date of its corresponding workfile

• Revision newer than: checks out a revision that was last checked in after the
specified date and time

• Revision checked in before: checks out a revision that was last checked in
before the specified date and time

 To update the timestamp of the file to the current date and time, select the Set
workfile time to current time check box.

3 Click OK.

4 Your IDE's checkout dialog box may redisplay; click OK.

Writable copies of the selected revisions are checked out to the workfile location and the
revisions are locked.

About Undoing Checkout
Defaults Undoing a checkout unlocks a revision without updating the associated archive with

changes. This allows other users to check out the revision. When you undo a checkout,
the following occurs by default:

 The revision is unlocked.

 The workfile is replaced with a read-only copy of the latest revision.

IDE-specific
instructions

For instructions specific to your IDE, see Part 2, "IDE Reference," on page 55.

Advanced options If your IDE supports advanced options, you can choose to leave the workfile writable,
replace it with the original, or leave it alone.

Advanced Undo Checkout Options
After you click the Advanced button in your IDE's undo checkout dialog box, the Advanced
Undo Check Out dialog box appears.

To select advanced undo checkout options:

1 To specify what to do with the current workfile in the working directory, select one of
the following from the Replace options drop-down list:

 Replace with latest revision: replaces the workfile with a copy of the latest
revision of the file. Any changes you made to the workfile will be lost.

 Replace with original: replaces the workfile with a copy of the locked revision of
the file. Any changes you made to the workfile will be lost.

 Leave alone: retains the workfile in its current state.

2 To leave a writable copy of the workfile in the working directory, select the Make
workfile writable check box.

3 Click OK.

About Checking In Files

IDE Client Implementation Guide 33

4 Your IDE's undo checkout dialog box may redisplay; click OK.

The archive is unlocked.

About Checking In Files
Defaults Checking in a workfile preserves the changes to the file in a new revision. By default, the

following occurs:

 A new revision is created and assigned the next number in sequence.

 A read-only workfile is left in the workfile location.

 The revision that was checked out is unlocked.

IDE-specific
instructions

For instructions specific to your IDE, see Part 2, "IDE Reference," on page 55.

Advanced options If your IDE supports advanced options, you can assign a version label, force a branch,
lock the new revision, or choose what happens if the workfile is unchanged or older than
the previous revision.

Advanced Check-In Options
After you click the Advanced button in your IDE's check-in dialog box, the Advanced
Check In dialog box appears.

To select advanced check-in options:

General tab
options

1 Under the General tab, do any of the following:

 To specify what to do if any of the files you are checking in are unchanged or older
than the previous revisions, select one of the following from the If workfile
unchanged or older drop-down list:

• Prompt: displays a prompt asking what you want to do if the workfile is
unchanged

• Check in: checks in the file even if it is unchanged

• Don't check in: does not check in the file

 To lock the revision that is created when the file is checked in, select Keep
revision locked after check in.

Advanced tab
options

2 Under the Advanced tab of the Advanced Check In dialog box, do any of the following:

 If you have multiple revisions of the file checked out, enter the revision in the
Revision field that you want to check the file into, or click the Browse button to
select one.

NOTE By default, the IDE client will check in a file even if it is unmodified or older than
the latest revision. To change this default, see "Setting Defaults" on page 22.

34 PVCS Version Manager

Chapter 3 Using Source Control

 Enter a new revision number in the Revision field to override the default
increment. For example, if the archive currently contains two revisions (1.0 and
1.1), you can check the file in as revision 1.5.

 To create a branch from the revision you are checking the file into, select the
Force branch check box. A branch is a separate line of development consisting of
one or more revisions that diverge from the main line of development (trunk).

 To assign a version label to the revision, enter the version label in the Version
Label field, or click the Browse button to select one.

 To keep the version label associated with the latest (tip) revision of the current
trunk or branch, select the Float label with tip check box.

 To specify what to do if an identical version label is already assigned to a revision
within the selected archive, select one of the following from the If Version Label
Exists drop-down list:

• Prompt: displays a prompt asking what you want to do if an identical version
label exists

• Reassign: reassigns the identical version label to the revision you are checking
in

• Don't reassign: cancels check-in

3 Click OK.

4 Your IDE's check-in dialog box may redisplay; click OK.

The file is checked in.

About Version Labels
What are version

labels?
Version labels are tags used to identify a specific revision within an archive. Typically,
version labels are used to identify the revisions that make up a specific product release,
such as "Beta Test 1".

Assign a version label to a specific revision when you want to distinguish the revision from
other revisions within the same archive or group of archives.

Using version
labels

Use the Version Manager Options dialog box to perform version label functions such as
assigning, renaming, reassigning, and deleting version labels.

Assigning Version Labels
You can assign a version label to specific revisions in one or more archives, projects, or an
entire project database.

NOTE You can also assign version labels when checking in files. See "About Checking In
Files" on page 33.

About Version Labels

IDE Client Implementation Guide 35

To assign a version label:

1 Open the Version Manager Options dialog box. (For the IDE-specific menu command,
see Part 2, "IDE Reference," on page 55.)

2 Select the General tab and click the Assign button in the Manage Version Labels
group. The Assign Version Label dialog box appears.

3 The default project database displays under Select Project. If you wish to work with
a different project database, click the Open Database button. The Select Project
Database dialog box appears.

Do one of the following:

 To open a project database located on a listed Version Manager File Server, select it
from the Project Databases list and click OK.

To add a Version Manager File Server to the list, double-click an empty cell in the
File Server list and type the name of the system that hosts the file server. Once
you press the ENTER key, the entry will be auto-completed (http://
SystemName:8080/serenafs/FileServer) and tested. To specify an https server or
a non-standard port, double-click on the auto-completed entry, edit it
appropriately, and press the ENTER key.

 To open a project database located on your local file system or the network, click
the Browse button and navigate to the location via the resulting dialog box.

4 Under Select Project, select the project or project database that contains the files
you want to label.

5 To list all of the files in a project database or in subprojects below the selected project,
select the Include files in subprojects check box.

6 Select the files you want to label from under Files to Label.

7 In the Assign Version Label field, enter the version label name, or click the Browse
button to select one.

8 In the To Revision field, enter the number of the revision to assign the label to, or
click the Browse button to select one. If you do not select a revision, the label is
assigned by default to the tip revision of every file.

9 To allow the version label to move with the latest (tip) revision of each file, select the
Float label with tip check box.

10 To specify what to do if an identical version label is already assigned to a revision in
the selected archive, select one of the following from the If Version Label Exists
drop-down list:

 Prompt: displays a prompt asking what you want to do if an identical version label
exists

NOTE You must use this check box if you selected a project or project database that
contains no files at the root level.

TIP To operate on all listed files, click OK without selecting any files. A prompt asks
if you wish to operate on all files. Click Yes.

36 PVCS Version Manager

Chapter 3 Using Source Control

 Reassign: reassigns the identical version label to the revision

 Don't reassign: does not assign a version label to the revision

11 Click OK.

Renaming Version Labels
You can rename existing version labels in one or more archives, a project, or an entire
project database.

To rename a version label:

1 Open the Version Manager Options dialog box. (For the IDE-specific menu command,
see Part 2, "IDE Reference," on page 55.)

2 Select the General tab and click the Rename button in the Manage Version Labels
group. The Rename Version Label dialog box appears.

3 The default project database displays under Select Project. If you wish to work with
a different project database, click the Open Database button. The Select Project
Database dialog box appears.

Do one of the following:

 To open a project database located on a listed Version Manager File Server, select it
from the Project Databases list and click OK.

To add a Version Manager File Server to the list, double-click an empty cell in the
File Server list and type the name of the system that hosts the file server. Once
you press the ENTER key, the entry will be auto-completed (http://
SystemName:8080/serenafs/FileServer) and tested. To specify an https server or
a non-standard port, double-click on the auto-completed entry, edit it
appropriately, and press the ENTER key.

 To open a project database located on your local file system or the network, click
the Browse button and navigate to the location via the resulting dialog box.

4 Under Select Project, select the project or project database that contains the label
you want to rename.

5 To list all of the files in a project database or in subprojects below the selected project,
select the Include files in subprojects check box.

6 Select the files with the label you want to rename from under Files to Label.

7 In the Rename From field, enter the version label that you want to rename, or click
the Browse button to select one.

8 In the To field, enter the new version label, or click the Browse button to select one.

NOTE You must use this check box if you selected a project or project database that
contains no files at the root level.

TIP To operate on all listed files, click OK without selecting any files. A prompt asks
if you wish to operate on all files. Click Yes.

About Version Labels

IDE Client Implementation Guide 37

9 Click OK.

Deleting Version Labels
You can delete version labels when they are no longer needed.

To delete a version label:

1 Open the Version Manager Options dialog box. (For the IDE-specific menu command,
see Part 2, "IDE Reference," on page 55.)

2 Select the General tab and click the Delete button in the Manage Version Labels
group. The Delete Version Label dialog box appears.

3 The default project database displays under Select Project. If you wish to work with
a different project database, click the Open Database button. The Select Project
Database dialog box appears.

Do one of the following:

 To open a project database located on a listed Version Manager File Server, select it
from the Project Databases list and click OK.

To add a Version Manager File Server to the list, double-click an empty cell in the
File Server list and type the name of the system that hosts the file server. Once
you press the ENTER key, the entry will be auto-completed (http://
SystemName:8080/serenafs/FileServer) and tested. To specify an https server or
a non-standard port, double-click on the auto-completed entry, edit it
appropriately, and press the ENTER key.

 To open a project database located on your local file system or the network, click
the Browse button and navigate to the location via the resulting dialog box.

4 Under Select Project, select the project or project database that contains the label
you want to delete.

5 To list all of the files in a project database or in subprojects below the selected project,
select the Include files in subprojects check box.

6 Select the files from which you want to delete a label from under Files to Select.

7 In the Version Label field, enter the version label name, or click the Browse button
to select one.

8 Click OK.

NOTE You must use this check box if you selected a project or project database that
contains no files at the root level.

TIP To operate on all listed files, click OK without selecting any files. A prompt asks
if you wish to operate on all files. Click Yes.

38 PVCS Version Manager

Chapter 3 Using Source Control

About Promotion Groups
Before you begin… Before you can begin working with promotion groups, you must have a promotion model

set up for your project database. A promotion model is a hierarchy of milestones in a
development cycle. These milestones are represented by promotion groups. For
information on setting up a promotion model, see the Administrator's Guide.

What is a
promotion group?

A promotion group is a milestone within a promotion model hierarchy. When a promotion
model is created for a project database, you assign revisions to the lowest-level
promotion group. As development matures and reaches specified milestones, authorized
users can promote revisions within the promotion model hierarchy. Development is
considered complete when a revision reaches the highest-level promotion group, the top
of the promotion model hierarchy.

The following figure is an example of a simple, but typical, promotion model.

Why use
promotion groups?

Promotion groups are meant for tracking development as a revision moves through the
different milestones in your development process. They help you regulate software
changes by making it necessary to associate locked revisions, which are the only revisions
that can be edited, with the lowest-level promotion group. You can also use promotion
groups to control access to source code by integrating a promotion model with various
security options.

Promotion groups are useful in development environments where formal procedures are
in place for moving software from one stage to the next, and where Project Team
Members have different but well defined responsibilities and tasks.

Promote
permissions

Project Leaders or Administrators are typically the only users who have the authority to
promote revisions. To be able to promote revisions, you must have promote permissions
assigned to you by your Administrator.

Checking Out Revisions Assigned to a Promotion
Group
An important rule to remember with promotion groups: you can only check out revisions
to the lowest-level promotion group, the level reserved for development work. Regardless
of what promotion level a revision has reached, when you check out and lock a revision,
you must assign the revision to a lowest-level promotion group to continue development.

Workspace settings may be used to define a Default Promotion Group. If a Default
Promotion Group is not defined for the active workspace, Version Manager will either:

 Prompt you to select a lowest-level promotion group if more than one is defined within
a promotion model, or

Lowest-level promotion group

Highest-level promotion group

About Promotion Groups

IDE Client Implementation Guide 39

 Use the lowest-level promotion group if only one is defined within a promotion model.

For a comprehensive list of promotion model rules, see the Administrator's Guide.

Assigning a Promotion Group to Revisions
You can assign a promotion group to revisions by selecting a revision, a single versioned
file, multiple versioned files, a project, a folder, or a project database.

To assign a promotion group:

1 Open the Version Manager Options dialog box. (For the IDE-specific menu command,
see Part 2, "IDE Reference," on page 55.)

2 Select the General tab and click the Assign button in the Manage Promotion Groups
group. The Assign Promotion Group dialog box appears.

3 The default project database displays under Select Project. If you wish to work with
a different project database, click the Open Database button. The Select Project
Database dialog box appears.

Do one of the following:

 To open a project database located on a listed Version Manager File Server, select it
from the Project Databases list and click OK.

To add a Version Manager File Server to the list, double-click an empty cell in the
File Server list and type the name of the system that hosts the file server. Once
you press the ENTER key, the entry will be auto-completed (http://
SystemName:8080/serenafs/FileServer) and tested. To specify an https server or
a non-standard port, double-click on the auto-completed entry, edit it
appropriately, and press the ENTER key.

 To open a project database located on your local file system or the network, click
the Browse button and navigate to the location via the resulting dialog box.

4 Under Select Project, select the project or project database that contains the files
you want to act on.

5 To list all of the files in a project database or in subprojects below the selected project,
select the Include files in subprojects check box.

Multiple lowest-level promotion groups

Highest-level promotion group

NOTE You must use this check box if you selected a project or project database that
contains no files at the root level.

40 PVCS Version Manager

Chapter 3 Using Source Control

6 Select the files you want to act on from under Select Files.

7 Specify a promotion group in the Assign Promotion Group field or browse to select
one.

8 To act on a revision other than the default revision, enter it in the To Revision field or
browse to select it.

9 To specify what to do if an identical promotion group is already assigned to a revision
in the archive, select one of the following from the If promotion group exists drop-
down list:

 Prompt: Displays a prompt asking what you want to do if an identical promotion
group exists.

 Reassign: Reassigns the promotion group to the selected revision.

 Don't reassign: Does not assign a promotion group to the revision.

10 Click OK.

Promoting Revisions to the Next Promotion Group
You can promote revisions to the next promotion group by selecting a revision, a single
versioned file, multiple versioned files, a project, a folder, or a project database.

To promote revisions to the next promotion group:

1 Open the Version Manager Options dialog box. (For the IDE-specific menu command,
see Part 2, "IDE Reference," on page 55.)

2 Select the General tab and click the Promote button in the Manage Promotion Groups
group. The Promote Promotion Group dialog box appears.

3 The default project database displays under Select Project. If you wish to work with
a different project database, click the Open Database button. The Select Project
Database dialog box appears.

Do one of the following:

 To open a project database located on a listed Version Manager File Server, select it
from the Project Databases list and click OK.

To add a Version Manager File Server to the list, double-click an empty cell in the
File Server list and type the name of the system that hosts the file server. Once
you press the ENTER key, the entry will be auto-completed (http://
SystemName:8080/serenafs/FileServer) and tested. To specify an https server or
a non-standard port, double-click on the auto-completed entry, edit it
appropriately, and press the ENTER key.

 To open a project database located on your local file system or the network, click
the Browse button and navigate to the location via the resulting dialog box.

4 Under Select Project, select the project or project database that contains the files
you want to act on.

TIP To operate on all listed files, click OK without selecting any files. A prompt asks
if you wish to operate on all files. Click Yes.

About Promotion Groups

IDE Client Implementation Guide 41

5 To list all of the files in a project database or in subprojects below the selected project,
select the Include files in subprojects check box.

6 Select the files you want to act on from under Select Files.

7 Specify a promotion group in the Promote From field or browse to select one.

8 To allow reassignment of a promotion group across branches, select the OK to move
across branches check box. Otherwise, the promotion will fail if a revision on
another branch is already assigned the next highest promotion group.

9 Click OK.

Changing a Promotion Group
You can change promotion groups by selecting a revision, a single versioned file, multiple
versioned files, a project, a folder, or a project database.

To change a promotion group:

1 Open the Version Manager Options dialog box. (For the IDE-specific menu command,
see Part 2, "IDE Reference," on page 55.)

2 Select the General tab and click the Change button in the Manage Promotion Groups
group. The Change Promotion Group dialog box appears.

3 The default project database displays under Select Project. If you wish to work with
a different project database, click the Open Database button. The Select Project
Database dialog box appears.

Do one of the following:

 To open a project database located on a listed Version Manager File Server, select it
from the Project Databases list and click OK.

To add a Version Manager File Server to the list, double-click an empty cell in the
File Server list and type the name of the system that hosts the file server. Once
you press the ENTER key, the entry will be auto-completed (http://
SystemName:8080/serenafs/FileServer) and tested. To specify an https server or
a non-standard port, double-click on the auto-completed entry, edit it
appropriately, and press the ENTER key.

 To open a project database located on your local file system or the network, click
the Browse button and navigate to the location via the resulting dialog box.

NOTE You must use this check box if you selected a project or project database that
contains no files at the root level.

TIP To operate on all listed files, click OK without selecting any files. A prompt asks
if you wish to operate on all files. Click Yes.

NOTE You should not use the Change option as a means of promoting revisions
because it does not enforce the promotion model hierarchy assigned to your project
database.

42 PVCS Version Manager

Chapter 3 Using Source Control

4 Under Select Project, select the project or project database that contains the files
you want to act on.

5 To list all of the files in a project database or in subprojects below the selected project,
select the Include files in subprojects check box.

6 Select the files you want to act on from under Select Files.

7 Specify a promotion group in the Change From field or browse to select one.

8 Specify a promotion group to change to in the To field or browse to select one.

9 Click OK.

Removing a Promotion Group
You can remove promotion groups by selecting a revision, a single versioned file, multiple
versioned files, a project, a folder, or a project database.

To remove a promotion group from a revision:

1 Open the Version Manager Options dialog box. (For the IDE-specific menu command,
see Part 2, "IDE Reference," on page 55.)

2 Select the General tab and click the Remove button in the Manage Promotion Groups
group. The Remove Promotion Group dialog box appears.

3 The default project database displays under Select Project. If you wish to work with
a different project database, click the Open Database button. The Select Project
Database dialog box appears.

Do one of the following:

 To open a project database located on a listed Version Manager File Server, select it
from the Project Databases list and click OK.

To add a Version Manager File Server to the list, double-click an empty cell in the
File Server list and type the name of the system that hosts the file server. Once
you press the ENTER key, the entry will be auto-completed (http://
SystemName:8080/serenafs/FileServer) and tested. To specify an https server or
a non-standard port, double-click on the auto-completed entry, edit it
appropriately, and press the ENTER key.

 To open a project database located on your local file system or the network, click
the Browse button and navigate to the location via the resulting dialog box.

NOTE You must use this check box if you selected a project or project database that
contains no files at the root level.

TIP To operate on all listed files, click OK without selecting any files. A prompt asks
if you wish to operate on all files. Click Yes.

NOTE Even if you remove a promotion group from a revision, as long as a promotion
model is in effect for your project database, every time you check out a revision, it will be
associated with the lowest-level promotion group.

About Promotion Groups

IDE Client Implementation Guide 43

4 Under Select Project, select the project or project database that contains the files
you want to act on.

5 To list all of the files in a project database or in subprojects below the selected project,
select the Include files in subprojects check box.

6 Select the files you want to act on from under Select Files.

7 Specify a promotion group in the Promotion Group field or browse to select one.

8 Click OK.

NOTE You must use this check box if you selected a project or project database that
contains no files at the root level.

TIP To operate on all listed files, click OK without selecting any files. A prompt asks
if you wish to operate on all files. Click Yes.

44 PVCS Version Manager

Chapter 3 Using Source Control

IDE Client Implementation Guide 45

Chapter 4
Accessing Source Control Information

Introduction 46
About Properties 46
Monitoring Source Control Activity with Pulse 47
About History Reports 50
About Difference Reports 52

46 PVCS Version Manager

Chapter 4 Accessing Source Control Information

Introduction
Purpose This chapter describes how to access four types of information about the files you have

placed under source control:

 The properties of archives and revisions

 The source control activity of other team members and the results of your own
activity

 The history of source control activity in archives and revisions

 The differences between two files, or two revisions, or a file and a revision

IDE-specific
information

Some IDEs do not support these features. For information on which features are
supported by your IDE, see Part 2, "IDE Reference," on page 55.

About Properties
You can review the source control properties of any file under source control.

Reviewing Properties
To review the source control properties of a file:

1 Select the file that corresponds to the Version Manager archive you want information
about.

2 Open the Version Manager Properties dialog box. (For the IDE-specific menu
command, see Part 2, "IDE Reference," on page 55.) The archive appears in the left
pane of the dialog box.

3 Click the plus sign to expand the view of the archive. All revisions, version labels, and
promotion groups appear in the expanded view.

Displaying tabs The content of the Version Manager Properties dialog box varies depending on what
you select in the left pane. When the dialog box appears, the archive is selected by
default, and the Versioned File tab is visible. When you select a revision in the archive,
the Revision, Version Labels, and Promotion Groups tabs appear.

Versioned files tab  Under the Versioned Files tab, the following information is provided:

• The name of the file

• The name and location of the associated Version Manager archive

• The date the archive was created

• The user who created the archive

• The users who currently have locks on revisions in the archive

• The description entered when the file was added to the project

Revision tab  Under the Revision tab, the following information is provided:

• The revision number

Monitoring Source Control Activity with Pulse

IDE Client Implementation Guide 47

• The date and time the file was last modified for the specified revision

• The user who checked in the revision

• The user who currently has a lock on the revision

• The change description that was entered when the revision was checked in

Version Labels tab  The Version Labels tab displays a list of all version labels applied to the selected
revision.

Promotion Groups
tab

 The Promotion Groups tab displays a list of all promotion groups applied to the
selected revision.

Monitoring Source Control Activity with Pulse
About Pulse Pulse allows users who are logged into the same projects to monitor certain source control

events. For example, Pulse notifies you when another user has added a new file or
checked in changes to an existing file. If you are working with multiple Version Manager
projects in multiple development environments, you can display activity in all open
projects, or limit the display to activity in particular environments.

Pulse also displays results messages for all source control actions that you perform from
your current development environment. For example, if you check out a file from within
Visual Basic, Pulse displays the success or failure of that checkout.

Configuring Pulse
Before you begin using Pulse, configure it in the Options dialog box.

To configure Pulse:

1 Open the Options dialog box. (For the IDE-specific menu command, see Part 2, "IDE
Reference," on page 55.)

2 Select the General tab. Pulse options appear in the Pulse group.

You can start and stop the display of source control activity in your IDE from the
Options dialog box. See the next section for more information on starting and
displaying Pulse.

3 Do any of the following:

 Select the frequency with which Pulse scans open projects for changes from the
Check for changes drop-down list. By default, Pulse checks for changes every
ten minutes. This option applies to project-wide activity monitoring only.

 To automatically start Pulse when you launch the Version Manager IDE client,
select the Launch Pulse (r) on startup check box.

NOTE If you are working with very large Version Manager projects, frequent
scanning for changes may impact performance.

48 PVCS Version Manager

Chapter 4 Accessing Source Control Information

 To display changes to all files in open Version Manager projects and subprojects,
select the Report on files in subprojects check box. If this option is not
selected, Pulse displays changes to files in the root Version Manager project only.

About Starting Pulse
Automatic startup Pulse begins monitoring source control activity as soon as it is launched. You can

configure Pulse to start when ever you launch the Version Manager IDE client. See
"Configuring Pulse" on page 47.

One IDE If Pulse is not running or you have stopped monitoring the source control activity of your
IDE, you can start or resume monitoring from the Options dialog box.

Multiple IDEs To monitor activity in multiple IDEs running on your system, start Pulse from within each
IDE. Pulse displays the activity of only the IDEs from which it was started. For example, if
you are working with Version Manager projects in both Visual Basic and Visual C++ but
start Pulse from only Visual Basic, Pulse will display activity in Visual Basic projects only.

Starting Pulse

To start Pulse:

1 Open the Options dialog box. (For the IDE-specific menu command, see Part 2, "IDE
Reference," on page 55.)

2 Select the General tab.

3 In the Pulse group, click the Start Monitoring Project Files in this IDE button.

Displaying Pulse

When you start Pulse, an icon () appears in the taskbar status area of your
desktop. The icon changes () to notify you when source control activity is detected.
If the Pulse window is not visible when the icon changes, double-click the icon. The
window appears.

Hiding Pulse

To hide the Pulse window, click the Close button. Closing the Pulse window does not
suspend monitoring. To re-display the window, double-click the icon.

NOTE If you change the Report on files in subprojects check box, you must
restart your IDE for the change to take effect.

NOTE If you have suspended monitoring of projects across all IDEs, clicking the Start
Monitoring Project Files in this IDE button has no effect. You must un-suspend
activity monitoring to resume display. See "Suspending Project Activity Monitoring" on
page 50.

Monitoring Source Control Activity with Pulse

IDE Client Implementation Guide 49

Viewing Source Control Activity
Pulse allows you to monitor two types of source control activity:

Project-wide  Activity in all Version Manager projects open in IDEs from which Pulse is running. This
includes actions performed from other users' workstations and from other
development environments currently running on your system.

Local  Actions you perform from within your current development environment.

Project-wide Activity

Project activity tab The Project Activity tab displays information about activity originating from instances of
development environments other than the one that is currently active on your system. For
example, if you are sharing a Version Manager project with a user at another workstation,
and that user adds a new file to the project, Pulse notifies you. You can also monitor
activity across multiple instances of the same environment on the same system.

Icons in the File column identify each event as one of the following:

Project-wide
activity

information

For every event that occurs, the Project Activity tab displays the following information:

 File: The name of the file that has been added, removed, or modified. Click the File
column header to alphabetically sort events by filename.

 Project: The Version Manager project that is affected by the activity. Click the Project
column header to alphabetically sort events by project name.

 Date/Time: The date and time that the event was detected. Click the Date/Time
column header to sort events by date.

 Description: The event that occurred. When a new revision is added, this column
displays both the old revision number and the new revision number. Click the
Description column header to alphabetically sort events by description.

Detailed activity
information

You can also view more detailed information about each event, such as the location of a
file within a Version Manager project, and the development environment from which a file
was added, removed, or modified.

To display detailed information about a source control event, double-click the event under
the Project Activity tab. The Project Activity Details window appears.

Local Results Messages

Output tab Under the Output tab, Pulse displays results messages for all source control actions that
you perform from the IDE currently active on your system.

This icon… Displays when this event occurs…

A new file is added to source control

A file is removed from source control

A new revision of a file is checked in as the tip, or latest,
revision

50 PVCS Version Manager

Chapter 4 Accessing Source Control Information

Suspending Project Activity Monitoring
You can stop monitoring project-wide source control activity in specific IDEs, or suspend
monitoring in all open development environments.

Specific IDEs

To stop monitoring in a specific IDE:

1 Open the Options dialog box from within the IDE. (For the IDE-specific menu
command, see Part 2, "IDE Reference," on page 55.)

2 Select the General tab.

3 In the Pulse group, click the Stop/Start Monitoring Project Files in this IDE
button.

Resuming
monitoring

You can resume monitoring by clicking the Stop/Start Monitoring Project Files in this
IDE button.

All Development Environments

To suspend monitoring in all open IDEs:

1 If the Pulse window is not currently visible, double-click the Pulse icon () in the
Taskbar Status area of your desktop.

2 Select the Project Activity tab.

3 Select the Suspend monitoring of projects check box. The icon in the Taskbar
Status area of your desktop reflects the suspended status ().

Resuming
monitoring

You can resume monitoring by deselecting the Suspend monitoring of projects check
box.

Closing Pulse
Pulse remains active when you close your IDE. If you want to close Pulse, right-click the
Pulse taskbar icon and select Exit from the pop-up menu.

About History Reports
History reports summarize information about archives and/or revisions that you can use
to monitor the development process, review archive histories, and check archive

NOTE Suspending the display of project activity does not affect the display of source
control results messages under the Pulse Output tab.

TIP You can also suspend or resume project monitoring by right-clicking the Pulse
taskbar icon and then selecting Suspend from the pop-up menu.

About History Reports

IDE Client Implementation Guide 51

attributes. For more information about the content of history reports, see the Version
Manager User's Guide.

Generating History Reports
To generate a history report:

1 Select a file to be included in the report.

2 Open the Show History dialog box. (For the IDE-specific menu command, see Part 2,
"IDE Reference," on page 55.)

General tab
options

3 Under the General tab, select a report type in the Report Type drop-down list:

Advanced tab
options

4 Under the Advanced tab, you can restrict report information by generating a report
based on author, user locks, owners, date range, or a combination of these options.

Author(s)  To generate a report based on a specific author, enter the author(s) name in the
Author(s) field, or click the Browse button to select an author. Separate multiple
authors with a comma (,).

NOTE Fields shown in the Show History dialog box vary depending on which report
type is selected.

Full Comprehensive information (including file, revision,
lock, and version label).
To select specific revisions, enter the revision number,
version label, or promotion group in the Revision field
or click the Browse button to select a revision.

File information only Only archive information (such as creation date, owner,
locks, version labels). This report does not contain
revision history.

Revision information only Only revision information on all or selected revisions.
To select specific revisions, enter the revision numbers
(separated by commas) in the Revision field.

List locked revisions A list of locked revisions within the selected file(s).

List revisions with
version label

A list of revisions that match a specific version label.
To select a version label, enter it in the Label field, or
click the Browse button to select one.

List revisions in group A list of revisions that match a specific promotion
group.
To select a promotion group, enter the promotion group
in the Group field, or click the Browse button to select
one.

List newest revisions A list of the latest revisions (if you selected multiple
files).

Check tips against
version/revision

Information that compares the latest revision with a
specified revision. To specify the revision, enter a
revision number, version label, or promotion group in
the Revision field, or click the Browse button to select
one.

52 PVCS Version Manager

Chapter 4 Accessing Source Control Information

Locker(s)  To generate a report based on user locks, enter the user names in the Locker(s)
field, or click the Browse button to select a user. Separate multiple users with a
comma (,).

Owner(s)  To generate a report based on a specific owner, enter the owner names in the
Owner(s) field, or click the Browse button to select an owner. Separate multiple
owners with a comma (,).

Date Range  To generate a report based on a date range, select the Date Range check box,
then specify dates and times in the From and To fields.

Files tab 5 Under the Files tab, review the files for which the history report will be generated.

The Files tab displays a list of all of the files you selected with a check beside each
one. You can change your selection by checking and unchecking files in this list.

6 When you have chosen the options you want, click OK. The history report will appear.
(If you are generating a report on a large number of files, it may take a few
moments.)

About Difference Reports
Version Manager launches a separate utility, the Merge Tool, to compare files and
generate difference reports. You can compare:

 A revision and a workfile

 Revisions in a single archive

 Revisions in two different archives

 Two workfiles

You can use difference reports to:

 Identify specific differences between files or revisions.

 Determine what changes have been made to a file before you check it in.

 Confirm which revision is newer if you are unsure of a timestamp.

Generating Difference Reports
To generate a difference report:

1 Select a file to be included in the report.

2 Open the Show Differences dialog box. (For the IDE-specific menu command, see Part
2, "IDE Reference," on page 55.)

The appearance of the Show Differences dialog box varies depending on the files you
select and the type of comparison you want.

About Difference Reports

IDE Client Implementation Guide 53

3 Select the type of comparison you want to perform from the Compare drop-down list.

4 To change the selected files or revisions in the First File and Second File groups, click
the Browse buttons.

5 Select the Ignore white space check box if you want to ignore trailing, intervening,
and leading white spaces, tabs, and form feeds.

6 Click OK. The Merge Tool is launched in a separate window.

7 To view the differences, scroll through the files to compare the colored text blocks.
You can also click the Next Difference button () from the Merge Tool window to
go directly to the differences.

For information on advanced differencing features and interpreting difference reports, see
the User's Guide.

If you select this report type... You must choose...

A revision and a workfile A versioned file and revision number, and a
workfile

Revisions in a single versioned file A versioned file and revision number, and a
second revision number

Revisions in two different
versioned files

Two versioned files and two revision numbers

Two workfiles Two workfiles

54 PVCS Version Manager

Chapter 4 Accessing Source Control Information

IDE Client Implementation Guide 55

Part 2
IDE Reference

ColdFusion Studio 57
PowerBuilder 65
Rational Application Developer (Eclipse 3 and 4) 77
Rational Application Developer Rich Integration (Eclipse 3 and 4) 95
Rational Rose 141
Visual Studio SCC Integration 139
Visual Studio Rich Integration 149

56 PVCS Version Manager

Part 2 IDE Reference

Introduction
Contents and

purpose
This part of the manual contains chapters specific to setting up and using the Version
Manager IDE client with supported IDEs. The purpose of this part of the manual is to help
you set up and use the Version Manager IDE client with your IDE.

Additional
information

Use this part of the manual in conjunction with these additional sources of information:

For more information about... See...

Source control concepts Chapter 1, "Overview of Version Manager Source
Control" on page 11

Setting up and configuring the
Version Manager IDE client to
work with SCC compliant IDEs

Chapter 2, "Setting Up Source Control with SCC
IDEs" on page 17

Setting up and configuring the
Version Manager IDE client to
work with web-based IDE projects

Chapter 3, "Setting Up Source Control with COM
IDEs" on page 35

Default and advanced options Chapter 3, "Using Source Control" on page 27

Viewing information about items
under source control

Chapter 4, "Accessing Source Control
Information" on page 45

Setting up and using your IDE
with source control

The documentation provided by the vendor of
your IDE

IDE Client Implementation Guide 57

Chapter 5
ColdFusion Studio

Introduction 58
Accessing Supported Features 58
Setting Up Source Control Projects 59
Using Source Control 62

58 PVCS Version Manager

Chapter 5 ColdFusion Studio

Introduction
Purpose This chapter has four purposes:

 List the Version Manager features available through Adobe® ColdFusion® Studio and
provide a quick reference to accessing those features

 Note any features described in Part 1 of this manual that do not apply to this IDE

 Help administrators set up source control projects and add files to source control

 Help your development team access files that are under source control from within
ColdFusion Studio

For more
information

See Part 1, "The Version Manager IDE Client," on page 9 for information about:

 Source control concepts

 Source control defaults

 Advanced source control features

Accessing Supported Features
What is

supported?
ColdFusion Studio supports a subset of the source control features available through the
Version Manager IDE client. Limitations specific to this IDE include the inability to:

 View archive properties

 Use advanced options

 Share archives across projects

Accessing features Access the menu commands listed below in one of two ways, depending on the type of file
you are operating upon:

 To work with a ColdFusion Studio project file, right-click the project icon in the Project
pane of the Projects tab.

 To work with ColdFusion Studio workfiles, select the files in the File pane of the
Projects tab and right-click.

To... Select... For more information see...

Get revisions Source Control | Get Latest Version "Getting Files" on page 63

Check out revisions Source Control | Check Out "Checking Out Files" on page 63

Undo checkout of
revisions

Source Control | Undo Check Out "Undoing Checkout" on page 63

Check in revisions Source Control | Check In "Checking In Files" on page 63

Manage version labels (Use the Version Manager desktop
client)

The Version Manager User's Guide

View properties of
revisions or archives

(Use the Version Manager desktop
client)

The Version Manager User's Guide

Monitor source control
activity

Source Control | Run Source Control
Application

"Monitoring Source Control Activity
with Pulse" on page 47

Setting Up Source Control Projects

IDE Client Implementation Guide 59

Setting Up Source Control Projects
Contents This section contains information about setting up the Version Manager IDE Client to work

with ColdFusion Studio.

Prerequisites Before proceeding, you must use the Version Manager desktop client to create a project
database that will contain the source control projects associated with the ColdFusion
Studio project (if you don't already have one).

For more
information

See Chapter 2, "Setting Up Source Control with SCC IDEs" on page 17.

Setting Up Projects for Access by Multiple-Users
If multiple users will access the project, you must configure it with this in mind.

To connect multiple users to a project:

1 Create the ColdFusion project in a location accessible to all users.

2 Create the Version Manager project database in a location accessible to all users.

3 Add the ColdFusion project to source control. (See the following sections for details.)

4 Using the ColdFusion IDE, open the project from each development system.

Generate a history
report

Source Control | Show History "About History Reports" on page 50

Generate a difference
report

Source Control | Show Differences "About Difference Reports" on page 52

Access the Version
Manager Options dialog

Source Control | Run Source Control
Application

"About Setting Defaults for Version
Manager Options" on page 22

Map (add) a project file
to source control

Source Control | Map Project to Source
Control

"Mapping Projects to Source Control"
on page 60

Remove a project file
from source control

Source Control | Remove Project File
from Source Control

"Removing Files from Source Control"
on page 62

Add workfiles to source
control

Source Control | Add File to Source
Control

"Adding Files to Source Control" on
page 61

Remove workfiles from
source control

Source Control | Remove File from
Source Control

"Removing Files from Source Control"
on page 62

To... Select... For more information see...

NOTE

 Use a unique user ID to log in to each development system. If everyone uses the
same O/S login, anyone can check in a file you have checked out.

 After adding a new file to the project, check in the ColdFusion project file (.apf).
Each user must then reopen the project in order to see the new file.

60 PVCS Version Manager

Chapter 5 ColdFusion Studio

Selecting a Source Control Provider
ColdFusion Studio allows you to select a source control provider for each project
individually.

To select a source control provider:

1 From the Projects tab, right-click the project icon in the Projects pane and select
Source Control | Choose Source Control Provider. The Choose Source Control Provider
dialog box appears.

2 Select Version Manager from the Providers list.

3 Click OK.

Mapping Projects to Source Control
Once you have created and saved a ColdFusion project, you can map (add) it to an
existing Version Manager project database.

To map and add a project to source control:

1 From the Projects tab, right-click the project icon in the Projects pane and select
Source Control | Map Project to Source Control. The Add Project to Source Control
dialog box appears.

2 The default project database displays under Source Control Project. If you wish to
add the files to a different project database, click the Open Database button. The
Select Project Database dialog box appears.

Do one of the following:

 To open a project database located on a listed Version Manager File Server, select it
from the Project Databases list and click OK.

To add a Version Manager File Server to the list, double-click an empty cell in the
File Server list and type the name of the system that hosts the file server. Once
you press the ENTER key, the entry will be auto-completed (http://
SystemName:8080/serenafs/FileServer) and tested. To specify an https server or
a non-standard port, double-click on the auto-completed entry, edit it
appropriately, and press the ENTER key.

 To open a project database located on your local file system or the network, click
the Browse button and navigate to the location via the resulting dialog box.

3 Do one of the following:

 To add to an existing source control project, select one from under Source
Control Project. Proceed to Step 4.

IMPORTANT!

 Each ColdFusion project must reside in its own directory. If there are multiple
ColdFusion projects in a single directory and you place them under source control,
source control will fail.

 All files in a ColdFusion project must be located under the root project working
directory--the directory containing the ColdFusion project file (.apf). Any files outside
of the project directory structure will not be added to source control.

Setting Up Source Control Projects

IDE Client Implementation Guide 61

 To create a new Version Manager project:

a Under Select Source Control Project, select the location in the project database
where you want to create the new project.

b Click the Create Project button. The Create Source Control Project dialog box
appears.

The Project Database Information group displays the name and location of the
current project database, and the location of the new project within the
database.

c By default, the new Version Manager project uses the same name as the IDE
project. If necessary, enter a different name in the Project Name field.

The name cannot begin or end with a tab or blank space. Any character can be
used in the name except an asterisk (*), a colon (:), a vertical bar (|), forward
and backward slashes (/ \), a question mark (?), and angle brackets (< >).

d Click OK. The Add Project to Source Control dialog box reappears with the new
project displayed under Source Control Project.

4 Click OK. The project file is mapped to source control. Continue to the next step to
add the project file to source control.

5 From the Projects tab, right-click the project icon in the Projects pane and select
Source Control | Add Project File to Source Control. The Comment dialog box appears.

6 In the Comment field, enter a description of the project file.

7 Click OK.

Continue to the next section to add the files in the project to source control.

Adding Files to Source Control

To add a file to a source control project:

1 Check out the project (.apf) file by right-clicking the project icon in the Project pane of
the Projects tab and selecting Source Control | Check Out.

2 Do one of the following:

 If you are adding a file to the ColdFusion Studio project, a prompt displays asking
if you want to add the file to source control. Click Yes.

 If the file is already part of the ColdFusion project but you have not yet added it to
source control, right-click the file icon in the File pane of the Projects tab and select
Source Control | Add File to Source Control.

IMPORTANT! For each project that is mapped to source control, Version Manager
creates a file named projectname.cache. This file is located in the working directory of the
ColdFusion project. If this file is lost, you must remap the ColdFusion project to restore
the project to source control.

NOTE You must add the project (.apf) file to source control before you can add other
files to the source control project. See "Mapping Projects to Source Control" on page 60.

62 PVCS Version Manager

Chapter 5 ColdFusion Studio

The Comment dialog box appears.

3 In the Comment field, enter a description of the file. The description will be applied to
all selected files.

4 Click OK. A red dot () appears next to the file icon in the File pane to indicate
that the file is under source control.

Removing Files from Source Control
When you remove a file from source control, Version Manager does not delete the workfile
or Version Manager archive; it simply removes the association between the IDE file and
archive. You can always add the file back to source control later.

Remove workfile To remove a ColdFusion workfile file from source control:

1 In the File pane of the Projects tab, select the file(s) you wish to remove from source
control.

2 Right-click and select Source Control | Remove File from Source Control. A
confirmation message appears.

3 Click Yes. The selected files are removed from source control.

Remove project To remove a ColdFusion project (.apf) file from source control:

1 In the Project pane of the Projects tab, select the project you wish to remove from
source control.

2 Right-click and select Source Control | Remove Project File from Source Control. A
confirmation message appears.

3 Click Yes. The selected project file is removed from source control.

Returning files to
source control

For information on returning files to source control, see "Returning Files to Source
Control" on page 24.

Using Source Control
Contents This section contains procedural information about viewing and editing files that are under

source control.

For more
information

See Chapter 3, "Using Source Control" on page 27.

TIP To use unique descriptions for each file, leave the Comment field blank and click
OK. The Change Description dialog box will appear for each file in turn.

TIP To speed your work, set the IDE and Version Manager defaults to reflect the way
you usually work.

Using Source Control

IDE Client Implementation Guide 63

Getting Files
When you get files, read-only copies of the latest revisions are placed in the workfile
location.

To get a revision:

1 In the File pane of the Projects tab, select the file(s) and right-click.

2 Select Source Control | Get Latest Version.

Checking Out Files
When you check out a file, the latest (tip) revision is locked and a writable workfile is
created in the workfile location.

To check out a file:

1 In the File pane of the Projects tab, select the file(s) and right-click.

2 Select Source Control | Check Out. A green check mark () appears next to the file
icon in the File pane.

Undoing Checkout
When you undo a checkout, the archive is unlocked and a read-only workfile is left in the
workfile location. No changes are checked into the archive.

To undo a checkout:

1 In the File pane of the Projects tab, select the file(s) and right-click.

2 Select Source Control | Undo Check Out. The green check mark () is removed
from the file icon in the File pane to indicate that the file is unlocked.

Checking In Files
By default, the following occurs when you check in a file:

 A new revision is created and assigned the next number in sequence.

 A read-only workfile is left in the workfile location.

 The archive is unlocked.

To check in a file:

1 Save any changes to the ColdFusion files you wish to check in.

2 In the File pane of the Projects tab, select the file(s) and right-click.

3 Select Source Control | Check In. The Comment dialog box appears.

64 PVCS Version Manager

Chapter 5 ColdFusion Studio

4 Enter a description of the changes you made in the Comment field. This description
will be applied to all selected files.

5 Click OK. The green checkmark () is removed from the file icon in the File pane.

TIP To apply a unique description to each file, deselect the Apply To All Files check
box.

IDE Client Implementation Guide 65

Chapter 6
PowerBuilder

Introduction 66
About Version Manager Project Structure 66
Accessing Supported Features in PowerBuilder 67
Setting Up Source Control Projects in PowerBuilder 68
Using Source Control with PowerBuilder 73

66 PVCS Version Manager

Chapter 6 PowerBuilder

Introduction
Purpose This chapter has four purposes:

 List the Version Manager features available through Sybase® PowerBuilder™, and
provide a quick reference to accessing those features

 Note any features described in Part 1 of this manual that do not apply to this IDE

 Help administrators set up source control projects and add files to source control

 Help your development team access files that are under source control from within
PowerBuilder

For more
information

See Part 1, "The Version Manager IDE Client," on page 9 for information about:

 Source control concepts

 Source control defaults

 Advanced source control features

About Version Manager Project Structure
Default project

structure
By default, when you add a project to source control, Version Manager creates a
hierarchical project structure that mirrors the physical location of the files in your working
directories. Because PowerBuilder stores objects in libraries rather than directories,
Version Manager creates versioned files for all objects directly under the root project,
rather than hierarchically based on application structure.

Example If your application App1 contains three objects, each in separate PBLs, all three objects
will appear in one Version Manager project:

PowerBuilderApplication Version Manager Project

Archive
organization

Version Manager organizes archives based on project structure. In the example above,
Version Manager would place the archives associated with the three objects under the
App1 archive directory.

Mirroring PBL
structure

If you want to organize your versioned files into subprojects based on the applications PBL
structure, we recommend that you use version labels. When you add objects to source
control, you can group objects by assigning version labels that correspond to PBL names.

PBL1

PBL2

PBL3

Object1

Object2

Object3

App1

Object1

Object2

Object3

App1

Accessing Supported Features in PowerBuilder

IDE Client Implementation Guide 67

With the Version Manager desktop client, you can select versioned files based on version
labels and copy them into subprojects.

Using Version Labels to Organize Projects

You can use version labels to selectively copy your versioned files into multiple projects
that mirror your application's library structure.

To organize projects based on PBLs, complete the following steps:

1 As you add objects to source control, assign version labels that correspond to the
names of the libraries the objects belong to. To be sure that the labels are always
easily visible, set the labels to float to the tip. Floating version labels are always
associated with the latest revision in an archive.

2 Once all of the objects in the application have been added to source control, open the
new project in the Version Manager desktop client.

3 Create the subprojects into which you will copy the versioned files. For example,
create subprojects that correspond to each PBL in your application (PBL1, PBL2, PBL3
and so forth).

4 In the Project pane, select the Version Manager project you created from within
PowerBuilder. All versioned files in the project appear in the File pane.

5 Use the Version Label Filter dialog box to customize the File pane to display only
versioned files to which the specified label is assigned. For example, if you assigned
the label PBL1 to all objects in PBL1, filter the File pane to display only versioned files
containing the label PBL1.

6 Copy the selected versioned files from the file pane to the subproject that corresponds
to the PBL the objects belong to.

7 Repeat steps 4-6 for each PBL in the application.

For information on creating projects, filtering the File pane, and copying versioned files,
see the User's Guide.

Accessing Supported Features in PowerBuilder
What is

supported?
PowerBuilder supports the full set of source control features available through the Version
Manager IDE client, except for the sharing of archives among projects. See the following
table.

NOTE PowerBuilder allows you to create each target in its own subdirectory beneath the
workspace directory, but it does not do so by default. We recommend that you use this
feature, as Version Manager will then automatically create subprojects for each target.

NOTE The Entry menu is available only if the Library Painter window is open.

68 PVCS Version Manager

Chapter 6 PowerBuilder

Setting Up Source Control Projects in PowerBuilder
For best results, you should create a hierarchy of directories so each target is located in
its own directory beneath the workspace directory. Version Manager will then create
nested source control projects that reflect the structure of your workspace. This avoids
problems associated with having identically named files in several targets and imposes a
logical hierarchy on the otherwise flat file structure of PowerBuilder projects.

Connecting PowerBuilder Workspaces to Source
Control
To connect a PowerBuilder Workspace to source control:

1 Right-click on the Workspace object in the System Tree pane. A pop-up menu
appears.

2 Select Properties. The Properties of Workspace dialog box opens to the Source Control
tab.

To... Select... For more information see...

Get revisions Right-click | Get Latest Version "Getting Objects" on page 73

Check out revisions Right-click | Check Out "Checking Out Objects" on page 73

Undo checkout of
revisions

Right-click | Undo Check Out "Undoing Checkout" on page 74

Check in revisions Right-click | Check In "Checking In Objects" on page 74

Manage version labels Entry | Source Control | Advanced
Options

"About Version Labels" on page 34

View properties of
revisions or archives

Entry | Source Control | Source Control
Properties

"About Properties" on page 46

Monitor source control
activity

Entry | Source Control | Advanced
Options

"Monitoring Source Control Activity
with Pulse" on page 47

Generate a history
report

Entry | Source Control | Show History "About History Reports" on page 50

Generate a difference
report

Entry | Source Control | Show
Differences

"About Difference Reports" on page 52

Access the Version
Manager Options dialog

Entry | Source Control | Advanced
Options

"About Setting Defaults for Version
Manager Options" on page 22

Connect workspaces to
source control

Right-click | Properties "Setting Up Source Control Projects in
PowerBuilder" on page 68

Add objects to source
control

Right-click | Add to Source Control "Adding Objects to Source Control" on
page 70

Disconnect workspaces
from source control

Right-click | Properties "Disconnecting Workspaces from
Source Control" on page 72

Remove objects from
source control

Entry | Source Control | Remove from
Source Control

"Removing Objects from Source
Control" on page 72

Setting Up Source Control Projects in PowerBuilder

IDE Client Implementation Guide 69

3 Select Version Manager from the Source Control System drop-down menu.

4 Click the browse button to the right of the Project field. The Add Project to Source
Control dialog box appears.

Select a project
database

5 The default project database displays under Source Control Project. If you wish to
add the files to a different project database, click the Open Database button. The
Select Project Database dialog box appears.

Do one of the following:

 To open a project database located on a listed Version Manager File Server, select it
from the Project Databases list and click OK.

To add a Version Manager File Server to the list, double-click an empty cell in the
File Server list and type the name of the system that hosts the file server. Once
you press the ENTER key, the entry will be auto-completed (http://
SystemName:8080/serenafs/FileServer) and tested. To specify an https server or
a non-standard port, double-click on the auto-completed entry, edit it
appropriately, and press the ENTER key.

 To open a project database located on your local file system or the network, click
the Browse button and navigate to the location via the resulting dialog box.

Select a project 6 Do one of the following:

 To connect to an existing source control project, select one from under Source
Control Project. Proceed to Step 7.

 To create a new Version Manager project:

a In the project database tree, select the location where you want to create the
new project.

b Click the Create Project button. The Create Source Control Project dialog box
appears.

The Project Database Information group displays the name and location of the
current project database, and the location of the new project within the
database.

c Enter a name for the source control project in the Project Name field.

The name cannot begin or end with a tab or blank space. Any character can be
used in the name except an asterisk (*), a colon (:), a vertical bar (|), forward
and backward slashes (/\), a question mark (?), and angle brackets (<>).

d Click OK. The Add Project to Source Control dialog box reappears with the new
project displayed under Source Control Project.

7 Click OK. The Properties of Workspace dialog box reappears.

8 Enter the path to the root directory for this workspace in the Local Root Directory
field or click the browse button to select it.

IMPORTANT! All objects that are part of the PowerBuilder workspace must be
located in the local root directory or in a subdirectory beneath it.

70 PVCS Version Manager

Chapter 6 PowerBuilder

9 Optionally, complete the other fields on the Properties of Workspace dialog box to
configure how PowerBuilder interacts with source control. For more information on
how to use these settings, see the PowerBuilder documentation.

10 Click OK. A green plus sign () appears to the left of each object icon to indicate
that the workspace is connected to source control but the objects are not yet under
source control.

Adding Objects to Source Control
To add objects to source control:

1 Right-click on the Workspace object in the System Tree pane. A pop-up menu
appears.

2 Select Add to Source Control. The Add to Source Control dialog box appears.

3 Do any of the following:

 Change which objects to add to source control by unchecking or checking the
checkboxes next to each object name.

 Enter a comment in the Comment field.

4 Click OK. The Advanced Add dialog box appears.

5 Do any of the following:

 Under the Advanced tab, enter a version label in the Version Label field, or click
the browse button to select one.

If you plan to use the Version Manager desktop client to re-organize your
versioned files into individual projects based on your application's library structure,
assign a version label that corresponds to the library each object belongs to. For
example, if you are adding objects from a library called PBL1 to source control,
enter PBL1 in the Version Label field. See "Using Version Labels to Organize
Projects" on page 67.

 To cause the version label to always be associated with the latest revision in the
archive, select the Float label with tip check box.

 Under the General tab, enter a lowest-level promotion group to associate with the
initial revisions of the files, or browse to select one.

6 Click OK. If the objects you are adding to source control do not already contain
workfile descriptions, the Change Description dialog box appears.

7 Enter a description for the current object in the Description field.

8 Click OK. Complete the Advanced Add and Change Description dialog boxes for each
target you are adding to source control.

A green dot () appears to the left of each object icon to indicate the that object is
under source control and is not checked out.

TIP If you create each target in its own subdirectory beneath the workspace
directory, the Version Manager IDE client will automatically create subprojects
based on that directory structure.

Setting Up Source Control Projects in PowerBuilder

IDE Client Implementation Guide 71

Configuring Workstations in a Multi-User
Environment
After connecting a PowerBuilder workspace to source control and adding the objects
within it to source control, you can make it available to multiple users. To do so, you must
complete the following steps:

1 Copy the directory structure of the PowerBuilder workspace to the workstation.
Include only the workspace and target directories, the PowerBuilder Library (.PBL)
files, and the PowerBuilder Target (.PBT) files.

2 Create a new PowerBuilder workspace in the workspace directory you copied to the
workstation.

3 Add the copied target (.PBT) files to the new workspace.

4 Connect the new workspace to the existing source control project. See the next
section for more information on this step.

Connecting Workstations to the Existing Source Control Project

To connect a workstation to source control:

1 Right-click on the Workspace object in the System Tree pane. A pop-up menu
appears.

2 Select Properties. The Properties of Workspace dialog box opens to the Source Control
tab.

3 Select Version Manager from the Source Control System drop-down menu.

4 Click the browse button to the right of the Project field. The Add Project to Source
Control dialog box appears.

Select a project
database

5 The default project database displays under Source Control Project. If you wish to
add the files to a different project database, click the Open Database button. The
Select Project Database dialog box appears.

Do one of the following:

 To open a project database located on a listed Version Manager File Server, select it
from the Project Databases list and click OK.

To add a Version Manager File Server to the list, double-click an empty cell in the
File Server list and type the name of the system that hosts the file server. Once
you press the ENTER key, the entry will be auto-completed (http://
SystemName:8080/serenafs/FileServer) and tested. To specify an https server or
a non-standard port, double-click on the auto-completed entry, edit it
appropriately, and press the ENTER key.

IMPORTANT!

 Do not include the workspace (.PBW) file. The .PBW file contains absolute
paths.

 The directory structure of the PowerBuilder workspace must be the same on
each system.

72 PVCS Version Manager

Chapter 6 PowerBuilder

 To open a project database located on your local file system or the network, click
the Browse button and navigate to the location via the resulting dialog box.

Select a project 6 From under Source Control Project, select the source control project to which to
connect the workspace.

7 Click OK. The Properties of Workspace dialog box reappears.

8 Enter the path to the root directory for this workspace in the Local Root Directory
field or click the browse button to select it.

9 Optionally, configure how PowerBuilder interacts with source control. See the
PowerBuilder documentation for more information on how to use these settings.

10 Click OK. Symbols appear to the left of each object icon to indicate that the objects
are under source control:

 A green dot () indicates that the object is checked in.

 A red X indicates that the object is checked out by another user.

Removing Objects from Source Control
When you remove an object from source control, Version Manager does not delete the
workfile or Version Manager archive; it simply removes the association between the object
and archive. You can always add the object back to source control later.

To remove objects from source control:

1 In the Library Painter, select the object or objects you wish to remove from source
control.

2 Select Entry | Source Control | Remove from Source Control. The Remove from
Source Control dialog box appears with a list of objects to remove from source
control.

3 Make sure the correct objects are selected and click OK. The selected objects are
removed from source control.

Returning files to
source control

For information on returning files to source control, see "Returning Files to Source
Control" on page 24.

Disconnecting Workspaces from Source Control
Disconnecting a PowerBuilder workspace from source control does not affect the Version
Manager project. You can always re-connect the workspace to the Version Manager
project later.

To disconnect a workspace from source control:

1 Right-click the workspace object in the System Tree. A pop-up menu appears.

2 Select Properties. The Properties of Workspace dialog box appears.

NOTE To re-add objects to source control that you have previously removed from source
control, use the Workspace tree. PowerBuilder may close unexpectedly if you initiate the
add operation from the Library Painter.

Using Source Control with PowerBuilder

IDE Client Implementation Guide 73

3 Select None from the Source Control System field.

4 Click OK. The workspace is disconnected from source control.

Using Source Control with PowerBuilder
Contents This section contains procedural information about viewing and editing files that are under

source control.

For more
information

See Chapter 3, "Using Source Control" on page 27.

Getting Objects
When you get an object, a read-only copy of the selected revision is placed in the target
PBL.

To get a revision:

1 Right-click the object and select Get Latest Version from the resulting pop-up menu.
The Get Latest Version dialog box appears with a list of objects.

2 Select or deselect objects from the list as needed.

3 Do one of the following:

Use advanced
options

 To override the default get options, click the Advanced button. The Advanced Get
dialog box appears. (For information on advanced options, see "About Getting
Files" on page 28.)

Accept defaults  To accept the default get options, click OK.

Checking Out Objects
When you check out an object, the revision is locked and a writable object is created in
the target PBL.

To check out an object:

1 Right-click the object and select Check Out from the resulting pop-up menu. The
Check Out dialog box appears with a list of objects.

2 Select or deselect objects from the list as needed.

3 Do one of the following:

Use advanced
options

 To override the default checkout options, click the Advanced button. The
Advanced Check Out dialog box appears. (For information on advanced options,
see "About Checking Out Files" on page 30.)

Accept defaults  To accept the default options, click OK.

74 PVCS Version Manager

Chapter 6 PowerBuilder

A green checkmark () appears to the left of each object icon to indicate that the
objects are checked out by you.

Undoing Checkout
By default when you undo a checkout, the revision is unlocked without updating the
associated Version Manager archive with changes and your local copy of the object is
replaced with the latest revision.

To undo a checkout:

1 Right-click the object and select Undo Check Out from the resulting pop-up menu. The
Undo Check Out dialog box appears with a list of objects.

2 Select or deselect objects from the list as needed.

3 Do one of the following:

Use advanced
options

 To override the default undo checkout options, click the Advanced button. The
Advanced Undo Check Out dialog box appears. (For information on advanced
options, see "About Undoing Checkout" on page 32.)

Accept defaults  To accept the default options, click OK.

A green dot () appears to the left of each object icon to indicate that the objects
are no longer checked out.

Checking In Objects
By default when you check in an object, the revision is unlocked and a new revision is
created in the archive and assigned the next number in sequence.

To check in an object:

1 Right-click the object and select Check In from the resulting pop-up menu. The Check
In dialog box appears with a list of objects.

2 Select or deselect objects from the list as needed.

3 In the Comment field, enter comments describing the changes you made to the
object or objects.

4 Do one of the following:

Use advanced
options

 To override the default check-in options, click the Advanced button. (For
information on advanced options, see "About Checking In Files" on page 33.)

Accept defaults  To accept the default options, click OK. The object or objects are checked in.

NOTE A red X indicates that the object is checked out by another user.

NOTE To use a unique description for each object, leave the Comment field blank.
After you complete the Check In dialog box, the Change Description dialog box will
appear for each file in turn.

Using Source Control with PowerBuilder

IDE Client Implementation Guide 75

A green dot () appears to the left of each object icon to indicate that the objects
are checked in.

Adding New Objects
When you create new objects in a source controlled workspace, a green plus sign ()
appears to the left of each object icon to indicate that the objects are not yet under source
control. To add new objects to source control, follow the procedure "Adding Objects to
Source Control" on page 70.

Once the objects are added to source control, other users can access them by getting or
checking out the target that contains them.

Adding New Targets or PBLs
If you add a new target (.PBT) or library (.PBL) to a source controlled workspace, you
must:

1 Add it to source control. See "Adding Objects to Source Control" on page 70.

2 Distribute it to each workstation, as was done when the workspace was first set up for
use by multiple users. See "Configuring Workstations in a Multi-User Environment" on
page 71.

NOTE To re-add objects to source control that you have previously removed from source
control, use the Workspace tree. PowerBuilder may close unexpectedly if you initiate the
add operation from the Library Painter.

76 PVCS Version Manager

Chapter 6 PowerBuilder

IDE Client Implementation Guide 77

Chapter 7
Rational Application Developer (Eclipse
3 and 4)

Introduction 78
Accessing Supported Features 78
Setting Up Source Control Projects 79
Using Source Control 84

78 PVCS Version Manager

Chapter 7 Rational Application Developer (Eclipse 3 and 4)

Introduction
Purpose This chapter has four purposes:

 List the Version Manager features available through the SCC integration to Rational
Application Developer (Eclipse 3 and 4) and provide a quick reference to accessing
those features

 Note any features described in Part 1 of this manual that do not apply to this IDE

 Help administrators set up source control projects and add files to source control

 Help your development team access files that are under source control from within
Eclipse

For more
information

See Part 1, "The Version Manager IDE Client," on page 9 for information about:

 Source control concepts

 Source control defaults

 Advanced source control features

Accessing Supported Features
What is

supported?
Eclipse 3-based IDEs support the full set of source control features available through the
Version Manager IDE client, except for the sharing of archives among projects.

NOTE For information on the rich integration to Eclipse-based IDEs, see "Rational
Application Developer Rich Integration (Eclipse 3 and 4)" on page 95.

To... Select... For more information see...

Get revisions Right-click | Team | Get "Getting Files" on page 85

Check out revisions Right-click | Team | Checkout "Checking Out Files" on page 86

Lock revisions without
overwriting work files

Right-click | Team | Lock "Locking Files" on page 86

Undo checkout of
revisions

Right-click | Team | Undo Checkout "Undoing Checkout" on page 87

Check in revisions Right-click | Team | Checkin "Checking In Files" on page 87

Manage version labels PVCS VM SCC | Run PVCS VM SCC Client "About Version Labels" on page 34

View properties of
revisions or archives

Right-click | Team | Show PVCS VM SCC
Properties

"About Properties" on page 46

Monitor source control
activity

PVCS VM SCC | Run PVCS VM SCC Client "Monitoring Source Control Activity
with Pulse" on page 47

Generate a history
report

Right-click | Team | Show History "About History Reports" on page 50

Generate a difference
report

Right-click | Compare With | PVCS VM
SCC Team Provider

"About Difference Reports" on page 52

Setting Up Source Control Projects

IDE Client Implementation Guide 79

Setting Up Source Control Projects
Contents This section contains information about setting up the Version Manager IDE client to work

with Eclipse-based IDEs.

Prerequisites Before proceeding, you must use the Version Manager desktop client to create a project
database that will contain the source control projects associated with the IDE project (if
you don't already have one).

Compare workspace
with local history

Right-click | Compare With | Local
History

"Comparing with Local History" on
page 94

Replace workspace with
local history

Right-click | Replace With | Local History "Replacing with Local History" on page
94

Access the Version
Manager Options dialog

PVCS VM SCC | Run PVCS VM SCC Client "About Setting Defaults for Version
Manager Options" on page 22

Connect projects to
source control

Right-click | Team | Share Project "Connecting Projects to Source
Control" on page 80

Add new files to source
control

Right-click | Team | Add "Adding New Files to Source Control"
on page 83

Disconnect projects
from source control

Right-click | Team | Disconnect Project "Disconnecting Projects from Source
Control" on page 84

Remove files from
source control

Right-click | Team | Remove "Removing Files from Source Control"
on page 84

Open project from
source control

PVCS VM SCC | Open from PVCS VM SCC
Team Provider

"Connecting Additional Workstations
to a Source Control Project" on page
82

Edit files locally without
checking them out (local
mode)

Right-click | Team | Local Mode "Using Local Mode" on page 89

Revert local mode files
to source control

Right-click | Team | Revert Controlled "Using Local Mode" on page 89

Enter and exit offline
mode

See the text. "Working Offline" on page 90

Rename or move objects
(refactoring)

See the text. "Using Rename or Move (Refactoring)"
on page 88

Refresh source control
status

Right-click | Team | Refresh Project
Status

"Viewing Source Control Status" on
page 84

Synchronize your
workspace with source
control

Right-click | Team | Synchronize Project "Synchronizing Your Workspace with
Source Control" on page 91

To... Select... For more information see...

IMPORTANT! Eclipse requires JRE 1.3 or 1.4, but it will attempt to use the first JRE
found in the path. No JRE is included with Eclipse.

80 PVCS Version Manager

Chapter 7 Rational Application Developer (Eclipse 3 and 4)

Excluding Files and Directories from Source Control
You can configure Eclipse to exclude specified files and directories from source control.
This can minimize the size of the project database. For example, you could exclude all
files with a .tmp file extension or exclude the bin directory and its contents.

To exclude specified files and directories from source control:

1 Select Window | Preferences. The Preferences dialog box appears.

2 Click the plus sign next to Team and select Ignored Resources.

3 Examine the Ignore Patterns list for the file type or directory you wish to exclude
form source control. If it is not listed, do the following:

a Click the Add button. The Enter Ignore Pattern dialog box appears.

b Enter a pattern that defines a file type or directory to ignore. Use wildcards if
needed:

 Asterisks (*) represent one or more characters.

 Question marks (?) represent one character.

c Click OK.

4 In the Ignore Patterns list, ensure that a check mark appears next to each file type
and directory you want to exclude from source control.

5 Click OK.

Connecting Projects to Source Control
Before you can place IDE files under source control, you must connect your IDE project to
source control.

To connect to a Version Manager project database:

1 Right-click the project icon in the Package Explorer or Navigator. A pop-up menu
appears.

2 Select Team | Share Project. The Share Project dialog box appears.

3 Select PVCS VM SCC Team Provider from the Select a repository type list.

4 Click the Next button. The Create or Select a PVCS VM SCC Team Provider Project
dialog box appears.

5 Click the Create/Select button. The Add Project to Source Control dialog box
appears.

IMPORTANT! Specify any files and directories you wish to exclude from source control
before adding the project they are in to source control.

IMPORTANT! Specify any files you wish to exclude from source control before adding
the project they are in to source control. See "Excluding Files and Directories from
Source Control" on page 80".

Setting Up Source Control Projects

IDE Client Implementation Guide 81

6 The default project database displays under Source Control Project. If you wish to
add the files to a different project database, click the Open Database button and
browse to select one or click the Browse Database button to browse a list of project
databases published by your Version Manager File Servers if you have any.

7 Do one of the following:

 To add to an existing source control project, select one from under Source Control
Project. Proceed to Step 8.

 To create a new Version Manager project:

a Under Source Control Project, select the location in the project database where
you want to create the new project.

b Click the Create Project button. The Create Source Control Project dialog box
appears.

The Project Database Information group displays the name and location of the
current project database, and the location of the new project within the
database.

c By default, the new Version Manager project uses the same name as the IDE
project. If necessary, enter a different name in the Project Name field.

The name cannot begin or end with a tab or blank space. Any character can be
used in the name except an asterisk (*), a colon (:), a vertical bar (|), forward
and backward slashes (/ \), a question mark (?), and angle brackets (< >).

d Click OK. The Add Project to Source Control dialog box reappears with the new
project displayed under Source Control Project.

8 Click OK. The Create or Select a PVCS VM SCC Team Provider Project dialog box
reappears.

9 Click Finish. Select Team | Add. The Add to Source Control dialog box appears with a
list of selected files to be added.

10 Do any of the following:

 To change which files are selected, select and deselect files in the Files in list.

 To check out and lock the files immediately after adding them to source control,
select the Keep Checked Out check box.

 To add any empty folders to source control, select the Add Empty Folders check
box. The empty folders will then be included when developers open the project
from source control.

11 Enter a description of the files in the Comment field. The description will be applied
to all selected files.

NOTE You must add the .project file to source control.

TIP To use a unique description for each file, leave the Comment field blank. After
you complete the Add to Source Control dialog box, the Change Description dialog
box will appear. Enter a description for each file in turn.

82 PVCS Version Manager

Chapter 7 Rational Application Developer (Eclipse 3 and 4)

12 Do one of the following:

Use advanced
options

 To assign a version label or promotion group to the initial revision, click the
Advanced Options button. The Advanced Add dialog box appears. (For
information on advanced options, see "Advanced Add Options" on page 24.)

Accept defaults  To accept the default add options, click OK. The selected files are added to source
control, creating archives in the specified archive directory. A gold cylinder () is
added to the icon of each item to indicate that the item is under source control.

Connecting Additional Workstations to a Source
Control Project
Once an Eclipse project is under source control, you can open it from any workstation that
has access to the Version Manager project database. There are two ways to connect
additional workstations to a source control project:

 Open the project from the PVCS VM SCC Team Provider.

 Export and import a Project Set file.

Open from the PVCS VM SCC Team Provider

To add existing repository projects to your workspace:

1 Select PVCS VM SCC| Open from PVCS VM SCC Team Provider. The Get Project from
Source Control dialog box appears with a list of projects in the current project
database.

If the database containing the project you wish to open is not displayed, click the
Open Database button to browse for the correct database.

2 Select the project you wish to open.

3 If the Login dialog box displays, enter your user ID and password.

4 Enter a location for all of your project files in the Workfile Location field, or click the
browse button to select a location.

5 Click OK.

Export/Import a Project Set File

A Project Set file contains the path information needed to connect other workstations to
an existing source control project.

To export a Project Set file:

1 Select File | Export. The Export dialog box appears.

2 Select Team Project Set from the Select an export destination list.

3 Click the Next button.

4 Enter a path and file name in the File name field or browse to select a destination.

5 Click the Finish button. A *.PSF file is created in the selected directory.

Setting Up Source Control Projects

IDE Client Implementation Guide 83

6 Distribute the *.PSF file to each workstation or make it available from a network
location.

To import a Project Set file:

1 Select File | Import. The Import dialog box appears.

2 Select Team Project Set from the Select an import source list.

3 Click the Next button.

4 Enter the path and file name of the *.PSF file in the File name field or browse to
select it.

5 Click the Finish button.

Adding New Files to Source Control
Once you have connected an Eclipse project to source control, you can add new IDE files
to source control at any time. (For details on connecting Eclipse to project databases, see
"Connecting Projects to Source Control" on page 80.)

To add new files to an IDE project that is already under source control:

1 Right-click on the root of the IDE project in the Package Explorer or Navigator. A pop-
up menu appears.

2 Select Team | Add. The Add to Source Control dialog box appears with a list of
selected files to be added.

3 Do any of the following:

 To change which files are selected, select and deselect files in the Files in list.

 To check out and lock the files immediately after adding them to source control,
select the Keep Checked Out check box.

 To add any empty folders to source control, select the Add Empty Folders check
box. The empty folders will then be included when developers open the project
from source control.

4 Enter a description of the files in the Comment field. The description will be applied
to all selected files.

5 Do one of the following:

Use advanced
options

 To assign a version label or promotion group to the initial revision, click the
Advanced Options button. The Advanced Add dialog box appears. (For
information on advanced options, see "Advanced Add Options" on page 24.)

Accept defaults  To accept the default add options, click OK. The selected files are added to source
control, creating archives in the specified archive directory. A gold cylinder () is
added to the icon of each item to indicate that the item is under source control.

TIP To use a unique description for each file, leave the Comment field blank. After
you complete the Add to Source Control dialog box, the Change Description dialog
box will appear. Enter a description for each file in turn.

84 PVCS Version Manager

Chapter 7 Rational Application Developer (Eclipse 3 and 4)

Disconnecting Projects from Source Control
When you disconnect a project from source control, Version Manager does not delete the
Version Manager archives; it simply removes the association between the IDE project and
archives.

To disconnect a project from source control:

1 Right-click the project icon in the Package Explorer or Navigator. A Pop-up menu
appears.

2 Select Team | Disconnect Project. A prompt appears to confirm that you wish to
disconnect the project.

3 Click Yes.

Removing Files from Source Control
When you remove a file from source control, Version Manager does not delete the Version
Manager archive; it simply removes the association between the IDE file and archive. You
can always add the file back to source control later.

To remove files from source control:

1 Select the files you want to remove in the Package Explorer or Navigator and right-
click. A pop-up menu appears.

2 Select Team | Remove. The Remove from PVCS VM SCC Team Provider dialog box
appears with a list of files to be removed.

3 Select or deselect files in the list as needed.

4 Click OK.

Returning files to
source control

For information on returning files to source control, see "Returning Files to Source
Control" on page 24.

Using Source Control
Contents This section contains procedural information about viewing and editing files that are under

source control.

Viewing Source Control Status
Version Manager indicates status and revision information by displaying graphics and text
next to the object icons in the Package Explorer and Navigator, as in the following image.

Using Source Control

IDE Client Implementation Guide 85

The following table lists the information that can be displayed.

To refresh status information, right-click on a project and select Team | Refresh Project
Status.

Enabling Icon Glyphs

By default, icon glyphs are enabled.

To enable Icon Glyphs:

1 Select Window | Preferences. The Preferences dialog box appears.

2 Click the plus sign next to Workbench and select Label Decorations.

3 Select PVCS VM SCC in the Available label decorations list.

4 Click OK.

Getting Files
When you get files, read-only copies of the selected revisions are placed in the workfile
location.

This graphic/text . . . Indicates . . .

(Online)
(Offline)

Whether you are working in online or offline mode.

(1.0) The revision you got or checked out from source control to
your workspace.

[1.2] The current tip revision in the source control repository if the
tip is not the revision in your workspace.

The object is under source control and it is checked in.

You have the object checked out.

Someone else has the object checked out.

Multiple users have the object checked out and you are not
one of them.

Multiple users have the object checked out and you are one
of them.

The object is in local mode.

The object contains objects that have been modified locally
or for which there are newer revisions in the source control
repository.

The object has been modified locally and is out of synch with
the repository.

The repository contains a newer revision of this object.
NOTE If you modify the local object, the graphic will change
to a right-pointing arrow.

86 PVCS Version Manager

Chapter 7 Rational Application Developer (Eclipse 3 and 4)

To get revisions:

1 In the Package Explorer or Navigator, select the files you want to get and right-click. A
pop-up menu appears.

2 Select Team | Get. The Get dialog box appears with a list of selected files. You can
change your selection by selecting and deselecting the files in this list.

3 Do one of the following:

Use advanced
options

 To override the default get options, click the Advanced Options button. The
Advanced Get dialog box appears. (For information on advanced options, see
"About Getting Files" on page 28.)

Accept defaults  To accept the default get options, click OK. Read-only copies of the selected
revisions are placed in the workfile location.

Checking Out Files
When you check out a file, the revision is locked and a writable workfile is created in the
workfile location.

To check out files:

1 In the Package Explorer or Navigator, select the files you want to check out and right-
click. A pop-up menu appears.

2 Select Team | Checkout. The Check Out dialog box appears with a list of selected files.
You can change your selection by selecting and deselecting the files in this list.

3 (Optional) To modify the files locally without first placing a source control lock on
them, select the Make Files Local checkbox.

4 Do one of the following:

Use advanced
options

 To override the default checkout options, click the Advanced Options button. The
Advanced Check Out dialog box appears. (For information on advanced options,
see "About Checking Out Files" on page 30.)

Accept defaults  To accept the default checkout options, click OK. A check mark () appears next
to each file icon to indicate that the files are checked out.

Locking Files
When you lock a file, the revision is locked in source control but no files are written to the
workfile location so your existing workfile is not overwritten. Locking a revision does not
change the write attribute of the workfile.

To lock files:

1 In the Package Explorer or Navigator, select the files you want to lock and right-click.
A pop-up menu appears.

NOTE Other users can still check out, modify, and check in changes to any files you
use in local mode. You must resolve any resulting code conflicts if you decide to
check in the changes you make while in local mode. See "Using Local Mode" on page
89.

Using Source Control

IDE Client Implementation Guide 87

2 Select Team | Lock. The Check Out dialog box appears with a list of selected files. You
can change your selection by selecting and deselecting the files in this list.

3 (Optional) To modify the files locally without first placing a source control lock on
them, select the Make Files Local checkbox.

4 Do one of the following:

Use advanced
options

 To override the default checkout options, click the Advanced Options button. The
Advanced Check Out dialog box appears. (For information on advanced options,
see "About Checking Out Files" on page 30.)

Accept defaults  To accept the default checkout options, click OK. A check mark () appears next
to each file icon to indicate that the files are locked.

Undoing Checkout
When you undo a checkout, the archive is unlocked and a read-only workfile is left in the
workfile location. No changes are checked into the archive.

To undo a checkout:

1 In the Package Explorer or Navigator, select the files you want to unlock and right-
click. A pop-up menu appears.

2 Select Team | Undo Checkout. The Undo Check Out dialog box appears with a list of
selected files. You can change your selection by selecting and deselecting the files in
this list.

3 Do one of the following:

Use advanced
options

 To override the default undo checkout options, click the Advanced Options
button. The Advanced Undo Check Out dialog box appears. (For information on
advanced options, see "About Undoing Checkout" on page 32.)

Accept defaults  To accept the default undo checkout options, click OK. The check mark is removed
from each file icon to indicate that the files are unlocked.

Checking In Files
By default, the following occurs when you check in a workfile:

 If you modified the file in local mode and the tip revision is newer than the revision
you started with, a prompt appears for the Merge Tool.

 A new revision is created and assigned the next number in sequence.

 A read-only workfile is left in the workfile location.

 The archive is unlocked.

NOTE Other users can still check out, modify, and check in changes to any files you
use in local mode. You must resolve any resulting code conflicts if you decide to
check in the changes you make while in local mode. See "Using Local Mode" on page
89.

88 PVCS Version Manager

Chapter 7 Rational Application Developer (Eclipse 3 and 4)

To check in files:

1 In the Package Explorer or Navigator, select the files you want to check in and right-
click. A pop-up menu appears.

2 Select Team | Checkin. The Check In dialog box appears with a list of selected files.
You can change your selection by selecting and deselecting the files in this list.

3 Do any of the following:

Retain lock  To retain the lock on the files after they are checked in, select the Keep Checked
Out check box.

Compare files  To compare two revisions in an archive, revisions in two archives, two workfiles, or
a revision and a workfile:

a Select a single file from the Files in list.

b Click the Differences button. The Show Differences dialog box appears. For
more information see "About Difference Reports" on page 52.

4 Enter a description of the changes you made in the Comment field. The description
will be applied to all selected files.

5 Do one of the following:

Use advanced
options

 To override the default check-in options, click the Advanced Options button. The
Advanced Check In dialog box appears. (For information on advanced options, see
"About Checking In Files" on page 33.)

Accept defaults  To accept the default check-in options, click OK. The check mark is removed from
each file icon to indicate that the files are checked in.

Using Rename or Move (Refactoring)

TIP To use a unique description for each file, leave the Comment field blank. After
you complete the Add to Source Control dialog box, the Change Description dialog
box will appear. Enter a description for each file in turn.

You will not be prompted for a description for unmodified files. Unmodified files will
be given a description of "No Change."

NOTE

 You can refactor when in offline mode, but there are significant risks. If other
users have refactored the code while you were offline, your offline refactoring will be
unaware of the changes they made. This will result in errors which will require
manual fixes.

 Refactoring may cause the archive name to differ from the workfile name--which is
not compatible with the Command-Line Interface (CLI). Since the CLI is not project
aware, it requires that the names match. However, you can use the Project
Command-Line Interface (PCLI), instead. (This does not impact the Version Manager
desktop client or the IDE client since they resolve workfile and archive names via the
project metadata.)

Using Source Control

IDE Client Implementation Guide 89

To use Rename or Move:

1 Before using Rename or Move on a project accessed by multiple users, all users
should check in their changes.

2 Open a perspective in which the Package Explorer is available, such as the Java
Perspective.

3 Select the Package Explorer as the active pane.

4 Select the item you wish to rename or move and do one of the following:

 Select Refactor | Rename (or Move).

 Right-click and select Refactor | Rename (or Move).

5 You may be asked to confirm the action of checking in from a different location than
the one to which the file is checked out. You must choose to proceed with this action.

6 To work with the modified project, all users must get the updated project from source
control. See "Getting Files" on page 85 or "Synchronizing Your Workspace with Source
Control" on page 91.

Using Local Mode
You can edit projects and/or files without checking them out from source control by
working on them in local mode. Local mode can be enabled for individual projects or files,
unlike offline mode which affects the entire IDE.

Putting Files into Local Mode

To put files into local mode:

1 In the Package Explorer or Navigator, select the project(s) or file(s) you want to work
on in local mode and right-click. A pop-up menu appears.

2 Do one of the following:

 Select Team | Local Mode.

 Select Team | Checkout then select the Make Files Local checkbox on the Check
Out dialog box. Complete the checkout operation as normal.

The local mode graphic () appears on the icons of the selected files.

Reverting Local Mode Files to Controlled Mode

To revert files to controlled mode:

1 In the Package Explorer or Navigator, select the local mode project(s) or file(s) you
want to revert to controlled mode and right-click. A pop-up menu appears.

TIP You can also put files into local mode by selecting the Make Files Local check box
on the Check Out dialog box.

90 PVCS Version Manager

Chapter 7 Rational Application Developer (Eclipse 3 and 4)

2 Select Team | Revert Controlled. Depending upon what changes are found, any of the
following may occur:

 The Revert to Controlled dialog box appears with a list of files that have not
changed while in local mode.

Select or deselect files in this list as needed and click OK. The files are removed
from local mode.

 The Mark as Checked Out dialog box appears with a list of files that you have
edited while in local mode.

a Select or deselect files in this list as needed and click OK.

b If other users have checked in changes to a file while you were offline, the
Confirm Create Branch dialog box appears.

Select Yes or Yes to All.

The selected files are removed from local mode and are shown as being checked
out by you. To add your local mode edits to source control, check in the files.

The deselected files are removed from local mode. To overwrite your local mode
edits, do a get or checkout.

Working Offline
You can configure the integration to give you the option of working in offline mode. This
allows you to edit projects in your local workspace without checking the files out from
source control. You may find this feature useful if you wish to:

 Experiment with code and not check in the resulting changes.

 Continue development while away from your network connection then synchronize
your offline changes with source control when you can reconnect.

Enabling the Online/Offline Prompt

You can enable a prompt that appears while the IDE is starting up that asks if you wish to
work in online or offline mode.

To enable the Online/Offline prompt:

1 Select Window | Preferences. The Preferences dialog box appears.

2 Select PVCS VM SCC from under Team in the left pane. The PVCS VM SCC pane
appears.

3 Select the Ask to go Offline at startup check box.

NOTE Later, when you check in the file(s), you will be asked if you wish to merge
to the tip revision. If you select Yes, the Merge tool launches. If you select No,
the revision will be checked in as a branch off of the revision you started with.

NOTE You can refactor when in offline mode, but there are significant risks. If other
users have refactored the code while you were offline, your offline refactoring will be
unaware of the changes they made. This will result in errors which will require manual
fixes.

Using Source Control

IDE Client Implementation Guide 91

4 Click OK.

To Enter/Exit Offline Mode

Once the Online/Offline prompt is enabled, you can enter or exit Offline mode when ever
you start the IDE.

To enter/exit offline mode:

1 Launch the IDE. A prompt appears as the IDE starts up.

2 Click Online to enter online or Offline to enter offline mode. The mode you select will
remain in effect until you restart the IDE and make another selection. The current
mode is displayed next to each project in the Package Explorer and Navigator as
(Online) or (Offline).

Synchronizing Your Workspace with Source Control
In a multi-user environment, you should synchronize your workspace with source control
to:

 Remove files from your local workspace that other users have removed from the
source control project.

 Add files to your local workspace that other users have added to the source control
project.

 Add files to the source control project that you have added to your local workspace.

 Update the content of files in your local workspace that other users have modified and
checked into the source control project.

 Update the content of files in the source control project that you have modified in your
local workspace.

To synchronize your workspace with source control:

1 In the Package Explorer or Navigator, select the project(s) you want to synchronize
and right-click. A pop-up menu appears.

2 Select Team | Synchronize Project. The Synchronize dialog box appears.

3 Select the type of synchronization operations you want to perform:

 Revert files to controlled: Reverts local mode files in your local workspace to
active source control status. If the files have been modified, they will be marked as
checked out. If you also select Refresh project files, the modified files will be
checked in.

 Refresh project structure: Updates your workspace and the source control
project by adding or deleting projects and files.

 Refresh project files: Updates the contents of files in your local workspace and
the source control project.

NOTE If you wish to check in the changes you made while working in offline mode, you
must enter online mode then synchronize your local workspace with source control (see
the next section).

92 PVCS Version Manager

Chapter 7 Rational Application Developer (Eclipse 3 and 4)

4 Click OK. Depending upon the type of synchronization you selected and what changes
are found, any of the following may occur:

Revert files to
controlled

 The Revert to Controlled dialog box appears with a list of files that have not
changed while in local mode.

a Select or deselect files in the list as needed.

b Click OK. The files are removed from local mode.

 The Mark as Checked Out dialog box appears with a list of files that you have
edited while in local mode.

a Select or deselect files in the list as needed.

b Click OK. The files are removed from local mode and are shown as being
checked out by you.

To add your local mode edits to source control, check in the files. If you
selected Refresh project files in the Synchronize dialog box, the files will be
checked in by a subsequent dialog box; see below.

Refresh project
structure

 The Refresh Project Structure - New Repository Files dialog box appears with a list
of files that are in the source control project but not in your local workspace. You
can select and deselect files in this list.

a Select or deselect files in the list as needed.

b Do one of the following:

• To override the default get options, click the Advanced Options button.
The Advanced Get dialog box appears. (For information on advanced
options, see "About Getting Files" on page 28.)

• To accept the default get options, click OK. Read-only copies of the files are
placed in the workfile location.

 The Refresh Project Structure - New Local Files dialog box appears with a list of
files that are in your local workspace but not in the source control project.

a Do any of the following:

• To change which files are selected, select and deselect files in the Files in
list.

• To check out and lock the files immediately after adding them to source
control, select the Keep Checked Out check box.

• To add any empty folders to source control, select the Add Empty Folders
check box.

b Enter a description of the files in the Comment field. The description will be
applied to all selected files.

c Do one of the following:

• To assign a version label or promotion group to the initial revision, click the
Advanced Options button. The Advanced Add dialog box appears. (For
information on advanced options, see "Advanced Add Options" on page 24.)

TIP To use a unique description for each file, leave the Comment field blank.
After you complete the Add to Source Control dialog box, the Change Description
dialog box will appear. Enter a description for each file in turn.

Using Source Control

IDE Client Implementation Guide 93

• To accept the default add options, click OK. A gold cylinder () is added to
the icon of each item to indicate that the item is under source control.

 The Refresh Project Structure - Remove from Workspace dialog box appears with a
list of files that have been removed from source control but still exist in your local
workspace.

a Select or deselect files in the list as needed.

b Click OK.

Refresh project
files

 The Check in Edited Files dialog box appears.

a Select or deselect files in the list as needed.

b To check out and lock the files immediately after checking them in, select the
Keep Checked Out check box.

c Enter a description of the edits you made in the Comment field.

d Do one of the following:

• To override the default check-in options, click the Advanced Options
button. The Advanced Check In dialog box appears. (For information on
advanced options, see "About Checking In Files" on page 33.)

• To accept the default check-in options, click OK. The check mark is removed
from each file icon to indicate that the files are checked in.

 The Get Changed Files dialog box appears.

a Select or deselect files in the list as needed.

b Do one of the following:

• To override the default get options, click the Advanced Options button.
The Advanced Get dialog box appears. (For information on advanced
options, see "About Getting Files" on page 28.)

• To accept the default get options, click OK. Read-only copies of the files are
placed in the workfile location.

Enabling Refresh Project Structure Report on Open

You can configure the integration to notify you if the project you are opening has a
different structure in the repository as compared to your workspace. If it does, a prompt
will appear to remind you to synchronize your workspace with the repository. Click OK to
dismiss the prompt.

To enable the refresh project structure on open prompt:

1 Select Window | Preferences. The preferences dialog box appears.

2 Select PVCS VM SCC from under Team in the left pane.

3 Select the Refresh Project Structure Report on open check box.

4 Click OK.

NOTE The prompt appears only if files have been added to or removed from the project.
The contents of the files are not considered.

94 PVCS Version Manager

Chapter 7 Rational Application Developer (Eclipse 3 and 4)

Comparing with Local History
You can compare a workfile with a local history of the changes made to that workfile. A
new entry is made in the local history each time you save changes to a file.

To compare with local history:

1 In the Package Explorer or Navigator, select the file you want to compare and right-
click. A pop-up menu appears.

2 Select Compare With | Local History. The Compare with Local History dialog box
appears.

3 Select a local history entry from the Local History of filename pane.

4 Use the Select Next Change () and Select Previous Change () buttons to
step through the changes.

5 Click OK to exit the compare.

Replacing with Local History
You can replace a workfile with an entry from the local history of changes made to that
workfile. A new entry is made in the local history each time you save changes to a file.

To replace with local history:

1 In the Package Explorer or Navigator, select the file you want to replace and right-
click. A pop-up menu appears.

2 Select Replace With | Local History. The Replace from Local History dialog box
appears.

3 Select a local history entry from the Local History of filename pane.

4 Use the Select Next Change () and Select Previous Change () buttons to
step through the changes.

5 Do one of the following:

 To replace the workfile with the selected history entry, click the Replace button.

 To close the dialog box without replacing the workfile, click the Cancel button.

NOTE To configure how many entries are retained and for how long, select Window |
Preferences then select Local History from under Workbench. For more information,
see the WebSphere Studio help.

NOTE To configure how many entries are retained and for how long, select Window |
Preferences then select Local History from under Workbench. For more information,
see the WebSphere Studio help.

NOTE The file must be checked out.

IDE Client Implementation Guide 95

Chapter 8
Rational Application Developer Rich
Integration
(Eclipse 3 and 4)

Introduction 96
Accessing Supported Features 97
Integration Overview 98
Collaborative Process Overview 99
Setting Up Source Control Projects 102
Using Source Control 108
Associating and Working on SBM Issues 125
Setting Default Options 131

96 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

Introduction
Purpose This chapter has the following purposes:

 List the Version Manager and Solutions Business Manager (SBM) features available
through the rich integration to Rational Application Developer (Eclipse 3 and 4), and
provide a quick reference to accessing those features

 Note any features described in Part 1 of this manual that do not apply to this
integration

 Help administrators set up source control projects and add files to source control

 Help your development team access files that are under source control from within
Eclipse

 Help your development team associate SBM issues with source controlled files from
within Eclipse

NOTE For information on the old integration to Eclipse-based IDEs, see "Rational
Application Developer (Eclipse 3 and 4)" on page 77.

NOTE Other than the section on source control concepts, Part 1 of this manual does
not apply to this integration.

IMPORTANT! The rich integration uses the default version (label) to determine which
files are visible in a given Version Manager workspace. To avoid confusion, it is important
that you understand how this works.

If you use the desktop client to apply a default version or change the existing one for a
project database or for a workspace, only files that have the version label will appear in
Eclipse. If the project and solution files do not have these labels, you will see no files.

To avoid the potential for confusion:

 Create a Version Manager workspace for any user or group of users who may need
their own default version (label).

 Define default versions on a workspace-by-workspace basis (File | Properties |
Workspace Settings tab), rather than for the entire project database.

 Remember that when you open a project from source control that you must specify
the Version Manager workspace to use. If you wish to see the files and revisions
defined by a different default version, then you must do an open from source control
and specify the workspace that is associated with the desired label.

Accessing Supported Features

IDE Client Implementation Guide 97

Accessing Supported Features
What is

supported?
Eclipse 3 based IDEs support the full set of source control and issue management features
available through the Version Manager rich IDE integration.

To... Select... For more information see...

Get revisions Right-click | Team | Get "Getting Files" on page 112

Check out revisions Right-click | Team | Checkout "Checking Out Files" on page 113

Undo checkout of
revisions

Right-click | Team | Undo Checkout "Undoing Checkout" on page 114

Check in revisions Right-click | Team | Check In "Checking In Files" on page 115

Label the latest revision Right-click | Team | Label "Assigning Version Labels" on page
111

Label a prior revision Right-click | Team | History "Assigning Version Labels" on page
111

Promote the latest
revision to the next level
in the promotion
hierarchy

Right-click | Team | Promote NOTE:

 You cannot promote files that are
checked out.

 You can promote during check in.
See "Checking In Files" on page
115.

Promote a specific
revision to the next level
in the promotion
hierarchy

(From the History view)
Right-click | Promote to next

"Working in the History View" on page
109

View revision history:
- Revisions
- Version labels
- Promotion groups
- Dates
- Comments

Right-click | Team | History "Working in the History View" on page
109

Compare workfiles with
latest revision

Right-click | Compare With | PVCS VM
Revision

"Comparing with the Latest Revision"
on page 122

Compare workfiles with
local history

Right-click | Compare With | Local
History

"Comparing with Local History" on
page 123

Compare workfiles with
each other

Right-click | Compare With | Each Other "Comparing Workfiles with Each
Other" on page 123

Replace workfiles with
local history

Right-click | Replace With | Local History "Replacing with Local History" on page
124

Replace workfiles with
latest revision

Right-click | Replace With | Latest PVCS
VM Revision

"Replacing with Latest Revision" on
page 125

Connect projects to
source control

Right-click | Team | Share Project "Adding Projects to Source Control" on
page 104

Disconnect projects
from source control

Right-click | Team | Disconnect "Disconnecting Projects from Source
Control" on page 108

98 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

Integration Overview
The Version Manager rich integration provides a powerful set of collaborative tools to help
development teams manage their source code. The integration includes:

 Workspace Comparison and Synchronization

You can easily compare the state of all files in your local workspace with the
corresponding Version Manager project. You can determine what the differences are
and whether your workspace or the Version Manager repository need to be updated.
With the click of a button, you can then automatically check in all of your changes to
Version Manager and get all updates to your local workspace. See "Comparing and
Synchronizing Your Workspace with Source Control" on page 118.

 Automated File Merging

When you check in or synchronize your workspace, your changes are automatically
merged with any recent changes to the same files in the Version Manager repository.

 File Comparison and Conflict Resolution

You can compare specific local files to the latest revision of the files in the Version
Manager repository. If necessary, you can directly edit the files in order to resolve any
conflicts before checking in the files. See "Comparing and Synchronizing Your
Workspace with Source Control" on page 118.

 Pragmatic Locking

You can check in any file, any time, without first locking it. See "Working on Files
Without Locking Them" on page 101.

Import projects from
source control

PVCS VM RIDE | Import Project from
Version Manager

"Connecting Additional Workstations
to an Existing Source Control Project"
on page 106

Rename or move objects
(refactoring)

See the text. "Using Rename or Move (Refactoring)"
on page 118

Refresh all source
control status

PVCS VM RIDE | Refresh All Status "Viewing Source Control Status" on
page 109

Refresh source control
status for selected
objects

Right-click | Team | Refresh Status "Viewing Source Control Status" on
page 109

Synchronize your entire
workspace with source
control

PVCS VM RIDE | Compare Workspaces "Comparing and Synchronizing Your
Workspace with Source Control" on
page 118

Synchronize the
selected objects with
source control

Right-click | Team | Compare
Workspaces

"Comparing and Synchronizing Your
Workspace with Source Control" on
page 118

Work with SBM Issues PVCS VM RIDE | Show Issues "Associating and Working on SBM
Issues" on page 125

Get help (Click in the dialog or view you want help
with, and press the F1 key.)

NOTE F1 will invoke help in most
dialogs and views.

To... Select... For more information see...

Collaborative Process Overview

IDE Client Implementation Guide 99

Working Offline
You can work on an Eclipse project while disconnected from the network, for example
while traveling. Once you are back on the network, you can synchronize your changes
with the Version Manager repository.

To work offline:

1 Before you disconnect from the network, get or check out the desired files to your
local Eclipse workspace.

2 Disconnect from the network.

3 Edit the Eclipse project as desired, saving changes to your local Eclipse workspace.

4 Reconnect to the network.

5 Open the Eclipse project and run Compare Workspaces (Team | Compare
Workspaces). See "Comparing Your Workspace with Source Control" on page 119.

SBM Integration
If your organization uses Solutions Business Manager (SBM) to track development issues,
such as defects and tasks, you can submit and modify SBM issues from within Eclipse, and
associate issues with specific revisions of files. When you associate issues with files, the
revision number is added to the issue.

For detailed information on working with SBM issues, see "Associating and Working on
SBM Issues" on page 125.

Collaborative Process Overview
The Version Manager integration supports a flexible range of collaborative development
processes. You can:

Workspaces  Use Version Manager workspaces to precisely define which files developers will work
on, and to automate the assignment of version labels in order to enforce maintenance
of the workspace. Workspaces greatly simplify the process of sharing files in a
development project, by ensuring that all developers working within the same branch
of development see and update the same files. See "Using Workspaces" on page 100.

Pragmatic locking  Use an optimistic, or pragmatic, locking model to allow all users to work on common
files without locking them. See "Working on Files Without Locking Them" on page 101.

Pessimistic locking  Use a pessimistic locking model to request that users check out files before they
modify the files and check in their changes. This prevents other users from checking
in changes until the files are unlocked. See "Checking Out Files with Locks" on page
102.

NOTE The Rich Integration to Eclipse does not have an "Offline Mode", as did the
older integration. You can now simply unplug the network cable, no special "mode"
required.

100 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

Using Workspaces
The rich integration to Eclipse makes extensive use of Version Manager workspaces to
simplify the collaborative process. Version Manager workspaces represent a collection of
specific files, each of which shares a common default version label. Workspaces enable
developers to get and work only on files associated with specific development efforts or
projects, as defined by the default version label.

The following is an overview of workspace setup and usage for the rich integration to
Eclipse:

1 The Version Manager administrator sets up the workspace in Version
Manager. Unique workspaces can be set up for each project or subproject, and even
for each developer. The simplest workflow is to define a common workspace that all
members on a project team can share, and that defines the correct default version
label for the project. If developers will use different workspaces but will work on a
common project, the default version label should be set to the same value for each
workspace. Because it is the default version label that determines what each
developer can see and modify, it is important that the default is common for all
developers who will work on the same branch of development. See the Version
Manager Administrator's Guide for details.

2 The administrator defines the default version label for the workspace. The
default version label will in turn determine precisely which files belong to the
workspace.

For example, if the floating label "Latest" is assigned to all files in the project, and if
the workspace should include the most recent versions of all files in the project, define
the default version label as "Latest."

Or, if the workspace should include all files in a branch for which the branch version
label is "branch_01," then the default version label for the workspace should be
defined as "branch_01."

See the Version Manager Administrator's Guide for details.

3 A developer selects the appropriate workspace and adds the Eclipse project
to source control. By selecting the appropriate workspace, the default version label
for that workspace is assigned to all files that are added to Version Manager. For
example, if the developer chooses a workspace for which "Latest" is the default
version label, then the "Latest" label is assigned to all files.

4 Other developers select the appropriate workspace and import the IDE
project from source control. This choice then determines what files are copied to

NOTE Version Manager workspaces also define a default workfile location, but this
workfile location does not apply when using the rich integration to Eclipse. Instead, your
IDE's workspace defines the workfile location. However, the Version Manager workfile
location applies when using other Version Manager clients, such as the web or desktop
clients.

IMPORTANT! If developers will work in different workspaces, it is critical to note
that any changes to project structure that occur within one workspace will also be
evident in another workspace. For example, if a developer working in a workspace
called "Major_Releases" renames several files, then those files will also be renamed
in any other workspace that includes them. When defining workspaces, it is critical to
carefully evaluate such dependencies.

Collaborative Process Overview

IDE Client Implementation Guide 101

their local workspaces. For example, if developers choose a workspace for which
"Latest" is the default version label, then only those files to which "Latest" is assigned
are copied to their local workspaces.

5 Developers synchronize workspaces and resolve all changes, automatically
checking in / getting files with the default version label. When a developer
resolves all changes:

• Any new local files are added to the Version Manager project, and the default
version label for the current workspace is assigned to them.

• Any new files in the Version Manager project are copied to the local workspace if
they have the default version label.

Working on Files Without Locking Them
Also known as pragmatic or optimistic locking, this model allows multiple users to get and
modify files at the same time. Each user's modifications will be auto-merged with other
users' changes when the files are checked in. If any merge conflicts result from
attempting to auto-merge multiple users' changes, use the Compare Workspaces feature
to evaluate and resolve the conflicts before completing check-in.

The following steps illustrate this process:

1 At the beginning of each work day, make sure that your local workspace has all of the
latest updates from the Version Manager repository. To do this, you can synchronize
your local workspace with the Version Manager repository (see "Comparing and
Synchronizing Your Workspace with Source Control" on page 118). If the local files
already exist and are different from the latest revisions in the Version Manager
repository, the revisions are merged. If any merge conflicts result from the attempt to
auto-merge the different revisions, double-click to open them in the compare editor
and then evaluate and resolve the merge conflicts.

2 Edit the files.

3 When you have finished your work on the files, check them in to Version Manager. You
can either check in specific files (see "Checking In Files" on page 115) or synchronize
your workspace with the Version Manager repository (see "Comparing and
Synchronizing Your Workspace with Source Control" on page 118).

Example: Collaborative Development

A team of developers work together on files stored in a project called "Java," in a project
database called "Source." Their organization allows multiple developers to work on
common files at the same time. Their development workflow is as follows:

1 At the beginning of every day, each developer can update their local workspace with
the latest changes under the "Java" project in Version Manager. The development

NOTE By default, optimistic locking is enabled. However, the administrator can turn it off
for any given project database.

NOTE During the actual check-in operation, Version Manager briefly locks the files while
adding the new revisions to the repository.

102 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

team works from sites in multiple nations; This step ensures that all developers have
all of the latest updates from all development sites. See "Comparing and
Synchronizing Your Workspace with Source Control" on page 118.

2 At the end of each day, each developer synchronizes their workspace with the Version
Manager repository. If multiple developers have modified the same files, the merge
functionality will attempt to auto-merge each user's changes into the new revisions.
All merged and changed files are copied to the local workspace. If merge conflicts
result from the attempt to auto-merge, the developer performing the check-in must
resolve the conflicts, and then synchronize again. See "Comparing and Synchronizing
Your Workspace with Source Control" on page 118.

Checking Out Files with Locks
In this workflow, check out any file that you intend to modify. This locks the file in Version
Manager, which prevents other users from checking in changes until you unlock the files.
Once you have completed your changes, check in the files. This ensures that changes
from multiple users will never result in conflicts.

Example: Locking Files

As part of a larger development team working on a complex and interdependent code
base, Joe and Carol frequently work on the same files. A typical day might go something
like this:

1 To begin work on a set of files, Joe checks them out from source control (see
"Checking Out Files" on page 113).

2 When Carol opens the project, she sees the padlock () glyph on the file icons,
indicating that the files are checked out by someone else (see "Viewing Source
Control Status" on page 109). Using the History view, she sees that Joe has the files
checked out (see "Working in the History View" on page 109). She checks with Joe to
see how long he plans to work with the files, then takes an early lunch.

3 Joe completes his work and checks in the files, associating them with the SBM issues
that spawned the work ("Checking In Files" on page 115).

4 Carol comes back from lunch and refreshes her source control status. She sees that
the files are now checked in. She checks them out and begins her work.

Setting Up Source Control Projects
Contents This section contains information about setting up the Version Manager rich integration to

Eclipse-based IDEs.

IMPORTANT! Checking in local changes does not synchronize renamed, moved, or
deleted objects. You must synchronize your local workspace with the Version Manager
repository in order to check in refactored and deleted objects. See "Comparing and
Synchronizing Your Workspace with Source Control" on page 118.

Setting Up Source Control Projects

IDE Client Implementation Guide 103

Prerequisites Before proceeding, your administrator must use the Version Manager desktop client to
create a project database that will contain the source control projects associated with the
IDE project (if there isn't one already). See the Administrator’s Guide.

Excluding Files and Directories from Source Control
You can configure Eclipse to exclude specified files and directories from source control.
This can minimize the size of the project database. For example, you could exclude all
files with a .tmp file extension or exclude the bin directory and its contents.

To exclude specified files and directories from source control:

1 Select Window | Preferences. The Preferences dialog box appears.

2 Click the plus sign next to Team and select Ignored Resources.

3 Examine the Ignore Patterns list for the file type or directory you wish to exclude
form source control. If it is not listed, do the following:

a Click the Add button. The Enter Ignore Pattern dialog box appears.

b Enter a pattern that defines a file type or directory to ignore. Use wildcards if
needed:

• Asterisks (*) represent one or more characters.

• Question marks (?) represent one character.

c Click OK.

4 In the Ignore Patterns list, ensure that a check mark appears next to each file type
and directory you want to exclude from source control.

5 Click OK.

Migrating Projects from the Previous Source Control
Integration
If you have existing Eclipse projects under Version Manager source control and you wish
to migrate them to the rich integration, do the following:

PVCS VM SCC
integration

1 From the previous integration, check in any changes.

IMPORTANT! Specify any files and directories you wish to exclude from source control
before adding the project they are in to source control.

CAUTION! Some third-party tools create files or folders that should be excluded from
source control (any folder that will not function correctly when RIDE (Rich Integrated
Development Environment) creates a _serena folder under it). One such folder is the
ibmconfig folder.

104 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

2 If you will be using the same IDE installation with the rich integration, you must
remove the project from your local workspace:

a Right-click on the project and select Delete from the pop-up menu. The Confirm
Project Delete prompt appears.

b Select the option to delete contents, and click Yes.

c Confirm the deletion of any read-only resources by clicking Yes To All.

Rich integration 3 From the new integration, select PVCS VM RIDE | Import Project from Version
Manager. See "Get Projects from Source Control" on page 106.

4 If the project was from Eclipse 1 (WebSphere Studio Application Developer 4),
check in the .project file. This takes the place of the .vcm_meta file that was used with
Eclipse 1.

Adding Projects to Source Control
If your IDE project has not yet been added to source control, you must do so in order to
use the integration to Version Manager.

To add projects to source control:

1 Right-click the project icon in the Package Explorer or Navigator. A pop-up menu
appears.

2 Select Team | Share Project. The Share Project dialog box appears.

3 Select PVCS VM RIDE from the Select a repository type list.

4 Click the Next button. The Enter Login Information page of the Share Project wizard
appears.

5 Do any of the following to specify a Version Manager project database:

 Enter the path to the root project database directory, or select a recent project
database from the drop-down list.

 Click the PDB button to browse for a project database.

 Click the File Servers button to choose from all project databases on the
Version Manager file server, if a file server is defined in Version Manager. (If no
Version Manager file server is defined, ignore this button.)

6 Enter your Version Manager user name and password, if one is required.

CAUTION! Say No to any prompt asking if you wish to delete from the
repository.

IMPORTANT! If you migrate a project from a previous version of Eclipse, do not open it
from the old version of the IDE again.

IMPORTANT! Specify any files you wish to exclude from source control before adding
the project they are in to source control. See "Excluding Files and Directories from
Source Control" on page 103".

Setting Up Source Control Projects

IDE Client Implementation Guide 105

7 To persist your password across sessions, select the Remember password
checkbox, else if a password is required you will have to login at the beginning of each
session.

8 Click Next. The Select Repository Workspace page appears.

9 Select the Version Manager workspace that you will use for the project, then click
Next.

Your choice of workspace will determine the default version and promotion group for
the files. This choice does not affect your workfile location setting; working copies of
all of your files will be saved to the IDE workspace. This list displays all public
workspaces in the project, as well as all private workspaces to which you have access.

The Select Repository Project page appears.

10 Select the location in the project database where Version Manager will create a new
project using the name of the IDE project. You can select a project, subproject, or the
root of the project database.

11 Click Next. The Select SBM Database page appears.

12 Enter the URL to an SBM server in the Host field or select a recent one from the Host
drop-down list.

13 Enter your SBM user name and password and click Next. The Done page appears.

14 Review the configuration. To change any of the settings, click the Back button.

15 Click Finish.

NOTE To add a new project folder to the tree, right-click on the folder that will be
the new folder's parent, and select Create Project from the resulting pop-up menu.

NOTE If you do not wish to connect to an SBM server, click Next and skip to Step
14.

TIP Enter the name of the host system then tab to the next field. A default URL will
be auto-entered for you in the following format:

http://tt_server/tmtrack/tmtrack.dll

Where tt_server is the name of the SBM host.

NOTE To use a non-default port number (any port other than 80), append the port
number to the server name. For example, if the port number is 89:

http://tt_server:89/tmtrack/tmtrack.dll

NOTE A specific SBM user privilege is required to run the integration to SBM. See
the SBM documentation.

106 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

Connecting Additional Workstations to an Existing
Source Control Project
Once an Eclipse project is under source control, you can open it from any workstation that
has access to the Version Manager project database. There are two ways to connect
additional workstations to a source control project:

 Get the project from source control. See the next section.

 Export and import a Project Set file. See "Export/Import a Project Set File" on page
107.

Get Projects from Source Control

To add existing controlled projects to your workspace:

1 Select PVCS VM RIDE | Import Project from Version Manager. The Get Projects from
PVCS VM RIDE wizard appears.

2 Do any of the following to specify a Version Manager project database:

 Enter the path to the root project database directory, or select a recent project
database from the drop-down list.

 Click the PDB button to browse for a project database.

 Click the File Servers button to choose from all project databases on the
Version Manager file server, if a file server is defined in Version Manager. (If no
Version Manager file server is defined, ignore this button.)

3 Enter your Version Manager user name and password, if one is required.

4 To persist your password across sessions, select the Remember password
checkbox, else if a password is required you will have to login at the beginning of each
session.

5 Click Next. The Select Repository Workspace page appears.

6 Select the Version Manager workspace that you will use for the project, then click
Next.

Your choice of workspace will determine the default version and promotion group for
the files. This choice does not affect your workfile location setting; working copies of
all of your files will be saved to the IDE workspace. This list displays all public
workspaces in the project, as well as all private workspaces to which you have access.

The Select Repository Project page appears.

IMPORTANT! In order to reconnect a project to source control, you must:

1 Delete the project from your Eclipse workspace.

2 Import the project from Version Manager. See "Get Projects from Source Control" on
page 106.

WARNING! This has absolutely nothing to do with the now obsolete Offline Mode.
For information on working offline, see "Working Offline" on page 99.

Setting Up Source Control Projects

IDE Client Implementation Guide 107

7 Browse the project database folders to find and select the specific project that you
want to open in Eclipse. Eclipse projects under Version Manager source control are
indicated by folders with blue covers .

8 In the Local Workspace Location field, enter or browse to select the local
workspace location, then click Next. The local workspace is the local work directory,
where your working copies of the files will be stored.

9 The Select SBM Database page appears.

10 Enter the URL to an SBM server in the Host field or select a recent one from the Host
drop-down list.

11 Enter your SBM user name and password and click Next. The Done page appears.

12 Review the configuration. To change any of the settings, click the Back button.

13 Click Finish.

Export/Import a Project Set File

A Project Set file contains the path information needed to connect other workstations to
an existing source control project.

To export a Project Set file:

1 Select File | Export. The Export dialog box appears.

2 Select Team Project Set (or Team | Team Project Set) from the Select an export
destination list.

3 Click the Next button.

4 Select the projects to export.

5 Select an export destination.

NOTE If you do not wish to connect to an SBM server, click Next and skip to Step
12.

TIP Enter the name of the host system then tab to the next field. A default URL will
be auto-entered for you in the following format:

http://tt_server/tmtrack/tmtrack.dll

Where tt_server is the name of the SBM host.

NOTE To use a non-default port number (any port other than 80), append the port
number to the server name. For example, if the port number is 89:

http://tt_server:89/tmtrack/tmtrack.dll

NOTE The list navigation in the Export and Import dialog boxes varies depending upon
which IDE you are using.

108 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

6 Click the Finish button. A *.PSF file is created in the selected directory.

7 Distribute the *.PSF file to each workstation or make it available from a network
location.

To import a Project Set file:

1 Select File | Import. The Import dialog box appears.

2 Select Team Project Set (or Team | Team Project Set) from the Select an import
source list.

3 Click the Next button.

4 Enter the path and file name of the *.PSF file in the File name field or browse to
select it.

5 Click the Finish button.

Disconnecting Projects from Source Control
When you disconnect a project from source control, Version Manager does not delete the
Version Manager archives; it simply removes the association between your local IDE
project and the Version Manager archives.

To disconnect a project from source control:

1 Right-click the project icon in the Package Explorer or Navigator. A Pop-up menu
appears.

2 Select Team | Disconnect. A prompt appears to confirm that you wish to disconnect
the project.

3 Click Yes.

Using Source Control
Contents This section contains procedural information about viewing and editing files that are under

source control.

Viewing Connection Information
You can view the Version Manager and SBM connection information for a project.

IMPORTANT! In order to reconnect a project to source control, you must:

1 Delete the project from your Eclipse workspace.

2 Import the project from Version Manager. See "Get Projects from Source Control" on
page 106.

WARNING! This has absolutely nothing to do with the now obsolete Offline Mode. For
information on working offline, see "Working Offline" on page 99.

Using Source Control

IDE Client Implementation Guide 109

To view connection information:

1 Right-click the project and select Properties from the resulting pop-up menu. The
Properties dialog box appears.

2 Select PVCS VM RIDE in the left pane.

Viewing Source Control Status
Version Manager indicates status and revision information by displaying graphics and text
next to the object icons in the Package Explorer and Navigator.

The following table lists the information that can be displayed.

To refresh source control status for:

 Selected objects, right-click on the objects in the Package Explorer or Navigator and
select Team | Refresh Status from the resulting pop-up menu.

 All projects, select PVCS VM RIDE | Refresh All Status from the Eclipse menu bar.

Working in the History View
From the History view, you can:

 Assign, rename, and delete version labels

 View all assigned version labels

 Promote revisions to the next promotion group

 View the promotion group hierarchy

 View the check-in comment of each revision

 View the check-in date of each revision

 Compare revisions

 Get previous revisions from the repository

Icon/Text Description Meaning

(1.0) A number in
parentheses

This is the revision you got or checked out from
source control to your workspace.

[1.2] A number in
square brackets

This is the current tip revision in the source control
repository if the tip is not the revision in your
workspace.

A gold cylinder The object is under source control and it is checked
in.

A check mark You have the object checked out.

A padlock Another user has the object checked out.

An asterisk The object has been modified locally and is out of
sync with the repository.

110 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

Using the History View

To view revision history:

1 In the Package Explorer or Navigator, select the file you want to view and right-click. A
pop-up menu appears.

2 Select Team | History. The History view opens.

3 Do any of the following to change the display of the History view:

 Click the Refresh button to refresh the History view.

 Click the Group by Revisions button to organize the History view by revision.
This view lists every revision.

 Click the Group by Labels button to organize the History view by version label.
This view displays only revisions that have version labels.

 Click the Group by Promotion Group button to organize the History view by
promotion group. This view displays only revisions that are assigned a promotion
group. They are displayed as a leaves in the promotion model tree.

 Click the Menu button and select Show Comment and/or Show Labels to show
or hide the Comment and Label panes of the History view. These panes provide an
easy to read list of every version label and comment associated with the selected
revision.

4 Do any of the following:

TIP You can also drag files from the Package Explorer or Navigator and drop them
into the History view.

To … Select one
of these
modes …

And …

Compare a revision to the
latest revision in the
repository

Right-click on the revision and select
Compare revisions.
The revisions open in the compare
editor.

Compare a revision to
another revision

1 Select the revisions you want
to compare.

2 Right-click on the revisions and
select Compare revisions.

The revisions open in the compare
editor.

View a revision Right-click on the revision and select
View revision.
The revision opens in an editor tab.

Using Source Control

IDE Client Implementation Guide 111

Assigning Version Labels
To assign a version label to:

 The latest revision of a single file or multiple files, see "Labeling the Latest Revision"
on page 111.

 A prior revision of a single file, see "Labeling a Previous Revision" on page 111.

Labeling the Latest Revision

To label the latest revision:

1 In the Package Explorer or Navigator, select the file, files, folders, or projects you
want to label and right-click. A pop-up menu appears.

2 Select Team | Label. The Label dialog box appears. See "Completing the Label Dialog
Box" on page 112.

Labeling a Previous Revision

To label a previous revision:

1 In the Package Explorer or Navigator, select the file you want to label and right-click.
A pop-up menu appears.

2 Select Team | History. The History view opens.

Get a revision to your
workspace

Right-click on the revision and select
Get revision.
Double-click the file in the Package
Explorer or Navigator to open it in
an editor tab.

Assign a version label to a
revision

Right-click on the revision and select
Add label. The Label dialog box
appears.
See "Assigning Version Labels" on
page 111.

Rename a version label 1 Click on the version label name
to enter edit mode.

2 Type the new name.

3 Press the ENTER key to save
the new name and exit edit
mode.

Delete a version label Click on the revision (not on the
label name) and press the DELETE
key.

Promote a revision to the
next promotion group

Right-click on the revision and select
Promote to next.

To … Select one
of these
modes …

And …

112 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

3 Right-click on the revision you want to label and select Add label. The Label dialog
box appears. See the next section.

Completing the Label Dialog Box

1 Invoke the Label dialog box as described above. The Label dialog box appears.

2 Enter a name for the version label in the Version Label field. Version labels can be up
to 254 characters. You can use alpha, numeric, and special characters except for
colons (:), asterisks (*), plus signs (+), minus signs (-), and double-quotation marks
(").

Options 3 To modify label options, click the Options bar and change any of the following:

 Float label with tip: Select Yes to always keep the label assigned to the latest
revision of the file. Every time a new revision is checked in, the label will move (or
float) to the latest revision.
To keep the new label assigned to the revision you are assigning it to now, select
No.

 If label exists: Specify what to do if the label you are assigning is already
assigned to a different revision:

• Prompt: Asks what you want to do.

• Reassign: Moves the label to the revision you selected.

• Do not Reassign: Leaves the label where it is, rather than moving it to the
revision you selected.

4 Click Label.

Getting Files
When you get files, read-only copies of the latest revisions are placed in the workfile
location.

To get revisions:

1 In the Package Explorer or Navigator, select the files you want to get and right-click. A
pop-up menu appears.

2 Select Team | Get. The Get dialog box appears with a list of selected files. You can
change your selection by selecting and deselecting the files in this list.

TIP To save these options as the new default, select the Save Settings check box.
For more information on setting default options, see "Setting Default Options" on
page 131.

NOTE To delete version labels, see "Working in the History View" on page 109.

Using Source Control

IDE Client Implementation Guide 113

Options 3 In the If workfile is changed option, specify what to do if your local workfile is
modified:

 Merge: Merges the contents of the repository revision into your modified local
workfile. This is the default, though you can define a new one.

 Prompt: Asks what you want to do. Select this option if you want to specify a
different choice for some files.

 Overwite: Replaces your modified local workfile with the revision from the
repository.

 Leave as-is: Retains your modified local workfile.

4 Click Get.

Checking Out Files
When you check out a file, the tip (latest) revision is locked and a writable workfile is
created in the workfile location.

To check out files:

1 In the Package Explorer or Navigator, select the files you want to check out and right-
click. A pop-up menu appears.

2 Select Team | Checkout. The Checkout dialog box appears with a list of selected files.
You can change your selection by selecting and deselecting files in this list.

IMPORTANT! If there are merge conflicts:

 An error will appear in the Console view.

 Your local workfile will remain as it was.

To get the file, you must resolve the merge conflict (see "Comparing and
Synchronizing Your Workspace with Source Control" on page 118) or select
Overwrite or Leave as-is.

TIP To save these options as the new default, select the Save Settings check box.
For more information on setting default options, see "Setting Default Options" on
page 131.

NOTE If a promotion model is in effect, you must set the tip (latest) revision to the
lowest level promotion group in order to check out the files.

114 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

Options 3 In the If workfile is changed option, specify what to do if your local workfile is
modified:

 Merge: Merges the contents of the latest repository revision into your modified
local workfile. This is the default, though you can define a new one.

 Prompt: Asks what you want to do. Select this option if you want to specify a
different choice for some files.

 Overwite: Replaces your modified local workfile with the latest revision from the
repository.

 Leave as-is: Locks the file in the repository but retains your modified local
workfile.

4 Click Checkout. A check mark appears next to each file icon to indicate that the files
are checked out.

Undoing Checkout
When you undo a checkout, the archive is unlocked and no changes are checked into the
archive.

To undo a checkout:

1 In the Package Explorer or Navigator, select the files you want to unlock and right-
click. A pop-up menu appears.

2 Select Team | Undo Checkout. The Undo Checkout dialog box appears with a list of
selected files. You can change your selection by selecting and deselecting files in this
list.

Options 3 In the After file has been unlocked option, specify what to do with the local
workfile:

 Replace local file with latest revision: Replaces your local workfile with a read-
only copy of the latest revision from the repository.

IMPORTANT! If there are merge conflicts:

 An error will appear in the Console view.

 The repository revision will not be locked.

 Your local workfile will remain as it was.

To check out the file, you must resolve the merge conflict (see "Comparing and
Synchronizing Your Workspace with Source Control" on page 118) or select
Overwrite or Leave as-is.

TIP To save these options as the new default, select the Save Settings check box.
For more information on setting default options, see "Setting Default Options" on
page 131.

Using Source Control

IDE Client Implementation Guide 115

 Leave local workspace as-is: Retains your local workfile as it is.

4 Click Undo Checkout.

Checking In Files
Purpose When you check in your workfiles, Version Manager stores any changes you made as new

revisions in the repository.

Workflow Pessimistic Locking: Your organization may require that you check out (lock) files
before you edit them. This workflow ensures that only one person can work on a given file
at a time. This is the way Version Manager has traditionally been used.

Pragmatic Locking: On the other hand, your organization may encourage a CVS-like
workflow where anyone can work on any file at any time, and no one locks the files. This
workflow uses the merge and synchronize features to resolve everyone's changes.

For more information on workflows, see "Collaborative Process Overview" on page 99.

Merging By default, if other users have checked in changes since you last updated your local
workspace from the repository, your changes and the contents of the latest revision will
be merged. This ensures that no changes are lost when working in a Pragmatic Locking
workflow. If your changes conflict with the changes already checked in by other users,
you must resolve the conflicts in order to check in your changes. See "Comparing and
Synchronizing Your Workspace with Source Control" on page 118.

To check in files:

1 In the Package Explorer or Navigator, select the files you want to check in and right-
click. A pop-up menu appears.

2 Select Team | Check In. The Check In dialog box appears with a list of selected files.
You can change your selection by selecting and deselecting the files in this list.

3 Enter a description of the changes you made in the Description field. The description
will be applied to all selected files.

TIP To save these options as the new default, select the Save Settings check box.
For more information on setting default options, see "Setting Default Options" on
page 131.

IMPORTANT! Checking in local changes does not synchronize renamed, moved, or
deleted objects. You must synchronize your local workspace with the Version Manager
repository in order to check in refactored and deleted objects. See "Comparing and
Synchronizing Your Workspace with Source Control" on page 118.

TIP To specify a unique description for each file, leave the Comment field blank.
After you complete the Check In dialog box, the Description dialog box will appear for
each file in turn.

You will not be prompted for a description for unmodified files. If you force the
check-in of unmodified files, they will be given a description of "No Change."

116 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

SBM Associations 4 To associate SBM issues with the revisions you are checking in, expand the SBM
Associations bar and select the issues you wish to associate.

SBM issues include information about the revisions they are associated with, such as
the check-in date, revision number, and Version Manager user ID. For more
information, see "Associating and Working on SBM Issues" on page 125.

5 To deactivate the selected issues after check-in, select the Deactivate selected
issues after checkin check box.

Options 6 To modify check-in options, click the Options bar and change any of the following:

IMPORTANT! If you click the Cancel button on the Description dialog, the files will
remain locked--even if they were not locked to start with. To unlock the files without
overwriting your modified local workfiles, do an Undo Checkout and select the Leave
local workspace as-is option.

NOTE Only activated issues are displayed in the Check In dialog box, and only
activated issues can be associated with revisions. To activate SBM issues, see
"Associating Issues with Files" on page 130.

Option Description

If newer revision in
repository

Specify what to do if the revision in the repository is
newer than the revision your workfile is based on:

 Merge: Combines the contents of the latest
repository revision and your local workfile into a
new revision and checks it in. This is the out-of-
box default.

NOTE If there are merge conflicts: an error will
appear in the Console view, the repository
revision will remain locked, and your local
workfile will remain as it was. To check in the file,
you must resolve the merge conflict (see
"Comparing and Synchronizing Your Workspace
with Source Control" on page 118) or select
Force Checkin.

 Skip: Do not check in the file.

 Force Checkin: Check in the file and create a
new revision, without merging.

If workfile unchanged Specify what to do if the workfile has not changed:

 Prompt: Asks what you want to do. Select this
option if you want to specify a different choice for
some files.

 Checkin: Checks in your local workfile as a new
revision.

 Leave as-is: Does not check in your workfile. If
the file is locked, it will be unlocked.

Using Source Control

IDE Client Implementation Guide 117

Use description for all To apply the Description field to all of the files you
are checking in, select Yes.

To specify a unique description for each file, select
No. The Description dialog box will appear for each
file in turn.

NOTE You will not be prompted for a description for
unmodified files. If you force the check-in of
unmodified files, they will be given a description of
"No Change."

Keep locked To leave the files locked after check-in, select Yes.
To leave the files unlocked after check-in, select No.

IMPORTANT! You cannot promote locked
revisions. If you want to promote the new revisions,
do not choose to keep the files locked.

New label Enter a version label to assign to the new revision.
Labels are limited to 254 characters. Do not use a
colon (:), double quotes ("), a plus sign (+), or a
minus sign (-).

Float label with tip If you are assigning a label to the new revision, select
Yes to always keep the label assigned to the latest
revision of the file. Every time a new revision is
checked in, the label will move (or float) to the latest
revision.
To keep the new label assigned to the revision you
are checking in now, select No.

If label exists Specify what to do if the label you are assigning to
the new revision is already assigned to a different
revision:

 Prompt: Asks what you want to do. Select this
option if you want to specify a different choice for
some files or labels.

 Reassign: Moves the label to the new revision.

 Leave as-is: Leaves the label where it is, rather
than moving it to the new revision.

Promote to next To promote the new revision to the next group in the
promotion hierarchy, select Yes.
To retain the current promotion group, select No.

IMPORTANT! You cannot promote locked
revisions. If you want to promote the new revisions,
do not choose to keep the files locked.

Get file on Keyword
expansion

If the file you are checking in includes Version
Manager keywords that will be expanded during
check-in, selecting Yes will copy the latest revision,
with the keywords expanded, to your local
workspace.
To retain unexpanded keywords in your workfile,
select No.

Option Description

118 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

7 Click Check In.

Using Rename or Move (Refactoring)
Special

Considerations
 Once you refactor a project, you must synchronize it with the repository before you

can check in those changes.

 Refactoring may cause the archive name to differ from the workfile name--which is
not compatible with the Command-Line Interface (CLI). Since the CLI is not project
aware, it requires that the names match. However, you can use the Project
Command-Line Interface (PCLI), instead. (This does not impact the Version Manager
desktop client or the IDE client since they resolve workfile and archive names via the
project metadata.)

To use Rename or Move:

1 Open a perspective in which the Package Explorer is available, such as the Java
Perspective.

2 Select the Package Explorer as the active pane.

3 Select the item you wish to rename or move and do one of the following:

 Select Refactor | Rename (or Move).

 Right-click and select Refactor | Rename (or Move).

4 You may be asked to confirm the action of checking in from a different location than
the one to which the file is checked out. You must choose to proceed with this action.

5 For other users to work with the modified project, you must synchronize it with the
Version Manager repository, and then they must get the updated project from source
control or synchronize with source control. See "Comparing and Synchronizing Your
Workspace with Source Control" on page 118.

Comparing and Synchronizing Your Workspace with
Source Control

Purpose In a multi-user environment, you should synchronize your workspace with source control
to:

 Remove files from your local workspace that other users have removed from the
Version Manager repository.

 Add files to your local workspace that other users have added to the Version Manager
repository.

TIP To save these options as the new default, select the Save Settings check box.
For more information on setting default options, see "Setting Default Options" on
page 131.

NOTE If a default version is defined for the Version Manager project, adding or
removing the default version label to or from a file will have the same effect as
adding or removing the file to or from the repository.

Using Source Control

IDE Client Implementation Guide 119

 Add files to the Version Manager repository that you have added to your local
workspace.

 Remove files from the Version Manager repository that you have deleted from your
local workspace.

 Update the content of files in your local workspace that other users have modified and
checked into the Version Manager repository.

 Update the content of files in the Version Manager repository that you have modified
in your local workspace.

Overview This process consists of several steps, not all of which may apply to your workflow or a
given project on a given day:

1 "Comparing Your Workspace with Source Control" on page 119. This shows what files
have changed locally and/or in the repository since you last checked out or got files
from the repository.

2 "Comparing and Editing the Contents of Workfiles" on page 120. This shows the line-
by-line differences between a workfile and the latest revision in the repository. It
allows you to easily edit the workfile while referencing the latest repository revision
and the common ancestor of the workfile and the repository revision.

3 "Resolving Your Changes" on page 121. This step commits the incoming and outgoing
changes to your local project and the Version Manager repository.

Comparing Your Workspace with Source Control

This shows what files have changed locally and/or in the repository since you last checked
out or got files from the repository.

To compare your workspace with source control:

1 In the Package Explorer or Navigator, select the projects and/or packages you want to
compare to the repository, and right-click. A pop-up menu appears.

2 Select Team | Compare Workspaces. The Synchronize view appears.

3 Select a synchronize mode. This determines which commands are available and which
changes are displayed. To display and operate on:

 Incoming changes and conflicts from the repository, select the Incoming Mode
button.

 Outgoing changes and conflicts to the repository, select the Outgoing Mode
button.

 Both incoming and outgoing changes and conflicts, select the Incoming/
Outgoing Mode button.

TIP While disconnected from the Version Manager repository, you can use the compare
feature to see what changes you have made since you last synchronized with the
repository. A handy feature, especially if you have already seen the in-flight movie.

TIP To compare all projects in your workspace, select PVCS VM RIDE | Compare
Workspaces from the Eclipse menu bar.

120 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

 Only conflicts, select the Conflicts Mode button.

4 Differences between local objects and repository objects are denoted by the following:

5 To retain the current Synchronize view, click the Pin Current Synchronization
button. The next time you select Compare Workspaces, the pinned synchronization
will be retained when the new synchronization opens.

6 To switch among your current Synchronize views, click the Synchronize drop-down
button and select a synchronization from the resulting list.

7 To remove the current synchronization, click the Menu button and select Remove
Current Synchronization.

Comparing and Editing the Contents of Workfiles

The Compare Editor displays the line-by-line differences between your local workfile, the
latest revision in the repository, and the common ancestor of the two. Use this view to
edit your workfile and/or determine which changes to keep.

To compare a workfile with source control:

1 Right-click the file in the Synchronize view and select Open In Compare Editor (or
double-click the file). The local workfile and the latest revision in the repository open
in the compare editor.

Icon/Text Description Meaning

(1.0) A number in
parentheses

This is the revision you got or checked out
from source control to your workspace.

[1.2] A number in square
brackets

This is the current tip revision in the Version
Manager repository. It appears if the revision
in your workspace is not the tip.

Gray right arrow Outgoing edit, rename, or move. The local
workfile contains changes that are not in the
repository.

Gray right arrow
with plus (+) sign

Outgoing addition. The local project contains a
workfile that has not yet been added to the
project in the repository.

Gray right arrow
with minus (-) sign

Outgoing deletion. The workfile has been
deleted from the local project but is still in the
project in the repository.

Blue left arrow Incoming edit, rename, or move. The file in
the repository contains changes that are not
in the local workfile.

Blue left arrow with
plus (+) sign

Incoming addition. The repository contains a
file that has not yet been added to the project
in the local workspace.

Blue left arrow with
minus (-) sign

Incoming deletion. The file has been deleted
from the project in the repository but is still in
the local project.

Red double-ended
arrow

Conflict. The local workfile and the repository
file have both changed.

Using Source Control

IDE Client Implementation Guide 121

2 Do any of the following:

 To display the common ancestor of the workfile and repository revision, click the
Show Ancestor Pane button.

 To hide the common ancestor of the workfile and repository revision, click the
Two-Way Compare button.

 To copy all non-conflicting changes from the repository revision to the local
workfile, click the Copy All Non-Conflicting Changes from Right to Left
button.

 To copy the currently selected change from the repository revision to the local
workfile, click the Copy Current Change from Right to Left button.

 To select a different change, click the Select Next Change or Select Previous
Change buttons.

 Copy content from the repository revision and the ancestor and paste it into the
workfile.

 Edit the contents of the workfile.

3 Once you are done making changes to the workfile, right-click in the left pane and
select Save form the resulting pop-up menu (or press Ctrl+S).

Resolving Your Changes

This step resolves the incoming and outgoing changes to your local project and the
Version Manager repository.

To resolve changes:

1 Select the appropriate synchronize mode.

2 Select the object you wish to operate on. If you select a project or folder, the objects
within it will be included in the operation if they contain the type of changes that
would be affected by the operation.

3 To view a change in the Compare Editor, right-click the change and select Open in
Compare Editor, or double-click the file, or click the Go to Next Difference or Go
to Previous Difference button. See "Comparing and Editing the Contents of
Workfiles" on page 120.

4 To resolve changes, do any of the following:

 To resolve the selected incoming and outgoing changes and conflicts, click the
Resolve All Changes button. This button is available in all modes.

Outgoing changes will be checked into the repository, and incoming changes will
be copied to your local workspace.

NOTE The synchronize mode () determines which commands are
available and which changes are displayed and acted upon. See "Comparing Your
Workspace with Source Control" on page 119.

122 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

Conflicts will be auto-merged to your local workfile. They will then appear as
outgoing changes. Click the Resolve All Changes button again to check the
merged files into the repository.

 To copy the selected incoming changes to your local workspace, select the Update
Workspace With Incoming Changes button. This button is available only in
Incoming () and Incoming/Outgoing () modes.

 To check in the selected outgoing changes, select the Commit Outgoing
Changes To Repository button. This button is available only in Outgoing ()
and Incoming/Outgoing () modes.

 To overwrite your modified local workfile with the latest revision from the
repository, right-click and select Force Update. This menu item is available only in
Outgoing () mode.

 To check in your local workfile as the latest revision even though there is a newer
revision in the repository, right-click and select Force Commit. This menu item is
available only in Incoming () mode.

 Mark as Merged: This removes the conflict from the Synchronize view without
making any changes to your local workspace or the repository. This menu item is
available only in Conflict () mode.

You may wish to use this feature if you have already resolved the conflict by
editing the workfile in the Compare Editor. See "Comparing and Editing the
Contents of Workfiles" on page 120.

5 To refresh the Synchronize view, click the Synchronize button.

Comparing with the Latest Revision
You can edit your local workfile while comparing it to the latest revision in the repository.

To compare a workfile with the latest repository revision:

1 In the Package Explorer or Navigator, select the file you want to compare and right-
click. A pop-up menu appears.

NOTE If merge conflicts are found (line-to-line conflicts), the conflicts will remain
in the Synchronize view and an auto-merge failure will be noted in the Console
view.

CAUTION! This in effect skips over the latest revision, leaving behind whatever
changes it contained.

NOTE Depending on your configuration and the resolutions chosen, any of the
following may occur:

 If files will be checked in, the Commit dialog box will appear. You may enter a
description for each file, or use the same for all.

 If the Association required option is enabled, any currently active SBM issues
will be associated with any files that get checked in. The issues will remain active.
If there are no active issues, a message will display in the Console view, and the
check-in will fail.

Using Source Control

IDE Client Implementation Guide 123

2 Select Compare With | PVCS VM RIDE Revision. The local workfile and the latest
revision in the repository open in the Compare Editor.

3 Do any of the following:

 To copy all non-conflicting changes from the repository revision to the local
workfile, click the Copy All Non-Conflicting Changes from Right to Left
button.

 To copy the currently selected change from the repository revision to the local
workfile, click the Copy Current Change from Right to Left button.

 To select a different change, click the Select Next Change or Select Previous
Change buttons.

 Copy content from the repository revision and paste it into the workfile.

 Edit the contents of the workfile.

4 Once you are done making changes to the workfile, right-click in the left pane and
select Save from the resulting pop-up menu.

Comparing with Local History
You can compare a workfile with a local history of the changes made to that workfile. A
new entry is made in the local history each time you save changes to a file.

To compare with local history:

1 In the Package Explorer or Navigator, select the file you want to compare and right-
click. A pop-up menu appears.

2 Select Compare With | Local History. The Compare with Local History dialog box
appears.

3 Select a local history entry from the Local History of filename pane.

4 Use the Select Next Change () and Select Previous Change () buttons to
step through the changes.

5 Click OK to exit the compare.

Comparing Workfiles with Each Other
To compare two workfiles with each other:

1 In the Package Explorer or Navigator, CTRL-click to select the two files you want to
compare, then right-click. A pop-up menu appears.

2 Select Compare With | Each Other. The two workfiles open in the Compare Editor.

NOTE To configure how many entries are retained and for how long, select Window |
Preferences then select Local History from under Workbench. For more information,
see the Eclipse help.

124 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

3 Do any of the following:

 To copy all non-conflicting changes from the first workfile to the second workfile,
click the Copy All Non-Conflicting Changes from Left to Right button.

 To copy all non-conflicting changes from the second workfile to the first workfile,
click the Copy All Non-Conflicting Changes from Right to Left button.

 To copy the currently selected change from the first workfile to the second
workfile, click the Copy Current Change from Left to Right button.

 To copy the currently selected change from the second workfile to the first
workfile, click the Copy Current Change from Right to Left button.

 To select a different change, click the Select Next Change or Select Previous
Change buttons.

 Copy content from one workfile and paste it into the other workfile.

 Edit the contents of the workfiles.

4 Once you are done making changes, click in the pane of the modified file and press
CTRL+S.

Replacing with Local History
You can replace a workfile with an entry from the local history of changes made to that
workfile. A new entry is made in the local history each time you save changes to a file.

To replace with local history:

1 In the Package Explorer or Navigator, select the file you want to replace and right-
click. A pop-up menu appears.

2 Select Replace With | Local History. The Replace from Local History dialog box
appears.

3 Select a local history entry from the Local History of filename pane.

4 Use the Select Next Change () and Select Previous Change () buttons to
step through the changes.

5 Do one of the following:

 To replace the workfile with the selected history entry, click the Replace button.

 To close the dialog box without replacing the workfile, click the Cancel button.

NOTE To configure how many entries are retained and for how long, select Window |
Preferences then select Local History from under Workbench. For more information,
see the Eclipse help.

Associating and Working on SBM Issues

IDE Client Implementation Guide 125

Replacing with Latest Revision
You can replace your local workfile with the latest revision from the repository.

To replace a workfile with the latest repository revision:

1 In the Package Explorer or Navigator, select the file you want to replace and right-
click. A pop-up menu appears.

2 Select Replace With | Latest PVCS VM RIDE Revision. The local workfile is overwritten
with the latest revision from the repository.

Associating and Working on SBM Issues
If your organization uses SBM to track development issues, such as defects and tasks,
you can access your issues from within the Version Manager integration to Eclipse. You
can submit and modify SBM issues from within Eclipse, and then associate issues with
specific files. When you associate issues with files, the versioned file history is added to
the issue.

See the following for detailed information on the SBM integration to Eclipse:

 "Issue Management Workflow" on page 126

 "Setting Up Your IDE Folder" on page 127

 "Changing SBM Connection Information" on page 128

 "Displaying Reports and Issues" on page 128

 "Submitting and Modifying Issues" on page 129

 "Associating Issues with Files" on page 130

 "Issue Management Options" on page 137

NOTE To replace multiple files with the latest revision, see "Getting Files" on page 112.

NOTE The SBM user privilege Run System Reports is required in order to use the
integration to SBM, else the following error message will appear:

Error reading associations (No permission)

See the SBM Administrator Guide.

126 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

Issue Management Workflow
The following table describes the issue management workflow in Eclipse. You must follow
this workflow to successfully display issues and associate them with files.

Step Description

1 Set up IDE Folder
Before you can access issues from within Eclipse, you must set up your IDE
folder in SBM. The IDE folder is a special system folder that enables you to
display specific issues and listing reports from the rich integrations to Visual
Studio and Eclipse. See "Setting Up Your IDE Folder" on page 127.

2 Define Integration Settings
In the Version Manager desktop client, you can customize settings that affect
issue association in the rich integration to Eclipse, including:

 Whether to apply a version label based on the issue number to all
revisions associated with an SBM issue

 Whether to require issue associations on check-in

 Whether to automatically add notes about associated issues to the
check-in comments of the associated revisions

See "Issue Management Options" on page 137.

3 Connect to the SBM Server
When adding a project to, or importing a project from, source control, you can
specify an SBM server to use for issue management. If you did not specify an
SBM server at that time, or if you need to change the SBM server connection
information, See "Changing SBM Connection Information" on page 128.
When you connect to an SBM server, you login as a specific user. All issues and
reports that are in your IDE folder in SBM are then visible from Eclipse.

Associating and Working on SBM Issues

IDE Client Implementation Guide 127

Setting Up Your IDE Folder
If your user folder is not visible in the PVCS VM RIDE Issues tab of Eclipse (or the IDE
folder is not visible in the Favorites list in SBM), then you must enable it.

To enable your IDE folder:

1 Launch SBM (enter the URL in a browser).

2 Click the User Profile link (in older versions it is your user name) in the upper-right
corner of the Web client. The Edit User Profile page appears.

3 Select the Display tab.

4 Select the Auto Folder Items option.

5 Click the Save Profile button.

The IDE folder (and other auto folders) will now appear in the Favorites list in the
Web client, and the contents of the folder will appear in the PVCS VM RIDE Issues tab
of Eclipse. You can now specify which issues you want to access from Eclipse by doing
any of the following from the Web client:

 Add specific issues directly to your IDE folder.

4 Review, modify, and submit issues
From the Issues view, you can display all issues that are available via listing
reports in your IDE folder, or that have been added directly to your IDE folder.
For example, this may include specific reports that list only issues that are
assigned to you.
You can then modify these issues, and even submit new issues. See
"Displaying Reports and Issues" on page 128 and "Submitting and Modifying
Issues" on page 129.

5 Associate issues with file revisions
The SBM integration to Version Manager also allows you to associate issues
with specific revisions of files. By default when you associate issues with files,
a Version Control History section is added to the issues to track information
about the file revisions, and a version label is assigned to the associated file
revisions to identify the issue. See "Associating Issues with Files" on page 130.

To associate issues:

1 Activate the issue. This places the issue in a queue of issues that you can
optionally choose to associate with files during check-in.

2 Work on the files that are affected by the issue. For example, you may
need to edit specific source code files to resolve a problem described in a
specific issue.

3 Check in the files. When you check in, you have the option to associate
the files with any (or all) of the currently activated issues. At check-in,
you can choose specifically which issues the files will be associated with.
If the files you are checking in effectively end your portion of the work to
address the issues, you can also choose to remove the issues from the
activated issues list.

Step Description

128 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

 Add listing reports to your IDE folder.

See the SBM User's Guide for details on setting up personal or favorites folders.

Changing SBM Connection Information
When adding a project to, or importing a project from, source control, you can specify an
SBM server to enable issue management. If you did not specify an SBM server at that
time, or if you need to change the SBM server connection information, complete the
following procedure. When you connect to an SBM server, you are logged in as a specific
user. All issues and reports that are in your IDE folder in SBM are then visible from
Eclipse.

To connect to an SBM server:

1 Right-click the project and select Properties from the resulting pop-up menu. The
Properties dialog box appears.

2 Select PVCS VM RIDE in the left pane.

3 In the SBM Information frame, click one of the browse buttons. The Change SBM
Information dialog box appears.

4 Enter the URL to an SBM server in the Host field or select a recent one from the Host
drop-down list.

5 Enter your SBM user name.

6 Click Finish.

7 Click OK.

Displaying Reports and Issues
From the Issues view, you can display all issues that are available via listing reports in
your IDE folder, or that have been added directly to your IDE folder. For example, this
may include specific reports that list only the issues that are assigned to you.

IMPORTANT! You can access only specific issues and listing reports from within
Eclipse. You cannot access other types of reports, or other types of items, such as
URLs.

TIP Enter the name of the host system then tab to the next field. A default URL will
be auto-entered for you in the following format:

http://tt_server/tmtrack/tmtrack.dll

Where tt_server is the name of the SBM host.

NOTE To use a non-default port number (any port other than 80), append the port
number to the server name. For example, if the port number is 89:

http://tt_server:89/tmtrack/tmtrack.dll

Associating and Working on SBM Issues

IDE Client Implementation Guide 129

To display reports and issues:

1 Select PVCS VM RIDE | Show Issues. The Issues view appears.

2 To review your issues:

 Select your user name in the left pane to list any issues that have been added to
your IDE folder.

 Expand your user name to display all reports that are available to you. Any listing
reports that have been added to your IDE folder appear here. You can then click
any of the reports to display issues.

 Select Activated Issues to display any currently activated issues. These are the
issues that you will be able to associate with revisions during check-in.

3 To view the contents of an issue, select the issue and click the View Issue button .

Submitting and Modifying Issues
Submit and modify SBM issues to track the status and details of the tasks that you are
completing in Eclipse. You can submit new issues for tasks, defects, or other work that
needs to be completed, or modify issues to provide input into your work assignments.
Depending on the workflow for your organization, you may modify issues in order to move
them to another state, for example if you have completed your portion of the task and
need to mark it as ready to test.

To submit an issue:

1 Select PVCS VM RIDE | Issues. The Issues view appears.

2 Click the Submit Issue button . The Submit Issue tab appears. For more
information, see the SBM User's Guide or click the Help button to invoke help for
this page.

To modify an issue:

1 Locate the issue you want to update. See "Displaying Reports and Issues" on page
128.

2 Select the issue and click the View Issue button . The issue opens in a new tab.

3 Update the issue as needed. For more information, see the SBM User's Guide or click
the Help button to invoke help for this page.

NOTE The Related Issues list displays all issues that are associated with a
particular file. See "Associating Issues with Files" on page 130 for information on
using this list.

130 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

Associating Issues with Files
In addition to providing access to specific issues and reports, The SBM integration to
Version Manager also allows you to relate issues with specific revisions of files. By default,
when you relate an issue with a file:

 A Version Control History section is added to the issue, that tracks the:

• Name of the associated file

• Revision number of the associated revision

• check-in date

• User who checked in the revision

• Change description that the user entered when checking in

For example, if Joe related an issue with a file called test.cs, something like the
following might appear in the issue after check-in:

 A version label is assigned to the revision of the file that is associated with the issue.
The version label includes information about the issue, such as the issue number.

 Information about the related issue(s) is added to the check-in comment for the new
revision.

See "Issue Management Options" on page 137 for information on setting issue association
options.

To associate issues:

1 Locate the issues that you will work on and eventually relate to file revisions. See
"Displaying Reports and Issues" on page 128.

2 Select the issue and click the Add to Activated Issues button . The issue is
added to your Activated Issues list.

3 At any point, you can review the details of an issue by selecting it and clicking the
View Issue button .

4 Complete the work required to resolve the issue, or your portion of it.

5 Check in the file or files that resolve the issue. On the Check In dialog box, under SBM
Associations, select the issue that you want to associate with the file or files. Only

IMPORTANT! In order to see the Version Control History section in SBM issues, you
must enable the Version Control History display option from the User Profile dialog
box in SBM.

TIP To remove an issue from the Activated Issues list, select the issue in the list and
click the Remove from Activated Issues button .

Setting Default Options

IDE Client Implementation Guide 131

issues that are currently activated can be related during check-in. See "Checking In
Files" on page 115.

To display all issues associated with a particular file:

In the Package Explorer or Navigator, right-click the file and select Team | Related Issues.
The Issues view appears with the Related Issues list selected in the left pane.

All issues associated with the selected file, appear in the right pane of the Issues view.

Setting Default Options
You can configure the behavior of the source control integration to Version Manager and
the issue management integration to SBM. See "Source Control Options" on page 131 and
"Issue Management Options" on page 137.

Source Control Options
You can configure the behavior of the source control dialogs ("Setting Local Source
Control Options" on page 131), the status glyphs ("Configuring Icon Glyphs" on page
135), the colors used for console output ("Configuring Console Text Colors" on page 135),
and the Synchronize view ("Setting Local Synchronization Options" on page 136, and
"Scheduling Synchronization Updates" on page 137).

Setting Local Source Control Options

You can configure the default behavior of the source control integration.

To configure source control:

1 Select Window | Preferences. The Preferences dialog box appears.

2 Expand the following nodes in the Preferences tree: Team | PVCS VM RIDE |
Versioning.

IMPORTANT! If the Team | PVCS VM RIDE node does not appear in the Preferences
dialog box, you must enable Core Team Support. In the left pane, select Workbench |
Capabilities (or General Capabilities). In the right pane, select Team | Core Team
Support (or click the Advanced button and select Team | Team Core Support from the
Advanced dialog box).

132 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

Assign Label 3 Click Assign Label and change any of the following:

CheckIn 4 Click CheckIn and change any of the following:

Option Description

Float label with tip Select Yes to always keep the label assigned to the
latest revision of the file. Every time a new revision
is checked in, the label will move (or float) to the
latest revision.

To keep the label assigned to the revision you
assign it to, select No.

If label exists Specify what to do if the label you are assigning to
the revision is already assigned to a different
revision:

 Prompt: Asks what you want to do.

 Reassign: Moves the label to the revision you
selected.

 Do not Reassign: Leaves the label where it is,
rather than moving it to the revision you
selected.

Option Description

If newer revision in
repository

Specify what to do if the revision in the repository is
newer than the revision your workfile is based on:

 Merge: Combines the contents of the latest
repository revision and your local workfile into a
new revision and checks it in. This is the out-of-
box default.

NOTE If there are merge conflicts: an error will
appear in the Console view, the repository
revision will remain locked, and your local
workfile will remain as it was. To check in the file,
you must resolve the merge conflict (see
"Comparing and Synchronizing Your Workspace
with Source Control" on page 118) or select
Force Checkin.

 Skip: Do not check in the file.

 Force Checkin: Check in the file and create a
new revision, without merging.

If workfile unchanged Specify what to do if the workfile has not changed:

 Prompt: Asks what you want to do. Select this
option if you want to specify a different choice for
some files.

 Checkin: Checks in your local workfile as a new
revision.

 Leave as-is: Does not check in your workfile. If
the file is locked, it will be unlocked.

Setting Default Options

IDE Client Implementation Guide 133

Use description for all To apply the Description field to all of the files you
are checking in, select Yes.

To specify a unique description for each file, select
No. The Description dialog box will appear for each
file in turn.
Note, you will not be prompted for a description for
unmodified files. Unmodified files will be given a
description of "No Change."

Keep locked To leave the files locked after check-in, select Yes.
To leave the files unlocked after check-in, select No.

IMPORTANT! You cannot promote locked
revisions. If you want to promote the new revisions,
do not choose to keep the files locked.

New label Enter a version label to assign to the new revision.
Labels are limited to 254 characters. Do not use a
colon (:), double quotes ("), a plus sign (+), or a
minus sign (-).

Float label with tip Select Yes to always keep the label assigned to the
latest revision of the file. Every time a new revision is
checked in, the label will move (or float) to the latest
revision.

To keep the label assigned to the revision you
assigned it to, select No.

If label exists Specify what to do if the label you are assigning to
the new revision is already assigned to a different
revision:

 Prompt: Asks what you want to do. Select this
option if you want to specify a different choice for
some files or labels.

 Reassign: Moves the label to the new revision.

 Leave as-is: Leaves the label where it is, rather
than moving it to the new revision.

Promote to next To promote the new revision to the next group in the
promotion hierarchy, select Yes.

To retain the current promotion group, select No.

IMPORTANT! You cannot promote locked
revisions. If you want to promote the new revisions,
do not choose to keep the files locked.

Get file on Keyword
expansion

If the file you are checking in includes Version
Manager keywords that will be expanded during
check-in, selecting Yes will copy the latest revision,
with the keywords expanded, to your local
workspace.

To retain unexpanded keywords in your workfile,
select No.

Option Description

134 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

Checkout 5 Click Checkout to specify what to do if your local workfile is modified:

 Merge: Merges the contents of the latest repository revision into your modified
local workfile. This is the out-of-box default.

 Prompt: Asks what you want to do. Select this option if you want to specify a
different choice for some files.

 Overwite: Replaces your modified local workfile with the latest revision from the
repository.

 Leave as-is: Locks the file in the repository but retains your modified local
workfile

Get 6 Click Get to specify what to do if your local workfile is modified:

 Merge: Merges the contents of the repository revision into your modified local
workfile. This is the out-of-box default.

 Prompt: Asks what you want to do. Select this option if you want to specify a
different choice for some files.

 Overwite: Replaces your modified local workfile with the revision from the
repository.

 Leave as-is: Retains your modified local workfile.

Undo Checkout 7 Click Undo Checkout to specify what to do with the local workfile:

 Replace local file with latest revision: Replaces your local workfile with a read-
only copy of the latest revision from the repository.

 Leave local workspace as-is: Retains your local workfile as it is.

Configuring Client/Server-Side Processing

By default, server-side processing is enabled. In most cases, this allows faster operation
since less data needs to be transferred back and forth between the Version Manager File
Server and your IDE client. However, you can revert to the traditional client-side

IMPORTANT! If there are merge conflicts:

 An error will appear in the Console view.

 The repository revision will not be locked.

 Your local workfile will remain as it was.

To check out the file, you must resolve the merge conflict (see "Comparing and
Synchronizing Your Workspace with Source Control" on page 118) or select
Overwrite or Leave as-is.

IMPORTANT! If there are merge conflicts:

 An error will appear in the Console view.

 Your local workfile will remain as it was.

To Get the file, you must resolve the merge conflict (see "Comparing and
Synchronizing Your Workspace with Source Control" on page 118) or select
Overwrite or Leave as-is.

Setting Default Options

IDE Client Implementation Guide 135

processing if your use case requires it. For instance, this feature does not currently
support client-side event triggers.

To configure Client/Server-Side processing:

1 Select Window | Preferences. The Preferences dialog box appears.

2 Select the following node in the Preferences tree: Team | PVCS VM RIDE | Client/
Server.

3 Select or deselect the Enable server-side processing checkbox.

4 Click Apply or OK.

Configuring Icon Glyphs

By default, icon glyphs show the status of an individual item. In the case of a Package or
Project, the icon reflects the actual status of the object rather than that of any objects it
may contain. You can configure icon glyphs so that objects, such as Packages and
Projects, reflect the status of the objects they contain. However, this additional
information comes at the cost of some performance.

To configure icon glyphs:

1 Select Window | Preferences. The Preferences dialog box appears.

2 Select the following node in the Preferences tree: Team | PVCS VM RIDE | Label
Decorations.

3 Select the Compute deep folder status check box to cause objects such as
Packages and Projects to display the status of the objects they contain. Or de-select
the check box to disable this feature.

4 Click OK.

Configuring Console Text Colors

You can choose which colors to use for various types of output into the Console view.

IMPORTANT! If the Team | PVCS VM RIDE node does not appear in the Preferences
dialog box, you must enable Core Team Support. In the left pane, select Workbench |
Capabilities (or General Capabilities). In the right pane, select Team | Core Team
Support (or click the Advanced button and select Team | Team Core Support from the
Advanced dialog box).

IMPORTANT! If the Team | PVCS VM RIDE node does not appear in the Preferences
dialog box, you must enable Core Team Support. In the left pane, select Workbench |
Capabilities (or General Capabilities). In the right pane, select Team | Core Team
Support (or click the Advanced button and select Team | Team Core Support from the
Advanced dialog box).

NOTE Enabling Compute deep folder status will slow performance.

136 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

To configure console colors:

1 Select Window | Preferences. The Preferences dialog box appears.

2 Select the following node in the Preferences tree: Team | PVCS VM RIDE | Console.

3 Click on the colored button next to a text type to select a new color for that type. You
can select colors for the following types of console text:

 Commands (default is black)

 Messages (default is blue)

 Errors (default is red)

 Warnings (default is gold)

4 Click Apply.

Setting Local Synchronization Options

You can configure the default behavior of the Synchronize view.

To set synchronization options:

1 Select the Menu button in the Synchronize view. A pop-up menu appears.

2 Select Preferences. The Synchronize Preferences dialog box appears.

3 To change whether folders are expanded or collapsed when the Synchronize view
opens, select or deselect the Use Compressed Folders as default Synchronize
View layout check box (or the Compressed Folders radio button).

4 To display descriptive text for each change type, select the Show all
synchronization information in a resource's text label check box. To specify
whether a different perspective is opened when you synchronize, select one of the
following options:

 Always: The perspective specified in the Perspective field will open when you
synchronize.

 Never: You will remain in whatever perspective you were in at the time you
invoked the synchronization.

 Prompt: A dialog will appear asking if you would like to switch to the perspective
specified in the Perspective field.

5 To specify the perspective to open when you synchronize, select one from the
Perspective field.

6 Click OK.

IMPORTANT! If the Team | PVCS VM RIDE node does not appear in the Preferences
dialog box, you must enable Core Team Support. In the left pane, select Workbench |
Capabilities (or General Capabilities). In the right pane, select Team | Core Team
Support (or click the Advanced button and select Team | Team Core Support from the
Advanced dialog box).

Setting Default Options

IDE Client Implementation Guide 137

Scheduling Synchronization Updates

You can schedule automatic refreshes of a synchronization. This updates the information
displayed in the Synchronize view; it does not commit or resolve changes.

To schedule synchronization updates:

1 Open the synchronization you want to schedule.

2 Select the Menu button in the Synchronize view. A pop-up menu appears.

3 Select Schedule. The Configure Synchronize Schedule dialog box appears.

4 To enable automatic updates for the current synchronization, select the Using the
following schedule option.

5 To specify a time interval between updates, select hour(s) or minute(s) and enter
the value you desire.

6 Click OK.

Issue Management Options
You can configure aspects of the global and local behavior of the integration to SBM. See
"Setting Global Issue Management Options" on page 137 and "Setting Local Issue
Management Options" on page 138.

Setting Global Issue Management Options

From the Version Manager desktop client, the administrator can define settings for rich
IDE integrations to SBM, including:

 Whether to apply a version label with the issue number to all associated revisions

 Whether to require issue associations on check-in

 Whether to automatically add notes about associated issues to the check-in
comments for new revisions

To define integration settings:

1 Select the Project Database to which you will apply the settings.

2 From the Version Manager desktop client, select Admin | SourceBridge settings. The
SourceBridge Settings dialog box appears.

TIP To switch among pinned () Synchronize views, click the Synchronize
drop-down () button and select a synchronization from the resulting list.

138 PVCS Version Manager

Chapter 8 Rational Application Developer Rich Integration (Eclipse 3 and 4)

3 Set the following options:

4 Click OK.

Setting Local Issue Management Options

To configure issue management:

1 Select Window | Preferences. The Preferences dialog box appears.

2 Select the following node in the Preferences tree: Team | PVCS VM RIDE | Issuing |
Associations.

3 Select or deselect the Deactivate selected issues after checkin check box. By
default, issues are not deactivated after check-in.

4 Click OK.

Field Description

Show Issue
association dialog
on checkin /
Association
required

Select to require that issues be associated with files at
check-in. If you select this option, users will be unable to
complete checkins if no issues are currently active. The
Show Issue association dialog on checkin option has no
effect within the rich integration to Eclipse, but you must
select it in order to be able to select the Association
required option.

Tag workfile
comment with
association

Select to add information about the associated issue(s) to
the check-in comments for files as they are checked in.
Select Before existing comment or After existing
comment to determine the placement of this information
within the comment.
In the Tag field, enter the text that you want to add to the
check-in comments. This can include any of a number of
keywords that will automatically enter information about the
associated issues. These include:

 $id -- Expands to the issue ID number

 $ownid -- Expands to the user ID of the issue owner

 $owner -- Expands to the name of the issue owner

 $project -- Expands to the name of the current project

 $title -- Expands to the title of the issue

Use version labels
on checkin

Select to apply a version label consisting of the issue
number when checking in a file.

IMPORTANT! If the Team | PVCS VM RIDE node does not appear in the Preferences
dialog box, you must enable Core Team Support. In the left pane, select Workbench |
Capabilities. In the right pane, select Team | Core Team Support.

IDE Client Implementation Guide 139

Chapter 9
Visual Studio SCC Integration

Introduction 140
Accessing Supported Features 140
About Visual Basic Files 141
Setting Up Source Control Projects 142
Using Source Control 146

140 PVCS Version Manager

Chapter 9 Visual Studio SCC Integration

Introduction
Purpose This chapter has four purposes:

 List the Version Manager features available through Microsoft® Visual Studio, and
provide a quick reference to accessing those features

 Note any features described in Part 1 of this manual that do not apply to this IDE

 Help you set up source control projects and add files to source control

 Help you access files that are under source control from within the IDE

For more
information

See Part 1, "The Version Manager IDE Client," on page 9 for information about:

 Source control concepts

 Source control defaults

 Advanced source control features

Accessing Supported Features
What is

supported?
Visual Studio supports the full set of source control features available through the Version
Manager IDE client. See the following table.

NOTE This chapter applies to the SCC integration (SCC/COM IDE Client). If you
installed the rich integrration to Visual Studio, see Chapter 10, "Visual Studio Rich
Integration" on page 149.

To... Select... For more information see...

Get revisions File | Source Control | Get "Getting Files" on page 146

Open a project from
source control

File | Source Control | Open From
Source Control

"Connecting Additional Workstations
to a Source Control Project" on page
145

Check out revisions File | Source Control | Check Out "Checking Out Files" on page 146

Undo checkout of
revisions

File | Source Control | Undo Checkout "Undoing Checkout" on page 147

Check in revisions File | Source Control | Check In "Checking In Files" on page 148

Manage version labels File | Source Control | Serena Source
Control

"About Version Labels" on page 34

View properties of
revisions or archives

File | Source Control | Serena Properties "About Properties" on page 46

Monitor source control
activity

File | Source Control | Serena Source
Control

"Monitoring Source Control Activity
with Pulse" on page 47

Generate a history
report

File | Source Control | History "About History Reports" on page 50

Generate a difference
report

File | Source Control | Compare Versions "About Difference Reports" on page 52

About Visual Basic Files

IDE Client Implementation Guide 141

About Visual Basic Files
Binary and text

files
Visual Basic projects include text files that are paired with binary files, but normally the
Visual Studio interface does not display the binary files. Though the binary files remain
unseen while you work in the IDE, they are kept in sync with the source control actions
you apply to the visible files. For example, if you check out the file Form2.vb, the binary file
From2.resx is also checked out.

Revision numbers
out of sync

However, it is possible for the revision numbers of the files to get out of sync. This occurs
because some programming changes that affect text files do not affect binary files. By
default when you check in your project after such a change, both files are checked in even
if no changes were made to the binary file. However, if you change the default check-in
behavior, only the text file will be checked into a new revision and the files will be out of
sync.

TrackerLink users If you use TrackerLink to associate a Visual Basic file pair with an SCR, it is possible that
only the text file will receive the resolution description from Tracker. In this case, the
binary file will receive the default change description. This occurs because some
programming changes that affect text files do not affect binary files.

NOTE To view binary files, click the Show All Files button in the Solution Explorer.

Access the Version
Manager Options dialog

File | Source Control | Serena Source
Control

"About Setting Defaults for Version
Manager Options" on page 22

Add non-web solutions
to source control

File | Source Control | Add Solution to
Source Control

"Adding Visual Studio Files to Source
Control" on page 143

Add web and non-web
projects to source
control

File | Source Control | Add Selected
Projects to Source Control

"Adding Visual Studio Files to Source
Control" on page 143

Exclude or remove files
from source control

File | Source Control | Exclude Selection
from Source Control

"Excluding or Removing Files from
Source Control" on page 143

Set SCC options for
Visual Studio

Tools | Options "Configuring Source Control Behavior"
on page 142

Share an archive across
projects

File | Source Control | Share "About Sharing Files Across Projects"
on page 25

To... Select... For more information see...

IMPORTANT!

 By default, the IDE client will check in a file even if it is unmodified or older than the
latest revision. You should not change this default. If the default has been changed,
see "Setting Defaults" on page 22 for information on setting it back.

 If you use the Version Manager desktop client to apply source control actions to
Visual Basic files, be sure to select both the text files and the binary files or they will
become out of sync. You must also choose to check in files that are unchanged.

142 PVCS Version Manager

Chapter 9 Visual Studio SCC Integration

Setting Up Source Control Projects
Contents This section contains information about setting up the Version Manager IDE client to work

with Visual Studio.

Prerequisites Before proceeding, you must do the following:

 Select Version Manager as your source control provider (if you have multiple IDE
clients installed). See "Selecting an SCC Provider" on page 19.

 Use the Version Manager desktop client to create a project database that will contain
the source control projects associated with the Visual Studio .NET projects (if you
don't already have one).

For more
information

See Chapter 2, "Setting Up Source Control with SCC IDEs" on page 17.

Upgrading to Visual Studio 2005 from Visual Studio
.NET 2003
When you open a Visual Studio .NET 2003 solution in Visual Studio 2005, the Visual
Studio Conversion Wizard appears. This Microsoft wizard will convert your solutions to the
new Visual Studio 2005 format. Once the conversion is complete, you can continue to use
the SCC (Source Code Control) integration to Version Manager.

Configuring Source Control Behavior
You can configure Visual Studio so that actions you take in Visual Studio:

 Automatically invoke source control operations

 Do not invoke source control operations

 Prompt for permission to invoke source control operations

To configure the source control behavior of Visual Studio:

1 Select Tools | Options. The Options dialog box appears.

2 Select the Source Control folder in the left pane.

3 Select or deselect the features you wish to activate or deactivate. For detailed
information on each feature, see the Visual Studio documentation.

4 Click OK.

Configuring Web Projects
By default, Visual Studio is configured to use the SCC interface (File share) for both web
and non-web projects. This is the recommended configuration, but may be unfamiliar to

IMPORTANT! If you want to migrate to the Rich Version Manager integration, see
Chapter 10, "Visual Studio Rich Integration" on page 149.

Setting Up Source Control Projects

IDE Client Implementation Guide 143

you since Visual InterDev 6 used the COM interface (FrontPage Extensions) for web
projects.

To configure web project access:

1 Select Tools | Options. The Options dialog box appears.

2 Open the Projects folder and select Web Settings.

3 Select the File share option.

4 Click OK.

For more information on working with web projects, see the Visual Studio documentation.

Excluding or Removing Files from Source Control
You can use the Exclude from Source Control feature in two ways:

 Used before a project is under source control, it will prevent Version Manager from
creating archive files for the selected workspace files.

 Used after a project is under source control, it will retain the existing archive files but
will prevent the addition of new revisions until the exclusion is removed.

To exclude files from source control:

1 Select the files in the Project Explorer pane.

2 Select File | Source Control | Exclude Selection from Source Control.

A red circle () appears to the left of each file icon, if the project is under source
control.

Adding Visual Studio Files to Source Control
To add files to source control:

1 Do one of the following:

 To add a web project to source control:

a Select the project in the Solution Explorer pane.

b Select Add Selected Projects to Source Control.

NOTE If the project file is not already checked out, you are prompted to check it out.

NOTE To remove an exclusion, repeat the procedure shown above.

IMPORTANT! Do not add web solutions to source control. Select the web project
instead.

144 PVCS Version Manager

Chapter 9 Visual Studio SCC Integration

 To add a non-web solution and the projects within it to source control, select File |
Source Control | Add Solution to Source Control.

 To add a project to source control without placing the solution under source
control:

a Right-click the project in the Solution Explorer pane. A pop-up menu appears.

b Select Add Project to Source Control.

 To add a new project to source control when the solution is already under source
control:

a Create the new project in a directory below the initial project in the solution.
The files of the new project appear in the Pending Checkins pane.

b Click the Check In button.

2 If you are adding a web project, the following dialog may appear. Click the Continue
button. For more information, see "Configuring Web Projects" on page 142.

3 Select Tools | Serena | Add Project to Serena. The Add Project to Source Control
dialog box appears.

4 The default project database displays under Source Control Project. If you wish to
add the files to a different project database, click the Open Database button. The
Select Project Database dialog box appears.

Do one of the following:

 To open a project database located on a listed Version Manager File Server, select it
from the Project Databases list and click OK.

To add a Version Manager File Server to the list, double-click an empty cell in the
File Server list and type the name of the system that hosts the file server. Once
you press the ENTER key, the entry will be auto-completed (http://
SystemName:8080/serenafs/FileServer) and tested. To specify an https server or
a non-standard port, double-click on the auto-completed entry, edit it
appropriately, and press the ENTER key.

 To open a project database located on your local file system or the network, click
the Browse button and navigate to the location via the resulting dialog box.

5 Do one of the following:

 To add to an existing source control project, select one from under Source
Control Project and click OK. Proceed to Step 6.

 To create a new Version Manager project:

a Under Select Source Control Project, select the location in the project database
where you want to create the new project.

b Click the Create Project button. The Create Source Control Project dialog box
appears.

IMPORTANT! To add a project or file to an existing solution or project that is
already under source control, you must first check out the solution or project.

Setting Up Source Control Projects

IDE Client Implementation Guide 145

The Project Database Information group displays the name and location of the
current project database, and the location of the new project within the
database.

c By default, the new Version Manager project uses the same name as the IDE
project. If necessary, enter a different name in the Project Name field.

The name cannot begin or end with a tab or blank space. Any character can be
used in the name except an asterisk (*), a colon (:), a vertical bar (|), forward
and backward slashes (/ \), a question mark (?), and angle brackets (< >).

d Click OK. The Add Project to Source Control dialog box reappears with the new
project under Source Control Project.

6 Click OK. The Change Description dialog box appears.

7 Do any of the following:

 Enter a description of the files in the Description field.

 To use the same description for every file, select the Use description for all
checkbox.

 To use a unique description for each file, do not select the Use description for all
checkbox. The Change Description dialog box will appear for each file in turn.

8 Click OK. A blue padlock () appears to the left of each file icon to indicate that
the files are checked in to source control.

Sharing files If an archive will be shared by multiple Version Manager projects, see "About Sharing Files
Across Projects" on page 25 for more information.

Connecting Additional Workstations to a Source
Control Project
After a project has been created and added to source control, each developer can access
it by opening it from source control, which creates a copy of the project on the developer's
system. Once a developer has a local copy of a project, he can perform normal source
control operations on it.

To open a solution or project from source control:

1 Select File | Source Control | Open From Source Control. The Get Project from Source
Control dialog box appears.

The default database appears under Source Control Project. If the database
containing the project you wish to get is not displayed, click the Open Database
button and browse to select it.

2 Select the project you wish to get from the project database.

3 Enter a location for all of your project files in the Workfile Location field, or click the
browse button to select a location.

NOTE Visual Basic:

You will be prompted to enter descriptions for both the text files and the binary files
in Visual Basic projects, though Visual Studio normally hides the binary files from
view.

146 PVCS Version Manager

Chapter 9 Visual Studio SCC Integration

4 Click OK. The Open Solution dialog box appears.

5 Select the solution or project file you want to open and click Open.

Using Source Control
Contents This section contains procedural information about viewing and editing files that are under

source control.

For more
information

See Chapter 3, "Using Source Control" on page 27.

Getting Files
When you get files, read-only copies of the selected revisions are placed in the workfile
location.

To get files:

1 Select the solution, project, or files you want to get in the Solution Explorer.

2 Select File | Source Control | Get. The Get dialog box appears.

3 Do any of the following:

 Select or deselect files in the Name list.

 To invoke the Merge Tool, select a file and click the Compare Versions button. For
information on differencing, see "Generating Difference Reports" on page 52.

4 Do one of the following:

Use advanced
options

 To override the default get options, click the Options button (). The Advanced
Get dialog box appears. (For information on advanced options, see "About Getting
Files" on page 28.)

Accept defaults  To accept the default get options, click OK. The selected revisions are copied and
read-only workfiles are placed in the workfile location.

Checking Out Files
When you check out a file, the revision is locked and a writable workfile is created in the
workfile location.

NOTE To get files without invoking the Get dialog box, select File | Source Control | Get
Latest Version.

Using Source Control

IDE Client Implementation Guide 147

To check out files:

1 In the Solution Explorer pane, select the files, projects, or solution you want to check
out and right-click. A pop-up menu appears.

2 Select Check Out. The Check Out dialog box appears.

3 Do any of the following:

 Select or deselect files in the Name list.

 To invoke the Merge Tool, select a file and click the Compare Versions button. For
information on differencing, see "Generating Difference Reports" on page 52.

4 Do one of the following:

Use advanced
options

 To override the default checkout options, click the Options button (). The
Advanced Check Out dialog box appears. (For information on advanced options,
see "About Checking Out Files" on page 30.)

Accept defaults  To accept the default checkout options, click the Check Out button. A red
checkmark () appears next to each file icon.

Undoing Checkout
When you undo a check, the archive is unlocked and a read-only workfile is left in the
workfile location. No changes are checked into the archive.

To undo a checkout:

1 In the Solution Explorer pane, select the files, projects, or solution you want to undo a
checkout on and right-click. A pop-up menu appears.

2 Select Undo Checkout. The Undo Checkout dialog box appears.

3 Select or deselect files in the Name list as needed.

4 Do one of the following:

Use advanced
options

 To override the default undo checkout options, click the Options button ().
The Advanced Undo Check Out dialog box appears. (For information on advanced
options, see "About Undoing Checkout" on page 32.)

Accept defaults  To accept the default undo checkout options, click the Undo Checkout button. A
blue padlock () appears next to each file icon.

IMPORTANT! Check out the solution and project files if they are under source
control and your changes will affect them. Otherwise, your changes may be lost.

NOTE Ignore the Comments field during checkout. You can add a comment during
check-in.

148 PVCS Version Manager

Chapter 9 Visual Studio SCC Integration

Checking In Files
By default, the following occurs when you check in a workfile:

 A new revision is created and assigned the next number in sequence.

 A read-only workfile is left in the workfile location.

 The archive is unlocked.

To check in files:

1 In the Solution Explorer pane, select the files, projects, or solution you want to check
in and right-click. A pop-up menu appears.

2 Select Check In. The Check In dialog box appears.

3 Do any of the following:

 Select or deselect files in the Name list.

 Enter a description of the changes you made to the files in the Comments field.

 To invoke the Merge Tool, select a file and click the Compare Versions button. For
information on differencing, see "Generating Difference Reports" on page 52.

 To automatically check the files out again after the check-in operation, click the
Options button and select Keep Checked Out.

4 Do one of the following:

Use advanced
options

 To override the default check-in options, click the Options button () and
select Advanced. The Advanced Check In dialog box appears. (For information on
advanced options, see "About Checking In Files" on page 33.)

Accept defaults  To accept the default check-in options, click the Check In button. A blue padlock
() appears next to each file icon (unless you chose to keep the files checked
out).

TIP To use unique descriptions for each file, leave the Comments field blank.
After you complete the Check In dialog box, the Change Description dialog box
will appear for each modified file in turn.

For Visual Basic projects, you will be prompted to enter descriptions for both the
text files and the binary files, though Visual Studio normally hides the binary files
from view.

IDE Client Implementation Guide 149

Chapter 10
Visual Studio Rich Integration

Introduction 150
Accessing Supported Features 151
Visual Studio Rich Integration Overview 152
Collaborative Process Overview 153
Migrating and Converting Visual Studio Solutions 157
Working with Web Projects 161
Working with Branches 161
Setting Up Source Control Projects 167
Editing Files 174
Setting Default Options for Dialog Boxes 189
Comparing and Synchronizing Workspaces 193
Comparing Files and Resolving Conflicts 199
Associating and Working on SBM Issues 204

150 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

Introduction

This chapter has four purposes:

 List the Version Manager features available through Microsoft® Visual Studio and
provide a quick reference to accessing those features.

 Note any features described in Part 1 of this manual that do not apply to this IDE

 Help you set up source control projects and add files to source control

 Help you access files that are under source control from within the IDE

For more information about source control concepts, see Part 1, "The Version Manager
IDE Client," on page 9Part 1 of the Version Manager IDE Client Implementation Guide.

NOTE The information below only applies to the Version Manager rich integration to
Visual Studio (RIDE). If you installed the SCC integration to Visual Studio (SCC/COM
IDE Client), see Chapter 9, "Visual Studio SCC Integration" on page 139the "Visual
Studio SCC Integration" chapter of the Version Manager IDE Client Implementation
Guide.

IMPORTANT! The rich integration uses the default version (label) to determine which
files are visible in a given Version Manager workspace. To avoid confusion, it is important
that you understand how this works.

If you use the desktop client to apply a default version or change the existing one for a
project database or for a workspace, only files that have the version label will appear in
Visual Studio. If the project and solution files do not have these labels, you will see no
files.

To avoid the potential for confusion:

 Create a Version Manager workspace for any user or group of users who may need
their own default version (label).

 Define default versions on a workspace-by-workspace basis (File | Properties |
Workspace Settings tab), rather than for the entire project database.

 Remember that when you open a project from source control that you must specify
the Version Manager workspace to use. If you wish to see the files and revisions
defined by a different default version, then you must do an open from source control
and specify the workspace that is associated with the desired label.

Accessing Supported Features

IDE Client Implementation Guide 151

Accessing Supported Features
The following table shows how to access features in the rich integration to Visual Studio.
(Note, the "Right-Click" menu items are also available from the File | Source Control
menu.)

To... Select... For more information see...

Get revisions Right-Click | Get Latest Revision "Getting Specific Files or Folders" on
page 176

Open a project from
source control

File | Source Control | Open Project from
Source Control

"Opening Solutions and Projects from
Source Control" on page 170

Check out revisions Right-Click | Check Out "Checking Out Files" on page 178

Undo checkout of
revisions

Right-Click | Undo Checkout "Undoing Checkout" on page 180

Check in revisions Right-Click | Check In "Checking In Files" on page 182

Assign version labels Right-Click | Label "Labeling Revisions" on page 186

View revision history Right-Click | History "Reviewing File History" on page 175

Promote a file (From the History view)
Right-Click | Promote to Next

"Promoting Revisions" on page 188

Work with Solutions
Business Manager (SBM)
issues

Right-Click | Related Issues "Associating and Working on SBM
Issues" on page 204

Compare your local
workspace to source
control

Right-Click | Compare Workspaces "Comparing and Synchronizing
Workspaces" on page 193

Compare your local
workfile to the latest
revision in Version
Manager

Right-Click | Compare Revisions "Comparing Files and Resolving
Conflicts" on page 199

Migrate from SCC to the
rich integration

File | Source Control | Migrate "Migrating and Converting Visual
Studio Solutions" on page 157

Open the Version
Manager desktop client

File | Source Control | Launch Version
Manager

User’s Guide
Administrator’s Guide

View and submit SBM
issues

View | Issues "Associating and Working on SBM
Issues" on page 204

View SBM issues related
to the currently selected
file

Right-click | Related Issues "Associating Issues" on page 209

152 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

About the Source Control Toolbar
The integration includes a toolbar for quick access to certain features. You can dock the
toolbar to the Visual Studio toolbars, or leave it free floating.

By default, the toolbar includes the following buttons:

To change which buttons are included in the toolbar, click the drop-down menu and select
Add or Remove Buttons | Source Control. Then select or deselect items from the list.

Visual Studio Rich Integration Overview
The Version Manager rich integration (RIDE) to Microsoft Visual Studio provides a
powerful set of collaborative tools to help development teams manage their source code.
The integration includes:

 Workspace Comparison and Synchronization: You can easily compare the state
of all files in your local workspace with the corresponding Version Manager project's
workspace. You can determine what the differences are, and whether your workspace
or Version Manager need to be updated. With the click of a button, you can then
automatically check in all of your changes to Version Manager, and get all updates to
your local workspace. See "Comparing and Synchronizing Workspaces" on page 193.

 Automated File Merging: When you check in or synchronize your local workspace,
your changes are automatically merged with any recent changes to the same files in
Version Manager.

 File Comparison and Conflict Resolution: You can compare specific local files to
the latest revision of the files in Version Manager. If necessary, you can directly edit
the files in order to resolve any conflicts before checking files in. See "Comparing Files
and Resolving Conflicts" on page 199.

 Pragmatic Locking: You can check in any file, any time, without first locking it. This
allows you to edit any file without first explicitly locking the file. When you then check
in the file, the file is temporarily locked while your local changes are merged with the
latest revision in Version Manager (if necessary). Once the new revision is created,
the file is then immediately unlocked again, allowing other users to check in their
changes.

By default, pragmatic (optimistic) locking is enabled. However, the administrator can
turn it off for any given project database, thus requiring users to checkout files before
editing.

 Working Offline: Even when you are unable to connect to the Version Manager
project database, you can continue to work on any projects already in your

1 Check Out

2 Check In

3 Undo Checkout

4 Get Latest Revision

5 File Status

6 History

7 View Issues

8 Compare Revisions

9 Compare Workspaces

10 Launch Version Manager

Collaborative Process Overview

IDE Client Implementation Guide 153

workspace, provided that pragmatic locking is in effect or you already have them
checked out. See "Working While Offline" on page 188.

Solutions Business Manager Integration
If your organization uses Solutions Business Manager (SBM) to track development issues,
such as defects and tasks, you can access your issues from within the Version Manager
integration to Visual Studio. You can submit and modify SBM issues from within Visual
Studio, and then associate issues with specific files. When you associate issues with
revisions of files, information about the associated revisions is added to the issues.

For detailed information on the SBM integration to Version Manager, see "Associating and
Working on SBM Issues" on page 204.

Supported Project Types
The rich integration to Visual Studio works with all project types that Visual Studio makes
available for source control operations.

IMPORTANT! All files of a given CAB or C++ project must reside under the root
directory of the Visual Studio project. Cutting and pasting files from one C++ project to
another inside of Visual Studio violates this requirement.

Rebinding a Solution
Version Manager RIDE can only open projects and solutions that were added using the
integration. For information about rebinding, see the following Knowledgebase article:

http://knowledgebase.serena.com/InfoCenter/
index?page=content&id=D16727&token=ca1f979367db4209a586df45f31eda99

Collaborative Process Overview
The Version Manager integration supports a flexible range of collaborative development
processes. You can:

 Use Version Manager workspaces to precisely define which files developers will work
on and to automate the assignment of version labels in order to enforce maintenance
of the workspaces. Workspaces greatly simplify the process of sharing files in a
development project by ensuring that all developers working within the project see
and update the same files. See "Using Workspaces" on page 154.

 Use a pragmatic (optimistic) locking model to allow all users to work on common files
without locking them. See "Working on Files Without Locking Them" on page 155.

 Prevent multiple users from modifying the same files by requiring locks in order to
edit files. See "Checking Out (Locking) Files" on page 156.

http://knowledgebase.serena.com/InfoCenter/index?page=content&id=D16727&token=ca1f979367db4209a586df45f31eda99
http://knowledgebase.serena.com/InfoCenter/index?page=content&id=D16727&token=ca1f979367db4209a586df45f31eda99

154 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

Using Workspaces
The rich integration to Visual Studio makes extensive use of Version Manager workspaces
to simplify the collaborative process. Version Manager workspaces represent a collection
of specific files, each of which shares a common default version label. Workspaces enable
developers to get and work only on files associated with specific development efforts or
projects, as defined by the default version label.

Version Manager workspaces define a default workfile location. However, this workfile
location does not apply to IDE clients, such as the rich integration to Visual Studio.
Instead, the workfile location specified in Visual Studio is used. Other Version Manager
clients, such as the CLI or Web client, use the workfile location defined in the Version
Manager workspace.

The following steps provide an overview of workspace setup and usage, with the rich
integration to Visual Studio:

1 The Version Manager administrator sets up the workspace in Version
Manager. Unique workspaces can be set up for each project or subproject, and even
for each developer. The simplest workflow is to define a common workspace that all
members on a project team can share, and that defines the correct default version
label for the project. If developers will use different workspaces but will work on a
common project, the default version label should be set to the same value for each
workspace. Because it is the version label that determines what each developer can
see and modify, it is important that the default is common for all developers who will
work on the same branch of development. See the Version Manager Administrator's
Guide for details.

Any changes to the project structure in one workspace will affect all other workspaces
that include the Visual Studio project. If a developer renames, moves, deletes, or
adds files, those changes will appear in the other workspaces. Carefully evaluate such
dependencies when defining workspaces.

2 The administrator defines the default version label for the workspace. The
default version label will in turn determine precisely which files should belong to the
workspace.

For example, if the floating label "Latest" is assigned to all files in the project, and if
the workspace should include the most recent versions of all files in the project, define
the default version label as "Latest."

Or, if the workspace should include all files in a branch for which the branch version
label is "branch_01," then the default version label for the workspace should be
defined as "branch_01."

See "Working with Branches" on page 161 and the Version Manager Administrator's
Guide for details.

If Visual Studio is open when a default label is defined or changed, Visual Studio must
be restarted before the new default label takes effect.

3 A developer selects the appropriate workspace when adding the Visual
Studio solution or project to source control. By selecting the appropriate
workspace, the default version label for that workspace is assigned to all files that are
added to Version Manager. For example, if the developer chooses a workspace for
which "Latest" is the default version label, then the "Latest" label is assigned to all
files.

Collaborative Process Overview

IDE Client Implementation Guide 155

4 Other developers select the appropriate workspace when opening the
solution or project from source control. This choice then determines what files
are copied to the local workspaces. For example, if developers choose a workspace for
which "Latest" is the default version label, then only those files to which "Latest" is
assigned are copied to the local workspaces.

5 Developers synchronize workspaces, automatically checking in / getting files
with the default version label. When a developer synchronizes a local workspace
with the Version Manager project:

• Any new local files are added to the Version Manager project, and the default
version label of the current workspace is assigned to them.

• Any new files in Version Manager to which the default version label has been
assigned are copied to the local workspace.

Working on Files Without Locking Them
In this workflow, files are locked only momentarily at the point when you actually check-in
changes, rather than before you begin working on the files. In Version Manager, we call
this pragmatic locking. This model enables multiple users to get and modify the same files
at the same time. Each user's modifications will be auto-merged with other users'
changes when the files are checked in. If any conflicts result from attempting to auto-
merge multiple users' changes, the check-in of the conflicting files will fail. You can
resolve any such conflicts by launching the Merge tool from the Compare Workspaces
view. Alternatively, you could simply synchronize from the Compare Workspaces view
rather than invoke the Check In dialog box in the first place.

By default, pragmatic (optimistic) locking is enabled. However, the administrator can turn
it off for any given project database, thus requiring users to checkout files before editing.
See the Administrator’s Guide.

The following steps illustrate this process:

1 At the beginning of each work day, make sure that your local workspace has all of the
latest updates from the corresponding Version Manager project. To do this, you can
either update your local workspace with changes in the Version Manager project (see
"Getting All Updates from Version Manager" on page 195) or synchronize your local
workspace with the corresponding project (see "Comparing and Synchronizing
Workspaces" on page 193). If the local files already exist and are different from the
latest revisions in Version Manager, the different revisions are merged. If any conflicts
result from the attempt to merge the different revisions, identify the files with the
Compare Workspaces view and resolve them with the Merge tool.

2 Edit the files.

3 When you have finished your work on the files, commit all local changes to Version
Manager ("Committing Local Changes to Version Manager" on page 197), or
synchronize your workspace with the corresponding Version Manager workspace.

By default, when you get files from source control, they are set to read-only in your local
workspace. In order to make changes to them, you must either make them writable from
Windows Explorer before you start work on them, or you must choose to overwrite the file
when attempting to save your changes in Visual Studio.

156 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

Example: Collaborative Development

A team of developers work together on files stored in a project called "Patch2," in a
project database called "Source." Their project allows multiple developers to work on
common files at one time. Their development workflow is:

1 At the beginning of every day, each developer can update the local workspace with
the latest changes under the "Patch2" project in Version Manager. Because the
development team works from sites in multiple nations, this synchronization ensures
that all developers have all of the latest updates from all development sites. See
"Synchronizing Workspaces" on page 198.

2 At the end of each day, each developer synchronizes their workspace with the
corresponding Version Manager project, in order to check in all changes to files in the
local workspace. If multiple developers have modified the same files, the merge
functionality will attempt to merge each user's changes into the new revisions. All
merged and changed files are copied to the local workspace. If conflicts result from
the attempt to merge, the developer performing the check-in must resolve the
conflicts, and then synchronize again. See "Synchronizing Workspaces" on page 198.

Checking Out (Locking) Files
In this workflow, check out any file that you intend to modify. This locks the file in Version
Manager, which prevents other users from checking in changes until you unlock the files.
Once you have completed your changes, check in the files. This ensures that changes
from multiple users will never result in conflicts.

IMPORTANT! Checking in local changes does not synchronize such changes as renamed
and moved files. To do this, commit all local changes to Version Manager ("Committing
Local Changes to Version Manager" on page 197), or synchronize your workspace with the
corresponding Version Manager workspace

By default, pragmatic (optimistic) locking is enabled. However, the administrator can turn
it off for any given project database, thus requiring users to checkout files before editing.

Example: Locking Files

As part of a larger development team working on a complex and interdependent code
base, Joe and Carol frequently work on the same files. A typical day might include the
following:

1 To begin work on a set of files, Joe checks them out from Version Manager (see
"Checking Out Files" on page 178.).

2 When Carol opens the project, she displays the Compare Workspace view to check
whether the files that she needs are currently checked out (see "Comparing
Workspaces" on page 194). She sees that they are. Using the History view, she sees
that Joe has the files checked out (see "Reviewing File History" on page 175).

3 Joe completes his work and checks in the files, associating them with the SBM issues
that spawned the work (see "Checking In Files" on page 182).

4 Carol comes back from lunch and checks the Compare Workspace view to see what
the current file status is. She sees that the files are checked in, so she checks them
out and begins her work.

Migrating and Converting Visual Studio Solutions

IDE Client Implementation Guide 157

Migrating and Converting Visual Studio Solutions
Consider the following before migrating your Visual Studio solutions:

 Do not mix integrations. All users who work on a common project must use the
same integration (SCC or rich). Once you migrate a project to the rich integration, all
users must open the project via the rich integration.

 All projects must be located under the solution folder. Projects outside the solution
tree cannot be migrated.

 Do not migrate your SCC projects to the rich integration if you use TrackerLink, and
will continue to use it. The rich integration supports SBM. Do not migrate to the rich
integration until you have successfully migrated your Tracker projects to SBM. You can
then use the rich integration to SBM from Visual Studio.

NOTE If your Visual Studio solutions are under Visual SourceSafe source control, see the
"Using the Version Manager Conversion Utility for SourceSafe" chapter in the
Administrator’s Guide.

Migrating from Visual Studio 2003 to Visual Studio RIDE

Migrating from Visual Studio SCC to Visual Studio RIDE

Migrating from Visual Studio 2005 to Visual Studio RIDE

Migrating from Visual Studio 2003 to Visual Studio
RIDE
This procedure describes how to convert a solution from Visual Studio .NET 2003 SCC and
update the source control integration to Visual Studio RIDE.

Before migrating a solution, all users should check in their work and unlock all files.

1 Check out the solution and all of its projects and sub projects using the Version
Manager desktop client.

2 Launch Visual Studio.

3 Open the solution. The Visual Studio Conversion Wizard appears.

4 Complete the Visual Studio Conversion Wizard. See the Microsoft documentation for
more information.

5 Select File | Save All.

6 Select File | Source Control | Migrate. Page-1 of the PVCS Version Manager Migration
Wizard appears.

7 To specify the Version Manager project database that contains the Visual Studio
solution, do any of the following:

 Enter the path to the root project database directory, or select a recent project
database from the drop-down list.

 Click the Browse for PDB button to browse for a project database. In this
case, you must select the .ser file located directly under the root PDB directory.

158 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

 Click the Browse File Servers button to choose from all project databases on
the Version Manager file server. File servers must be defined from the Version
Manager desktop client. If no Version Manager file server is defined, ignore this
button.

8 Enter your Version Manager user name and password, and click Next. Page-2 of the
wizard appears.

9 Select the Version Manager workspace to use and click Next. Consider the following:

 Your choice of workspace determines the default version label and promotion
group for the files. Only those files to which the default version label is assigned
will be opened to your local workspace. Later on, when synchronizing your local
workspace with Version Manager, the default version label will be assigned to any
new files that you add. See "Using Workspaces" on page 154.

 The choice of workspace also determines which project files you can open. You can
open projects to which the default version label is assigned. For example, if the
default version label is "branch," you will only be able to open a project file to
which the "branch" version label is assigned.

Page-3 of the wizard appears.

10 Select the Version Manager project that you want to migrate.

11 In the Solution file field, enter or browse to the workfile location of the Visual Studio
solution (.sln) file that you want to migrate. Be sure to point to the same location that
you checked the file out to in Step 1.

12 Click Next.

Page-4 of the wizard appears.

13 Review the choices you have made. Click the Back button to change any of the
settings. When you are finished, click the Finish button.

14 Select File | Save All.

15 Close the solution (File | Close Solution).

16 Check in the solution and all of its projects and subprojects using the Version Manager
desktop client.

17 Each user must now open the updated solution from source control (File | Source
Control | Open Project from Source Control). See "Opening Solutions and Projects
from Source Control" on page 170.

Migrating and Converting Visual Studio Solutions

Migrating from Visual Studio SCC to Visual Studio RIDE

Migrating from Visual Studio 2005 to Visual Studio RIDE

Migrating from Visual Studio SCC to Visual Studio
RIDE
This procedure describes how to convert a solution, and migrate the source control
integration, from Visual Studio .NET 2003 to the Visual Studio Rich Integration
Development Environment (RIDE).

Migrating and Converting Visual Studio Solutions

IDE Client Implementation Guide 159

Before migrating a solution, all users should check in their work and unlock all files.

1 Check out the solution and all of its projects and sub projects using the Version
Manager desktop client.

2 Launch Visual Studio.

3 Close any open solutions (File | Close Solution).

4 Select File | Source Control | Migrate. Page-1 of the PVCS Version Manager Migration
Wizard appears.

5 To specify the Version Manager project database that contains the Visual Studio
solution, do any of the following:

 Enter the path to the root project database directory, or select a recent project
database from the drop-down list.

 Click the Browse for PDB button to browse for a project database. In this
case, you must select the .ser file located directly under the root PDB directory.

 Click the Browse File Servers button to choose from all project databases on
the Version Manager file server. File servers must be defined from the Version
Manager desktop client. If no Version Manager file server is defined, ignore this
button.

6 Enter your Version Manager user name and password, and click Next. Page-2 of the
wizard appears.

7 Select the Version Manager workspace to use and click Next. Consider the following:

 Your choice of workspace determines the default version label and promotion
group for the files. Only those files to which the default version label is assigned
will be opened to your local workspace. Later on, when synchronizing your local
workspace with Version Manager, the default version label will be assigned to any
new files that you add. See "Using Workspaces" on page 154.

 The choice of workspace also determines which project files you can open. You can
open projects to which the default version label is assigned. For example, if the
default version label is "branch," you will only be able to open a project file to
which the "branch" version label is assigned.

Page-3 of the wizard appears.

8 Select the Version Manager project that you want to migrate.

9 In the Solution file field, enter or browse to the workfile location of the Visual Studio
solution (.sln) file that you want to migrate. Be sure to point to the same location that
you checked the file out to in Step 1.

10 Click Next.

Page-4 of the wizard appears.

11 Review the choices you have made. Click the Back button to change any of the
settings. When you are finished, click the Finish button. The Visual Studio Conversion
Wizard appears.

12 Complete the Visual Studio Conversion Wizard. See the Microsoft documentation for
more information.

13 Select File | Save All.

160 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

14 Check in the solution and all of its projects and subprojects using the Version Manager
desktop client.

15 Each user must now open the updated solution from source control (File | Source
Control | Open Project from Source Control). See "Opening Solutions and Projects
from Source Control" on page 170.

Migrating and Converting Visual Studio Solutions

Migrating from Visual Studio 2003 to Visual Studio RIDE

Migrating from Visual Studio 2005 to Visual Studio RIDE

Migrating from Visual Studio 2005 to Visual Studio
RIDE
This procedure describes how to convert a Visual Studio 2005 SCC solution to Visual
Studio RIDE. Before migrating a solution, all users should check in their work and unlock
all files.

1 Check out the solution and all of its projects and sub projects using the Version
Manager desktop client.

2 Launch Visual Studio.

3 Close any open solutions (File | Close Solution).

4 Select File | Source Control | Migrate. Page-1 of the PVCS Version Manager Migration
Wizard appears.

5 To specify the Version Manager project database that contains the Visual Studio
solution, do any of the following:

 Enter the path to the root project database directory, or select a recent project
database from the drop-down list.

 Click the Browse for PDB button to browse for a project database. In this
case, you must select the .ser file located directly under the root PDB directory.

 Click the Browse File Servers button to choose from all project databases on
the Version Manager file server. File servers must be defined from the Version
Manager desktop client. If no Version Manager file server is defined, ignore this
button.

6 Enter your Version Manager user name and password, and click Next. Page-2 of the
wizard appears.

7 Select the Version Manager workspace to use and click Next. Consider the following:

 Your choice of workspace determines the default version label and promotion
group for the files. Only those files to which the default version label is assigned
will be opened to your local workspace. Later on, when synchronizing your local
workspace with Version Manager, the default version label will be assigned to any
new files that you add. See "Using Workspaces" on page 154.

 The choice of workspace also determines which project files you can open. You can
open projects to which the default version label is assigned. For example, if the
default version label is "branch," you will only be able to open a project file to
which the "branch" version label is assigned.

Working with Web Projects

IDE Client Implementation Guide 161

Page-3 of the wizard appears.

8 Select the Version Manager project that you want to migrate.

9 In the Solution file field, enter or browse to the workfile location of the Visual Studio
solution (.sln) file that you want to migrate. Be sure to point to the same location that
you checked the file out to in Step 1.

10 Click Next.

Page-4 of the wizard appears.

11 Review the choices you have made. Click the Back button to change any of the
settings. When you are finished, click the Finish button.

12 Check in the solution and all of its projects and subprojects using the Version Manager
desktop client.

13 Each user must now open the updated solution from source control (File | Source
Control | Open Project from Source Control). See "Opening Solutions and Projects
from Source Control" on page 170.

Migrating and Converting Visual Studio Solutions

Migrating from Visual Studio 2003 to Visual Studio RIDE

Migrating from Visual Studio SCC to Visual Studio RIDE

Working with Web Projects
The rich integration supports Web projects, such as ASP Application projects. When
working with Web projects, remember the following:

 When you add a Web project to a solution, you define a Web URL for the project. All
files in the project are stored in this Web location, rather than under the root solution
folder in your Visual Studio workspace. This URL does correspond to a physical
directory. This physical directory mapping is defined by your Web server. Once you
have successfully added the projects to your solution, you can add them to Version
Manager like any other type of project. See "Adding Solutions and Projects to Version
Manager" on page 168.

 When you open a single web project from source control, it opens in a new, blank
solution. The steps to open Web projects are a bit different than those for a non-web
project. See "Opening Web Projects from Source Control" on page 173.

Working with Branches
A branch is a separate line of development consisting of one or more revisions that
diverge from a revision on the trunk (mainline of development) or from another branch.
Branching allows you to develop alternative versions of a file in parallel with other
developers who are working on the trunk or on another branch.

162 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

Some reasons for creating a branch include:

 Developing platform specific versions of a file.

 Fixing a bug or developing a new feature without interrupting the mainline of
development.

 Customizing your code to meet the needs of a specific customer without affecting the
mainline of development.

When you create a branch, a new revision is created. This new revision has the same
revision number as the revision you are branching from, but with two more digits added
to the end, "1.0". So if revision 1.5 is the revision you are branching from, revision
1.5.1.0 will be the first revision in the new branch.

Viewing Branched Files
You can see all revisions on all branches of a particular file from the History view.

To view revisions on a branch:

1 Right-Click on the desired file in the Solution Explorer and select History from the
resulting menu. The History view displays a list of all revisions of the file.

2 Click the nodes to expand branches in the tree, as needed, in order to locate the
desired revision.

How Do I Tell a Branch from the Trunk and One Branch from Another?

In the following image:

 1.0 is the initial revision of the file ReadMe.txt.

 1.2 is the latest (tip) revision of the mainline of development (trunk) as defined by the
default version label Prag-1.

 1.1.1.0 is the initial revision of the first branch off of revision 1.1.

 1.1.1.2 is the tip revision of the 1.1.1.x branch.

 1.1.2.0 is the initial revision of the second branch off of revision 1.1.

 1.1.2.1 is the tip revision of the 1.1.2.x branch.

Working with Branches

IDE Client Implementation Guide 163

How Should I Branch My Files?
The integration provides two ways to create and work with branched files:

 Automatic Label-Based Branching: Which allows you to:

• Branch an entire project or group of files.

• Check out an entire branched project or group of files.

• Manage each branch and trunk with separate Version Manager workspaces.

 Manual Branching: Which allows you to:

• Create one branched file at a time.

• Check out one branched file at a time.

To branch just a file or two, you can use the manual method. To branch a number of files
or an entire project, use automatic label-based branching.

Automatic Label-Based Branching
A user with appropriate privileges must use the Version Manager desktop client to
configure the workspace for automatic label-based branching.

Creating a branch:

1 From the Version Manager desktop client, create a workspace for the branch. For
example, you could have a workspace named TRUNK for the mainline of development
and a workspace named PATCH-1 for the new branch. See "Using Workspaces" on
page 154 and the Administrator’s Guide.

Any changes to the project structure in one workspace will affect all other workspaces
that include the Visual Studio project. If a developer renames, moves, deletes, or
adds files, those changes will appear in the other workspaces. Carefully evaluate such
dependencies when defining workspaces.

2 Switch to the workspace that you created for the branch. (Click on the workspace icon
 at the bottom of the desktop client and select the desired

workspace from the resulting dialog box.)

3 From the desktop client, select the project/folder that is at the top of the hierarchy
that you wish to branch.

4 Right-click and select Properties from the resulting menu. The Properties dialog box
appears.

5 Select the Workspace Settings tab.

6 Do the following:

a Workfile Location: This field does not apply to the Visual Studio integration.
However, if you access the files with other Version Manager clients, the files will be
written to this location during get and check out operations.

b Default Version: The version label entered here determines which revision is
acted upon by source control operations. Enter the version label that you want to
associate with the latest revision of each file in the branch.

164 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

You may find it easier to apply the labels associated with these fields before you
define the Default Version. Once the Default Version is defined, every action
(including applying labels) will require that you specify a specific revision to act
upon, unless the label defined for the Default Version already exists.

c Branch Version: Enter the same version label that you entered in the Default
Version field. This allows you to operate on the tip of the branch rather than the
tip of the trunk.

d Base Version: The version label entered here determines which existing revision
the branch will branch off from.

7 Assign the version labels that you defined for the Default Version and the Base
Version to the revision that you want to branch from. Apply regular fixed labels, not
floating labels.

If you defined the Default Version before applying the label associated with it, you
must specify a specific revision in order to apply a label. Specifying 1.*, for example,
will apply the label to the tip of the trunk.

Results: From the History view in Visual Studio, the results might look something like
the following if TRUNK is a floating label that marks the tip of the trunk, and BASE and
BRANCH are on the revision targeted for branching:

8 From Visual Studio, select the solution, project, folder, or files to be branched, and
check them out.

Results: The revision with the label corresponding to the Default Version is checked
out rather than the tip of the trunk.

9 From Visual Studio, check in the items to be branched. On the Options tab, set the If
file is unchanged option to Check in. A new revision must be checked in to create a
branch.

Working with Branches

IDE Client Implementation Guide 165

Results: The branch is created, and the label you defined as the Branch Version is
now a floating label on the tip of the branch.

For more information on configuring branching and workspaces, see the Administrator’s
Guide.

Manual Branching
There are two ways to manually create a branch:

 Select the Force branch option when you check in a file.

 Check out a non-tip revision (any revision other than the latest revision on a given
trunk or branch) and check it back in.

Using the Force Branch Option

You can create a branch by using the Force Branch option during check in.

To create a branch:

1 Select the file or files to branch and then invoke the Check In dialog box (Right-Click |
Check In). If your organization enforces pessimistic locking, you must first check out
the files (Right-Click | Check Out).

2 On the Options tab, select the Force branch option. On the Options tab, set the If
file is unchanged option to Check in. A new revision must be checked in to create a
branch.

3 Enter a comment and set any other options as desired.

4 Click the Check In button.

For complete information on the Check In dialog box, see "Checking In Files" on page
182.

Branching by Checking In a Non-Tip Revision

You can create a branch by checking out a non-tip revision of a file and checking it back
in.

To create a branch:

1 Select the desired file in the Solution Explorer.

2 Right-Click and select History from the resulting menu. The History view displays a
list of all revisions of the file.

166 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

The blue checkmark in the History view indicates which revision is currently in your
local workspace.

3 Click the nodes to expand branches in the tree, as needed, in order to locate the
desired revision.

4 Right-Click on the desired revision and select Check Out Revision from the resulting
menu.

A red checkmark appears next to the file in the Solution Explorer and a blue
checkmark appears next to the revision in the History view. The file is checked out.

5 Right-Click the file in the Solution Explorer and select Check In from the resulting
menu. The Check In dialog box appears. On the Options tab, set the If file is
unchanged option to Check in. A new revision must be checked in to create a
branch.

6 Enter a comment and set any other options as desired.

7 Click the Check In button.

For complete information on the Check In dialog box, see "Checking In Files" on page
182.

Editing Revisions on a Branch
You can view and edit any revision of any branch from the History view.

To edit a revision on a branch:

1 Right-Click on the desired file in the Solution Explorer and select History from the
resulting menu. The History view displays a list of all revisions of the file.

2 Click the nodes to expand branches in the tree as needed in order to locate the
desired revision.

3 Right-Click on the desired revision and select Check Out Revision or Get Revision
from the resulting menu, depending on whether your organization requires a lock in
order to edit files.

The blue checkmark in the History view indicates which revision is in your local
workspace. The Locked column indicates which revisions are locked and by whom.

Setting Up Source Control Projects

IDE Client Implementation Guide 167

Checking In Branched Files
When you check in a file (whether it is branched or not), a new revision is created in one
of the following places, depending on how your Version Manager workspace is configured
and whether a non-tip revision is checked out:

To check in branched files:

1 Save all of the files that you are checking in, including any project or solution files.

2 Right-Click on the desired files or folders in the Solution Explorer and select Check In
from the resulting menu. The Check In dialog box appears.

3 Enter a comment and set any other options as desired.

4 Click Check In. If multiple revisions of the file are locked, you will be prompted to
select which revision to unlock.

For complete information on the Check In dialog box, see "Checking In Files" on page
182.

Setting Up Source Control Projects
In order to use the Version Manager integration to Visual Studio, each developer on the
project must associate their local Visual Studio projects with a corresponding Version
Manager project. Once they have done this, all developers working on the project can get
all recent updates to the files, and check in new changes to the files. They can
synchronize their local workspace with the Version Manager project, which acts as a
central repository for every developer's changes. You can do this in one of two ways:

 If the solution or project does not yet exist in Version Manager, add the solution or
project to source control. This creates a corresponding project, and adds all of the
folders and files in the project to Version Manager. See "Adding Solutions and Projects
to Version Manager" on page 168.

If Then

No revision is locked, AND
A Default Version has been defined for
the workspace and applied to the file.

The new revision is checked in as the tip
on the branch or trunk that is defined by
the Default Version.

No revision is locked, AND
No Default Version is in effect for the file.

The new revision is checked in as the tip
on the trunk.

A single tip revision is locked The new revision is checked in as the tip
on the branch or trunk that contains the
locked revision.

Multiple revisions are locked You are prompted to select which revision
to unlock. The new revision is created as
the tip on the branch or trunk that you
unlock.

A non-tip revision is locked The new revision is checked in as the tip of
a new branch off of the locked revision.

168 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

 If the solution or project already exists in Version Manager, add it to your local
workspace. This copies all files from the Version Manager project to your Visual Studio
workspace, and establishes a relationship between your local solution and the
corresponding Version Manager project. See "Opening Solutions and Projects from
Source Control" on page 170.

Adding Solutions and Projects to Version Manager
If your solution or project has not yet been added to Version Manager, you must do so in
order to use the integration to Version Manager. You can choose whether to:

 Add your entire solution to Version Manager. By adding the entire solution, you
can store all projects and files in the solution within a single project database in
Version Manager. Depending on your development scenario, this may simplify the
collaborative process for members of your organization, as developers will only need
to get and work within the single project database.

 Add some projects in a solution to Version Manager. You can add just some of
the projects within a solution to source control, if you don't want to add the entire
solution. This allows you the option of working with projects that are under source
control within solutions that are not, themselves, under source control. This may be
necessary or desirable in certain cases.

IMPORTANT!

 Visual Studio projects do not need to be located under the root directory of a solution-
-BUT, if the projects ARE located under the root of the solution, they MUST be added
to the same Version Manager project database as the solution.

 All files of a given CAB or C++ project must reside under the root directory of the
Visual Studio project. Cutting and pasting files from one C++ project to another inside
of Visual Studio violates this requirement.

 You can store just one solution or project file within each Version Manager project or
subproject. For example, do not attempt to store more than one solution file within
the same project in Version Manager. When adding solutions and projects to source
control, select destination projects in Version Manager that are distinct from each
other.

When you add a solution or project to source control:

 All files in the solution or project are added to the target Version Manager project
database, with the exception of file types that are ignored by source control
operations in Visual Studio.

 For each project or folder within the solution or project that you add, a corresponding
Version Manager subproject is created. For example, if you add a solution that
contains four projects, four subprojects will be created in the Version Manager project
database.

 The default version label for the workspace that you choose is assigned to all files as
they are added to source control. The default label is assigned as a floating label, so
that it is always associated with the latest revision. This ensures that other users who
will use this workspace see and work on the same set of files. See "Using Workspaces"
on page 154.

Setting Up Source Control Projects

IDE Client Implementation Guide 169

To add a solution or project to Version Manager:

1 If necessary, from the Version Manager desktop client, create the Version Manager
project database that you will add the solution or project to. See the Version Manager
Administrator's Guide for more information.

2 In Visual Studio, open the Solution that you want to add to Version Manager, or that
contains the projects you want to add to source control.

3 Save the solution and all projects within before adding it to Version Manager.

4 Do one of the following:

The Add to Source Control wizard appears.

5 Specify the project database to which you will add the solution or project. Do any of
the following to specify a project database:

 Enter the path to the root project database directory, or select a recent project
database from the drop-down list.

 Click the Browse for PDB button to browse for a project database. In this
case, you must select any of the .ser files located directly under the root PDB
directory.

 Click the Browse File Servers button to choose from all project databases on
the Version Manager file server, if a file server is defined in Version Manager. File
servers must be defined from the Version Manager desktop client. If no Version
Manager file server is defined, ignore this button.

6 Enter your Version Manager user name and password and click Next. The Workspace
page of the wizard appears.

7 Select the Version Manager workspace that you will use for the solution or project. All
public workspaces in the project, and any private workspaces to which you have
access, are displayed. Note the following:

 Your workspace choice determines the default version label for the files. This label
is assigned to all files as they are added to Version Manager. This ensures that any
other user that will use this workspace (for example, by opening the solution or
project from source control) will work on the same set of files.

 The choice of workspace does not affect your workfile location setting; working
copies of all of your files will be saved to the Visual Studio workspace.

8 Click Next. The Create Project page of the wizard appears.

9 Select the project or subproject, within the project database, to which you will add
your solution or project.

If Then

You will add the solution to
source control

a Select the solution root in the Solution Explorer.

b Right-click, and select Add Solution to Source
Control from the resulting menu.

You will add a specific
project to source control

a Select the project in the Solution Explorer.

b Right-click, and select Add Project to Source
Control from the resulting menu.

170 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

You can store just one solution file within each Version Manager project or subproject.
Do not attempt to store more than one solution file within the same project in Version
Manager. When adding solutions and projects to source control, select destination
projects in Version Manager that are distinct from each other.

10 Click Next. The SBM page of the wizard appears.

11 Enter the SBM server name in the SBM Server field. If the SBM server uses a non-
default port number (any port except 80), append the port number to the server
name. For example, if the port number is 89:

tt_server:89

12 Enter your SBM user name and password.

13 Click Next. The Review page of the wizard appears.

14 Review the choices you made. Click the Back button to change any of the settings.
When you are finished, click the Finish button.

Opening Solutions and Projects from Source Control
If the Visual Studio project that you want to work on was added to source control from a
different computer, you must open it from source control before you can start work on it.
Once you open a solution or project from source control, the Visual Studio solution or
project files will be available in your local workspace.

You can choose to open an entire solution and all projects within it at one time ("Opening
Solutions from Source Control" on page 170), add a project to an open solution ("Opening
Non-Web Projects from Source Control" on page 171), or open a single Web project into a
new solution ("Opening Web Projects from Source Control" on page 173).

Opening Solutions from Source Control

Complete the following steps to open an entire solution from Version Manager, including
all projects in that solution.

To open a solution from Version Manager:

1 Select File | Open Solution From Source Control. The Open from Source Control
wizard appears.

2 Specify the project database that contains the solution you are opening. Do any of the
following to specify a project database:

 Enter the path to the root project database directory, or select a recent project
database from the drop-down list.

 Click the Browse for PDB button to browse for a project database. In this
case, you must select any of the .ser files located directly under the root PDB
directory.

 Click the Browse File Servers button to choose from all project databases on
the Version Manager file server. File servers must be defined from the Version
Manager desktop client. If no Version Manager file server is defined, ignore this
button.

3 Enter your Version Manager user name and password.

Setting Up Source Control Projects

IDE Client Implementation Guide 171

4 Click Next. The Workspace page of the wizard appears.

5 Select the workspace that you will use for all projects within the solution. Note:

 Your choice of workspace will determine the default version label and promotion
group for the files. Only those files to which the default version label is assigned
will be opened to your local workspace. Later on, when synchronizing your local
workspace with Version Manager, the default version label will be assigned to any
new files that you add. See "Using Workspaces" on page 154.

 The choice of workspace also determines which solution files you can open. You
can open a solution to which the default version label is assigned. For example, if
the default version label is "branch," you will only be able to open a solution file to
which the "branch" version label is assigned.

6 Click Next. The Create Project page of the wizard appears.

7 Browse the project database folders to find and select the specific solution (.sln) file
that you want to open. All solution files to which your default version label is assigned
are displayed. If your default version label is not assigned to the latest revision of any
solution files, then no solution files will be visible to you.

8 In the Workfile location field, enter or browse to select the local workspace location.
This is the local work directory, where your working copies of the files in the solution
will be stored.

9 Click Next. The SBM page of the wizard appears.

10 Enter the SBM server name in the SBM Server field. If the SBM server uses a non-
default port number (any port except 80), append the port number to the server
name. For example, if the port number is 89:

tt_server:89

11 Enter your SBM user name and password.

12 Click Next. The Review page of the wizard appears.

13 Review the choices you made. Click the Back button to change any of the settings.
When you are finished, click the Finish button.

14 If you are opening a solution that contains Web projects, you are prompted to enter
the full path to the physical directory that corresponds to your Web server’s root URL.
The workfiles for your Web projects will be stored here. For example, if your root Web
URL (such as http://localhost) maps to the following directory: c:\inetpub\wwwroot,
then choose the c:\inetpub\wwwroot directory for your Web projects.

Opening Non-Web Projects from Source Control

Complete the following steps to add non-Web projects from Version Manager to an open
solution. You can also open single web projects from Version Manager into new solutions.
For instructions on this, see "Opening Web Projects from Source Control" on page 173.

IMPORTANT! If you add a project from Version Manager to a solution that is already
under source control, you must save your solution and then check your solution in
to Version Manager after you have added the project to it. This ensures that the
version of the solution that includes the new project is stored in Version Manager, and that
all users can get this update. One fast way to do this is to commit all local changes to
Version Manager. See "Committing Local Changes to Version Manager" on page 197.

172 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

To open a non-Web project from Version Manager:

1 Open or create the Solution to which you will add the project.

2 Select File | Source Control | Open Project from Source Control. The Open from
Source Control wizard appears.

3 Specify the project database that contains the project that you want to open. Do any
of the following to specify a project database:

 Enter the path to the root project database directory, or select a recent project
database from the drop-down list.

 Click the Browse for PDB button to browse for a project database. In this
case, you must select any of the .ser files located directly under the root PDB
directory.

 Click the Browse File Servers button to choose from all project databases on
the Version Manager file server. File servers must be defined from the Version
Manager desktop client. If no Version Manager file server is defined, ignore this
button.

4 Enter your Version Manager user name and password.

5 Click Next. The Workspace page of the wizard appears.

6 Select the desired workspace. Consider the following:

 Your choice of workspace determines the default version label and promotion
group for the files. Only those files to which the default version label is assigned
will be opened to your local workspace. Later on, when synchronizing your local
workspace with Version Manager, the default version label will be assigned to any
new files that you add. See "Using Workspaces" on page 154.

 The choice of workspace also determines which project files you can open. You can
open projects to which the default version label is assigned. For example, if the
default version label is "branch," you will only be able to open a project file to
which the "branch" version label is assigned.

7 Click Next. The Create Project page of the wizard appears.

8 Browse the project database folders to find and select the specific project file that you
want to open locally. All project files to which your default version label is assigned are
displayed. If your default version label, as determined by your workspace selection, is
not assigned to the latest revision of any project files, then no project files will be
visible to you.

9 In the Workfile location field, specify the local workspace location. This is the local
work directory, where your working copies of the files in the solution will be stored.

10 Select the Add to Solution option to add the project to the solution currently open in
Visual Studio. Else, the Close Solution option will close the current solution and
create a new solution for the project.

11 Click Next. The SBM page of the wizard appears.

12 Enter the SBM server name in the SBM Server field. If the SBM server uses a non-
default port number (any port except 80), append the port number to the server
name. For example, if the port number is 89:

tt_server:89

Setting Up Source Control Projects

IDE Client Implementation Guide 173

13 Enter your SBM user name and password.

14 Click Next. The Review page of the wizard appears.

15 Review the choices you made. Click the Back button to change any of the settings.
When you are finished, click the Finish button.

16 Before you start working on any files:

a Save the solution.

b Close the solution, then reopen the solution.

c If the solution is under source control, you should also check in the solution to
make sure that other users of the same solution will get the version of the solution
with the project in it. One fast way to do this is to commit all local changes to
Version Manager. See "Committing Local Changes to Version Manager" on page
197.

Opening Web Projects from Source Control

Follow these steps to open a single web project into a new, blank solution. It is simpler to
open an entire solution at a time. These steps, however, allow you to open and work with
just a specific Web project, if you don’t want to work with all projects in a solution.

To open a Web project from Source Control:

1 Select File | Open | Web Site. The Open Web Site dialog box appears.

2 Select Source Control in the left pane.

3 Click the Select Source Control Project button. The Open Web Project from Source
Control wizard appears.

4 Complete the steps under "Opening Solutions from Source Control" on page 170, but
with the following changes on the Create Project page of the wizard:

 Select the specific web project from the folder tree. Do not select a solution.

 In the Workfile location field, enter a path to a new folder under your root IIS
directory. For example, if your IIS server stores all Web files under the
C:\Inetpub\wwwroot directory and your project is called MyWebApp, browse to
select the following complete path:

C:\Inetpub\wwwroot\MyWebApp

It is strongly recommended that you name this folder after the project
name.

5 Complete the wizard. Once the wizard is complete, the Open Web Site dialog box
reappears.

6 To run the web project as an IIS web site, select the Run as IIS web site checkbox.
Else, by default, it will run as a file-based web site.

7 Click the Open button.

174 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

Opening Solutions not Added using RIDE
You can open a Visual Studio solution from Source Control if it was added to the project
database using a different client to the Visual Studio RIDE, for example, the VM GUI or VM
I-Net clients.

NOTE If you do not follow the procedure below this message is displayed.
Unable to detect relative root directory.
"Root directory for selected item is not detected. Possible it is added not through RIDE."

1 Select File | Open | Project/Solution.

2 Select the Visual Studio solution and open it without any Source Control integration.

3 Do one of the following:

• Select File | Source Control | Change Binding.

• Right-click the solution and select Change Binding.

4 In the Change Source Control wizard, to select the project database containing the
solution that you want to open, do one of the following:

 Enter the path to the root project database directory or select a project database
from the list.

 Click Browse for PDB and browse for a project database. Select any of the.ser
files located directly under the root PDB directory.

 (Only applicable if a Version Manager file server is defined) Click Browse File
Servers and select a project database on the Version Manager file server.

5 Click Next. Enter your Version Manager user name and password.

6 Click Next. Select the workspace that you will use for all projects in the solution.

NOTE: The workspace determines the default version label and promotion group for
the files. Only deleted files to which the default version label is assigned will open in
your local workspace. When you synchronize your local workspace with Version
Manager, the default version label is assigned to any new files that you add. See
"Using Workspaces" on page 154. The workspace also determines which solution files
you can open. You can open a solution to which the default version label is assigned.
For example, if the default version label is "branch," you can only open a solution file
to which the "branch" version label is assigned.

7 Click Next. Browse the project database folders and select the solution file (.sln) that
corresponds to the Visual Studio solution that is open.

8 Click Next, review your choices, and click Finish.

Editing Files
Complete the procedures in this section to:

 Review file history. See "Reviewing File History" on page 175.

 Get files and folders. See "Getting Specific Files or Folders" on page 176.

 Check specific files and folders out. See "Checking Out Files" on page 178.

Editing Files

IDE Client Implementation Guide 175

 Undo checkout. See "Undoing Checkout" on page 180.

 Edit files. See "Editing Files" on page 181.

 Review local changes. See "Reviewing Local Changes" on page 181.

 Check specific files in. See "Checking In Files" on page 182

 Label files. See "Labeling Revisions" on page 186.

 Promote files. See "Promoting Revisions" on page 188.

 Work offline. See "Working While Offline" on page 188.

Reviewing File History
Review file history to display information about a file's revisions, including check-in date
and comment, author, and assigned version labels and promotion groups.

Reviewing File History

To review file history:

1 Select the file in the Solution Explorer.

2 Right-click, and select View History from the resulting menu. The History view
appears.

176 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

3 From the History view toolbar, you can do any of the following:

Getting Specific Files or Folders
Get files to copy any files that you need to work on to your local workspace. You can get
the latest revisions of files, or specific revisions from specific branches.

Once you have gotten the files, you can edit them and check them in (unless your
organization requires that you check out files before you can edit them; see "Collaborative
Process Overview" on page 153). The local copies of the files are set to read-only; to edit
them, you must either set them to be writable, or accept the prompts in Visual Studio to
overwrite the existing files when you save.

From the Compare Workspaces view, you can also update your local workspaces with all
new revisions of files, as well as new files and other changes to the Version Manager
project. See "Getting All Updates from Version Manager" on page 195.

Getting Latest Revisions

Getting Previous Revisions or Getting from Specific Branches

Action Buttons

1 Compare Revisions: Compares two selected
revisions, or compares your local file to the
latest revision in Version Manager. To compare
two revisions, CTRL-click the two revisions,
then click the button. See "Comparing Files" on
page 199.

2 View Selected Revision: Copies the revision
to a temporary location and opens it in Visual
Studio. You cannot edit the file, only view it.

3 Assign Label: Assigns a new version label to
the selected revision. See "Assigning Labels to
the Latest Revision" on page 186.

4 Promote to Next: Promote the selected
revision to the next promotion group. See
"Promoting Revisions" on page 188.

5 Check Out Selected Revision: Check out the
selected revision. See "Checking Out Files" on
page 178.
Note, if you check out a non-tip revision, a
branch will be created when you check it in.
See "Working with Branches" on page 161.

6 Get Selected Revision: Get a copy of the
selected revision, which you can then work on
and, if you use a pragmatic locking model,
check in. See "Getting Specific Files or Folders"
on page 176.

Display Buttons

7 Revision History: Lists all revisions and
branches of the file.

8 Labels: Lists each version label assigned to a
revision of the file. You can click on specific
label names in order to delete or rename them.

9 Promotion Groups: Lists each promotion
group assigned to a revision of the file.

10 Show Labels: Shows/hides multiple version
labels for the selected revision.

11 Show Comments: Shows/hides full-length
check-in comments for the selected revision.

12 Refresh: Refreshes the History view.

Editing Files

IDE Client Implementation Guide 177

Getting Latest Revisions

If you already have local copies of the files, you can optionally merge the latest revisions
you are getting with your existing local copies. This ensures that any changes you have
made locally are preserved. If any conflicts result from the merge attempt, the get will
fail. Resolve any conflicts, and then get the files. See "Reviewing and Resolving Conflicts"
on page 201.

To get the latest revisions of files:

1 In the Solution Explorer, select the files or folders that you want to get.

2 Right-click, and select Get Latest Revision from the resulting menu. The Get Latest
dialog box appears.

3 Verify that the file selection is correct, and modify it if necessary.

4 To compare a local workfile to the latest revision in Version Manager, select a file and
click the Compare button. The file opens in the Compare Revisions window. See
"Comparing Files" on page 199.

5 To override the default get options, select the Options tab and do any of the
following:

 Specify what to do if the local workfile has changed since the latest revision was
checked in to Version Manager:

• Prompt: Asks you what to do on a file-by-file basis.

• Merge: Automatically merges the latest revision from Version Manager into
your local workfile. If there are conflicting changes, the get will fail. Resolve any
conflicts, and then get the files. See "Reviewing and Resolving Conflicts" on
page 201.

• Replace: Overwrites the local workfile with the latest revision from Version
Manager.

• Leave: Leaves the local workfile as it is.

 Make writable: Select this check box to make the workfile writable instead of
read-only.

The write attribute will be changed only if a revision is actually gotten from the
repository. No revision is gotten if the local file matches the latest revision or if the
local file is different but you selected the Leave option above.

 Save settings: Select this check box to make these settings the new default.

You can also define default options for all dialog boxes from the Tools | Options
dialog box. See "Setting Default Options for Dialog Boxes" on page 189

6 Click the Get button.

Depending on the options you chose, you may be prompted as to what to do with
modified workfiles or to resolve auto-merge conflicts.

Getting Previous Revisions or Getting from Specific Branches

178 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

Getting Previous Revisions or Getting from Specific Branches

To get a specific revision of a file:

1 Select the file in the Solution Explorer.

2 Right-click and select View History from the resulting menu. The History view
appears.

3 Click the Revision History button to display all revisions and branches. A
checkmark in the left column indicates which revision is currently in the local
workspace.

4 Right-click the revision that you want to get and select Get Revision from the
resulting menu.

5 If the local workfile is newer than the revision you are getting, you are prompted to
select one of the following options and click OK:

 Merge the workfile with the revision requested: Automatically merges the
selected revision from Version Manager into your local workfile. If there are
conflicting changes, the get will fail. Resolve any conflicts, and then get the
revision. See "Reviewing and Resolving Conflicts" on page 201.

 Leave the workfile as is: Leaves the local workfile as it is.

 Overwrite the workfile with the requested revision: Overwrites the local
workfile with the selected revision from Version Manager.

Getting Latest Revisions

Checking Out Files
Check out files to lock the latest revision (or specific revision) of specific files in Version
Manager, and copy the files to your local workspace. When you check out files:

 The working copies of the files are set to be writable, so that you can edit and save
changes to them.

 No other user can modify that file until you check it in with your changes, or undo the
checkout. This prevents other users from making changes to the file that might
conflict with your changes.

 If you already have local copies of the files, you can optionally merge the repository
revisions with your local copies. This ensures that any changes you have made locally
are preserved. If any conflicts result from the merge attempt, the checkout will fail.
Resolve any conflicts, and then check out the files. See "Reviewing and Resolving
Conflicts" on page 201.

 If you lock a non-tip revision (any revision other than the latest revision on a given
trunk or branch), Version Manager will create a new branch when you check it in. See
"Working with Branches" on page 161.

Editing Files

IDE Client Implementation Guide 179

To check out a file:

1 Do one of the following:

2 Verify that the file selection is correct, and modify it if necessary.

3 To compare a local workfile to the latest revision in Version Manager, select a file and
click the Compare button. The file opens in the Compare Revisions window. See
"Comparing Files" on page 199.

4 To override the default check out options, select the Options tab and do any of the
following:

 Specify what to do if the local workfile has changed since the latest revision was
checked into Version Manager:

• Prompt: Asks you what to do on a file-by-file basis.

• Merge: Automatically merges the latest revision from Version Manager into
your local workfile. If there are conflicting changes, the check out will fail.
Resolve any conflicts, and then check out the files. See "Reviewing and
Resolving Conflicts" on page 201.

• Replace: Overwrites the local workfile with the latest revision from Version
Manager.

• Leave: Leaves the local workfile as it is.

To check out Do this

The default revision

(as defined by the
default version [label]
or promotion group for
the workspace; else the
tip of the trunk)

a Select a project, folder, or individual files in the
Solution Explorer.

b Right-Click and select Check Out from the
resulting menu. The Check Out dialog box
appears.

c Continue to Step 2.

A specific revision a Select the desired file in the Solution Explorer.

b Right-Click and select History from the
resulting menu. The History view displays a list
of all revisions of the file.

The blue checkmark in the History view
indicates which revision is currently in your local
workspace.

c Click the nodes to expand branches in the tree,
as needed, in order to locate the desired
revision.

d Right-Click on the desired revision and select
Check Out Revision from the resulting menu.

A red checkmark appears next to the file in the
Solution Explorer and a blue checkmark appears
next to the revision in the History view. The file
is checked out.

e You are done. Skip the remainder of this
procedure.

180 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

 Save settings: Select this check box to make these settings the new default. You
can also define default options for all dialog boxes from the Tools | Options dialog
box. See "Setting Default Options for Dialog Boxes" on page 189

5 Click the Check Out button.

Depending on the options you chose, you may be prompted as to what to do with
modified workfiles or to resolve auto-merge conflicts.

Undoing Checkout
Undo checkout in order to make them available to other users to check out. You can
optionally restore your local copy of the file to the state it was in before you checked it
out, replace it with the latest revision from Version Manager, or leave it as it is.

To undo checkout:

1 From the Solution Explorer, select one of the following:

2 Right-click, and select Undo Checkout from the resulting menu. The Undo Checkout
dialog box appears. You can also undo checkout by right-clicking files in the File
Status view (View | File Status).

3 Verify that the file selection is correct, and modify it if necessary.

4 To compare a local workfile to the latest revision in Version Manager, select a file and
click the Compare button. The file opens in the Compare Revisions window. See
"Comparing Files" on page 199.

5 To override the default undo checkout options, select the Options tab and do any of
the following:

 Specify what to do with the local workfile after the file is unlocked:

• Leave: Leaves the local workfile as it is.

• Replace with latest: Overwrites the local workfile with a read-only copy of the
latest revision from Version Manager.

 Save settings: Select this check box to make these settings the new default. You
can also define default options for all dialog boxes from the Tools | Options dialog
box. See "Setting Default Options for Dialog Boxes" on page 189

6 Click the Undo Checkout button.

Select To

A project or folder Undo checkout of all files stored in the project of
folder

Individual files Undo checkout of specific files

Editing Files

IDE Client Implementation Guide 181

Editing Files
Once you have gotten or checked out the files you want to work on, you can edit them
locally. Depending on the workflow in your organization, you must do one of the following
to edit the files:

 If your organizational workflow is to check out (lock) files before editing them, then
any files you have checked out are already writable and you can start work on them.
If the files are not yet checked out, you must check them out.

 If your organization supports an optimistic locking model, allowing multiple
developers to work on the same files simultaneously without requiring the files to be
locked, then you do not need to check out the files before editing them. You just need
to get them. However, getting files does not by default make the local copies of the
files writable. In order to work on the files, you must do one of the following:

• Select the Make writable option when you get the files from Version Manager.
The write attribute will be changed only if a revision is actually gotten from the
repository. No revision is gotten if the local file matches the latest revision or if the
local file is different but you selected the Leave option.

• Use Windows Explorer to make the files writable.

• Choose to overwrite the existing files when prompted by Visual Studio. This occurs
when you save your changes.

Refreshing File Status
Refresh file status in the Solution Explorer to display the current file lock status on the file
icons. This ensures that you can see which files are currently locked in Version Manager.

To refresh file status:

1 In the Solution explorer, click the Refresh button.

Reviewing Local Changes
Review local changes to:

 Display a list of all changes that you have made to local copies of files, and to list any
files that you have added or removed. This is an ideal way to quickly review the status
of the files in your workspace.

 Quickly check in all files that you have changed since you last checked in. See
"Checking In All Local Changes" on page 185.

To display local file status:

1 Select View | File Status. The File Status view appears with a list of all of the files that
you have modified or added since your last check in.

2 To change which files are listed, click the Filter button and select or deselect any or
all of the following options:

 Checked Out: List the files that are currently checked out.

 Locally Modified: List the files that you have modified since your last check in.

182 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

 New Files: List the files that you have added since your last check in. You can also
check in changes and compare revisions from the File Status view. See "Checking
In All Local Changes" on page 185 and "Comparing Files" on page 199

Checking In Files
Check in files to store any changes you have made in new revisions. If your workflow is to
check out (lock) all files in order to edit them, then you must do so before checking them
in. Otherwise, you can check in any local files, regardless of whether you first checked
them out.

When you check in a file, a new revision is created in one of the following places,
depending on how your Version Manager workspace is configured and whether a non-tip
revision is checked out:

See "Working with Branches" on page 161 for information on branching.

To check in, you can either:

 Select specific files and folders, and complete the Check In dialog box. This provides
you with a full range of check-in options, including the ability to customize SBM issue
associations. See "Checking In with the Check In Dialog Box" on page 183.

 Check in locally modified files from the File Status view, and bypass the Check In
dialog box. In this case, all default settings for check-in will apply. This method is
faster, but less flexible. See "Checking In All Local Changes" on page 185

IMPORTANT! Checking in does not synchronize such changes as renamed and moved
files. To do this, commit all local changes to Version Manager ("Committing Local Changes
to Version Manager" on page 197), or synchronize your workspace with the corresponding
Version Manager workspace.

About Checking In and Merging

If other users have checked in changes to the files since you last updated your local
workspace with the latest revisions, by default your changes will be automatically merged
with the latest revisions. This ensures that no changes are lost. If your changes conflict
with changes that other users have checked in, you must resolve the conflicts before

If Then

No revision is locked, AND
A Default Version has been defined for
the workspace and applied to the file.

The new revision is checked in as the tip
on the branch or trunk that is defined by
the Default Version.

No revision is locked, AND
No Default Version is in effect for the file.

The new revision is checked in as the tip
on the trunk.

A single revision is locked The new revision is checked in as the tip
on the branch or trunk that contains the
locked revision.

Multiple revisions are locked You are prompted to select which revision
to unlock. The new revision is created as
the tip on the branch or trunk that you
unlock.

A non-tip revision is locked The new revision is checked in as the tip of
a new branch off of the locked revision.

Editing Files

IDE Client Implementation Guide 183

completing check-in. The Compare Workspaces view simplifies this process by listing all of
the files that conflict with files in Version Manager. See "Reviewing and Resolving
Conflicts" on page 201.

Checking In with the Check In Dialog Box

To check in specific files or folders using the Check In dialog box:

1 Save all of the files that you are checking in, including any project or solution files.

2 Select the files or folders that you want to check in from the Solution Explorer. If you
locked a non-tip revision (any revision other than the latest revision on a given trunk
or branch), Version Manager will create a new branch when you check it in. See
"Working with Branches" on page 161.

3 Right-click, and select Check In from the resulting menu. The Check In dialog box
appears.

4 Verify that the file selection is correct, and modify it if necessary.

5 Enter a description of the changes in the Description field. To enter a separate
description for each file in turn, deselect the Use description for all checkbox on the
Options tab.

6 Your currently activated SBM issues will be listed. By default, they will be associated
with the files you check in. Deselect any issues that you do not want to associate with
the files you are checking in.

By default, any issues that you associate with files at check-in will not be deactivated.
If you want to remove associated issues from your activated issues list, select the
Deactivate selected issues after checkin check box.

For information on SBM issue association and setup, see "Associating and Working on
SBM Issues" on page 204.

184 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

7 To modify your check-in options, click the Options tab and update any of the
following:

Option Description

Newer file is
checked in

Choose what to do if a new revision of the file has been
checked in to Version Manager since you last got the file.
Select from the following:

 Merge: Merges your changes with the latest revision in
Version Manager. If conflicts result from attempting to
merge files, you must resolve the conflicts before
completing the check-in. See "Reviewing and Resolving
Conflicts" on page 201.

 Leave: Does not check in the file. The file is unlocked.

 Force check in: Checks in the file and creates a new
revision based solely on your workfile.

If file is
unchanged

Choose what to do if the local workfile is no different than the
latest revision in Version Manager:

 Prompt: Displays a prompt allowing you to decide what
to do with each unchanged workfile in turn.

 Check in: Checks in any unchanged workfiles as new
revisions.

 Leave: Does not check in any unchanged workfiles; no
new revisions are created. The file is unlocked.

Use description
for all

Select to apply the description from the Description field to
every file. Deselect to enter unique descriptions for each file in
turn.

Keep checked
out

Select to keep any currently locked files locked after the
check-in operation completes.

Update after
keyword
expansion

This option applies only if the file you are checking in includes
Version Manager keywords that will be expanded during check-
in.
Select to copy the latest revision, after its keywords have been
expanded, to your local workspace.

Promote Select to promote the new revision to the next group in the
promotion hierarchy.

IMPORTANT! You cannot simultaneously keep the files
locked and promote the new revisions during check-in. This is
because you cannot promote a locked revision. If you want to
promote the new revisions, then do not choose to keep the
files locked.

Force branch Select to force a new branch in the file’s archive. The new
branch will be created on whatever branch is defined by the
default label. If there is no default label, the default branch is
usually the tip of the trunk or branch from which the revision
was checked out.

For more information on branches, see "Working with
Branches" on page 161.

Editing Files

IDE Client Implementation Guide 185

8 Click the Check In button.

Depending on the options you chose, you may be prompted as to what to do in the
case of an existing label, an unchanged workfile, a newer revision in the repository, or
to resolve auto-merge conflicts. If multiple revisions of the file are locked, you will be
prompted to select which revision to unlock.

Checking In All Local Changes

To quickly check in all local changes:

1 Select View | File Status. The File Status view appears with a list of all of the files that
you have modified or added since your last check in.

2 Click the Comments button to expand the Comments field so that you can enter a
description of the changes you made to the files. To enter a separate description for
each file, leave the Comments field blank. A Comments dialog will appear for each
file in turn.

3 Verify that the file selection is correct, and modify it if necessary.

4 Click the Check In button.

If SBM issue associations are required for all check-ins, and there are currently active
issues, then the files are associated with the issues. If no issues are currently active, you
must activate some issues before checking in. See "Associating and Working on SBM
Issues" on page 204

Label: Name Enter a version label to assign to the new revisions. Labels are
limited to 254 characters. Do not use a colon (:), double
quotes ("), a plus sign (+), or a minus sign (-).

Label: If label
exists

Choose what to do if the label you are assigning to the new
revision is already assigned to a different revision of the same
files. Select one of the following:

 Prompt: Displays a prompt allowing you to decide what
to do with each file in turn.

 Reassign: Moves the label to the new revision.

 Leave: Leaves the label assignment as it is; does not
move it to the new revision.

Float with tip Select if you want the label to always be associated with the
latest (tip) revision of a file. A floating label will automatically
reassign itself to the latest revision during any future check-
ins.

Save settings Select to make these settings the new default.
TIP You can also define default options for all dialog boxes
from the Tools | Options dialog. See "Setting Default Options
for Dialog Boxes" on page 189

Deactivate
selected issues
after check in

Select to deactivate any issues that you associate with files at
check-in; they will no longer appear in your activated issues
list. If you want to leave the issues in your activated issues
list, deselect this check box.
NOTE This setting is remembered independently of the Save
settings option.

Option Description

186 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

Labeling Revisions
You can use version labels to mark revisions that have been used in specific releases, or
that include specific changes. For example, you can assign a floating label (a label that
always moves to the newest revision of a file) that build scripts can search for, in order to
be sure that only the latest revisions of files are retrieved. You can:

 Assign labels: See "Assigning Labels to the Latest Revision" on page 186 and
"Assigning Labels to a Previous Revision" on page 187.

 Rename labels: See "Renaming Labels" on page 187

 Delete labels: See "Deleting Labels" on page 188

Assigning Labels to the Latest Revision

To label the latest revision of a file, or a selection of files:

1 Select the files that you want to label. Select a folder to label all of the files within that
folder.

2 Right-click, and select Label from the resulting menu. The Assign Label dialog box
appears.

3 Verify that the file selection is correct, and modify it if necessary.

4 To compare a local workfile to the latest revision in Version Manager, select a file and
click the Compare button. The file opens in the Compare Revisions window. See
"Comparing Files" on page 199.

5 Enter the label in the Label field. Labels are limited to 254 characters. Do not use a
colon (:), double quotes ("), a plus sign (+), or a minus sign (-).

6 To override the default label options, select the Options tab and do any of the
following:

 Choose what to do if the label you are assigning is already assigned to different
revisions of the same files. Select one of the following:

• Prompt: Displays a prompt allowing you to decide what to do with each file in
turn.

• Reassign: Moves the label to the latest revision.

• Leave: Leaves the label assignment as it is; does not move it to the latest
revision.

 Float label: Select this check box if you want the label to always be associated
with the latest (tip) revision of a file. A floating label will automatically reassign
itself to the latest revision during any future check-ins.

 Save settings: Select this check box to make these settings the new default. You
can also define default options for all dialog boxes from the Tools | Options dialog
box. See "Setting Default Options for Dialog Boxes" on page 189

7 Click the Assign Label button.

Assigning Labels to a Previous Revision

Editing Files

IDE Client Implementation Guide 187

Assigning Labels to a Previous Revision

To label a previous revision of a specific file:

1 Select the file that you want to label.

2 Right-click, and select View History from the resulting menu. The History view
appears.

3 Right-click the revision that you want to label and select Assign Label from the
resulting menu. The Assign Label dialog box appears.

4 To compare a local workfile to the latest revision in Version Manager, select a file and
click the Compare button. The file opens in the Compare Revisions window. See
"Comparing Files" on page 199.

5 Enter the label in the Label field. Labels are limited to 254 characters. Do not use a
colon (:), double quotes ("), a plus sign (+), or a minus sign (-).

6 To override the default label options, select the Options tab and do any of the
following:

 Choose what to do if the label you are assigning is already assigned to a different
revision of the same file. Select one of the following:

• Prompt: Displays a prompt allowing you to decide what to do.

• Reassign: Moves the label to the selected revision.

• Leave: Leaves the label assignment as it is; does not move it to the selected
revision.

 Float label: Select this check box if you want the label to always be associated
with the latest (tip) revision of a file. A floating label will automatically reassign
itself to the latest revision during any future check-ins.

 Save settings: Select this check box to make these settings the new default. You
can also define default options for all dialog boxes from the Tools | Options dialog
box. See "Setting Default Options for Dialog Boxes" on page 189

7 Click the Assign Label button.

Assigning Labels to the Latest Revision

Renaming Labels

From Visual Studio, you can rename a label assigned to a specific revision of a specific file.
To rename a label across multiple files, use the Version Manager desktop client.

To rename a label:

1 Select the file that contains the label you want to rename.

2 Right-click, and select View History from the resulting menu. The History view
appears.

3 Click the Label () button to display all version labels assigned to revisions of the
file.

4 Click on the label that you want to rename, enter the new text, and press ENTER.

188 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

Deleting Labels

From Visual Studio, you can delete a label assigned to a specific revision of a specific file.
To delete a label across multiple files, use the Version Manager desktop client.

To delete a label:

1 Select the file that contains the label you want to delete.

2 Right-click, and select View History from the resulting menu. The History view
appears.

3 Click the Label () button to display all version labels assigned to revisions of the
file.

4 Right-click the label that you want to delete, and select Delete Label from the
resulting menu.

Promoting Revisions
Promote a revision to associate it with the next promotion group in the promotion model.
For example, if the next group in your promotion model is called test and is used to
identify files that are ready to be tested, and you check in a revision that makes a
component ready to be tested, then promote the revision to assign the test group to it.

Promoting a Revision

To promote a specific revision of a specific file:

1 Select the file that you want to promote.

2 Right-click, and select View History from the resulting menu. The History view
appears.

3 Right-click on the revision that you want to promote, and select Promote to Next
from the resulting menu.

You can promote files during check in. See "Checking In Files" on page 182.

Working While Offline
You can continue to work on projects while offline, if:

 The files are already on your local drive, and

 Pragmatic locking is enabled, or the files are already checked out to you.

If you attempt to login into a project database while the system hosting the project
database is unavailable, a Work Offline button appears at the bottom of the Log In
dialog. Click the button to initiate an offline session.

While you are working offline:

 The following message is displayed in the console: The session for PDB ProjectDatabseName
is currently offline.

 All Version Manager commands that require a connection to the project database are
disabled.

Setting Default Options for Dialog Boxes

IDE Client Implementation Guide 189

Version Manager will automatically reconnect to the project database when it detects that
the system is accessible again.

Setting Default Options for Dialog Boxes
Set default options to define the default settings and behavior for dialog boxes. Silent
operations, such as checking in from the File Status view, use these defaults as well.

To set default options for dialog boxes:

1 Select Tools | Options. The Options dialog box appears.

2 From the tree on the left, select Source Control | Commands.

3 Set any of the following default options to your choice:

Category Options

Label
(Click the Label
button in the Check
in group to display
these options)

Defaults apply
whenever you assign
version labels. See
"Labeling Revisions"
on page 186.

If label exists
Choose what to do if the label you are assigning is already
assigned to a different revision of the same file. Select one
of the following:

 Prompt: Displays a prompt allowing you to decide
what to do with each file in turn.

 Reassign: Moves the label to the new revision.

 Leave: Leaves the label assignment as it is; does not
move it to the new revision.

Float with tip
Select if you want the label to always be associated with the
latest (tip) revision of a file. A floating label will
automatically reassign itself to the latest revision during
any future check-ins.

Name
Enter a version label to assign by default. Labels are limited
to 254 characters. Do not use a colon (:), double quotes ("),
a plus sign (+), or a minus sign (-).

190 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

Check in
Defaults apply
whenever you check
in files. See "Checking
In Files" on page 182.

If newer is checked in
Choose what to do if a new revision of the file has been
checked in to Version Manager since you last got the file.
Select from the following:

 Merge: Merges your changes with the latest revision
in Version Manager. If conflicts results from attempting
to merge files, you must resolve the conflicts before
completing the check-in. See "Reviewing and
Resolving Conflicts" on page 201.

 Leave: Does not check in the file. The file is unlocked.

 Force check in: Checks in the file and creates a new
revision based solely on your workfile.

If file is unchanged
Choose what to do if the local workfile is no different than
the latest revision in Version Manager:

 Prompt: Displays a prompt allowing you to decide
what to do with each unchanged workfile in turn.

 Check in: Checks in any unchanged workfiles as new
revisions.

 Leave: Does not check in any unchanged workfiles;
no new revisions are created. The file is unlocked.

Use description for all
Select to apply the description from the Description field
to every file. Deselect to enter unique descriptions for each
file in turn.

Keep checked out
Select to keep any currently locked files locked after the
check-in operation completes.

Update after keyword expansion
This option applies only if the file you are checking in
includes Version Manager keywords that will be expanded
during check-in.
Select to copy the latest revision, after its keywords have
been expanded, to your local workspace.

Promote
Select to promote the new revision to the next group in the
promotion hierarchy.

IMPORTANT! You cannot simultaneously keep the files
locked and promote the new revisions during check-in.
This is because you cannot promote a locked revision. If
you want to promote the new revisions, then do not
choose to keep the files locked.

Category Options

Setting Default Options for Dialog Boxes

IDE Client Implementation Guide 191

4 Click OK.

You can save the current configuration of a dialog box as the default by selecting the Save
Settings check box on the dialog box’s Options tab.

Configuring Client/Server-Side Processing
By default, server-side processing is enabled. In most cases, this allows faster operation
since less data needs to be transferred back and forth between the Version Manager File
Server and your IDE client. However, you can revert to the traditional client-side

Get latest
Defaults apply
whenever you get
files. See "Getting
Specific Files or
Folders" on page 176.

If file has changed
Specify what to do if the local workfile has changed since
the latest revision was checked into Version Manager:

 Prompt: Asks you what to do on a file-by-file basis.

 Merge: Automatically merges the latest revision from
Version Manager into your local workfile. If there are
conflicting changes, the get will fail. Resolve any
conflicts, and then get the files. See "Reviewing and
Resolving Conflicts" on page 201.

 Replace: Overwrites the local workfile with the latest
revision from Version Manager.

 Leave: Leaves the local workfile as it is.

Make writable
Select this check box to make the workfile writable instead
of read-only.

Check out
Defaults apply
whenever you check
out files. See
"Checking Out Files"
on page 178.

If file has changed
Specify what to do if the local workfile has changed since
the latest revision was checked into Version Manager:

 Prompt: Asks you what to do on a file-by-file basis.

 Merge: Automatically merges the latest revision from
Version Manager into your local workfile. If there are
conflicting changes, the get will fail. Resolve any
conflicts, and then get the files. See "Reviewing and
Resolving Conflicts" on page 201.

 Replace: Overwrites the local workfile with the latest
revision from Version Manager.

 Leave: Leaves the local workfile as it is.

Undo checkout
Defaults apply
whenever you undo
checkout. See
"Undoing Checkout"
on page 180.

After file is unlocked
Specify what to do with the local workfile after the file is
unlocked:

 Leave: Leaves the local workfile as it is.

 Replace with latest: Overwrites the local workfile
with a read-only copy of the latest revision from
Version Manager.

Category Options

192 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

processing if your use case requires it. For instance, this feature does not currently
support client-side event triggers.

To configure Client/Server-Side processing:

1 Select Tools | Options. The Options dialog box appears.

2 From the tree on the left, select Source Control | Client/Server.

3 Select or deselect the Enable server-side processing checkbox.

4 Click OK.

Setting Encoding and Display Options
Set encoding and display options for the Compare and Merge tools to define:

 How text in file comparisons will appear, including markup for each type of difference
(such as changes, deletions, and conflicts)

 How text in file comparisons will be encoded

 Whether line numbers should be displayed

 How many spaces tabs should take up

 Whether, when resolving conflicts, to display the original file (ancestor), as well as the
derivatives that are in conflict

To set encoding and display options for file comparisons:

1 Select Tools | Options. The Options dialog box appears.

2 From the tree on the left, select Source Control | Compare and Merge.

3 Complete the general settings as follows:

4 Under the Encoding options, choose any of the following:

 UTF-8: 8 bit Unicode.

 UTF-16: 16 bit Unicode (Unicode typically refers to this encoding).

 UTF-16BE: Big-endian Unicode.

 ASCII: 7 bit characters.

Option Description

Show ancestor Select to always show the ancestor (or original)
revision pane when resolving conflicts.

Syntax highlighting Select to highlight keywords when comparing files.
You can highlight syntax in the following types of
files:

CSharp, CPP, Java, Visual Basic, HTML, XML, Java
Script, VB Script, CSS, SQL, Python, .ini

Tab size Enter the number of spaces that comprise a tab.

Line numbers Select to display line numbers when comparing
files.

Comparing and Synchronizing Workspaces

IDE Client Implementation Guide 193

 UTF-7 or high-ASCII: Variable length encoding, commonly used in e-mail.

5 Under the Display options, click the Font, Text Color, or Background buttons to
modify the way that the text will display when you compare files. You can preview the
text style in the Text box.

6 Also under the Display options, select a type of difference and click the Custom
button in order to customize the markup of specific types of differences. You can
customize the text style and highlighting for changes, deletions, insertions, and
moves. You can customize text color for conflicts and filler.

For example, by default, deletions are marked up with a red strike-out. To change
this, select Delete, click Custom, and then select new text properties from the
resulting dialog box.

7 Click OK.

Comparing and Synchronizing Workspaces
Synchronize workspaces to check in any changes to files in your local workspace, and to
update your local workspace with changes that other users have checked into Version
Manager. Synchronizing workspaces includes the following procedures:

 Compare your local workspace to the corresponding Version Manager project to
determine what has changed since your last synchronization. See "Comparing
Workspaces" on page 194.

 Commit all changes to local files, to check in the changes to Version Manager. See
"Committing Local Changes to Version Manager" on page 197.

 Update your local workspace with all updates to files in Version Manager. See "Getting
All Updates from Version Manager" on page 195.

 Synchronize workspaces to commit all local changes to Version Manager, and update
your local workspace with changes from Version Manager, all in one step. See
"Synchronizing Workspaces" on page 198.

About the Merge Process
Files may be merged when checking in files, and when synchronizing workspaces. If you
and others have made changes to a shared file without checking that file out, then your
respective changes will be merged when you synchronize workspaces. For example,
Developer 1 and Developer 2 both get Queries.cs in their local workspaces, without
checking it out first. Developer 1 checks in a new revision with changes. Developer 2 then
checks in with changes, as well. At this time, the changes that Developer 2 made are
merged into the revision of the file that Developer 1 checked in. If there are any conflicts,
Developer 2 must resolve them before completing his check-in.

Important Refactoring Considerations
When you synchronize, your local workspace is automatically updated with any files that
have been deleted, moved, renamed, or added within another Visual Studio environment.
However, if any files have been added, moved, renamed, or deleted from any of
the other Version Manager clients (such as the desktop, Web, or command line

194 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

clients), your Visual Studio solution or project will not be automatically updated
with all of the changes. We therefore recommend that any additions, moves, deletions,
or renames of files in any Visual Studio projects are completed within Visual Studio itself.
This updates the Visual Studio solution and project information so that the changes will be
available from within Visual Studio.

IMPORTANT!

 All files of a given CAB or C++ project must reside under the root directory of the
Visual Studio project. Cutting and pasting files from one C++ project to another inside
of Visual Studio violates this requirement.

 A New Visual Studio project added to a solution that is already under source control
will not be listed as having been locally added when you compare workspaces. To add
such projects to source control, select the new project, right-click, and select Add
Project to Source Control.

If any files are added, renamed, deleted, or moved from any other Version Manager
interface, you must complete the following steps to reconcile your local workspace to the
changes:

1 Synchronize your workspace. This will update your working directories with all of the
changes. For example, if a file was renamed in Version Manager, the file with the old
name will be replaced by the file with the new name. Any files that were deleted in
Version Manager will be deleted from your working directories.

2 From the Solution explorer, delete any references to files that are now missing. This
includes any file that has been renamed or moved. Because the Visual Studio solution
or project are not aware of the changes, the files simply appear to be missing, rather
than renamed or moved.

3 Add any files that have been renamed, moved, or added. These files were all placed in
your physical working directories when you synchronized; you must add them to your
Visual Studio solution or project to make sure that the solution or project are aware of
them. Make sure that you add them to the location in your project that corresponds to
their location in your working directories.

4 Once again synchronize your workspace with Version Manager. This will ensure that
your solution or project is checked in to Version Manager, with all of the changes.
Then, any other developer will get the updated solution or project with all of moved,
renamed, added, and deleted files.

Comparing Workspaces
Compare your local workspace to the corresponding Version Manager project to determine
what has changed since you last synchronized. Once this is done, you can determine
whether you need to commit local changes to Version Manager ("Committing Local
Changes to Version Manager" on page 197), update your local workspace ("Getting All
Updates from Version Manager" on page 195), or synchronize workspaces
("Synchronizing Workspaces" on page 198) to update and commit all changes. You can
also determine whether you need to resolve any conflicting changes between different
revisions of files.

Only projects that are under source control can be compared. However, the solution does
not have to be under source control. This allows for the placement of projects outside of
the solution structure.

Comparing and Synchronizing Workspaces

IDE Client Implementation Guide 195

Potential changes include:

 New files have been added, either to your local workspace or to Version Manager.

 Files have been changed in your local workspace.

 New revisions of files have been checked in to Version Manager.

 Files have been deleted, moved, or renamed, either in your workspace or in Version
Manager.

To compare workspaces:

1 Make sure to save all files that you have modified locally, including solution and
project files.

2 Select File | Source Control | Compare Workspaces. The Compare Workspace view
appears.

By default, the contents of the local workspace appear in the left pane, under Local
Workspace. The contents of the Version Manager project appear in the right pane,
under Repository.

3 To limit the display to specific types of changes, click the Filter button and select any
of the following filtering options:

 Select / de-select Outgoing to show / hide changes to local files

 Select / de-select Incoming to show / hide changes to files in Version Manager

 Select / de-select Conflicts to show / hide conflicts between files in the local
workspace and files in Version Manager

4 To open a conflict in the Merge tool, select the conflict and click the Resolve conflicts
() button. See "Reviewing and Resolving Conflicts" on page 201.

Getting All Updates from Version Manager
Get all updates from Version Manager to update your local workspace with all changes in
the corresponding Version Manager project. When you get updates from Version Manager,
your workspace is updated with the following types of changes:

 All new revisions of files are copied to your workspace. By default, all changes in the
new revisions are merged with changes that you have made to your local copies of the
files since you last checked in. If your changes conflict with other users' changes, you
must either:

• Resolve the conflicts and update again.

• Or force conflicting files to update, despite conflicts. In this case, your local
changes will be overwritten with the latest revisions. The revisions are not merged,
and your local updates are lost. See "Forcing Updates" on page 196.

 Any new files, that have been added to Version Manager since you last got all
updates, and to which the default version label for your workspace is assigned, are
added to your local workspace.

 If any files have been deleted from Version Manager, the corresponding files are
deleted from your local workspace. This includes any files from which the default
version label has been removed.

196 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

 If any files in Version Manager have been moved or renamed, the corresponding files
on your workspace are moved and renamed.

Only additions, deletions, moves, and renames that are made via the rich integration to
Visual Studio are automatically synchronized. See "Important Refactoring Considerations"
on page 193 for information on refactoring changes made via other interfaces, such as the
desktop.

Updating and Merging Local Workspaces

To update your local workspace:

1 Select File | Source Control | Compare Workspaces. The Compare Workspaces view
appears.

2 Compare your local workspace to the corresponding Version Manager project (see
"Comparing Workspaces" on page 194). Of particular interest are the Incoming
changes; these are all changes to the Version Manager project that will be updated in
your local workspace.

3 Determine if any of the local files conflict with files in Version Manager. If so, you must
resolve these conflicts before you can update your workspace with the new files. To
open a conflict in the Merge tool, select the conflict and click the Resolve conflicts
() button. See "Reviewing and Resolving Conflicts" on page 201.

If there are conflicts, but you do not want to resolve them and would prefer to start
over with new copies of the latest revisions from Version Manager, you can do so by
forcing updates. See "Forcing Updates" on page 196.

4 Once you have reviewed the changes, click the Update button to get all new and
updated files from Version Manager.

5 Once the operation is complete, you can verify that you have successfully gotten all
updates by again displaying all incoming changes, as well as conflicts.

Forcing Updates

If you want to overwrite any local files with the latest revisions from Version Manager, you
can do so by forcing an update. A forced update does not attempt to merge files. Any local
modifications are over-written. This is very useful if there are conflicts that you do not
need to resolve, and you would instead prefer to start over with the latest revisions.

To force updates:

From the Compare Workspace view, right-click the file (or files) and select Force Update
from the menu that displays. Your local files are over-written with the latest revisions
from Version Manager.

Comparing and Synchronizing Workspaces

IDE Client Implementation Guide 197

Committing Local Changes to Version Manager
Commit local changes to Version Manager to update the Version Manager project with all
changes to your local workspace. When you commit local changes, the Version Manager
project is updated with the following types of change:

 Changes to files are checked in to new revisions. By default, all of your changes are
merged with changes that other users have checked in since you last checked in. If
your changes conflict with other users' changes, you must either:

• Resolve the conflicts and commit again.

• Force the conflicting files to commit, despite conflicts. In this case new revisions
are created from your local files. The revisions are not merged. See "Forcing
Commits" on page 197.

 Any new files are added to the Version Manager project, and the default version label
for your workspace is assigned to them.

 If you have deleted any files from your workspace, the corresponding files are deleted
from Version Manager.

 If you have moved or renamed any files in your local workspace, the corresponding
files are moved and renamed in Version Manager.

Committing and Merging Local Changes

To commit local changes to Version Manager:

1 Make sure to save all files that you have modified locally, including solution and
project files.

2 Select File | Source Control | Compare Workspaces. The Compare Workspaces view
appears.

3 Compare your local workspace to the corresponding Version Manager project (see
"Comparing Workspaces" on page 194). Of particular interest are the Outgoing
changes; these are all changes to your local workspace that will be committed to the
Version Manager project.

4 Determine if any of the local files conflict with files in Version Manager. If so, you must
resolve these conflicts before you can update your workspace with the new files. See
"Reviewing and Resolving Conflicts" on page 201.

If there are conflicts, but you do not want to resolve them and would prefer to check
in new revisions from your files without merging them, you can do so by forcing a
commit. See "Forcing Commits" on page 197.

5 Once you have reviewed the changes, click the Commit button to update the Version
Manager project.

If any of your local changes conflict with the latest revisions of files in Version
Manager, you must resolve those conflicts before you can merge the files with the
latest revisions. See "Reviewing and Resolving Conflicts" on page 201.

Forcing Commits

If you want to create new revisions in Version Manager from your local copies of files,
without merging them into the latest revisions, you can do so by forcing a commit. A
forced commit does not attempt to merge files. This is very useful if there are conflicts

198 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

that you do not need to resolve, and would instead prefer to check in new revisions using
your local files.

To force commits:

From the Compare Workspace view, right-click the file (or files) and select Force Commit
from the menu that displays. New revisions are created in Version Manager.

Synchronizing Workspaces
Synchronize workspaces to automatically complete all of the following actions:

 Check in any changes to files that you have modified locally. By default, all changes to
your local copies of the files are merged with any changes that other users have
checked in to Version Manager since you last synchronized (or committed changes). If
your changes conflict with other users' changes, you must resolve them. See
"Reviewing and Resolving Conflicts" on page 201.

 Add any new files from your local workspace to the corresponding Version Manager
project, and assign the default version label for your workspace to them.

 Get the latest revisions of all files in Version Manager. By default, all changes in the
new revisions are merged with changes that you have made to your local copies of the
files since you last checked in. If your changes conflict with other users' changes, you
must resolve them. See "Reviewing and Resolving Conflicts" on page 201.

 Get any files that have been added to Version Manager since you last synchronized,
and to which the default version label has been assigned.

 Delete any files from Version Manager that have been deleted in your local workspace,
and delete any files from your local workspace that have been deleted in Version
Manager. This includes any files that haven't actually been deleted, but from which the
default version label has been removed.

 Move or rename any files in Version Manager that you have moved or renamed locally,
and move or rename any files locally that have been moved or renamed in Version
Manager.

Only additions, deletions, moves, and renames that are made via the rich integration to
Visual Studio are automatically synchronized. See "Important Refactoring Considerations"
on page 193 for information on refactoring changes made via other interfaces.

To synchronize workspaces:

1 Make sure to save all files that you have modified locally, including solution and
project files.

2 Compare your local workspace to the Version Manager project to determine what
changes you need to synchronize. See "Comparing Workspaces" on page 194.

3 Optionally select / de-select changes to choose specific changes to synchronize.

4 Click the Synchronize button.

Comparing Files and Resolving Conflicts

IDE Client Implementation Guide 199

Comparing Files and Resolving Conflicts
Using the rich integration to Visual Studio, you can compare and resolve conflicts between
your local workfiles and the latest revisions in Version Manager. You can also compare two
revisions of the same file. See the following sections for detailed information:

 See "About File Comparison" on page 199 for information on the types of differences
you can evaluate by comparing files.

 See "Setting Encoding and Display Options" on page 192 to learn how to set display
options for the file comparison tool, and how to set encoding options.

 See "Comparing Files" on page 199 to learn how to compare files.

 See "Reviewing and Resolving Conflicts" on page 201 to learn how to resolve conflicts
between different revisions of files.

About File Comparison
File comparison allows you to carefully evaluate the differences between a local copy of a
file and the latest revision in Version Manager, or between two revisions of a file in Version
Manager. You can compare any text based file, such as code source files.

Types of Differences

File comparison reveals the following types of differences between files:

 General changes: Changes that are not clearly insertions or deletions.

 Additions: Additions to one revision of a file that are not present in another revision of
the file.

 Deletions: Content that has been deleted from one revision of a file but not from
another.

 Moves: Content that has been moved in one revision of a file but not in another.

Comparing Files
To compare files:

 You must first select the file that you will compare, and display the file comparison
view. You can compare a local file to the latest revision in Version Manager, or you can
compare two revisions of the same file. See "Displaying File Comparisons" on page
200.

 You can then review the differences. See "File Comparison Usage Overview" on page
200 and "Navigating Differences" on page 201.

200 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

Displaying File Comparisons

To display a file comparison:

Do one of the following:

The Compare Revisions view appears. By default, both of the revisions appear, side-by-
side. Path and revision information appears above each file pane.

You can click either of the following buttons to show / hide just one of the files:

 To only display file one.

 To only display file two.

File Comparison Usage Overview

Each difference and conflict in a file comparison is represented by unique graphical
elements. Use these graphical elements to help you navigate difference reports. Each
difference is indicated by the following:

 Marker: Color markers in the bar to the right of each file pane summarize all of the
differences. Different colors mark each type of difference. A separate marker appears
for each difference.

 Text markup: Differences are highlighted within the text itself. Different colors and
styles are applied to each type of difference. You can customize the text markup
styles for each type of difference. See "Setting Encoding and Display Options" on page
192 for details.

The following table describes each of the markers, icons, and default text markup styles
you will see for each type of difference.

To compare Do this

The local copy of
a file to the latest
revision in Version
Manager

a Select the file in the Solution Explorer.

b Right-click, and select Compare Revisions from the
resulting menu.

Two different
revisions of the
same file in
Version Manager

a Select the file from the Solutions Explorer.

b Right-click, and select View History from the resulting
menu.

c CTRL-click to select two revisions, then right-click and
select Compare Revisions from the resulting menu.

Type Marker Default Text Markup

Modification
Any difference that is neither an addition
nor a conflict is marked as a change.

Yellow:

Deletion
Any text that has been deleted from one
of the revisions of the file that you are
comparing.

Strike-out:

Comparing Files and Resolving Conflicts

IDE Client Implementation Guide 201

Navigating Differences

To review changes in a difference report:

1 Click the difference markers to navigate to a specific difference. When you click the
marker in one file pane, all file panes automatically jump to the same marker, allowing
you to compare differences side-by-side.

2 To jump from the current change to the next change, click the Next Difference
button .

3 To jump from the current change to the previous change, click the Previous
Difference button .

Reviewing and Resolving Conflicts
Review the following procedures to learn how to review conflicts between your local copies
of files and the latest revisions in Version Manager, and how to resolve those conflicts
before checking in new revisions of the files:

 "Reviewing Differences and Conflicts" on page 201

 "Resolving Conflicts" on page 202

 "Completing Merges" on page 203

You must resolve conflicts before checking in, if you intend to merge your local updates
with the latest revision in Version Manager.

Reviewing Differences and Conflicts

Note the following about reviewing differences and conflicts from the Merge tool:

 For an explanation of how to review and navigate differences and conflicts in a file
comparison, see "Comparing Files" on page 199.

Addition
Text that has been added to one of the
revisions of the file that you are
comparing.

Green:

Conflict
Text that has been changed in one of the
two revisions, and that somehow
conflicts with the same text in the other
revision.
You must resolve any conflicts if you
want to merge two revisions of a file
during check-in. See "Reviewing and
Resolving Conflicts" on page 201.

Gray:

Move
Any text that has been moved in one of
the revisions of the file you are
comparing.

Blue:

Type Marker Default Text Markup

202 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

 Each type of difference is marked by a specific icon to the left of the Latest, Local, and
Merged file panes:

• Additions:

• Deletions:

• Edits:

 Conflicts are marked on the left by the Copy edits to solution button: . See
"Resolving Conflicts" on page 202 for more information.

 You can skip ahead to the next conflict, or back to the previous conflict using the Next
Conflict and Previous Conflict buttons.

Resolving Conflicts

You must resolve all conflicts in a file before you can get, check out, or check in the file.
The file is ready to check in or get once there are no more conflicts visible in the Merged
file pane.

To resolve conflicts:

1 Select a conflicting file in the Compare Workspaces view and click the Resolve
conflicts () button. The file opens in the Merge tool. (See "Comparing
Workspaces" on page 194 for information on the Compare Workspaces view.)

By default, the Merge tool displays four panes: Ancestor, Latest, Local, and
Merged:

 The Ancestor pane displays the original file, without markup.

 The Latest pane displays the latest revision in Version Manager, and highlights
differences from the original file.

 The Local pane displays your local, edited copy of the file, and highlights
differences from the original file.

 The Merged pane displays the new revision that will be created as a result of the
merge operation.

Merged
pane

Ancestor
pane

Latest pane Local pane

Comparing Files and Resolving Conflicts

IDE Client Implementation Guide 203

2 Locate the conflict you want to resolve. You can jump to it by clicking the Next
Conflict or Previous Conflict button, or by clicking a red marker in the right
margin . Within the Merged file pane, the area where the conflict occurs is blank,
and indicated by a gray placeholder:

As you navigate the conflicts in one file pane, all of the file panes jump to the
corresponding point. For example, if you navigate to a conflict placeholder in the
Merged file pane, the Latest and Local file panes display the corresponding lines that
are in conflict with each other.

3 Review the conflicting lines in the Latest and Local panes, and choose how to resolve
it. You can resolve it in any of the following ways:

4 Once the conflict is resolved, a checkbox appears to the left of the updated text in the
Merged file pane:

Completing Merges

Once you have resolved all conflicts, click the Done button and do one of the following:

 If you are performing a bulk synchronization of your local workspace with the
corresponding Version Manager project, synchronize workspaces from the Compare
Workspaces view. See "Synchronizing Workspaces" on page 198.

 If you are checking files in, check them in from the Solution Explorer, or perform a
bulk commit of all local changes. See "Checking In Files" on page 182 or "Committing
Local Changes to Version Manager" on page 197.

 If you are getting files, get them from the Solution Explorer, or perform a bulk get of
all changes from Version Manager. See "Checking In Files" on page 182 or "Getting All
Updates from Version Manager" on page 195.

 If you are checking files out, check them out from the Solutions Explorer. See
"Checking Out Files" on page 178.

Solution Procedure

Edit the text
directly

Click on the conflict placeholder in the Merged file pane, and
enter the text that will resolve the conflict.
You can also paste or drag text from another window or
application into the Merged file pane.

Use the lines from
either the Latest or
the Local file pane

To the left of the conflicting lines in either the Latest or the
Local file pane, click the Copy edits to solution button: .
The lines are copied into the corresponding placeholder in
the Merged file pane.
You can also click in the lines you want to copy to the Merged
file pane, and click the Copy edits to solution button
on the toolbar.

204 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

Associating and Working on SBM Issues
If your organization uses SBM to track development issues, such as defects and tasks,
you can access your issues from within the Version Manager integration to Visual Studio.
You can submit and modify SBM issues from within Visual Studio, and then associate
issues with specific files. When you associate issues with files, the versioned file history is
added to the issue.

NOTE The SBM user privilege Run System Reports is required in order to use the
integration to SBM, else the following error message will appear:

Error reading associations (No permission)

See the SBM Administrator Guide.

See the following for detailed information on the SBM integration to Visual Studio:

 "Issue Management Workflow" on page 204

 "Setting Up Your IDE Folder" on page 205

 "Defining Association Options" on page 206

 "Logging into SBM" on page 207

 "Displaying Reports and Issues" on page 208

 "Submitting and Modifying Issues" on page 208

 "Associating Issues" on page 209

Issue Management Workflow
The following table describes the issue management workflow in Visual Studio. You must
follow this workflow to successfully display issues, and associate them with files.

Step Description

1 Set up IDE Folder
Before you can access issues from within Visual Studio, you must set up your
IDE folder in SBM. The IDE folder is a special system folder that enables you to
display specific issues and listing reports from the rich integrations to Visual
Studio and Eclipse. See "Setting Up Your IDE Folder" on page 205.

2 Define Integration Settings
In the Version Manager desktop client, you can optionally update settings that
affect issue association in the rich integration to Visual Studio, including:

 Whether to apply a version label to all revisions associated with a SBM
issue that includes the issue number

 Whether to require issue associations on check-in

 Whether to automatically add notes about associated issues to the
check-in comments for new revisions

See "Defining Association Options" on page 206.

Associating and Working on SBM Issues

IDE Client Implementation Guide 205

Setting Up Your IDE Folder
If your user folder is not visible in the Issues tab of Visual Studio (or the IDE folder is not
visible in the Favorites list in SBM), then you must enable it.

To enable your IDE folder:

1 Launch SBM.

2 Click the User Profile link (in older versions it is your user name) in the upper-right
corner of the Web client. The Edit User Profile page appears.

3 Select the Display tab.

4 Select the Auto Folder Items option.

5 Click the Save Profile button.

3 Connect to the SBM Server
In Visual Studio, when adding or getting a project to source control, you have
the option to specify the SBM server that contains the solution you will use to
manage your issues. If you did not specify the SBM server at that time, or if
you need to change the SBM server connection, complete this procedure.
When you connect to a SBM server, you also login as a specific user. See
"Logging into SBM" on page 207.

4 Review, modify, and submit issues
From the Issues view, you can display all issues that are available via listing
reports in your IDE folder, or that have been added directly to your IDE folder.
For example, this may include specific reports that list only issues that are
assigned to you.
You can then modify these issues, and even submit new issues. See
"Displaying Reports and Issues" on page 208 and "Submitting and Modifying
Issues" on page 208.

5 Associate issues with revisions of files
The SBM integration to Version Manager also allows you to associate issues
with specific revisions of files. When you associate an issue with a file, a
Version Control History section is added to the issues, that tracks
information about the revisions of the files. A version label with the issue ID
can also be assigned to the associated revision. See "Associating Issues" on
page 209. for details.

To associate issues:

1 Activate the issue. This places the issue in a queue of issues that you can
optionally choose to associate with files when you check them in.

2 Work on the files that are affected by the issue. For example, you may
need to edit specific source code files to resolve a problem described in a
specific issue.

3 Check in the files. When you check in, you have the option to associate
the files with any (or all) of the currently activated issues. At this time,
you can choose specifically which issues the files will be associated with.
If the files you are checking in effectively end your portion of the work to
address the issues, you can also choose to deactivate the issues.

Step Description

206 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

The IDE folder (and other auto folders) will now appear in the Favorites list in the
Web client, and the contents of the folder will appear in the Issues tab of Visual
Studio. You can now specify which issues you want to access from Visual Studio by
doing any of the following from the Web client:

 Add specific issues directly to your IDE folder.

 Add listing reports to your IDE folder.

You can access only specific issues and listing reports from within Visual Studio. You
cannot access other types of reports, or other types of items, such as URLs.

See the SBM User's Guide for details on setting up personal or favorites folders.

Defining Association Options
From the Version Manager desktop client, the administrator can define settings for rich
IDE integrations to SBM, including:

 Whether to apply a version label with the issue number to all associated revisions

 Whether to require issue associations on check-in

 Whether to automatically add notes about associated issues to the check-in
comments for new revisions

To define association options:

1 From the Version Manager desktop client, select the project database to which you
will apply the settings.

2 Select Admin | SourceBridge settings. The SourceBridge Settings dialog box appears.

Associating and Working on SBM Issues

IDE Client Implementation Guide 207

3 Set the following options:

4 Click OK.

Logging into SBM
When adding or opening a project from Version Manager, you have the option to specify
the SBM server that contains the solution you will use to manage your issues. If you did
not specify the SBM server at that time, or if you need to change the SBM server
connection, complete this procedure. When you connect to a SBM server, you also login as
a specific user. All issues that are visible from the IDE folder in SBM are then visible from
Visual Studio.

To connect to an SBM server:

1 Select View| Issues. The Issues view appears.

2 Click the SBM Login button . The Connect to SBM dialog box appears.

3 Enter the SBM server name in the SBM Host field. If the SBM server uses a non-
default port number (any port except 80), append the port number to the server
name. For example, if the port number is 89:

tt_server:89

4 Enter your SBM user name and password and click Next.

5 Click Finish.

Field Description

Show Issue
association dialog
on checkin /
Association
required

Select to require that issues be associated with files at
check-in. If you select this option, users will be unable to
complete checkins if no issues are currently active. The
Show Issue association dialog on checkin option has no
effect within the rich integration to Visual Studio, but you
must select it in order to enable you to then select the
Association required option.

Tag workfile
comment with
association

Select to add information about the associated issue(s) to
the check-in comments for files as they are checked in.
Select Before existing comment or After existing
comment to determine the placement of this information
within the comment.
In the Tag field, enter the text that you want to add to the
check-in comments. This can include any of a number of
keywords that will automatically enter information about the
associated issues. These include:

 $id -- Expands to the issue ID number

 $ownid -- Expands to the user ID of the issue owner

 $owner -- Expands to the name of the issue owner

 $project -- Expands to the name of the current project

 $title -- Expands to the title of the issue

Use Version Labels
on checkin

Select to apply a version label consisting of the issue
number when checking in a file.

208 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

Displaying Reports and Issues
From the Issues view, you can display all issues that are available via listing reports in
your IDE folder, or that have been added directly to your IDE folder. For example, this
may include specific reports that only list issues that are assigned to you.

To display reports and issues:

1 Select View | Issues. The Issues view appears.

2 To review your issues:

 Select your user name node to list any issues that have been added to your IDE
folder.

 Expand your user name node to display all reports that are available to you. Any
listing reports that have been added to your IDE folder appear here. You can then
click any of the reports to display issues.

 Select the Activated Issues node to display any currently activated issues (issues
that you are currently working on).

The Related Issues node displays all issues that are associated with a particular
file. See "Associating Issues" on page 209 for information on using this list.

3 To view the contents of an issue, select the issue and click the View Issue button .

Submitting and Modifying Issues
Submit and modify SBM issues to track the status and details of the tasks that you are
completing in Visual Studio. You can submit new issues for tasks, defects, or other work
that needs to be completed, or modify issues to provide input into your work
assignments. Depending on the workflow for your organization, you may modify issues in
order to move them to another state, for example if you have completed your portion of
the task and need to mark it as ready to test.

To submit an issue:

1 Select File | Source Control | Issues. The Issues view appears.

2 Click the Submit Issue button . See the SBM User Guide for more information on
submitting issues.

To modify an issue:

1 Locate the issue you want to update. See "Displaying Reports and Issues" on page
208.

2 Select the issue and click the View Issue button .

3 Update the issue as needed. See the SBM User Guide for more information on
updating issues.

Associating and Working on SBM Issues

IDE Client Implementation Guide 209

Associating Issues
In addition to providing access to specific issues and reports, The SBM integration to
Version Manager also allows you to associate issues with specific revisions of files. When
you associate an issue with a file:

 A Version Control History section is added to the issues, that tracks:

• The name of the associated file

• The revision number

• The check-in date

• The user who checked in the file

• The description of the change that the user entered when checking in

For example, if Joe associated an issue with a file called test.cs, something like the
following might appear in the issue after check-in:

 Optionally, a version label is assigned to the revision of the file that is associated with
the issue. The version label includes the issue number.

 Optionally, information about the associated issue(s) is added to the check-in
comment for the new revision.

See "Defining Association Options" on page 206 for information on setting the association
options.

To associate issues:

1 Locate the issues that you will work on and eventually associate to file revisions. See
"Displaying Reports and Issues" on page 208.

2 Select the issue and click the Activate Issue button . The issue is added to your
Activated Issues list.

To remove an issue from the Activated Issues list, select the issue from the list and
click the Deactivate Issue button .

3 At any point, you can review the details of an issue by selecting it and clicking the
View Issue button .

4 Complete the work required to resolve the issue, or your portion of it.

5 Check in the file or files that resolve the issue. On the Check In dialog box, under SBM
Associations, select the issue that you want to associate with the file or files. Only
issues that are currently activated can be associated during check-in. See "Checking
In Files" on page 182.

210 PVCS Version Manager

Chapter 10 Visual Studio Rich Integration

To display all issues associated with a particular file:

In the Solution Explorer, right-click the file and select Related Issues from the resulting
menu. The Issues view appears with the Related Issues node selected. All issues related
to the currently selected file are listed in the right pane.

IDE Client Implementation Guide 211

Appendix A: Naming Conventions and
Restrictions

General Naming Conventions and Restrictions 212
Specific Naming Conventions and Restrictions 213

212 PVCS Version Manager

Chapter

General Naming Conventions and Restrictions
You can use most alpha, numeric, and special characters when creating or renaming
Version Manager entities and paths. However, your operating system also determines the
conventions that apply to file and directory names.

Prohibited Characters for Files and Directories
The following characters are prohibited by Version Manager, and most operating systems,
when naming files or directories:

 Angle brackets (>) and (<)

 Asterisk (*)

 Colon (:)

 Pipe (|)

 Question mark (?)

 Quotation mark (")

 Slashes, forward (/) and backward (\)

 Space () as the first or last character

 Tab

Naming Considerations for Cross-Platform
Environments
When working in a cross-platform environment, be aware of any incompatibilities between
the systems and limit your usage to that which they have in common.

IMPORTANT! On Windows systems, files and directories (and thus Version Manager
entities and paths) cannot end with a period (.).

IMPORTANT! In a cross-platform environment, you cannot place files into the same
directory if they differ only be case. Such usage is possible only in UNIX-only
environments.

Specific Naming Conventions and Restrictions

IDE Client Implementation Guide 213

Specific Naming Conventions and Restrictions
The following table lists naming conventions and restrictions that apply to specific Version
Manager entities and paths.

Restrictions

Item Type Characters Length

Archives As listed in "Prohibited
Characters for Files and
Directories" on page 212,
plus cannot use:

Ampersand: &
Brackets: []
Parenthesis: ()
Plus sign: +
Semicolon: ;

254 (full path including the
file name)

NOTE Only the first 10
characters of the archive
suffix are significant in
distinguishing identically
named files in the same
project.

Files and paths

(unless otherwise
noted)

As listed in "Prohibited
Characters for Files and
Directories" on page 212.

254 (full path including the
file name)

pvcs_bindir As listed in "Prohibited
Characters for Files and
Directories" on page 212.

254 (full path including the
file name)

NOTE On UNIX, the name of
the vconfig file and the
separator character also
count against the total
length.

Project databases Cannot begin or end with a
tab or space character. Any
character can be used within
the name.

Projects As listed in "Prohibited
Characters for Files and
Directories" on page 212,
plus cannot be:

 The two-character
name of: ..

 The one-character
name of: .

 The one-character
name of: @

214 PVCS Version Manager

Chapter

Promotion groups Ampersand: &
Brackets: []
Comma: ,
Equal sign: =
Parenthesis: ()
Plus sign: +
Question mark: ?
Semicolon: ;
Slash: /

User, group, and
privilege names

Asterisk: *
Colon: :
Backward slash: \
Single quote: '
Quotation mark: "
Parenthesis: ()

30

Version labels Ampersand: &
Asterisk: *
Brackets: []
Colon: :
Equal sign: =
Minus sign: -
Parenthesis: ()
Plus sign: +
Question mark: ?
Quotation mark: "
Semicolon: ;
Slash: /

NOTE The backslash (\)
serves as an escape
character. To create or delete
a label that includes a
backslash, the backslash
must be preceded by
another backslash (\\Label
would result in \Label;
\\\\Label would result in
\\Label).

254

Restrictions

Item Type Characters Length

IDE Client Implementation Guide 215

Index

A
access list, definition of 12
adding files to source control 24
administrative workflow

non-web projects 18
archives

creating 12, 24
definition of 12
directory structure 24
history 14
properties, reviewing 46
sharing 25
sharing, about 14

assigning labels to revisions 34

B
branches

creating 34
definition of 14

C
changes to files, storing 33
check in

defaults 33
overriding defaults 33
procedure 33

check out
by date 31
by revision 31
default options 30
overriding defaults 31
undoing 32

ColdFusion Studio
adding

files to source control 61
projects to source control 60

checking in files 63
checking out files 63
getting files 63
removing files from source control 62
setting up multiple-users 59
undoing checkout 63

comparing files 15, 52
configuring

project databases 20
source control environment 22

Version Manager defaults 22
creating projects in

SCC IDEs 23

D
default

check-in options 33
checkout options 30
get options 28
revision, definition of 13

deleting version labels 37
design part, top level. See project databases
difference reports

about 15
generating 52

displaying properties 46

E
Eclipse 3

adding projects to source control 80
checking in files 87
checking out files 86
compare with local history 94
connecting additional workstations to source con-

trol 82
disconnecting projects from source control 84
excluding files from source control 80
getting files 85
icon glyphs enabling 85
locking files 86
offline mode 90
removing files from source control 84
replace with local history 94
source control status 84
undoing checkout 87

Eclipse rich integration
adding projects to source control 104
associating TeamTrack issues 130
checking in files 115
checking out files 113
compare with local history 123
connecting additional workstations to source con-

trol 106
disconnecting projects from source control 108
excluding files from source control 103
getting files 112
reconnecting projects to source control 108
replace with local history 124

216 PVCS Version Manager

setting default options 131
source control status 109
submitting TeamTrack issues 129
synchronizing with source control 118
undoing checkout 114
working offline 99
working with TeamTrack issues 125

editing files 30
environment, configuring 22

F
files

adding to source control
non-web projects 24

checking in 33
checking out 30
getting 28

floating labels 24

G
generating

difference reports 52
history reports 51

getting files
by date 30
by promotion group 29
by revision 29
default options 28
overriding defaults 29

global workset. See root workspaces 21

H
history reports

about 14
generating 51
types of 51

I
information, source control 46
initial revision, definition of 13
invoking Pulse 48

L
labels

assigning 34, 186
deleting 37, 188
floating 35
reassigning 36
renaming 36, 187

launching
Pulse 48
Version Manager 21

locking files, definition of 13
logging in to a project 28

M
migrating SCC projects to rich Visual Studio 2005

integration 157
monitoring source control activity

about 47
in multiple environments 48

N
nested project structure 12
numbering revisions 13

O
options, setting up environment 22
organizing projects 12

P
parallel development. See branches 14
PowerBuilder

checking in objects 74
checking out objects 73
getting objects 73
objects

removing from source control 72
taking objects 73
undoing checkout 74
version 8

disconnecting from source control 72
preferences 22
product item. See versioned files
project activity, monitoring 47
project databases

creating 20
definition of 12

projects
creating

for SCC IDEs 23
definition of 12
setting up 18

promotion
groups

assigning 24
checking out by 31
definition of 13
reviewing 46

IDE Client Implementation Guide 217

models, definition of 13
promotion groups 38

about 38
assigning to revisions 39
changing 41
checking out revisions 38
permissions 38
promoting to next group 40
removing 42
setting up a promotion model 38

promotion models
about 38
setting up 38

properties, reviewing 14, 46
public workset. See public workspaces 21
public workspaces 21
Pulse

about 47
configuring 47
starting 48
suspending 50

PVCS Merge 52
PVCSCLIServ service 20

R
Rational Application Developer

adding projects to source control 104
associating TeamTrack issues 130
checking in files 115
checking out files 113
compare with local history 123
connecting additional workstations to source con-

trol 106
disconnecting projects from source control 108
excluding files from source control 103
getting files 112
reconnecting projects to source control 108
replace with local history 124
setting default options 131
source control status 109
submitting TeamTrack issues 129
synchronizing with source control 118
undoing checkout 114
working offline 99
working with TeamTrack issues 125

reassigning version labels 36
refresh rate, Pulse 47
relating TeamTrack issues 209
removing files from source control

SCC IDEs 26
renaming version labels 36, 187
reports

difference
about 15
generating 52

history
about 14

generating 51
results messages, displaying 47
reviewing TeamTrack issues 208
revisions

assigning to a promotion group 39
assigning version labels to 13
checking out

assigned to promotion group 38
comparing 52
definition of 13
numbering 13
promoting 40
properties, reviewing 46

rich integration
TeamTrack and Visual Studio 2005 204
Visual Studio .NET 2003 152

root workspaces 21

S
saving changes to files 33
SCC projects, migrating to Visual Studio 2005

rich integration 157
SCC provider

selecting 19
testing 20

selecting an SCC provider 19
settings, source control 22
sharing files

definition of 14
how to 25

source control
concepts 12
environment, configuring 22
information, viewing 14, 46
removing SCC projects from 26

subprojects, definition of 12

T
team environment

personal workspaces 21
sharing files 25
updating your workfiles 30

TeamTrack
association options 206
IDE folder 205
issues

associating 209
displaying 208
submitting and modifying 208

logging in to 207
workflow 204

testing SCC initiation 20
timestamps, setting 30, 32
tip revision, definition of 13

218 PVCS Version Manager

trunk, definition of 14

U
undoing checkout 32
unlocking files 32, 33
user

ID, entering 28
using

reports 46
version labels 34

V
version labels

assigning 24, 34, 186
assigning to a previous revision 187
definition of 13
deleting 37, 188
floating 24, 35
reassigning 36
renaming 36, 187
viewing 46, 175

Version Manager
about project databases 12
launching 21
workspaces 21
workspaces, using in Visual Studio 154

versioned files
comparing 52
editing 30

viewing
file status in Visual Studio 181
properties 14, 46
source control activity 47

Visual Studio Rich Integration
adding solutions and projects to Version Manager

168
branching, about 161
default version 150
editing files 174
forcing a branch at check in 161, 184
migrating SCC projects to 157
offline, working 188
opening solutions and projects from Version Man-

ager 170, 174
overview 152
resolving conflicts 199
Source Control toolbar 152
synchronizing workspaces 193
toolbar 152
using TeamTrack 204
using workspaces 154
working offline 188

Visual Studio SCC integration
adding projects to source control 143
checking in files 148
checking out files 146

configuring SCC behavior 142
getting files 146
removing files from source control 143
supported features 140
undoing checkout 147

W
workfiles

adding to projects 24
comparing 52
definition of 13

workflow
non-web projects 18
TeamTrack rich integration to Visual Studio 204

workset. See workspaces 21
workspaces

definition of 14
Version Manager 21
Visual Studio

comparing 194
overview 154
synchronizing 198

	The Version Manager IDE Client
	Introduction
	Overview of Version Manager Source Control
	Introduction
	Source Control Concepts
	Project Databases
	Projects and Subprojects
	Archives
	Revisions
	Workfiles
	Locks
	Version Labels
	Promotion
	Branches
	Sharing
	Workspaces

	Available Source Control Information
	Viewing Properties of Files Under Source Control
	Monitoring Source Control Activity
	Viewing Historical Archive or Revision Activity
	Comparing Files or Revisions

	How Version Manager Integrates with IDEs

	Setting Up Source Control with SCC IDEs
	Introduction
	Recommended Workflow
	Administrators
	All Users

	About Selecting a Source Control Provider
	Selecting an SCC Provider
	Testing an SCC Provider
	Stopping the PVCSCLIServ Service

	Creating and Configuring Project Databases
	About Version Manager Workspaces
	Launching the Version Manager Desktop Client

	About Setting Defaults for Version Manager Options
	Setting Defaults

	About Creating Source Control Projects
	About Adding Files to Source Control
	Returning Files to Source Control
	Advanced Add Options

	About Sharing Files Across Projects
	Sharing Files

	About Removing Files from Source Control

	Using Source Control
	Introduction
	Logging In to Version Manager Projects
	About Getting Files
	Advanced Get Options
	Getting IDE Projects from Source Control

	About Checking Out Files
	Advanced Checkout Options

	About Undoing Checkout
	Advanced Undo Checkout Options

	About Checking In Files
	Advanced Check-In Options

	About Version Labels
	Assigning Version Labels
	Renaming Version Labels
	Deleting Version Labels

	About Promotion Groups
	Checking Out Revisions Assigned to a Promotion Group
	Assigning a Promotion Group to Revisions
	Promoting Revisions to the Next Promotion Group
	Changing a Promotion Group
	Removing a Promotion Group

	Accessing Source Control Information
	Introduction
	About Properties
	Reviewing Properties

	Monitoring Source Control Activity with Pulse
	Configuring Pulse
	About Starting Pulse
	Viewing Source Control Activity
	Suspending Project Activity Monitoring
	Closing Pulse

	About History Reports
	Generating History Reports

	About Difference Reports
	Generating Difference Reports

	IDE Reference
	Introduction
	ColdFusion Studio
	Introduction
	Accessing Supported Features
	Setting Up Source Control Projects
	Setting Up Projects for Access by Multiple-Users
	Selecting a Source Control Provider
	Mapping Projects to Source Control
	Adding Files to Source Control
	Removing Files from Source Control

	Using Source Control
	Getting Files
	Checking Out Files
	Undoing Checkout
	Checking In Files

	PowerBuilder
	Introduction
	About Version Manager Project Structure
	Accessing Supported Features in PowerBuilder
	Setting Up Source Control Projects in PowerBuilder
	Connecting PowerBuilder Workspaces to Source Control
	Adding Objects to Source Control
	Configuring Workstations in a Multi-User Environment
	Removing Objects from Source Control
	Disconnecting Workspaces from Source Control

	Using Source Control with PowerBuilder
	Getting Objects
	Checking Out Objects
	Undoing Checkout
	Checking In Objects
	Adding New Objects
	Adding New Targets or PBLs

	Rational Application Developer (Eclipse 3 and 4)
	Introduction
	Accessing Supported Features
	Setting Up Source Control Projects
	Excluding Files and Directories from Source Control
	Connecting Projects to Source Control
	Connecting Additional Workstations to a Source Control Project
	Adding New Files to Source Control
	Disconnecting Projects from Source Control
	Removing Files from Source Control

	Using Source Control
	Viewing Source Control Status
	Getting Files
	Checking Out Files
	Locking Files
	Undoing Checkout
	Checking In Files
	Using Rename or Move (Refactoring)
	Using Local Mode
	Working Offline
	Synchronizing Your Workspace with Source Control
	Comparing with Local History
	Replacing with Local History

	Rational Application Developer Rich Integration (Eclipse 3 and 4)
	Introduction
	Accessing Supported Features
	Integration Overview
	Working Offline
	SBM Integration

	Collaborative Process Overview
	Using Workspaces
	Working on Files Without Locking Them
	Checking Out Files with Locks

	Setting Up Source Control Projects
	Excluding Files and Directories from Source Control
	Migrating Projects from the Previous Source Control Integration
	Adding Projects to Source Control
	Connecting Additional Workstations to an Existing Source Control Project
	Disconnecting Projects from Source Control

	Using Source Control
	Viewing Connection Information
	Viewing Source Control Status
	Working in the History View
	Assigning Version Labels
	Getting Files
	Checking Out Files
	Undoing Checkout
	Checking In Files
	Using Rename or Move (Refactoring)
	Comparing and Synchronizing Your Workspace with Source Control
	Comparing with the Latest Revision
	Comparing with Local History
	Comparing Workfiles with Each Other
	Replacing with Local History
	Replacing with Latest Revision

	Associating and Working on SBM Issues
	Issue Management Workflow
	Setting Up Your IDE Folder
	Changing SBM Connection Information
	Displaying Reports and Issues
	Submitting and Modifying Issues
	Associating Issues with Files

	Setting Default Options
	Source Control Options
	Issue Management Options

	Visual Studio SCC Integration
	Introduction
	Accessing Supported Features
	About Visual Basic Files
	Setting Up Source Control Projects
	Upgrading to Visual Studio 2005 from Visual Studio .NET 2003
	Configuring Source Control Behavior
	Configuring Web Projects
	Excluding or Removing Files from Source Control
	Adding Visual Studio Files to Source Control
	Connecting Additional Workstations to a Source Control Project

	Using Source Control
	Getting Files
	Checking Out Files
	Undoing Checkout
	Checking In Files

	Visual Studio Rich Integration
	Introduction
	Accessing Supported Features
	About the Source Control Toolbar

	Visual Studio Rich Integration Overview
	Solutions Business Manager Integration
	Supported Project Types
	Rebinding a Solution

	Collaborative Process Overview
	Using Workspaces
	Working on Files Without Locking Them
	Checking Out (Locking) Files

	Migrating and Converting Visual Studio Solutions
	Migrating from Visual Studio 2003 to Visual Studio RIDE
	Migrating from Visual Studio SCC to Visual Studio RIDE
	Migrating from Visual Studio 2005 to Visual Studio RIDE

	Working with Web Projects
	Working with Branches
	Viewing Branched Files
	How Should I Branch My Files?
	Automatic Label-Based Branching
	Manual Branching
	Editing Revisions on a Branch
	Checking In Branched Files

	Setting Up Source Control Projects
	Adding Solutions and Projects to Version Manager
	Opening Solutions and Projects from Source Control
	Opening Solutions not Added using RIDE

	Editing Files
	Reviewing File History
	Getting Specific Files or Folders
	Checking Out Files
	Undoing Checkout
	Editing Files
	Refreshing File Status
	Reviewing Local Changes
	Checking In Files
	Labeling Revisions
	Promoting Revisions
	Working While Offline

	Setting Default Options for Dialog Boxes
	Configuring Client/Server-Side Processing
	Setting Encoding and Display Options

	Comparing and Synchronizing Workspaces
	About the Merge Process
	Important Refactoring Considerations
	Comparing Workspaces
	Getting All Updates from Version Manager
	Committing Local Changes to Version Manager
	Synchronizing Workspaces

	Comparing Files and Resolving Conflicts
	About File Comparison
	Comparing Files
	Reviewing and Resolving Conflicts

	Associating and Working on SBM Issues
	Issue Management Workflow
	Setting Up Your IDE Folder
	Defining Association Options
	Logging into SBM
	Displaying Reports and Issues
	Submitting and Modifying Issues
	Associating Issues

	Appendix A: Naming Conventions and Restrictions
	General Naming Conventions and Restrictions
	Prohibited Characters for Files and Directories
	Naming Considerations for Cross-Platform Environments

	Specific Naming Conventions and Restrictions

	Index

